1
|
Massimini M, Corbetta M, Sanchez-Vives MV, Andrillon T, Deco G, Rosanova M, Sarasso S. Sleep-like cortical dynamics during wakefulness and their network effects following brain injury. Nat Commun 2024; 15:7207. [PMID: 39174560 PMCID: PMC11341729 DOI: 10.1038/s41467-024-51586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
By connecting old and recent notions, different spatial scales, and research domains, we introduce a novel framework on the consequences of brain injury focusing on a key role of slow waves. We argue that the long-standing finding of EEG slow waves after brain injury reflects the intrusion of sleep-like cortical dynamics during wakefulness; we illustrate how these dynamics are generated and how they can lead to functional network disruption and behavioral impairment. Finally, we outline a scenario whereby post-injury slow waves can be modulated to reawaken parts of the brain that have fallen asleep to optimize rehabilitation strategies and promote recovery.
Collapse
Grants
- The authors thank Dr Ezequiel Mikulan, Dr Silvia Casarotto, Dr Andrea Pigorini, Dr Simone Russo, and Dr Pilleriin Sikka for their help and comments on the manuscript draft and illustrations. This work was financially supported by the following entities: ERC-2022-SYG Grant number 101071900 Neurological Mechanisms of Injury and Sleep-like Cellular Dynamics (NEMESIS); Italian National Recovery and Resilience Plan (NRRP), M4C2, funded by the European Union - NextGenerationEU (Project IR0000011, CUP B51E22000150006, “EBRAINS-Italy”); European Union’s Horizon 2020 Framework Program for Research and Innovation under the Specific Grant Agreement No.945539 (Human Brain Project SGA3); Tiny Blue Dot Foundation; Canadian Institute for Advanced Research (CIFAR), Canada; Italian Ministry for Universities and Research (PRIN 2022); Fondazione Regionale per la Ricerca Biomedica (Regione Lombardia), Project ERAPERMED2019–101, GA 779282; CORTICOMOD PID2020-112947RB-I00 financed by MCIN/ AEI /10.13039/501100011033; Fondazione Cassa di Risparmio di Padova e Rovigo (CARIPARO) Grant Agreement number 55403; Ministry of Health, Italy (RF-2008 -12366899) Brain connectivity measured with high-density electroencephalography: a novel neurodiagnostic tool for stroke- NEUROCONN; BIAL foundation grant (Grant Agreement number 361/18); H2020 European School of Network Neuroscience (euSNN); H2020 Visionary Nature Based Actions For Heath, Wellbeing & Resilience in Cities (VARCITIES); Ministry of Health Italy (RF-2019-12369300): Eye-movement dynamics during free viewing as biomarker for assessment of visuospatial functions and for closed-loop rehabilitation in stroke (EYEMOVINSTROKE).
Collapse
Affiliation(s)
- Marcello Massimini
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy.
| | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Thomas Andrillon
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Mov'it team, Inserm, CNRS, Paris, France
- Monash Centre for Consciousness and Contemplative Studies, Faculty of Arts, Monash University, Melbourne, VIC, Australia
| | - Gustavo Deco
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Center for Brain and Cognition, Computational Neuroscience Group, Barcelona, Spain
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Simone Sarasso
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Campbell JM, Davis TS, Anderson DN, Arain A, Davis Z, Inman CS, Smith EH, Rolston JD. Macroscale traveling waves evoked by single-pulse stimulation of the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.27.534002. [PMID: 37034691 PMCID: PMC10081214 DOI: 10.1101/2023.03.27.534002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Understanding the spatiotemporal dynamics of neural signal propagation is fundamental to unraveling the complexities of brain function. Emerging evidence suggests that cortico-cortical evoked potentials (CCEPs) resulting from single-pulse electrical stimulation may be used to characterize the patterns of information flow between and within brain networks. At present, the basic spatiotemporal dynamics of CCEP propagation cortically and subcortically are incompletely understood. We hypothesized that single-pulse electrical stimulation evokes neural traveling waves detectable in the three-dimensional space sampled by intracranial stereoelectroencephalography. Across a cohort of 21 adult patients with intractable epilepsy, we delivered 17,631 stimulation pulses and recorded CCEP responses in 1,019 electrode contacts. The distance between each pair of electrode contacts was approximated using three different metrics (Euclidean distance, path length, and geodesic distance), representing direct, tractographic, and transcortical propagation, respectively. For each robust CCEP, we extracted amplitude-, spectral-, and phase-based features to identify traveling waves emanating from the site of stimulation. Many evoked responses to stimulation appear to propagate as traveling waves (~14-28%), despite sparse sampling throughout the brain. These stimulation-evoked traveling waves exhibited biologically plausible propagation velocities (range 0.1-9.6 m/s). Our results reveal that direct electrical stimulation elicits neural activity with variable spatiotemporal dynamics, including the initiation of neural traveling waves.
Collapse
Affiliation(s)
- Justin M. Campbell
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| | - Tyler S. Davis
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Daria Nesterovich Anderson
- School of Biomedical Engineering, Faculty of Engineering, University of Sydney, Sydney, New South Wales, Australia
| | - Amir Arain
- Department of Neurology, University of Utah, Salt Lake City School of Medicine, UT, USA
| | - Zac Davis
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Cory S. Inman
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
- Department of Psychology, University of Utah, Salt Lake City, UT, USA
| | - Elliot H. Smith
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - John D. Rolston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Department of Neurosurgery, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Hudetz AG. Microstimulation reveals anesthetic state-dependent effective connectivity of neurons in cerebral cortex. Front Neurosci 2024; 18:1387098. [PMID: 39035779 PMCID: PMC11258030 DOI: 10.3389/fnins.2024.1387098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/07/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction Complex neuronal interactions underlie cortical information processing that can be compromised in altered states of consciousness. Here intracortical microstimulation was applied to investigate anesthetic state-dependent effective connectivity of neurons in rat visual cortex in vivo. Methods Extracellular activity was recorded at 32 sites in layers 5/6 while stimulating with charge-balanced discrete pulses at each electrode in random order. The same stimulation pattern was applied at three levels of anesthesia with desflurane and in wakefulness. Spikes were sorted and classified by their waveform features as putative excitatory and inhibitory neurons. Network motifs were identified in graphs of effective connectivity constructed from monosynaptic cross-correlograms. Results Microstimulation caused early (<10 ms) increase followed by prolonged (11-100 ms) decrease in spiking of all neurons throughout the electrode array. The early response of excitatory but not inhibitory neurons decayed rapidly with distance from the stimulation site over 1 mm. Effective connectivity of neurons with significant stimulus response was dense in wakefulness and sparse under anesthesia. The number of network motifs, especially those of higher order, increased rapidly as the anesthesia was withdrawn indicating a substantial increase in network connectivity as the animals woke up. Conclusion The results illuminate the impact of anesthesia on functional integrity of local cortical circuits affecting the state of consciousness.
Collapse
Affiliation(s)
- Anthony G Hudetz
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Nilsen AS, Arena A, Storm JF. Exploring effects of anesthesia on complexity, differentiation, and integrated information in rat EEG. Neurosci Conscious 2024; 2024:niae021. [PMID: 38757120 PMCID: PMC11097907 DOI: 10.1093/nc/niae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
To investigate mechanisms underlying loss of consciousness, it is important to extend methods established in humans to rodents as well. Perturbational complexity index (PCI) is a promising metric of "capacity for consciousness" and is based on a perturbational approach that allows inferring a system's capacity for causal integration and differentiation of information. These properties have been proposed as necessary for conscious systems. Measures based on spontaneous electroencephalography recordings, however, may be more practical for certain clinical purposes and may better reflect ongoing dynamics. Here, we compare PCI (using electrical stimulation for perturbing cortical activity) to several spontaneous electroencephalography-based measures of signal diversity and integrated information in rats undergoing propofol, sevoflurane, and ketamine anesthesia. We find that, along with PCI, the spontaneous electroencephalography-based measures, Lempel-Ziv complexity (LZ) and geometric integrated information (ΦG), were best able to distinguish between awake and propofol and sevoflurane anesthesia. However, PCI was anti-correlated with spontaneous measures of integrated information, which generally increased during propofol and sevoflurane anesthesia, contrary to expectations. Together with an observed divergence in network properties estimated from directed functional connectivity (current results) and effective connectivity (earlier results), the perturbation-based results seem to suggest that anesthesia disrupts global cortico-cortical information transfer, whereas spontaneous activity suggests the opposite. We speculate that these seemingly diverging results may be because of suppressed encoding specificity of information or driving subcortical projections from, e.g., the thalamus. We conclude that certain perturbation-based measures (PCI) and spontaneous measures (LZ and ΦG) may be complementary and mutually informative when studying altered states of consciousness.
Collapse
Affiliation(s)
- André Sevenius Nilsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Oslo 0372, Norway
| | - Alessandro Arena
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Oslo 0372, Norway
| | - Johan F Storm
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Oslo 0372, Norway
| |
Collapse
|
5
|
Tononi G, Boly M, Cirelli C. Consciousness and sleep. Neuron 2024; 112:1568-1594. [PMID: 38697113 PMCID: PMC11105109 DOI: 10.1016/j.neuron.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
Sleep is a universal, essential biological process. It is also an invaluable window on consciousness. It tells us that consciousness can be lost but also that it can be regained, in all its richness, when we are disconnected from the environment and unable to reflect. By considering the neurophysiological differences between dreaming and dreamless sleep, we can learn about the substrate of consciousness and understand why it vanishes. We also learn that the ongoing state of the substrate of consciousness determines the way each experience feels regardless of how it is triggered-endogenously or exogenously. Dreaming consciousness is also a window on sleep and its functions. Dreams tell us that the sleeping brain is remarkably lively, recombining intrinsic activation patterns from a vast repertoire, freed from the requirements of ongoing behavior and cognitive control.
Collapse
Affiliation(s)
- Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA.
| | - Melanie Boly
- Department of Neurology, University of Wisconsin, Madison, WI 53719, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA
| |
Collapse
|
6
|
Storm JF, Klink PC, Aru J, Senn W, Goebel R, Pigorini A, Avanzini P, Vanduffel W, Roelfsema PR, Massimini M, Larkum ME, Pennartz CMA. An integrative, multiscale view on neural theories of consciousness. Neuron 2024; 112:1531-1552. [PMID: 38447578 DOI: 10.1016/j.neuron.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/20/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
How is conscious experience related to material brain processes? A variety of theories aiming to answer this age-old question have emerged from the recent surge in consciousness research, and some are now hotly debated. Although most researchers have so far focused on the development and validation of their preferred theory in relative isolation, this article, written by a group of scientists representing different theories, takes an alternative approach. Noting that various theories often try to explain different aspects or mechanistic levels of consciousness, we argue that the theories do not necessarily contradict each other. Instead, several of them may converge on fundamental neuronal mechanisms and be partly compatible and complementary, so that multiple theories can simultaneously contribute to our understanding. Here, we consider unifying, integration-oriented approaches that have so far been largely neglected, seeking to combine valuable elements from various theories.
Collapse
Affiliation(s)
- Johan F Storm
- The Brain Signaling Group, Division of Physiology, IMB, Faculty of Medicine, University of Oslo, Domus Medica, Sognsvannsveien 9, Blindern, 0317 Oslo, Norway.
| | - P Christiaan Klink
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS Utrecht, the Netherlands; Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris 75012, France
| | - Jaan Aru
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Walter Senn
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands
| | - Andrea Pigorini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan 20122, Italy
| | - Pietro Avanzini
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 43125 Parma, Italy
| | - Wim Vanduffel
- Department of Neurosciences, Laboratory of Neuro and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| | - Pieter R Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris 75012, France; Department of Integrative Neurophysiology, VU University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; Department of Neurosurgery, Academisch Medisch Centrum, Postbus 22660, 1100 DD Amsterdam, the Netherlands
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Milan 20157, Italy; Istituto di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan 20122, Italy; Azrieli Program in Brain, Mind and Consciousness, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| | - Matthew E Larkum
- Institute of Biology, Humboldt University Berlin, Berlin, Germany; Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, Sciencepark 904, Amsterdam 1098 XH, the Netherlands; Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Casarotto S, Hassan G, Rosanova M, Sarasso S, Derchi CC, Trimarchi PD, Viganò A, Russo S, Fecchio M, Devalle G, Navarro J, Massimini M, Comanducci A. Dissociations between spontaneous electroencephalographic features and the perturbational complexity index in the minimally conscious state. Eur J Neurosci 2024; 59:934-947. [PMID: 38440949 DOI: 10.1111/ejn.16299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 12/21/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024]
Abstract
The analysis of spontaneous electroencephalogram (EEG) is a cornerstone in the assessment of patients with disorders of consciousness (DoC). Although preserved EEG patterns are highly suggestive of consciousness even in unresponsive patients, moderately or severely abnormal patterns are difficult to interpret. Indeed, growing evidence shows that consciousness can be present despite either large delta or reduced alpha activity in spontaneous EEG. Quantifying the complexity of EEG responses to direct cortical perturbations (perturbational complexity index [PCI]) may complement the observational approach and provide a reliable assessment of consciousness even when spontaneous EEG features are inconclusive. To seek empirical evidence of this hypothesis, we compared PCI with EEG spectral measures in the same population of minimally conscious state (MCS) patients (n = 40) hospitalized in rehabilitation facilities. We found a remarkable variability in spontaneous EEG features across MCS patients as compared with healthy controls: in particular, a pattern of predominant delta and highly reduced alpha power-more often observed in vegetative state/unresponsive wakefulness syndrome (VS/UWS) patients-was found in a non-negligible number of MCS patients. Conversely, PCI values invariably fell above an externally validated empirical cutoff for consciousness in all MCS patients, consistent with the presence of clearly discernible, albeit fleeting, behavioural signs of awareness. These results confirm that, in some MCS patients, spontaneous EEG rhythms may be inconclusive about the actual capacity for consciousness and suggest that a perturbational approach can effectively compensate for this pitfall with practical implications for the individual patient's stratification and tailored rehabilitation.
Collapse
Affiliation(s)
- Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Gabriel Hassan
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Simone Sarasso
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | | | | | - Simone Russo
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Matteo Fecchio
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Guya Devalle
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Jorge Navarro
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Angela Comanducci
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
8
|
Hönigsperger C, Storm JF, Arena A. Laminar evoked responses in mouse somatosensory cortex suggest a special role for deep layers in cortical complexity. Eur J Neurosci 2024; 59:752-770. [PMID: 37586411 DOI: 10.1111/ejn.16108] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 08/18/2023]
Abstract
It has been suggested that consciousness is closely related to the complexity of the brain. The perturbational complexity index (PCI) has been used in humans and rodents to distinguish conscious from unconscious states based on the global cortical responses (recorded by electroencephalography, EEG) to local cortical stimulation (CS). However, it is unclear how different cortical layers respond to CS and contribute to the resulting intra- and inter-areal cortical connectivity and PCI. A detailed investigation of the local dynamics is needed to understand the basis for PCI. We hypothesized that the complexity level of global cortical responses (PCI) correlates with layer-specific activity and connectivity. We tested this idea by measuring global cortical dynamics and layer-specific activity in the somatosensory cortex (S1) of mice, combining cortical electrical stimulation in deep motor cortex, global electrocorticography (ECoG) and local laminar recordings from layers 1-6 in S1, during wakefulness and general anaesthesia (sevoflurane). We found that the transition from wake to sevoflurane anaesthesia correlated with a drop in both the global and local PCI (PCIst ) values (complexity). This was accompanied by a local decrease in neural firing rate, spike-field coherence and long-range functional connectivity specific to deep layers (L5, L6). Our results suggest that deep cortical layers are mechanistically important for changes in PCI and thereby for changes in the state of consciousness.
Collapse
Affiliation(s)
| | - Johan F Storm
- Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Alessandro Arena
- Department of Molecular Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Mondino A, González J, Li D, Mateos D, Osorio L, Cavelli M, Castro-Nin JP, Serantes D, Costa A, Vanini G, Mashour GA, Torterolo P. Urethane anaesthesia exhibits neurophysiological correlates of unconsciousness and is distinct from sleep. Eur J Neurosci 2024; 59:483-501. [PMID: 35545450 DOI: 10.1111/ejn.15690] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 11/27/2022]
Abstract
Urethane is a general anaesthetic widely used in animal research. The state of urethane anaesthesia is unique because it alternates between macroscopically distinct electrographic states: a slow-wave state that resembles non-rapid eye movement (NREM) sleep and an activated state with features of both REM sleep and wakefulness. Although it is assumed that urethane produces unconsciousness, this has been questioned because of states of cortical activation during drug exposure. Furthermore, the similarities and differences between urethane anaesthesia and physiological sleep are still unclear. In this study, we recorded the electroencephalogram (EEG) and electromyogram in chronically prepared rats during natural sleep-wake states and during urethane anaesthesia. We subsequently analysed the power, coherence, directed connectivity and complexity of brain oscillations and found that EEG under urethane anaesthesia has clear signatures of unconsciousness, with similarities to other general anaesthetics. In addition, the EEG profile under urethane is different in comparison with natural sleep states. These results suggest that consciousness is disrupted during urethane. Furthermore, despite similarities that have led others to conclude that urethane is a model of sleep, the electrocortical traits of depressed and activated states during urethane anaesthesia differ from physiological sleep states.
Collapse
Affiliation(s)
- Alejandra Mondino
- Department of Physiology, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - Joaquín González
- Department of Physiology, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - Duan Li
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA
- Center for Consciousness Science, University of Michigan, Ann Arbor, Michigan, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Diego Mateos
- Institute of Applied Mathematics of the Coast-CONICET-UNL, CCT CONICET, Santa Fe, Argentina
- Faculty of Science and Technology, Autonomous University of Entre Ríos, Parana, Argentina
| | - Lucía Osorio
- Department of Physiology, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - Matías Cavelli
- Department of Physiology, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, USA
| | - Juan Pedro Castro-Nin
- Department of Physiology, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - Diego Serantes
- Department of Physiology, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - Alicia Costa
- Department of Physiology, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - Giancarlo Vanini
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA
- Center for Consciousness Science, University of Michigan, Ann Arbor, Michigan, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - George A Mashour
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA
- Center for Consciousness Science, University of Michigan, Ann Arbor, Michigan, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Pablo Torterolo
- Department of Physiology, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| |
Collapse
|
10
|
Medel V, Irani M, Crossley N, Ossandón T, Boncompte G. Complexity and 1/f slope jointly reflect brain states. Sci Rep 2023; 13:21700. [PMID: 38065976 PMCID: PMC10709649 DOI: 10.1038/s41598-023-47316-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/12/2023] [Indexed: 12/18/2023] Open
Abstract
Characterization of brain states is essential for understanding its functioning in the absence of external stimuli. Brain states differ on their balance between excitation and inhibition, and on the diversity of their activity patterns. These can be respectively indexed by 1/f slope and Lempel-Ziv complexity (LZc). However, whether and how these two brain state properties relate remain elusive. Here we analyzed the relation between 1/f slope and LZc with two in-silico approaches and in both rat EEG and monkey ECoG data. We contrasted resting state with propofol anesthesia, which directly modulates the excitation-inhibition balance. We found convergent results among simulated and empirical data, showing a strong, inverse and non trivial monotonic relation between 1/f slope and complexity, consistent at both ECoG and EEG scales. We hypothesize that differentially entropic regimes could underlie the link between the excitation-inhibition balance and the vastness of the repertoire of brain systems.
Collapse
Affiliation(s)
- Vicente Medel
- Latin American Health Brain Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile.
| | - Martín Irani
- Department of Psychology, University of Illinois Urbana-Champaign, IL, USA
| | - Nicolás Crossley
- Departamento de Psiquiatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tomás Ossandón
- Departamento de Psiquiatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Gonzalo Boncompte
- Departamento de Psiquiatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
- División de Anestesiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
11
|
Claar LD, Rembado I, Kuyat JR, Russo S, Marks LC, Olsen SR, Koch C. Cortico-thalamo-cortical interactions modulate electrically evoked EEG responses in mice. eLife 2023; 12:RP84630. [PMID: 37358562 DOI: 10.7554/elife.84630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Perturbational complexity analysis predicts the presence of consciousness in volunteers and patients by stimulating the brain with brief pulses, recording EEG responses, and computing their spatiotemporal complexity. We examined the underlying neural circuits in mice by directly stimulating cortex while recording with EEG and Neuropixels probes during wakefulness and isoflurane anesthesia. When mice are awake, stimulation of deep cortical layers reliably evokes locally a brief pulse of excitation, followed by a biphasic sequence of 120 ms profound off period and a rebound excitation. A similar pattern, partially attributed to burst spiking, is seen in thalamic nuclei and is associated with a pronounced late component in the evoked EEG. We infer that cortico-thalamo-cortical interactions drive the long-lasting evoked EEG signals elicited by deep cortical stimulation during the awake state. The cortical and thalamic off period and rebound excitation, and the late component in the EEG, are reduced during running and absent during anesthesia.
Collapse
Affiliation(s)
- Leslie D Claar
- MindScope Program, Allen Institute, Seattle, United States
| | - Irene Rembado
- MindScope Program, Allen Institute, Seattle, United States
| | | | - Simone Russo
- MindScope Program, Allen Institute, Seattle, United States
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - Lydia C Marks
- MindScope Program, Allen Institute, Seattle, United States
| | - Shawn R Olsen
- MindScope Program, Allen Institute, Seattle, United States
| | - Christof Koch
- MindScope Program, Allen Institute, Seattle, United States
| |
Collapse
|
12
|
Cavelli ML, Mao R, Findlay G, Driessen K, Bugnon T, Tononi G, Cirelli C. Sleep/wake changes in perturbational complexity in rats and mice. iScience 2023; 26:106186. [PMID: 36895652 PMCID: PMC9988678 DOI: 10.1016/j.isci.2023.106186] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/31/2022] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
In humans, the level of consciousness is assessed by quantifying the spatiotemporal complexity of cortical responses using Perturbational Complexity Index (PCI) and related PCIst (st, state transitions). Here we validate PCIst in freely moving rats and mice by showing that it is lower in NREM sleep and slow wave anesthesia than in wake or REM sleep, as in humans. We then show that (1) low PCIst is associated with the occurrence of an OFF period of neuronal silence; (2) stimulation of deep, but not superficial, cortical layers leads to reliable PCIst changes across sleep/wake and anesthesia; (3) consistent PCIst changes are independent of which single area is being stimulated or recorded, except for recordings in mouse prefrontal cortex. These experiments show that PCIst can reliably measure vigilance states in unresponsive animals and support the hypothesis that it is low when an OFF period disrupts causal interactions in cortical networks.
Collapse
Affiliation(s)
- Matias Lorenzo Cavelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Departamento de Fisiología de Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Rong Mao
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Graham Findlay
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Kort Driessen
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Tom Bugnon
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| |
Collapse
|
13
|
Jedynak M, Boyer A, Chanteloup-Forêt B, Bhattacharjee M, Saubat C, Tadel F, Kahane P, David O. Variability of Single Pulse Electrical Stimulation Responses Recorded with Intracranial Electroencephalography in Epileptic Patients. Brain Topogr 2023; 36:119-127. [PMID: 36520342 PMCID: PMC9834344 DOI: 10.1007/s10548-022-00928-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022]
Abstract
Cohort studies of brain stimulations performed with stereo-electroencephalographic (SEEG) electrodes in epileptic patients allow to derive large scale functional connectivity. It is known, however, that brain responses to electrical or magnetic stimulation techniques are not always reproducible. Here, we study variability of responses to single pulse SEEG electrical stimulation. We introduce a second-order probability analysis, i.e. we extend estimation of connection probabilities, defined as the proportion of responses trespassing a statistical threshold (determined in terms of Z-score with respect to spontaneous neuronal activity before stimulation) over all responses and derived from a number of individual measurements, to an analysis of pairs of measurements.Data from 445 patients were processed. We found that variability between two equivalent measurements is substantial in particular conditions. For long ( > ~ 90 mm) distances between stimulating and recording sites, and threshold value Z = 3, correlation between measurements drops almost to zero. In general, it remains below 0.5 when the threshold is smaller than Z = 4 or the stimulating current intensity is 1 mA. It grows with an increase of either of these factors. Variability is independent of interictal spiking rates in the stimulating and recording sites.We conclude that responses to SEEG stimulation in the human brain are variable, i.e. in a subject at rest, two stimulation trains performed at the same electrode contacts and with the same protocol can give discrepant results. Our findings highlight an advantage of probabilistic interpretation of such results even in the context of a single individual.
Collapse
Affiliation(s)
- Maciej Jedynak
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, 38000, Grenoble, France.
- Aix Marseille Université, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France.
| | - Anthony Boyer
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, 38000, Grenoble, France
- Aix Marseille Université, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | | | - Manik Bhattacharjee
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, 38000, Grenoble, France
- Aix Marseille Université, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Carole Saubat
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, 38000, Grenoble, France
| | - François Tadel
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, 38000, Grenoble, France
- Signal and Image Processing Institute, University of Southern California, Los Angeles, USA
| | - Philippe Kahane
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, 38000, Grenoble, France
- Neurology Department, CHU Grenoble Alpes, Grenoble, France
| | - Olivier David
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, 38000, Grenoble, France
- Aix Marseille Université, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| |
Collapse
|
14
|
Rabuffo G, Sorrentino P, Bernard C, Jirsa V. Spontaneous neuronal avalanches as a correlate of access consciousness. Front Psychol 2022; 13:1008407. [PMID: 36337573 PMCID: PMC9634647 DOI: 10.3389/fpsyg.2022.1008407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/04/2022] [Indexed: 09/03/2023] Open
Abstract
Decades of research have advanced our understanding of the biophysical mechanisms underlying consciousness. However, an overarching framework bridging between models of consciousness and the large-scale organization of spontaneous brain activity is still missing. Based on the observation that spontaneous brain activity dynamically switches between epochs of segregation and large-scale integration of information, we hypothesize a brain-state dependence of conscious access, whereby the presence of either segregated or integrated states marks distinct modes of information processing. We first review influential works on the neuronal correlates of consciousness, spontaneous resting-state brain activity and dynamical system theory. Then, we propose a test experiment to validate our hypothesis that conscious access occurs in aperiodic cycles, alternating windows where new incoming information is collected but not experienced, to punctuated short-lived integration events, where conscious access to previously collected content occurs. In particular, we suggest that the integration events correspond to neuronal avalanches, which are collective bursts of neuronal activity ubiquitously observed in electrophysiological recordings. If confirmed, the proposed framework would link the physics of spontaneous cortical dynamics, to the concept of ignition within the global neuronal workspace theory, whereby conscious access manifest itself as a burst of neuronal activity.
Collapse
Affiliation(s)
- Giovanni Rabuffo
- Institut de Neurosciences des Systemes, Aix-Marseille University, Marseille, France
| | | | | | | |
Collapse
|
15
|
Abstract
A complex system is often associated with emergence of new phenomena from the interactions between the system's components. General anesthesia reduces brain complexity and so inhibits the emergence of consciousness. An understanding of complexity is necessary for the interpretation of brain monitoring algorithms. Complexity indices capture the "difficulty" of understanding brain activity over time and/or space. Complexity-entropy plots reveal the types of complexity indices and their balance of randomness and structure. Lempel-Ziv complexity is a common index of temporal complexity for single-channel electroencephalogram containing both power spectral and nonlinear effects, revealed by phase-randomized surrogate data. Computing spatial complexities involves forming a connectivity matrix and calculating the complexity of connectivity patterns. Spatiotemporal complexity can be estimated in multiple ways including temporal or spatial concatenation, estimation of state switching, or integrated information. This article illustrates the concept and application of various complexities by providing working examples; a website with interactive demonstrations has also been created.
Collapse
|
16
|
Hirota K, Lambert DG. Ketamine; history and role in anesthetic pharmacology. Neuropharmacology 2022; 216:109171. [PMID: 35764129 DOI: 10.1016/j.neuropharm.2022.109171] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/18/2022]
Abstract
Ketamine (Ket) was developed in 1962 as a less hallucinogenic and shorter acting agent than phencyclidine. It was given to humans for the first time in 1964. However, Ket produces several adverse reactions such as raised intracranial and blood pressures along with seizures, and patients still show low acceptance due to hallucinations. As new volatile and intravenous anesthetic agents with good emergence and favorable side effect profiles were developed, Ket use markedly decreased. In the 1990s, as the ultrashort-acting opioid remifentanil was developed, high dose opioid could be used to reduce surgical stress in highly invasive procedures. However, high dose opioids can produce hyperalgesia and acute tolerance. As Ket can exert anti-hyperalgesic actions, the clinical use of low dose Ket has been reconsidered. Other beneficial effects of Ket such as; analgesia, anti-shock in hemorrhagic and septic insults, anti-inflammatory effects, anti-tumor effects, brain and spinal cord neuroprotection, and bronchodilation, have all been reported. Moreover, this anesthetic agent at low dose has been recently recognized to possess anti-depressive actions. This diverse profile extends Ket far beyond anesthesia practice and the operating room.
Collapse
Affiliation(s)
- Kazuyoshi Hirota
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan.
| | - David G Lambert
- Department of Cardiovascular Sciences (Anaesthesia, Critical Care and Pain Management), University of Leicester, Hodgkin Building, Leicester, LE1 9HN, UK
| |
Collapse
|
17
|
Arena A, Juel BE, Comolatti R, Thon S, Storm JF. Capacity for consciousness under ketamine anaesthesia is selectively associated with activity in posteromedial cortex in rats. Neurosci Conscious 2022; 2022:niac004. [PMID: 35261778 PMCID: PMC8896332 DOI: 10.1093/nc/niac004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 12/09/2021] [Accepted: 01/24/2022] [Indexed: 12/04/2022] Open
Abstract
It remains unclear how specific cortical regions contribute to the brain's overall capacity for consciousness. Clarifying this could help distinguish between theories of consciousness. Here, we investigate the association between markers of regionally specific (de)activation and the brain's overall capacity for consciousness. We recorded electroencephalographic responses to cortical electrical stimulation in six rats and computed Perturbational Complexity Index state-transition (PCIST), which has been extensively validated as an index of the capacity for consciousness in humans. We also estimated the balance between activation and inhibition of specific cortical areas with the ratio between high and low frequency power from spontaneous electroencephalographic activity at each electrode. We repeated these measurements during wakefulness, and during two levels of ketamine anaesthesia: with the minimal dose needed to induce behavioural unresponsiveness and twice this dose. We found that PCIST was only slightly reduced from wakefulness to light ketamine anaesthesia, but dropped significantly with deeper anaesthesia. The high-dose effect was selectively associated with reduced high frequency/low frequency ratio in the posteromedial cortex, which strongly correlated with PCIST. Conversely, behavioural unresponsiveness induced by light ketamine anaesthesia was associated with similar spectral changes in frontal, but not posterior cortical regions. Thus, activity in the posteromedial cortex correlates with the capacity for consciousness, as assessed by PCIST, during different depths of ketamine anaesthesia, in rats, independently of behaviour. These results are discussed in relation to different theories of consciousness.
Collapse
Affiliation(s)
- A Arena
- Brain Signalling Group, Department of Molecular Medicine, University of Oslo, Sognsvannsveien 9, Oslo 0372, Norway
| | - B E Juel
- Brain Signalling Group, Department of Molecular Medicine, University of Oslo, Sognsvannsveien 9, Oslo 0372, Norway
- Center for Sleep and Consciousness, University of Wisconsin, 6001 Research Park Blvd, Madison, WI 53719, USA
| | - R Comolatti
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Giovanni Battista Grassi 74, Milano 20157, Italy
| | - S Thon
- Brain Signalling Group, Department of Molecular Medicine, University of Oslo, Sognsvannsveien 9, Oslo 0372, Norway
| | - J F Storm
- Brain Signalling Group, Department of Molecular Medicine, University of Oslo, Sognsvannsveien 9, Oslo 0372, Norway
| |
Collapse
|
18
|
Pascovich C, Castro‐Zaballa S, Mediano PAM, Bor D, Canales‐Johnson A, Torterolo P, Bekinschtein TA. Ketamine and sleep modulate neural complexity dynamics in cats. Eur J Neurosci 2022; 55:1584-1600. [PMID: 35263482 PMCID: PMC9310726 DOI: 10.1111/ejn.15646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/02/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022]
Abstract
There is increasing evidence that the level of consciousness can be captured by neural informational complexity: for instance, complexity, as measured by the Lempel Ziv (LZ) compression algorithm, decreases during anaesthesia and non-rapid eye movement (NREM) sleep in humans and rats, when compared with LZ in awake and REM sleep. In contrast, LZ is higher in humans under the effect of psychedelics, including subanaesthetic doses of ketamine. However, it is both unclear how this result would be modulated by varying ketamine doses, and whether it would extend to other species. Here, we studied LZ with and without auditory stimulation during wakefulness and different sleep stages in five cats implanted with intracranial electrodes, as well as under subanaesthetic doses of ketamine (5, 10, and 15 mg/kg i.m.). In line with previous results, LZ was lowest in NREM sleep, but similar in REM and wakefulness. Furthermore, we found an inverted U-shaped curve following different levels of ketamine doses in a subset of electrodes, primarily in prefrontal cortex. However, it is worth noting that the variability in the ketamine dose-response curve across cats and cortices was larger than that in the sleep-stage data, highlighting the differential local dynamics created by two different ways of modulating conscious state. These results replicate previous findings, both in humans and other species, demonstrating that neural complexity is highly sensitive to capture state changes between wake and sleep stages while adding a local cortical description. Finally, this study describes the differential effects of ketamine doses, replicating a rise in complexity for low doses, and further fall as doses approach anaesthetic levels in a differential manner depending on the cortex.
Collapse
Affiliation(s)
- Claudia Pascovich
- Laboratory of Sleep Neurobiology, Department of Physiology, School of MedicineUniversidad de la RepúblicaMontevideoUruguay
- Consciousness and Cognition Laboratory, Department of PsychologyUniversity of CambridgeCambridgeUK
| | - Santiago Castro‐Zaballa
- Laboratory of Sleep Neurobiology, Department of Physiology, School of MedicineUniversidad de la RepúblicaMontevideoUruguay
| | - Pedro A. M. Mediano
- Consciousness and Cognition Laboratory, Department of PsychologyUniversity of CambridgeCambridgeUK
| | - Daniel Bor
- Consciousness and Cognition Laboratory, Department of PsychologyUniversity of CambridgeCambridgeUK
| | - Andrés Canales‐Johnson
- Consciousness and Cognition Laboratory, Department of PsychologyUniversity of CambridgeCambridgeUK
- Vicerrectoría de Investigación y PosgradoUniversidad Católica del MauleTalcaChile
| | - Pablo Torterolo
- Laboratory of Sleep Neurobiology, Department of Physiology, School of MedicineUniversidad de la RepúblicaMontevideoUruguay
| | - Tristan A. Bekinschtein
- Consciousness and Cognition Laboratory, Department of PsychologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
19
|
Colombi I, Nieus T, Massimini M, Chiappalone M. Spontaneous and Perturbational Complexity in Cortical Cultures. Brain Sci 2021; 11:1453. [PMID: 34827452 PMCID: PMC8615728 DOI: 10.3390/brainsci11111453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
Dissociated cortical neurons in vitro display spontaneously synchronized, low-frequency firing patterns, which can resemble the slow wave oscillations characterizing sleep in vivo. Experiments in humans, rodents, and cortical slices have shown that awakening or the administration of activating neuromodulators decrease slow waves, while increasing the spatio-temporal complexity of responses to perturbations. In this study, we attempted to replicate those findings using in vitro cortical cultures coupled with micro-electrode arrays and chemically treated with carbachol (CCh), to modulate sleep-like activity and suppress slow oscillations. We adapted metrics such as neural complexity (NC) and the perturbational complexity index (PCI), typically employed in animal and human brain studies, to quantify complexity in simplified, unstructured networks, both during resting state and in response to electrical stimulation. After CCh administration, we found a decrease in the amplitude of the initial response and a marked enhancement of the complexity during spontaneous activity. Crucially, unlike in cortical slices and intact brains, PCI in cortical cultures displayed only a moderate increase. This dissociation suggests that PCI, a measure of the complexity of causal interactions, requires more than activating neuromodulation and that additional factors, such as an appropriate circuit architecture, may be necessary. Exploring more structured in vitro networks, characterized by the presence of strong lateral connections, recurrent excitation, and feedback loops, may thus help to identify the features that are more relevant to support causal complexity.
Collapse
Affiliation(s)
- Ilaria Colombi
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy;
| | - Thierry Nieus
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (T.N.); (M.M.)
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (T.N.); (M.M.)
- IRCCS, Fondazione Don Carlo Gnocchi, 20148 Milan, Italy
| | - Michela Chiappalone
- Department of Informatics, Bioengineering, Robotics and System Engineering, 16145 Genova, Italy
- Rehab Technologies Lab., Istituto Italiano di Tecnologia, 16163 Genova, Italy
| |
Collapse
|
20
|
General Anesthesia Disrupts Complex Cortical Dynamics in Response to Intracranial Electrical Stimulation in Rats. eNeuro 2021; 8:ENEURO.0343-20.2021. [PMID: 34301724 PMCID: PMC8354715 DOI: 10.1523/eneuro.0343-20.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
The capacity of human brain to sustain complex cortical dynamics appears to be strongly associated with conscious experience and consistently drops when consciousness fades. For example, several recent studies in humans found a remarkable reduction of the spatiotemporal complexity of cortical responses to local stimulation during dreamless sleep, general anesthesia, and coma. However, this perturbational complexity has never been directly estimated in non-human animals in vivo previously, and the mechanisms that prevent neocortical neurons to engage in complex interactions are still unclear. Here, we quantify the complexity of electroencephalographic (EEG) responses to intracranial electrical stimulation in rats, comparing wakefulness to propofol, sevoflurane, and ketamine anesthesia. The evoked activity changed from highly complex in wakefulness to far simpler with propofol and sevoflurane. The reduced complexity was associated with a suppression of high frequencies that preceded a reduced phase-locking, and disruption of functional connectivity and pattern diversity. We then showed how these parameters dissociate with ketamine and depend on intensity and site of stimulation. Our results support the idea that brief periods of activity-dependent neuronal silence can interrupt complex interactions in neocortical circuits, and open the way for further mechanistic investigations of the neuronal basis for consciousness and loss of consciousness across species.
Collapse
|