1
|
van Bree S. A Critical Perspective on Neural Mechanisms in Cognitive Neuroscience: Towards Unification. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2024; 19:993-1010. [PMID: 37642139 PMCID: PMC11539489 DOI: 10.1177/17456916231191744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
A central pursuit of cognitive neuroscience is to find neural mechanisms of cognition, with research programs favoring different strategies to look for them. But what is a neural mechanism, and how do we know we have captured them? Here I answer these questions through a framework that integrates Marr's levels with philosophical work on mechanism. From this, the following goal emerges: What needs to be explained are the computations of cognition, with explanation itself given by mechanism-composed of algorithms and parts of the brain that realize them. This reveals a delineation within cognitive neuroscience research. In the premechanism stage, the computations of cognition are linked to phenomena in the brain, narrowing down where and when mechanisms are situated in space and time. In the mechanism stage, it is established how computation emerges from organized interactions between parts-filling the premechanistic mold. I explain why a shift toward mechanistic modeling helps us meet our aims while outlining a road map for doing so. Finally, I argue that the explanatory scope of neural mechanisms can be approximated by effect sizes collected across studies, not just conceptual analysis. Together, these points synthesize a mechanistic agenda that allows subfields to connect at the level of theory.
Collapse
Affiliation(s)
- Sander van Bree
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow
- Centre for Human Brain Health, School of Psychology, University of Birmingham
| |
Collapse
|
2
|
Nau M, Schmid AC, Kaplan SM, Baker CI, Kravitz DJ. Centering cognitive neuroscience on task demands and generalization. Nat Neurosci 2024; 27:1656-1667. [PMID: 39075326 DOI: 10.1038/s41593-024-01711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/17/2024] [Indexed: 07/31/2024]
Abstract
Cognitive neuroscience seeks generalizable theories explaining the relationship between behavioral, physiological and mental states. In pursuit of such theories, we propose a theoretical and empirical framework that centers on understanding task demands and the mutual constraints they impose on behavior and neural activity. Task demands emerge from the interaction between an agent's sensory impressions, goals and behavior, which jointly shape the activity and structure of the nervous system on multiple spatiotemporal scales. Understanding this interaction requires multitask studies that vary more than one experimental component (for example, stimuli and instructions) combined with dense behavioral and neural sampling and explicit testing for generalization across tasks and data modalities. By centering task demands rather than mental processes that tasks are assumed to engage, this framework paves the way for the discovery of new generalizable concepts unconstrained by existing taxonomies, and moves cognitive neuroscience toward an action-oriented, dynamic and integrated view of the brain.
Collapse
Affiliation(s)
- Matthias Nau
- Laboratory of Brain and Cognition, National Institutes of Health, Bethesda, MD, USA.
| | - Alexandra C Schmid
- Laboratory of Brain and Cognition, National Institutes of Health, Bethesda, MD, USA
| | - Simon M Kaplan
- Department of Psychological & Brain Sciences, The George Washington University, Washington, DC, USA
| | - Chris I Baker
- Laboratory of Brain and Cognition, National Institutes of Health, Bethesda, MD, USA.
| | - Dwight J Kravitz
- Department of Psychological & Brain Sciences, The George Washington University, Washington, DC, USA.
- Division of Behavioral and Cognitive Sciences, Directorate for Social, Behavioral, and Economic Sciences, US National Science Foundation, Arlington, VA, USA.
| |
Collapse
|
3
|
Parada FJ, Grasso-Cladera A, Rossi A, Soto-Icaza P, Arenas-Pérez M, Errázuriz MC. Applied human neuroscience: Fostering and designing inclusive environments with the 3E-Cognition perspective. Eur J Neurosci 2024; 60:4148-4168. [PMID: 39001625 DOI: 10.1111/ejn.16463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 08/07/2024]
Abstract
The conventional medical paradigm often focuses on deficits and impairments, failing to capture the rich tapestry of experiences and abilities inherent in neurodiversity conditions. In this article, we introduce the 3E-Cognition perspective, offering a paradigm shift by emphasizing the dynamic interplay between the brain, body, and environment in shaping cognitive processes. The perspective fosters a more inclusive and supportive understanding of neurodiversity, with potential applications across various domains such as education, workplace, and healthcare. We begin by introducing the 3E-Cognition principles: embodied, environmentally scaffolded, and enactive. Then, we explore how the 3E-Cognition perspective can be applied to create inclusive environments and experiences for neurodiverse individuals. We provide examples in the realms of education, workplace, and healthcare. In all of these domains, spaces, methodologies, epistemologies, and roles that cater to diverse needs and strengths can be designed using the 3E principles. Finally, we discuss the challenges and benefits of implementing the 3E-Cognition perspective. We focus on the need for technological advancements and research in complex real-world scenarios; we suggest mobile brain/body imaging is a possible solution. We furthermore highlight the importance of recognizing and valuing the diverse manners of experiencing and interacting with the world, the promotion of diverse well-being, and the facilitation of innovation and creativity. Thus, we conclude that the 3E-Cognition perspective offers a groundbreaking approach to understanding and supporting neurodiversity: by embracing the inherent interconnectedness of the brain, body, and environment, we can create a more inclusive and supportive world.
Collapse
Affiliation(s)
- Francisco J Parada
- Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
- Escuela de Diseño, Facultad de Arquitectura, Arte y Diseño, Universidad Diego Portales, Santiago, Chile, Salvador Sanfuentes 2221, Santiago, Metropolitan, Chile
| | | | - Alejandra Rossi
- Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Patricia Soto-Icaza
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Maritza Arenas-Pérez
- Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | | |
Collapse
|
4
|
Grasso-Cladera A, Bremer M, Ladouce S, Parada F. A systematic review of mobile brain/body imaging studies using the P300 event-related potentials to investigate cognition beyond the laboratory. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:631-659. [PMID: 38834886 DOI: 10.3758/s13415-024-01190-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 06/06/2024]
Abstract
The P300 ERP component, related to the onset of task-relevant or infrequent stimuli, has been widely used in the Mobile Brain/Body Imaging (MoBI) literature. This systematic review evaluates the quality and breadth of P300 MoBI studies, revealing a maturing field with well-designed research yet grappling with standardization and global representation challenges. While affirming the reliability of measuring P300 ERP components in mobile settings, the review identifies significant hurdles in standardizing data cleaning and processing techniques, impacting comparability and reproducibility. Geographical disparities emerge, with studies predominantly in the Global North and a dearth of research from the Global South, emphasizing the need for broader inclusivity to counter the WEIRD bias in psychology. Collaborative projects and mobile EEG systems showcase the feasibility of reaching diverse populations, which is essential to advance precision psychiatry and to integrate varied data streams. Methodologically, a trend toward ecological validity is noted, shifting from lab-based to real-world settings with portable EEG system advancements. Future hardware developments are expected to balance signal quality and sensor intrusiveness, enriching data collection in everyday contexts. Innovative methodologies reflect a move toward more natural experimental settings, prompting critical questions about the applicability of traditional ERP markers, such as the P300 outside structured paradigms. The review concludes by highlighting the crucial role of integrating mobile technologies, physiological sensors, and machine learning to advance cognitive neuroscience. It advocates for an operational definition of ecological validity to bridge the gap between controlled experiments and the complexity of embodied cognitive experiences, enhancing both theoretical understanding and practical application in study design.
Collapse
Affiliation(s)
| | - Marko Bremer
- Facultad de Psicología, Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Diego Portales University, Santiago, Chile
- Facultad de Psicología, Programa de Magíster en Neurociencia Social, Diego Portales University, Santiago, Chile
| | - Simon Ladouce
- Department Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Francisco Parada
- Facultad de Psicología, Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Diego Portales University, Santiago, Chile.
| |
Collapse
|
5
|
Doelling KB, Arnal LH, Assaneo MF. Adaptive oscillators support Bayesian prediction in temporal processing. PLoS Comput Biol 2023; 19:e1011669. [PMID: 38011225 PMCID: PMC10703266 DOI: 10.1371/journal.pcbi.1011669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/07/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
Humans excel at predictively synchronizing their behavior with external rhythms, as in dance or music performance. The neural processes underlying rhythmic inferences are debated: whether predictive perception relies on high-level generative models or whether it can readily be implemented locally by hard-coded intrinsic oscillators synchronizing to rhythmic input remains unclear and different underlying computational mechanisms have been proposed. Here we explore human perception for tone sequences with some temporal regularity at varying rates, but with considerable variability. Next, using a dynamical systems perspective, we successfully model the participants behavior using an adaptive frequency oscillator which adjusts its spontaneous frequency based on the rate of stimuli. This model better reflects human behavior than a canonical nonlinear oscillator and a predictive ramping model-both widely used for temporal estimation and prediction-and demonstrate that the classical distinction between absolute and relative computational mechanisms can be unified under this framework. In addition, we show that neural oscillators may constitute hard-coded physiological priors-in a Bayesian sense-that reduce temporal uncertainty and facilitate the predictive processing of noisy rhythms. Together, the results show that adaptive oscillators provide an elegant and biologically plausible means to subserve rhythmic inference, reconciling previously incompatible frameworks for temporal inferential processes.
Collapse
Affiliation(s)
- Keith B. Doelling
- Institut Pasteur, Université Paris Cité, Inserm UA06, Institut de l’Audition, Paris, France
- Center for Language Music and Emotion, New York University, New York, New York, United States of America
| | - Luc H. Arnal
- Institut Pasteur, Université Paris Cité, Inserm UA06, Institut de l’Audition, Paris, France
| | - M. Florencia Assaneo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Santiago de Querétaro, México
| |
Collapse
|
6
|
|
7
|
Sosa R, Alcalá E. The nervous system as a solution for implementing closed negative feedback control loops. J Exp Anal Behav 2022; 117:279-300. [PMID: 35119112 DOI: 10.1002/jeab.736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 01/15/2023]
Abstract
Behavior can be regarded as the output of a system (action), as a function linking stimulus to response (reaction), or as an abstraction of the bidirectional relationship between the environment and the organism (interaction). When considering the latter possibility, a relevant question arises concerning how an organism can materially and continuously implement such a relationship during its lifetime in order to perpetuate itself. The feedback control approach has taken up the task of answering just that question. During the last several decades, said approach has been progressing and has started to be recognized as a paradigm shift, superseding certain canonical notions in mainstream behavior analysis, cognitive psychology, and even neuroscience. In this paper, we describe the main features of feedback control theory and its associated techniques, concentrating on its critiques of behavior analysis, as well as the commonalities they share. While some of feedback control theory's major critiques of behavior analysis arise from the fact that they focus on different levels of organization, we believe that some are legitimate and meaningful. Moreover, feedback control theory seems to blend with neurobiology more smoothly as compared to canonical behavior analysis, which only subsists in a scattered handful of fields. If this paradigm shift truly takes place, behavior analysts-whether they accept or reject this new currency-should be mindful of the basics of the feedback control approach.
Collapse
Affiliation(s)
| | - Emmanuel Alcalá
- Instituto Tecnológico de Estudios Superiores de Occidente, Guadalajara, México
| |
Collapse
|
8
|
King JL, Parada FJ. Using mobile brain/body imaging to advance research in arts, health, and related therapeutics. Eur J Neurosci 2021; 54:8364-8380. [PMID: 33999462 PMCID: PMC9291922 DOI: 10.1111/ejn.15313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 11/26/2022]
Abstract
The uses of mobile brain/body imaging (MoBI) are expanding and allow for more direct study of the neurophysiological signals associated with behavior in psychotherapeutic encounters. Neuroaesthetics is concerned with the cognitive and neural basis of art appreciation, and scientific correlations are being made in the field that might help to clarify theories claimed in the creative arts therapies. Yet, most neuroaesthetics studies are confined to the laboratory and do not propose a translation for research methods and clinical applications. The creative arts therapies have a long history of clinical success with various patient populations and will benefit from increased scientific explanation to support intervention strategies. Examining the brain dynamics and motor behaviors that are associated with the higher complex processes involved in artistic expression offers MoBI as a promising instrumentation to move forward in linking ideas from neuroaesthetics to the creative arts therapies. Tracking brain dynamics in association with behavioral change allows for more objective and quantitative physiological monitors to evaluate, and together with subjective patient reports provides insight into the psychological mechanisms of change in treatment. We outline a framework that shows how MoBI can be used to study the effectiveness of creative arts therapy interventions motivated by the 4E approach to cognition with a focus on visual art therapy. The article illuminates how a new partnership among the fields of art therapy, neuroscience, and neuroaesthetics might work together within the 4E/MoBI framework in efforts to advance transdisciplinary research for clinical health populations.
Collapse
Affiliation(s)
- Juliet L. King
- Department of Art TherapyThe George Washington UniversityWashingtonDCUSA
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Francisco J. Parada
- Centro de Estudios en Neurociencia Humana y Neuropsicología. Facultad de PsicologíaUniversidad Diego PortalesSantiagoChile
| |
Collapse
|
9
|
Abstract
Working memory (WM) is the ability to maintain and manipulate information in the conscious mind over a timescale of seconds. This ability is thought to be maintained through the persistent discharges of neurons in a network of brain areas centered on the prefrontal cortex, as evidenced by neurophysiological recordings in nonhuman primates, though both the localization and the neural basis of WM has been a matter of debate in recent years. Neural correlates of WM are evident in species other than primates, including rodents and corvids. A specialized network of excitatory and inhibitory neurons, aided by neuromodulatory influences of dopamine, is critical for the maintenance of neuronal activity. Limitations in WM capacity and duration, as well as its enhancement during development, can be attributed to properties of neural activity and circuits. Changes in these factors can be observed through training-induced improvements and in pathological impairments. WM thus provides a prototypical cognitive function whose properties can be tied to the spiking activity of brain neurons. © 2021 American Physiological Society. Compr Physiol 11:1-41, 2021.
Collapse
Affiliation(s)
- Russell J Jaffe
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Christos Constantinidis
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Neuroscience Program, Vanderbilt University, Nashville, Tennessee, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Decision-making in a social world: Integrating cognitive ecology and social neuroscience. Curr Opin Neurobiol 2021; 68:152-158. [PMID: 33915497 DOI: 10.1016/j.conb.2021.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 12/26/2022]
Abstract
Understanding animal decision-making involves simultaneously dissecting and reconstructing processes across levels of biological organization, such as behavior, physiology, and brain function, as well as considering the environment in which decisions are made. Over the past few decades, foundational breakthroughs originating from a variety of model systems and disciplines have painted an increasingly comprehensive picture of how individuals sense information, process it, and subsequently modify behavior or states. Still, our understanding of decision-making in social contexts is far from complete and requires integrating novel approaches and perspectives. The fields of social neuroscience and cognitive ecology have approached social decision-making from orthogonal perspectives. The integration of these perspectives (and fields) is critical in developing comprehensive and testable theories of the brain.
Collapse
|
11
|
If the brain is the answer, what was the question? Curr Biol 2021. [DOI: 10.1016/j.cub.2021.01.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Costa-Cordella S, Arevalo-Romero C, Parada FJ, Rossi A. Social Support and Cognition: A Systematic Review. Front Psychol 2021; 12:637060. [PMID: 33708164 PMCID: PMC7941073 DOI: 10.3389/fpsyg.2021.637060] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/02/2021] [Indexed: 12/18/2022] Open
Abstract
Although the influence of social support in health is a widely acknowledged factor, there is a significant gap in the understanding of its role on cognition. The purpose of this systematic review was, therefore, to determine the state-of-the-art on the literature testing the association between social support and cognition. Using six databases (WoS, PubMed, ProQuest, PsycINFO, Scopus and EBSCOhost), we identified 22 articles published between 1999 and 2019 involving an empirical quantitative focus which meet the inclusion criteria. Data extraction was performed following PRISMA recommendations. To summarize the extracted data, we used a narrative synthesis approach. Despite limitations, there is overall preliminary evidence of a relevant positive association between social support and cognition. Our results demonstrate there is enough information for an outbreak of experimental research in the area and an expansion of this body of knowledge. We argue that the present evidence lays the foundations for a more comprehensive theoretical model, one that corresponds with the complexity of the topic and possibly considers models derived from social interaction and active inference theories.
Collapse
Affiliation(s)
- Stefanella Costa-Cordella
- Centro de Estudios en Neurociencia Humana y Neuropsicología, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
- Centro de Estudios en Psicología Clínica y Psicoterapia, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Camilo Arevalo-Romero
- Centro de Estudios en Neurociencia Humana y Neuropsicología, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
- Programa de Magíster en Neurociencia Social, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Francisco J. Parada
- Centro de Estudios en Neurociencia Humana y Neuropsicología, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Alejandra Rossi
- Centro de Estudios en Neurociencia Humana y Neuropsicología, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| |
Collapse
|
13
|
Brembs B. The brain as a dynamically active organ. Biochem Biophys Res Commun 2020; 564:55-69. [PMID: 33317833 DOI: 10.1016/j.bbrc.2020.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022]
Abstract
Nervous systems are typically described as static networks passively responding to external stimuli (i.e., the 'sensorimotor hypothesis'). However, for more than a century now, evidence has been accumulating that this passive-static perspective is wrong. Instead, evidence suggests that nervous systems dynamically change their connectivity and actively generate behavior so their owners can achieve goals in the world, some of which involve controlling their sensory feedback. This review provides a brief overview of the different historical perspectives on general brain function and details some select modern examples falsifying the sensorimotor hypothesis.
Collapse
Affiliation(s)
- Björn Brembs
- Universität Regensburg, Institut für Zoologie - Neurogenetik, Regensburg, Germany.
| |
Collapse
|
14
|
Huffman DJ, Ekstrom AD. An Important Step toward Understanding the Role of Body-based Cues on Human Spatial Memory for Large-Scale Environments. J Cogn Neurosci 2020; 33:167-179. [PMID: 33226317 DOI: 10.1162/jocn_a_01653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Moving our body through space is fundamental to human navigation; however, technical and physical limitations have hindered our ability to study the role of these body-based cues experimentally. We recently designed an experiment using novel immersive virtual-reality technology, which allowed us to tightly control the availability of body-based cues to determine how these cues influence human spatial memory [Huffman, D. J., & Ekstrom, A. D. A modality-independent network underlies the retrieval of large-scale spatial environments in the human brain. Neuron, 104, 611-622, 2019]. Our analysis of behavior and fMRI data revealed a similar pattern of results across a range of body-based cues conditions, thus suggesting that participants likely relied primarily on vision to form and retrieve abstract, holistic representations of the large-scale environments in our experiment. We ended our paper by discussing a number of caveats and future directions for research on the role of body-based cues in human spatial memory. Here, we reiterate and expand on this discussion, and we use a commentary in this issue by A. Steel, C. E. Robertson, and J. S. Taube (Current promises and limitations of combined virtual reality and functional magnetic resonance imaging research in humans: A commentary on Huffman and Ekstrom (2019). Journal of Cognitive Neuroscience, 2020) as a helpful discussion point regarding some of the questions that we think will be the most interesting in the coming years. We highlight the exciting possibility of taking a more naturalistic approach to study the behavior, cognition, and neuroscience of navigation. Moreover, we share the hope that researchers who study navigation in humans and nonhuman animals will synergize to provide more rapid advancements in our understanding of cognition and the brain.
Collapse
|
15
|
|