1
|
Rho G, Callara AL, Bossi F, Ognibene D, Cecchetto C, Lomonaco T, Scilingo EP, Greco A. Combining electrodermal activity analysis and dynamic causal modeling to investigate the visual-odor multimodal integration during face perception. J Neural Eng 2024; 21:016020. [PMID: 38290158 DOI: 10.1088/1741-2552/ad2403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Objective. This study presents a novel methodological approach for incorporating information related to the peripheral sympathetic response into the investigation of neural dynamics. Particularly, we explore how hedonic contextual olfactory stimuli influence the processing of neutral faces in terms of sympathetic response, event-related potentials and effective connectivity analysis. The objective is to investigate how the emotional valence of odors influences the cortical connectivity underlying face processing and the role of face-induced sympathetic arousal in this visual-olfactory multimodal integration.Approach. To this aim, we combine electrodermal activity (EDA) analysis and dynamic causal modeling to examine changes in cortico-cortical interactions.Results. The results reveal that stimuli arising sympathetic EDA responses are associated with a more negative N170 amplitude, which may be a marker of heightened arousal in response to faces. Hedonic odors, on the other hand, lead to a more negative N1 component and a reduced the vertex positive potential when they are unpleasant or pleasant. Concerning connectivity, unpleasant odors strengthen the forward connection from the inferior temporal gyrus (ITG) to the middle temporal gyrus, which is involved in processing changeable facial features. Conversely, the occurrence of sympathetic responses after a stimulus is correlated with an inhibition of this same connection and an enhancement of the backward connection from ITG to the fusiform face gyrus.Significance. These findings suggest that unpleasant odors may enhance the interpretation of emotional expressions and mental states, while faces capable of eliciting sympathetic arousal prioritize identity processing.
Collapse
Affiliation(s)
- Gianluca Rho
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
- Research Center 'E. Piaggio', School of Engineering, University of Pisa, Pisa, Italy
| | - Alejandro Luis Callara
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
- Research Center 'E. Piaggio', School of Engineering, University of Pisa, Pisa, Italy
| | - Francesco Bossi
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Dimitri Ognibene
- Università Milano-Bicocca, Milan, Italy
- University of Essex, Colchester, United Kingdom
| | - Cinzia Cecchetto
- Department of General Psychology, University of Padua, Padua, Italy
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Enzo Pasquale Scilingo
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
- Research Center 'E. Piaggio', School of Engineering, University of Pisa, Pisa, Italy
| | - Alberto Greco
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
- Research Center 'E. Piaggio', School of Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Jamieson AJ, Leonards CA, Davey CG, Harrison BJ. Major depressive disorder associated alterations in the effective connectivity of the face processing network: a systematic review. Transl Psychiatry 2024; 14:62. [PMID: 38272868 PMCID: PMC10810788 DOI: 10.1038/s41398-024-02734-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024] Open
Abstract
Major depressive disorder (MDD) is marked by altered processing of emotional stimuli, including facial expressions. Recent neuroimaging research has attempted to investigate how these stimuli alter the directional interactions between brain regions in those with MDD; however, methodological heterogeneity has made identifying consistent effects difficult. To address this, we systematically examined studies investigating MDD-associated differences present in effective connectivity during the processing of emotional facial expressions. We searched five databases: PsycINFO, EMBASE, PubMed, Scopus, and Web of Science, using a preregistered protocol (registration number: CRD42021271586). Of the 510 unique studies screened, 17 met our inclusion criteria. These studies identified that compared with healthy controls, participants with MDD demonstrated (1) reduced connectivity from the dorsolateral prefrontal cortex to the amygdala during the processing of negatively valenced expressions, and (2) increased inhibitory connectivity from the ventromedial prefrontal cortex to amygdala during the processing of happy facial expressions. Most studies investigating the amygdala and anterior cingulate cortex noted differences in their connectivity; however, the precise nature of these differences was inconsistent between studies. As such, commonalities observed across neuroimaging modalities warrant careful investigation to determine the specificity of these effects to particular subregions and emotional expressions. Future research examining longitudinal connectivity changes associated with treatment response may provide important insights into mechanisms underpinning therapeutic interventions, thus enabling more targeted treatment strategies.
Collapse
Affiliation(s)
- Alec J Jamieson
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia.
| | - Christine A Leonards
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Christopher G Davey
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Ben J Harrison
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
3
|
Maffei A, Coccaro A, Jaspers-Fayer F, Goertzen J, Sessa P, Liotti M. EEG alpha band functional connectivity reveals distinct cortical dynamics for overt and covert emotional face processing. Sci Rep 2023; 13:9951. [PMID: 37337009 DOI: 10.1038/s41598-023-36860-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 06/13/2023] [Indexed: 06/21/2023] Open
Abstract
Current knowledge regarding how the focus of our attention during face processing influences neural responses largely comes from neuroimaging studies reporting on regional brain activations. The present study was designed to add novel insights to this research by studying how attention can differentially impact the way cortical regions interact during emotional face processing. High-density electroencephalogram was recorded in a sample of fifty-two healthy participants during an emotional face processing task. The task required participants to either attend to the expressions (i.e., overt processing) or attend to a perceptual distractor, which rendered the expressions task-irrelevant (i.e., covert processing). Functional connectivity in the alpha band was estimated in source space and modeled using graph theory to quantify whole-brain integration and segregation. Results revealed that overt processing of facial expressions is linked to reduced cortical segregation and increased cortical integration, this latter specifically for negative expressions of fear and sadness. Furthermore, we observed increased communication efficiency during overt processing of negative expressions between the core and the extended face processing systems. Overall, these findings reveal that attention makes the interaction among the nodes involved in face processing more efficient, also uncovering a connectivity signature of the prioritized processing mechanism of negative expressions, that is an increased cross-communication within the nodes of the face processing network.
Collapse
Affiliation(s)
- Antonio Maffei
- Department of Developmental Psychology and Socialisation, University of Padova, Padua, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padua, Italy
| | - Ambra Coccaro
- Department of Developmental Psychology and Socialisation, University of Padova, Padua, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padua, Italy
| | | | | | - Paola Sessa
- Department of Developmental Psychology and Socialisation, University of Padova, Padua, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padua, Italy
| | - Mario Liotti
- Department of Developmental Psychology and Socialisation, University of Padova, Padua, Italy.
- Padova Neuroscience Center (PNC), University of Padova, Padua, Italy.
- Department of Psychology, Simon Fraser University, Burnaby, Canada.
| |
Collapse
|
4
|
Wen X, Han B, Li H, Dou F, Wei G, Hou G, Wu X. Unbalanced amygdala communication in major depressive disorder. J Affect Disord 2023; 329:192-206. [PMID: 36841299 DOI: 10.1016/j.jad.2023.02.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/06/2023] [Accepted: 02/19/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Previous studies suggested an association between functional alteration of the amygdala and typical major depressive disorder (MDD) symptoms. Examining whether and how the interaction between the amygdala and regions/functional networks is altered in patients with MDD is important for understanding its neural basis. METHODS Resting-state functional magnetic resonance imaging data were recorded from 67 patients with MDD and 74 age- and sex-matched healthy controls (HCs). A framework for large-scale network analysis based on seed mappings of amygdala sub-regions, using a multi-connectivity-indicator strategy (cross-correlation, total interdependencies (TI), Granger causality (GC), and machine learning), was employed. Multiple indicators were compared between the two groups. The altered indicators were ranked in a supporting-vector machine-based procedure and associated with the Hamilton Rating Scale for Depression scores. RESULTS The amygdala connectivity with the default mode network and ventral attention network regions was enhanced and that with the somatomotor network, dorsal frontoparietal network, and putamen regions in patients with MDD was reduced. The machine learning analysis highlighted altered indicators that were most conducive to the classification between the two groups. LIMITATIONS Most patients with MDD received different pharmacological treatments. It is difficult to illustrate the medication state's effect on the alteration model because of its complex situation. CONCLUSION The results indicate an unbalanced interaction model between the amygdala and functional networks and regions essential for various emotional and cognitive functions. The model can help explain potential aberrancy in the neural mechanisms that underlie the functional impairments observed across various domains in patients with MDD.
Collapse
Affiliation(s)
- Xiaotong Wen
- Department of Psychology, Renmin University of China, Beijing 100872, China; Laboratory of the Department of Psychology, Renmin University of China, Beijing 100872, China; Interdisciplinary Platform of Philosophy and Cognitive Science, Renmin University of China, 100872, China.
| | - Bukui Han
- Department of Psychology, Renmin University of China, Beijing 100872, China; Laboratory of the Department of Psychology, Renmin University of China, Beijing 100872, China
| | - Huanhuan Li
- Department of Psychology, Renmin University of China, Beijing 100872, China; Laboratory of the Department of Psychology, Renmin University of China, Beijing 100872, China; Interdisciplinary Platform of Philosophy and Cognitive Science, Renmin University of China, 100872, China.
| | - Fengyu Dou
- Department of Psychology, Renmin University of China, Beijing 100872, China
| | - Guodong Wei
- Department of Psychology, Renmin University of China, Beijing 100872, China
| | - Gangqiang Hou
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518020, China
| | - Xia Wu
- School of Artificial Intelligence, Beijing Normal University, Beijing 100093, China
| |
Collapse
|
5
|
Ince S, Steward T, Harrison BJ, Jamieson AJ, Davey CG, Agathos JA, Moffat BA, Glarin RK, Felmingham KL. Subcortical contributions to salience network functioning during negative emotional processing. Neuroimage 2023; 270:119964. [PMID: 36822252 DOI: 10.1016/j.neuroimage.2023.119964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023] Open
Abstract
Core regions of the salience network (SN), including the anterior insula (aINS) and dorsal anterior cingulate cortex (dACC), coordinate rapid adaptive changes in attentional and autonomic processes in response to negative emotional events. In doing so, the SN incorporates bottom-up signals from subcortical brain regions, such as the amygdala and periaqueductal gray (PAG). However, the precise influence of these subcortical regions is not well understood. Using ultra-high field 7-Tesla functional magnetic resonance imaging, this study investigated the bottom-up interactions of the amygdala and PAG with the SN during negative emotional salience processing. Thirty-seven healthy participants completed an emotional oddball paradigm designed to elicit a salient negative emotional response via the presentation of random, task-irrelevant negative emotional images. Negative emotional processing was associated with prominent activation in the SN, spanning the amygdala, PAG, aINS, and dACC. Consistent with previous research, analysis using dynamic causal modelling revealed an excitatory influence from the amygdala to the aINS, dACC, and PAG. In contrast, the PAG showed an inhibitory influence on amygdala, aINS and dACC activity. Our findings suggest that the amygdala may amplify the processing of negative emotional stimuli in the SN to enable upstream access to attentional resources. In comparison, the inhibitory influence of the PAG possibly reflects its involvement in modulating sympathetic-parasympathetic autonomic arousal mediated by the SN. This PAG-mediated effect may be driven by amygdala input and facilitate bottom-up processing of negative emotional stimuli. Overall, our results show that the amygdala and PAG modulate divergent functions of the SN during negative emotional processing.
Collapse
Affiliation(s)
- Sevil Ince
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Trevor Steward
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Alec J Jamieson
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Christopher G Davey
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - James A Agathos
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Bradford A Moffat
- The Melbourne Brain Centre Imaging Unit, Department of Radiology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Rebecca K Glarin
- The Melbourne Brain Centre Imaging Unit, Department of Radiology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Kim L Felmingham
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
6
|
Leonards CA, Harrison BJ, Jamieson AJ, Steward T, Lux S, Philipsen A, Davey CG. A distinct intra-individual suppression subnetwork in the brain's default mode network across cognitive tasks. Cereb Cortex 2023; 33:4553-4561. [PMID: 36130087 PMCID: PMC10110429 DOI: 10.1093/cercor/bhac361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Suppression of the brain's default mode network (DMN) during external goal-directed cognitive tasks has been consistently observed in neuroimaging studies. However, emerging insights suggest the DMN is not a monolithic "task-negative" network but is comprised of subsystems that show functional heterogeneity. Despite considerable research interest, no study has investigated the consistency of DMN activity suppression across multiple cognitive tasks within the same individuals. In this study, 85 healthy 15- to 25-year-olds completed three functional magnetic resonance imaging tasks that were designed to reliably map DMN suppression from a resting baseline. Our findings revealed a distinct suppression subnetwork across the three tasks that comprised traditional DMN and adjacent regions. Specifically, common suppression was observed in the medial prefrontal cortex, the dorsal-to-mid posterior cingulate cortex extending to the precuneus, and the posterior insular cortex and parietal operculum. Further, we found the magnitude of suppression of these regions were significantly correlated within participants across tasks. Overall, our findings indicate that externally oriented cognitive tasks elicit common suppression of a distinct subnetwork of the broader DMN. The consistency to which the DMN is suppressed within individuals suggests a domain-general mechanism that may reflect a stable feature of cognitive function that optimizes external goal-directed behavior.
Collapse
Affiliation(s)
- Christine A Leonards
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Alec J Jamieson
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Trevor Steward
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Silke Lux
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, 53127, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, 53127, Germany
| | - Christopher G Davey
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
7
|
Ballotta D, Maramotti R, Borelli E, Lui F, Pagnoni G. Neural correlates of emotional valence for faces and words. Front Psychol 2023; 14:1055054. [PMID: 36910761 PMCID: PMC9996044 DOI: 10.3389/fpsyg.2023.1055054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Stimuli with negative emotional valence are especially apt to influence perception and action because of their crucial role in survival, a property that may not be precisely mirrored by positive emotional stimuli of equal intensity. The aim of this study was to identify the neural circuits differentially coding for positive and negative valence in the implicit processing of facial expressions and words, which are among the main ways human beings use to express emotions. Thirty-six healthy subjects took part in an event-related fMRI experiment. We used an implicit emotional processing task with the visual presentation of negative, positive, and neutral faces and words, as primary stimuli. Dynamic Causal Modeling (DCM) of the fMRI data was used to test effective brain connectivity within two different anatomo-functional models, for the processing of words and faces, respectively. In our models, the only areas showing a significant differential response to negative and positive valence across both face and word stimuli were early visual cortices, with faces eliciting stronger activations. For faces, DCM revealed that this effect was mediated by a facilitation of activity in the amygdala by positive faces and in the fusiform face area by negative faces; for words, the effect was mainly imputable to a facilitation of activity in the primary visual cortex by positive words. These findings support a role of early sensory cortices in discriminating the emotional valence of both faces and words, where the effect may be mediated chiefly by the subcortical/limbic visual route for faces, and rely more on the direct thalamic pathway to primary visual cortex for words.
Collapse
Affiliation(s)
- Daniela Ballotta
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Riccardo Maramotti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Eleonora Borelli
- Department of Medical and Surgical, Maternal-Infantile and Adult Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fausta Lui
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Pagnoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
8
|
ISHIHARA TORU, MIYAZAKI ATSUSHI, TANAKA HIROKI, MATSUDA TETSUYA. Association of Cardiovascular Risk Markers and Fitness with Task-Related Neural Activity during Animacy Perception. Med Sci Sports Exerc 2022; 54:1738-1750. [PMID: 35666157 PMCID: PMC9473717 DOI: 10.1249/mss.0000000000002963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PURPOSE Numerous studies have demonstrated the association between cardiovascular risk markers and fitness, and broad aspects of cognition; however, the possible association of cardiovascular risk markers and fitness with social cognition, which plays a significant role in the development and maintenance of social relationships, has largely been ignored. Herein, we investigated the relationship of cardiovascular risk markers and fitness with task-related neural activity during animacy perception. METHODS We analyzed data from the Human Connectome Project derived from 1027 adults age 22-37 yr. Canonical correlation analysis (CCA) was conducted to evaluate the association between participants' body mass index, systolic and diastolic blood pressure, submaximal endurance, gait speed, hand dexterity, and muscular strength with task-related neural activity during animacy perception. RESULTS We observed a single significant CCA mode. Body mass index and blood pressure demonstrated negative cross-loadings with task-related neural activity in the temporoparietal, superior and anterior temporal, posterior cingulate, and inferior frontal regions, whereas submaximal endurance, hand dexterity, and muscular strength demonstrated positive cross-loadings. The observed CCA variates did not seem highly heritable, as the absolute differences in CCA variates in monozygotic twins, dizygotic twins, and nontwin siblings were not statistically different. Furthermore, the cardiovascular risk markers and fitness CCA variates were positively associated with animacy perception and emotion recognition accuracy, which was mediated by the task-related neural activity. CONCLUSIONS The present findings can provide new insights into the role of markers for cardiovascular health and fitness, specifically their association with social cognition and the underlying neural basis. The intervention for cardiovascular risk and fitness could be a potentially cost-effective method of targeting social cognition.
Collapse
Affiliation(s)
- TORU ISHIHARA
- Graduate School of Human Development and Environment, Kobe University, Kobe, JAPAN
| | | | - HIROKI TANAKA
- Tamagawa University Brain Science Institute, Tokyo, JAPAN
- Japan Society for the Promotion of Science, Tokyo, JAPAN
| | | |
Collapse
|
9
|
Gee DG, Hanson C, Caglar LR, Fareri DS, Gabard-Durnam LJ, Mills-Finnerty C, Goff B, Caldera CJ, Lumian DS, Flannery J, Hanson SJ, Tottenham N. Experimental evidence for a child-to-adolescent switch in human amygdala-prefrontal cortex communication: A cross-sectional pilot study. Dev Sci 2022; 25:e13238. [PMID: 35080089 PMCID: PMC9232876 DOI: 10.1111/desc.13238] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/20/2021] [Accepted: 01/02/2022] [Indexed: 11/30/2022]
Abstract
Interactions between the amygdala and prefrontal cortex are fundamental to human emotion. Despite the central role of frontoamygdala communication in adult emotional learning and regulation, little is known about how top-down control emerges during human development. In the present cross-sectional pilot study, we experimentally manipulated prefrontal engagement to test its effects on the amygdala during development. Inducing dorsal anterior cingulate cortex (dACC) activation resulted in developmentally-opposite effects on amygdala reactivity during childhood versus adolescence, such that dACC activation was followed by increased amygdala reactivity in childhood but reduced amygdala reactivity in adolescence. Bayesian network analyses revealed an age-related switch between childhood and adolescence in the nature of amygdala connectivity with the dACC and ventromedial PFC (vmPFC). Whereas adolescence was marked by information flow from dACC and vmPFC to amygdala (consistent with that observed in adults), the reverse information flow, from the amygdala to dACC and vmPFC, was dominant in childhood. The age-related switch in information flow suggests a potential shift from bottom-up co-excitatory to top-down regulatory frontoamygdala connectivity and may indicate a profound change in the circuitry supporting maturation of emotional behavior. These findings provide novel insight into the developmental construction of amygdala-cortical connections and implications for the ways in which childhood experiences may influence subsequent prefrontal function.
Collapse
Affiliation(s)
- Dylan G. Gee
- Yale University, Department of Psychology, 2 Hillhouse Avenue, New Haven, CT 06511
- To whom correspondence should be addressed: ,
| | - Catherine Hanson
- Rutgers University, Department of Psychology, 101 Warren Street, Newark, NJ 07102
| | - Leyla Roksan Caglar
- Rutgers University, Department of Psychology, 101 Warren Street, Newark, NJ 07102
| | - Dominic S. Fareri
- Adelphi University, Department of Psychology, Blodgett Hall, Garden City, NY 11530
| | | | | | - Bonnie Goff
- University of California, Los Angeles, Department of Psychology, 1285 Franz Hall, Los Angeles, CA 90095
| | - Christina J. Caldera
- University of California, Los Angeles, Department of Psychology, 1285 Franz Hall, Los Angeles, CA 90095
| | - Daniel S. Lumian
- University of Denver, Department of Psychology, 2155 S. Race Street, Denver, CO 80210
| | - Jessica Flannery
- University of North Carolina, Chapel Hill, Department of Psychology, 235 E. Cameron Ave, Chapel Hill, NC 27599
| | - Stephen J. Hanson
- Rutgers University, Department of Psychology, 101 Warren Street, Newark, NJ 07102
| | - Nim Tottenham
- Columbia University, Department of Psychology, 406 Schermerhorn Hall, 1190 Amsterdam Avenue, New York, NY 10027
| |
Collapse
|
10
|
Lo Buono V, Bonanno L, Palmeri R, Cammaroto S, Morabito R, De Cola MC, Sessa E, Marino S, Bramanti P, Corallo F. Neuropsychological implication in possible antibody-negative limbic encephalitis: a clinical case report. J Int Med Res 2022; 50:3000605221078715. [PMID: 35137608 PMCID: PMC8832620 DOI: 10.1177/03000605221078715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Autoimmune limbic encephalitis is an antibody-mediated brain inflammatory process, which typically involves the medial temporal lobe. Diagnosis requires the presence of antineuronal antibodies, but sometimes patients present clinical features of limbic encephalitis despite negative serology. Thus, the diagnosis of antibody-negative limbic encephalitis is difficult to make, and it must often rely largely on exclusion of other causes. This current case report describes a 28-year-old male that presented 2 months after the acute event with radiological changes typical of limbic encephalitis, but with no identifiable antibody and neuropsychological impairment. Antibody responses to neurotropic viruses and antibody-mediated encephalitis were negative in serum and cerebrospinal fluid. Magnetic resonance imaging showed signs of hyperintensity in the hippocampus bilaterally, amygdala and left pulvinar. The neuropsychological evaluation showed a deficit in emotional face recognition and severe autobiographical amnesia. Bilateral damage to the medial temporal lobe and hippocampus, including the amygdala, is associated with alterations in autobiographical memories. The neuropsychological impairment documented in this current case expands the range of clinical features of antibody-negative encephalitis and provides evidence that the memory deficit in this disorder is more extensive than was previously recognized.
Collapse
Affiliation(s)
| | - Lilla Bonanno
- IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | | | | | - Rosa Morabito
- IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | | | - Edoardo Sessa
- IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | - Silvia Marino
- IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | | | | |
Collapse
|
11
|
Kovsh E, Yavna D, Babenko V, Ermakov P, Vorobyeva E, Denisova E, Alekseeva D. The Success of Facial Expression Recognition by Carriers of Various Genotypes of the COMT, DRD4, 5HT2A, MAOA GENES. EXPERIMENTAL PSYCHOLOGY (RUSSIA) 2022. [DOI: 10.17759/exppsy.2022150309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The work is aimed at describing the relationship between the genes COMT, DRD4, 5HT2A, MAOA with the success of facial expression recognition. These genes play an important role in various emotional and cognitive processes. At the same time, hereditary aspects of recognition of facial expressions, in contrast to sociocultural ones, have not been studied enough to date. The study involved 87 healthy students of Russian universities (20.4 ± 2.6 years). DNA analysis was carried out with the determination of genotypes by the polymorphic loci of the genes rs4680 COMT, rs6313 5HT2A (HTR2A), rs1800955 DRD4, VNTR MAOA (RSMU, Rostov-on-Don). The participants of the study were asked to distinguish emotional facial expressions in photographs taken from the MMI, KDEF, Rafd, WSEFEP image databases. The obtained results indicate the following differences in the success of facial expression recognition: carriers of the Val/Val genotype of the COMT gene significantly better recognize the emotions of surprise (H=7.7, df=2, p=0.02), fear (H=10.5, df=2, p=0.005), sadness (H=11.2, df=2, p=0.004); carriers of the heterozygous C/T genotype of the DRD4 gene significantly better recognize facial expression of disgust (H=9.1, df=2, p=0.01). No relationship was found between the MAOA gene genotypes and the success of emotion recognition.
Collapse
Affiliation(s)
| | | | | | | | | | | | - D.S. Alekseeva
- Regional Research Center of the Russian Academy of Education in the Southern Federal District
| |
Collapse
|
12
|
Jamieson AJ, Harrison BJ, Davey CG. Altered effective connectivity of the extended face processing system in depression and its association with treatment response: findings from the YoDA-C randomized controlled trial. Psychol Med 2021; 51:2933-2944. [PMID: 37676047 DOI: 10.1017/s0033291721002567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Depression is commonly associated with fronto-amygdala dysfunction during the processing of emotional face expressions. Interactions between these regions are hypothesized to contribute to negative emotional processing biases and as such have been highlighted as potential biomarkers of treatment response. This study aimed to investigate depression associated alterations to directional connectivity and assess the utility of these parameters as predictors of treatment response. METHODS Ninety-two unmedicated adolescents and young adults (mean age 20.1; 56.5% female) with moderate-to-severe major depressive disorder and 88 healthy controls (mean age 19.8; 61.4% female) completed an implicit emotional face processing fMRI task. Patients were randomized to receive cognitive behavioral therapy for 12 weeks, plus either fluoxetine or placebo. Using dynamic causal modelling, we examined functional relationships between six brain regions implicated in emotional face processing, comparing both patients and controls and treatment responders and non-responders. RESULTS Depressed patients demonstrated reduced inhibition from the dlPFC to vmPFC and reduced excitation from the dlPFC to amygdala during sad expression processing. During fearful expression processing patients showed reduced inhibition from the vmPFC to amygdala and reduced excitation from the amygdala to dlPFC. Response was associated with connectivity from the amygdala to dlPFC during sad expression processing and amygdala to vmPFC connectivity during fearful expression processing. CONCLUSIONS Our study clarifies the nature of face processing network alterations in adolescents and young adults with depression, highlighting key interactions between the amygdala and prefrontal cortex. Moreover, these findings highlight the potential utility of these interactions in predicting treatment response.
Collapse
Affiliation(s)
- Alec J Jamieson
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia
| | - Christopher G Davey
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia
- Department of Psychiatry, The University of Melbourne, Australia
| |
Collapse
|