1
|
Feng Y, Diego KS, Dong Z, Christenson Wick Z, Page-Harley L, Page-Harley V, Schnipper J, Lamsifer SI, Pennington ZT, Vetere LM, Philipsberg PA, Soler I, Jurkowski A, Rosado CJ, Khan NN, Cai DJ, Shuman T. Distinct changes to hippocampal and medial entorhinal circuits emerge across the progression of cognitive deficits in epilepsy. Cell Rep 2025; 44:115131. [PMID: 39847482 DOI: 10.1016/j.celrep.2024.115131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/15/2024] [Accepted: 12/11/2024] [Indexed: 01/25/2025] Open
Abstract
Temporal lobe epilepsy (TLE) causes pervasive and progressive memory impairments, yet the specific circuit changes that drive these deficits remain unclear. To investigate how hippocampal-entorhinal dysfunction contributes to progressive memory deficits in epilepsy, we performed simultaneous in vivo electrophysiology in the hippocampus (HPC) and medial entorhinal cortex (MEC) of control and epileptic mice 3 or 8 weeks after pilocarpine-induced status epilepticus (Pilo-SE). We found that HPC synchronization deficits (including reduced theta power, coherence, and altered interneuron spike timing) emerged within 3 weeks of Pilo-SE, aligning with early-onset, relatively subtle memory deficits. In contrast, abnormal synchronization within the MEC and between HPC and MEC emerged later, by 8 weeks after Pilo-SE, when spatial memory impairment was more severe. Furthermore, a distinct subpopulation of MEC layer 3 excitatory neurons (active at theta troughs) was specifically impaired in epileptic mice. Together, these findings suggest that hippocampal-entorhinal circuit dysfunction accumulates and shifts as cognitive impairment progresses in TLE.
Collapse
Affiliation(s)
- Yu Feng
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keziah S Diego
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhe Dong
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zoé Christenson Wick
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lucia Page-Harley
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Veronica Page-Harley
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julia Schnipper
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sophia I Lamsifer
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zachary T Pennington
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren M Vetere
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul A Philipsberg
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ivan Soler
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Albert Jurkowski
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christin J Rosado
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nadia N Khan
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Denise J Cai
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tristan Shuman
- Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Miralles RM, Boscia AR, Kittur S, Hanflink JC, Panchal PS, Yorek MS, Deutsch TCJ, Reever CM, Vundela SR, Wengert ER, Patel MK. Parvalbumin interneuron impairment causes synaptic transmission deficits and seizures in SCN8A developmental and epileptic encephalopathy. JCI Insight 2024; 9:e181005. [PMID: 39435659 PMCID: PMC11529981 DOI: 10.1172/jci.insight.181005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024] Open
Abstract
SCN8A developmental and epileptic encephalopathy (DEE) is a severe epilepsy syndrome resulting from mutations in the voltage-gated sodium channel Nav1.6, encoded by the gene SCN8A. Nav1.6 is expressed in excitatory and inhibitory neurons, yet previous studies primarily focus on how SCN8A mutations affect excitatory neurons, with limited studies on the importance of inhibitory interneurons. Parvalbumin (PV) interneurons are a prominent inhibitory interneuron subtype that expresses Nav1.6. To assess PV interneuron function within SCN8A DEE, we used 2 mouse models harboring patient-derived SCN8A gain-of-function variants, Scn8aD/+, where the SCN8A variant N1768D is expressed globally, and Scn8aW/+-PV, where the SCN8A variant R1872W is selectively expressed in PV interneurons. Expression of the R1872W SCN8A variant selectively in PV interneurons led to development of spontaneous seizures and seizure-induced death. Electrophysiology studies showed that Scn8aD/+ and Scn8aW/+-PV interneurons were susceptible to depolarization block and exhibited increased persistent sodium current. Evaluation of synaptic connections between PV interneurons and pyramidal cells showed synaptic transmission deficits in Scn8aD/+ and Scn8aW/+-PV interneurons. Together, our findings indicate that PV interneuron failure via depolarization block along with inhibitory synaptic impairment likely elicits an overall inhibitory reduction in SCN8A DEE, leading to unchecked excitation and ultimately resulting in seizures and seizure-induced death.
Collapse
Affiliation(s)
- Raquel M. Miralles
- Department of Anesthesiology and
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, Virginia, USA
| | | | | | | | | | | | | | - Caeley M. Reever
- Department of Anesthesiology and
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, Virginia, USA
| | | | - Eric R. Wengert
- Department of Anesthesiology and
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, Virginia, USA
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Manoj K. Patel
- Department of Anesthesiology and
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, Virginia, USA
| |
Collapse
|
3
|
Feng Y, Diego KS, Dong Z, Wick ZC, Page-Harley L, Page-Harley V, Schnipper J, Lamsifer SI, Pennington ZT, Vetere LM, Philipsberg PA, Soler I, Jurkowski A, Rosado CJ, Khan NN, Cai DJ, Shuman T. Distinct changes to hippocampal and medial entorhinal circuits emerge across the progression of cognitive deficits in epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584697. [PMID: 38559224 PMCID: PMC10979962 DOI: 10.1101/2024.03.12.584697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Temporal lobe epilepsy (TLE) causes pervasive and progressive memory impairments, yet the specific circuit changes that drive these deficits remain unclear. To investigate how hippocampal-entorhinal dysfunction contributes to progressive memory deficits in epilepsy, we performed simultaneous in vivo electrophysiology in hippocampus (HPC) and medial entorhinal cortex (MEC) of control and epileptic mice 3 or 8 weeks after pilocarpine-induced status epilepticus (Pilo-SE). We found that HPC synchronization deficits (including reduced theta power, coherence, and altered interneuron spike timing) emerged within 3 weeks of Pilo-SE, aligning with early-onset, relatively subtle memory deficits. In contrast, abnormal synchronization within MEC and between HPC-MEC emerged later, by 8 weeks after Pilo-SE, when spatial memory impairment was more severe. Furthermore, a distinct subpopulation of MEC layer 3 excitatory neurons (active at theta troughs) was specifically impaired in epileptic mice. Together, these findings suggest that hippocampal-entorhinal circuit dysfunction accumulates and shifts as cognitive impairment progresses in TLE.
Collapse
Affiliation(s)
- Yu Feng
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Zhe Dong
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | | | | | | | | | | | | | - Ivan Soler
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | - Nadia N Khan
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Denise J Cai
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|
4
|
Miralles RM, Boscia AR, Kittur S, Vundela SR, Wengert ER, Patel MK. Parvalbumin Interneuron Impairment Leads to Synaptic Transmission Deficits and Seizures in SCN8A Epileptic Encephalopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579511. [PMID: 38464208 PMCID: PMC10925130 DOI: 10.1101/2024.02.09.579511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
SCN8A epileptic encephalopathy (EE) is a severe epilepsy syndrome resulting from de novo mutations in the voltage-gated sodium channel Na v 1.6, encoded by the gene SCN8A . Na v 1.6 is expressed in both excitatory and inhibitory neurons, yet previous studies have primarily focused on the impact SCN8A mutations have on excitatory neuron function, with limited studies on the importance of inhibitory interneurons to seizure onset and progression. Inhibitory interneurons are critical in balancing network excitability and are known to contribute to the pathophysiology of other epilepsies. Parvalbumin (PV) interneurons are the most prominent inhibitory neuron subtype in the brain, making up about 40% of inhibitory interneurons. Notably, PV interneurons express high levels of Na v 1.6. To assess the role of PV interneurons within SCN8A EE, we used two mouse models harboring patient-derived SCN8A gain-of-function mutations, Scn8a D/+ , where the SCN8A mutation N1768D is expressed globally, and Scn8a W/+ -PV, where the SCN8A mutation R1872W is selectively expressed in PV interneurons. Expression of the R1872W SCN8A mutation selectively in PV interneurons led to the development of spontaneous seizures in Scn8a W/+ -PV mice and seizure-induced death, decreasing survival compared to wild-type. Electrophysiology studies showed that PV interneurons in Scn8a D/+ and Scn8a W/+ -PV mice were susceptible to depolarization block, a state of action potential failure. Scn8a D/+ and Scn8a W/+ -PV interneurons also exhibited increased persistent sodium current, a hallmark of SCN8A gain-of-function mutations that contributes to depolarization block. Evaluation of synaptic connections between PV interneurons and pyramidal cells showed an increase in synaptic transmission failure at high frequencies (80-120Hz) as well as an increase in synaptic latency in Scn8a D/+ and Scn8a W/+ -PV interneurons. These data indicate a distinct impairment of synaptic transmission in SCN8A EE, potentially decreasing overall cortical network inhibition. Together, our novel findings indicate that failure of PV interneuron spiking via depolarization block along with frequency-dependent inhibitory synaptic impairment likely elicits an overall reduction in the inhibitory drive in SCN8A EE, leading to unchecked excitation and ultimately resulting in seizures and seizure-induced death.
Collapse
|
5
|
Tukacs V, Mittli D, Hunyadi-Gulyás É, Darula Z, Juhász G, Kardos J, Kékesi KA. Comparative analysis of hippocampal extracellular space uncovers widely altered peptidome upon epileptic seizure in urethane-anaesthetized rats. Fluids Barriers CNS 2024; 21:6. [PMID: 38212833 PMCID: PMC10782730 DOI: 10.1186/s12987-024-00508-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/31/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND The brain extracellular fluid (ECF), composed of secreted neurotransmitters, metabolites, peptides, and proteins, may reflect brain processes. Analysis of brain ECF may provide new potential markers for synaptic activity or brain damage and reveal additional information on pathological alterations. Epileptic seizure induction is an acute and harsh intervention in brain functions, and it can activate extra- and intracellular proteases, which implies an altered brain secretome. Thus, we applied a 4-aminopyridine (4-AP) epilepsy model to study the hippocampal ECF peptidome alterations upon treatment in rats. METHODS We performed in vivo microdialysis in the hippocampus for 3-3 h of control and 4-AP treatment phase in parallel with electrophysiology measurement. Then, we analyzed the microdialysate peptidome of control and treated samples from the same subject by liquid chromatography-coupled tandem mass spectrometry. We analyzed electrophysiological and peptidomic alterations upon epileptic seizure induction by two-tailed, paired t-test. RESULTS We detected 2540 peptides in microdialysate samples by mass spectrometry analysis; and 866 peptides-derived from 229 proteins-were found in more than half of the samples. In addition, the abundance of 322 peptides significantly altered upon epileptic seizure induction. Several proteins of significantly altered peptides are neuropeptides (Chgb) or have synapse- or brain-related functions such as the regulation of synaptic vesicle cycle (Atp6v1a, Napa), astrocyte morphology (Vim), and glutamate homeostasis (Slc3a2). CONCLUSIONS We have detected several consequences of epileptic seizures at the peptidomic level, as altered peptide abundances of proteins that regulate epilepsy-related cellular processes. Thus, our results indicate that analyzing brain ECF by in vivo microdialysis and omics techniques is useful for monitoring brain processes, and it can be an alternative method in the discovery and analysis of CNS disease markers besides peripheral fluid analysis.
Collapse
Affiliation(s)
- Vanda Tukacs
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Dániel Mittli
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Éva Hunyadi-Gulyás
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvári Körút 62, Szeged, 6726, Hungary
| | - Zsuzsanna Darula
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvári Körút 62, Szeged, 6726, Hungary
- Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, Temesvári Körút 62, Szeged, 6726, Hungary
| | - Gábor Juhász
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- InnoScience Hungary Ltd., Bátori Út 9, Mátranovák, 3142, Hungary
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Katalin Adrienna Kékesi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
- InnoScience Hungary Ltd., Bátori Út 9, Mátranovák, 3142, Hungary.
- Department of Physiology and Neurobiology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
| |
Collapse
|
6
|
Odell LR, Jones NC, Chau N, Robertson MJ, Ambrus JI, Deane FM, Young KA, Whiting A, Xue J, Prichard K, Daniel JA, Gorgani NN, O'Brien TJ, Robinson PJ, McCluskey A. The sulfonadyns: a class of aryl sulfonamides inhibiting dynamin I GTPase and clathrin mediated endocytosis are anti-seizure in animal models. RSC Med Chem 2023; 14:1492-1511. [PMID: 37593570 PMCID: PMC10429932 DOI: 10.1039/d2md00371f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/15/2023] [Indexed: 08/19/2023] Open
Abstract
We show that dansylcadaverine (1) a known in-cell inhibitor of clathrin mediated endocytosis (CME), moderately inhibits dynamin I (dynI) GTPase activity (IC50 45 μM) and transferrin (Tfn) endocytosis in U2OS cells (IC50 205 μM). Synthesis gave a new class of GTP-competitive dynamin inhibitors, the Sulfonadyns™. The introduction of a terminal cinnamyl moiety greatly enhanced dynI inhibition. Rigid diamine or amide links between the dansyl and cinnamyl moieties were detrimental to dynI inhibition. Compounds with in vitro inhibition of dynI activity <10 μM were tested in-cell for inhibition of CME. These data unveiled a number of compounds, e.g. analogues 33 ((E)-N-(6-{[(3-(4-bromophenyl)-2-propen-1-yl]amino}hexyl)-5-isoquinolinesulfonamide)) and 47 ((E)-N-(3-{[3-(4-bromophenyl)-2-propen-1-yl]amino}propyl)-1-naphthalenesulfonamide)isomers that showed dyn IC50 <4 μM, IC50(CME) <30 μM and IC50(SVE) from 12-265 μM. Both analogues (33 and 47) are at least 10 times more potent that the initial lead, dansylcadaverine (1). Enzyme kinetics revealed these sulfonamide analogues as being GTP competitive inhibitors of dynI. Sulfonadyn-47, the most potent SVE inhibitor observed (IC50(SVE) = 12.3 μM), significantly increased seizure threshold in a 6 Hz mouse psychomotor seizure test at 30 (p = 0.003) and 100 mg kg-1 ip (p < 0.0001), with similar anti-seizure efficacy to the established anti-seizure medication, sodium valproate (400 mg kg-1). The Sulfonadyn™ class of drugs target dynamin and show promise as novel leads for future anti-seizure medications.
Collapse
Affiliation(s)
- Luke R Odell
- Chemistry, Centre for Chemical Biology, School of Environmental & Life Science, The University of Newcastle University Drive Callaghan NSW 2308 Australia +612 4921 5472 +612 4921 6486
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, Monash University Melbourne Victoria 3004 Australia
- Department of Neurology, The Alfred Hospital Commercial Road Melbourne Victoria 3004 Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne Parkville Victoria 3052 Australia
| | - Ngoc Chau
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney 214 Hawkesbury Road Westmead NSW 2145 Australia +612 8865 2915
| | - Mark J Robertson
- Chemistry, Centre for Chemical Biology, School of Environmental & Life Science, The University of Newcastle University Drive Callaghan NSW 2308 Australia +612 4921 5472 +612 4921 6486
| | - Joseph I Ambrus
- Chemistry, Centre for Chemical Biology, School of Environmental & Life Science, The University of Newcastle University Drive Callaghan NSW 2308 Australia +612 4921 5472 +612 4921 6486
| | - Fiona M Deane
- Chemistry, Centre for Chemical Biology, School of Environmental & Life Science, The University of Newcastle University Drive Callaghan NSW 2308 Australia +612 4921 5472 +612 4921 6486
| | - Kelly A Young
- Chemistry, Centre for Chemical Biology, School of Environmental & Life Science, The University of Newcastle University Drive Callaghan NSW 2308 Australia +612 4921 5472 +612 4921 6486
| | - Ainslie Whiting
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney 214 Hawkesbury Road Westmead NSW 2145 Australia +612 8865 2915
| | - Jing Xue
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney 214 Hawkesbury Road Westmead NSW 2145 Australia +612 8865 2915
| | - Kate Prichard
- Chemistry, Centre for Chemical Biology, School of Environmental & Life Science, The University of Newcastle University Drive Callaghan NSW 2308 Australia +612 4921 5472 +612 4921 6486
| | - James A Daniel
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney 214 Hawkesbury Road Westmead NSW 2145 Australia +612 8865 2915
| | - Nick N Gorgani
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney 214 Hawkesbury Road Westmead NSW 2145 Australia +612 8865 2915
| | - Terence J O'Brien
- Department of Neurology, The Alfred Hospital Commercial Road Melbourne Victoria 3004 Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne Parkville Victoria 3052 Australia
| | - Phillip J Robinson
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney 214 Hawkesbury Road Westmead NSW 2145 Australia +612 8865 2915
| | - Adam McCluskey
- Chemistry, Centre for Chemical Biology, School of Environmental & Life Science, The University of Newcastle University Drive Callaghan NSW 2308 Australia +612 4921 5472 +612 4921 6486
| |
Collapse
|
7
|
Beesley S, Kumar SS. The t-N-methyl-d-aspartate receptor: Making the case for d-Serine to be considered its inverse co-agonist. Neuropharmacology 2023:109654. [PMID: 37437688 DOI: 10.1016/j.neuropharm.2023.109654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
The N-methyl-d-aspartate receptor (NMDAR) is an enigmatic macromolecule that has garnered a good deal of attention on account of its involvement in the cellular processes that underlie learning and memory, following its discovery in the mid twentieth century (Baudry and Davis, 1991). Yet, despite advances in knowledge about its function, there remains much more to be uncovered regarding the receptor's biophysical properties, subunit composition, and role in CNS physiology and pathophysiology. The motivation for this review stems from the need for synthesizing new information gathered about these receptors that sheds light on their role in synaptic plasticity and their dichotomous relationship with the amino acid d-serine through which they influence the pathogenesis of neurodegenerative diseases like temporal lobe epilepsy (TLE), the most common type of adult epilepsies (Beesley et al., 2020a). This review will outline pertinent ideas relating structure and function of t-NMDARs (GluN3 subunit-containing triheteromeric NMDARs) for which d-serine might serve as an inverse co-agonist. We will explore how tracing d-serine's origins blends glutamate-receptor biology with glial biology to help provide fresh perspectives on how neurodegeneration might interlink with neuroinflammation to initiate and perpetuate the disease state. Taken together, we envisage the review to deepen our understanding of endogenous d-serine's new role in the brain while also recognizing its therapeutic potential in the treatment of TLE that is oftentimes refractory to medications.
Collapse
Affiliation(s)
- Stephen Beesley
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience Florida State University, 1115 W. Call Street, Tallahassee, FL, 32306-4300, USA
| | - Sanjay S Kumar
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience Florida State University, 1115 W. Call Street, Tallahassee, FL, 32306-4300, USA.
| |
Collapse
|
8
|
Righes Marafiga J, Baraban SC. Cell therapy for neurological disorders: Progress towards an embryonic medial ganglionic eminence progenitor-based treatment. Front Neurosci 2023; 17:1177678. [PMID: 37123353 PMCID: PMC10140420 DOI: 10.3389/fnins.2023.1177678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Impairment of development, migration, or function of inhibitory interneurons are key features of numerous circuit-based neurological disorders, such as epilepsy. From a therapeutic perspective, symptomatic treatment of these disorders often relies upon drugs or deep brain stimulation approaches to provide a general enhancement of GABA-mediated inhibition. A more effective strategy to target these pathological circuits and potentially provide true disease-modifying therapy, would be to selectively add new inhibitory interneurons into these circuits. One such strategy, using embryonic medial ganglionic (MGE) progenitor cells as a source of a unique sub-population of interneurons, has already proven effective as a cell transplantation therapy in a variety of preclinical models of neurological disorders, especially in mouse models of acquired epilepsy. Here we will discuss the evolution of this interneuron-based transplantation therapy in acquired epilepsy models, with an emphasis on the recent adaptation of MGE progenitor cells for xenotransplantation into larger mammals.
Collapse
Affiliation(s)
- Joseane Righes Marafiga
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Scott C. Baraban
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
- Helen Wills Institute for Neuroscience, University of California Berkeley, Berkeley, CA, United States
| |
Collapse
|
9
|
Liu J, Tang F, Hu D, Zhang Z, Yan Y, Ma Y. TMT-based proteomics profile reveals changes of the entorhinal cortex in a kainic acid model of epilepsy in mice. Neurosci Lett 2023; 800:137127. [PMID: 36792025 DOI: 10.1016/j.neulet.2023.137127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/29/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Experimental modeling and clinical neuroimaging of patients has shown that certain seizures are capable of causing neuronal death. Research into cell death after seizures has identified the induction of the molecular machinery of apoptosis. Temporal lobe epilepsy (TLE) is the most common type of epilepsy in adults, which is characterized by substantial pathological abnormalities in the temporal lobe, including the hippocampus and entorhinal cortex (EC). Although decades of studies have revealed numerous molecular abnormalities in the hippocampus that are linked to TLE, the biochemical mechanisms associated with TLE in EC remain unclear. In this study, we explored these early phenotypical alterations in the EC 5 days after mice were given a systemic injection of kainic acid (KA) to induce status epilepticus (KA-SE). we used the Tandem Mass Tag (TMT) combined with LC-MS/MS approach to identify distinct proteins in the EC in a mouse model of KA-SE model. According to the findings, 355 differentially abundant proteins including 199 upregulated and 156 downregulated differentially abundant proteins were discovered. The first-ranked biological process according to Gene Ontology (GO) analysis was "negative control of extrinsic apoptotic signaling". "Apoptosis" was the most significantly enriched Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway. Compared with those in control mice, BCL2L1, NTRK2 and MAPK10 abundance levels were reduced in KA mice. MAPK10 and NTRK2 act as upstream regulators to regulate BCL2L1, and BCL2L1 Inhibits cell death by blocking the voltage- dependent anion channel (VDAC) and preventing the release of the caspase activator, CYC1, from the mitochondrial membrane. However, ITPR1 was increased at the mRNA and protein levels in KA mice. Furthermore, there was no significant difference in ACTB, TUBA1A and TUBA4A levels between the two groups. Our results offer clues to help identify biomarkers for the development of pharmacological therapies targeted at epilepsy.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Fenglin Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Danmei Hu
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Zhijuan Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Yin Yan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Yuanlin Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China.
| |
Collapse
|
10
|
Tallarico M, Pisano M, Leo A, Russo E, Citraro R, De Sarro G. Antidepressant Drugs for Seizures and Epilepsy: Where do we Stand? Curr Neuropharmacol 2023; 21:1691-1713. [PMID: 35761500 PMCID: PMC10514547 DOI: 10.2174/1570159x20666220627160048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022] Open
Abstract
People with epilepsy (PWE) are more likely to develop depression and both these complex chronic diseases greatly affect health-related quality of life (QOL). This comorbidity contributes to the deterioration of the QOL further than increasing the severity of epilepsy worsening prognosis. Strong scientific evidence suggests the presence of shared pathogenic mechanisms. The correct identification and management of these factors are crucial in order to improve patients' QOL. This review article discusses recent original research on the most common pathogenic mechanisms of depression in PWE and highlights the effects of antidepressant drugs (ADs) against seizures in PWE and animal models of seizures and epilepsy. Newer ADs, such as selective serotonin reuptake inhibitors (SRRI) or serotonin-noradrenaline reuptake inhibitors (SNRI), particularly sertraline, citalopram, mirtazapine, reboxetine, paroxetine, fluoxetine, escitalopram, fluvoxamine, venlafaxine, duloxetine may lead to improvements in epilepsy severity whereas the use of older tricyclic antidepressant (TCAs) can increase the occurrence of seizures. Most of the data demonstrate the acute effects of ADs in animal models of epilepsy while there is a limited number of studies about the chronic antidepressant effects in epilepsy and epileptogenesis or on clinical efficacy. Much longer treatments are needed in order to validate the effectiveness of these new alternatives in the treatment and the development of epilepsy, while further clinical studies with appropriate protocols are warranted in order to understand the real potential contribution of these drugs in the management of PWE (besides their effects on mood).
Collapse
Affiliation(s)
- Martina Tallarico
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Maria Pisano
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Antonio Leo
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Emilio Russo
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Rita Citraro
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Giovambattista De Sarro
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
11
|
Feng Y, Shuman T. Blame it on the Inputs: Overexcited Entorhinal Inputs Drive Dentate Gyrus Hyperexcitability in a Mouse Model of Dravet Syndrome. Epilepsy Curr 2022; 22:372-374. [DOI: 10.1177/15357597221112801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Yu Feng
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tristan Shuman
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
12
|
Modular microcircuit organization of the presubicular head-direction map. Cell Rep 2022; 39:110684. [PMID: 35417686 DOI: 10.1016/j.celrep.2022.110684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/16/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022] Open
Abstract
Our internal sense of direction is thought to rely on the activity of head-direction (HD) neurons. We find that the mouse dorsal presubiculum (PreS), a key structure in the cortical representation of HD, displays a modular "patch-matrix" organization, which is conserved across species (including human). Calbindin-positive layer 2 neurons within the "matrix" form modular recurrent microcircuits, while inputs from the anterodorsal and laterodorsal thalamic nuclei are non-overlapping and target the "patch" and "matrix" compartments, respectively. The apical dendrites of identified HD cells are largely restricted within the "matrix," pointing to a non-random sampling of patterned inputs and to a precise structure-function architecture. Optogenetic perturbation of modular recurrent microcircuits results in a drastic tonic suppression of firing only in a subpopulation of HD neurons. Altogether, our data reveal a modular microcircuit organization of the PreS HD map and point to the existence of cell-type-specific microcircuits that support the cortical HD representation.
Collapse
|
13
|
Abstract
SCN8A epileptic encephalopathy is a devastating epilepsy syndrome caused by mutant SCN8A, which encodes the voltage-gated sodium channel NaV1.6. To date, it is unclear if and how inhibitory interneurons, which express NaV1.6, influence disease pathology. Using both sexes of a transgenic mouse model of SCN8A epileptic encephalopathy, we found that selective expression of the R1872W SCN8A mutation in somatostatin (SST) interneurons was sufficient to convey susceptibility to audiogenic seizures. Patch-clamp electrophysiology experiments revealed that SST interneurons from mutant mice were hyperexcitable but hypersensitive to action potential failure via depolarization block under normal and seizure-like conditions. Remarkably, GqDREADD-mediated activation of WT SST interneurons resulted in prolonged electrographic seizures and was accompanied by SST hyperexcitability and depolarization block. Aberrantly large persistent sodium currents, a hallmark of SCN8A mutations, were observed and were found to contribute directly to aberrant SST physiology in computational modeling and pharmacological experiments. These novel findings demonstrate a critical and previously unidentified contribution of SST interneurons to seizure generation not only in SCN8A epileptic encephalopathy, but epilepsy in general.SIGNIFICANCE STATEMENT SCN8A epileptic encephalopathy is a devastating neurological disorder that results from de novo mutations in the sodium channel isoform Nav1.6. Inhibitory neurons express NaV1.6, yet their contribution to seizure generation in SCN8A epileptic encephalopathy has not been determined. We show that mice expressing a human-derived SCN8A variant (R1872W) selectively in somatostatin (SST) interneurons have audiogenic seizures. Physiological recordings from SST interneurons show that SCN8A mutations lead to an elevated persistent sodium current which drives initial hyperexcitability, followed by premature action potential failure because of depolarization block. Furthermore, chemogenetic activation of WT SST interneurons leads to audiogenic seizure activity. These findings provide new insight into the importance of SST inhibitory interneurons in seizure initiation, not only in SCN8A epileptic encephalopathy, but for epilepsy broadly.
Collapse
|
14
|
Tok S, Ahnaou A, Drinkenburg W. Functional Neurophysiological Biomarkers of Early-Stage Alzheimer's Disease: A Perspective of Network Hyperexcitability in Disease Progression. J Alzheimers Dis 2021; 88:809-836. [PMID: 34420957 PMCID: PMC9484128 DOI: 10.3233/jad-210397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Network hyperexcitability (NH) has recently been suggested as a potential neurophysiological indicator of Alzheimer’s disease (AD), as new, more accurate biomarkers of AD are sought. NH has generated interest as a potential indicator of certain stages in the disease trajectory and even as a disease mechanism by which network dysfunction could be modulated. NH has been demonstrated in several animal models of AD pathology and multiple lines of evidence point to the existence of NH in patients with AD, strongly supporting the physiological and clinical relevance of this readout. Several hypotheses have been put forward to explain the prevalence of NH in animal models through neurophysiological, biochemical, and imaging techniques. However, some of these hypotheses have been built on animal models with limitations and caveats that may have derived NH through other mechanisms or mechanisms without translational validity to sporadic AD patients, potentially leading to an erroneous conclusion of the underlying cause of NH occurring in patients with AD. In this review, we discuss the substantiation for NH in animal models of AD pathology and in human patients, as well as some of the hypotheses considering recently developed animal models that challenge existing hypotheses and mechanisms of NH. In addition, we provide a preclinical perspective on how the development of animal models incorporating AD-specific NH could provide physiologically relevant translational experimental data that may potentially aid the discovery and development of novel therapies for AD.
Collapse
Affiliation(s)
- Sean Tok
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.,Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, The Netherlands
| | - Abdallah Ahnaou
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Wilhelmus Drinkenburg
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.,Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, The Netherlands
| |
Collapse
|
15
|
An inventory of basic research in temporal lobe epilepsy. Rev Neurol (Paris) 2021; 177:1069-1081. [PMID: 34176659 DOI: 10.1016/j.neurol.2021.02.390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/25/2022]
Abstract
Temporal lobe epilepsy is a severe neurological disease, characterized by seizure occurrence and invalidating cognitive co-morbidities, which affects up to 1% of the adults. Roughly one third of the patients are resistant to any conventional pharmacological treatments. The last option in that case is the surgical removal of the epileptic focus, with no guarantee for clinical symptom alleviation. This state of affairs requests the identification of cellular or molecular targets for novel therapeutic approaches with limited side effects. Here we review some generalities about the disease as well as some of the most recent discoveries about the cellular and molecular mechanisms of TLE, and the latest perspectives for novel treatments.
Collapse
|
16
|
Numakura Y, Uemura R, Tanaka M, Izawa T, Yamate J, Kuramoto T, Kaneko T, Mashimo T, Yamamoto T, Serikawa T, Kuwamura M. PHF24 is expressed in the inhibitory interneurons in rats. Exp Anim 2021; 70:137-143. [PMID: 33115988 PMCID: PMC7887615 DOI: 10.1538/expanim.20-0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/29/2020] [Indexed: 11/20/2022] Open
Abstract
Noda epileptic rat (NER) is a mutant model for epilepsy that exhibits spontaneous generalized tonic-clonic seizure. Epileptogenesis of NER remains to be elucidated; but it is detected an insertion of an endogenous retrovirus sequence in intron 2 of the PHD finger protein 24 (Phf24) gene, encoding Gαi-interacting protein (GINIP). Phf24 is a strong candidate gene for epileptogenesis in NER. PHF24 modulates GABAB signaling through interacting with Gαi protein. To clarify the epileptogenesis of NER, we investigated a distribution of PHF24-expressing cells in the central nerve system (CNS). While broad expression of PHF24 was observed in the CNS, characteristic expression was noted in the periglomerular layer of the olfactory bulb and the lamina II of the spinal cord in the control rats. These cells showed co-expression with calbindin or calretinin, inhibitory interneuron markers. In the olfactory bulb, 15.6% and 41.2% of PHF24-positive neurons co-expressed calbindin and calretinin, respectively. Immunoelectron microscopy revealed that PHF24 was located in the presynaptic terminals, synaptic membranes and cytoplasmic matrix of neuronal soma. Our data suggested PHF24 is expressed in the inhibitory interneurons and may play important roles in modulation of the GABAB signaling.
Collapse
Affiliation(s)
- Yuki Numakura
- Laboratory of Veterinary Pathology, Osaka Prefecture University, 1-58 Ourai-kita, Izumisano, Osaka 598-8531, Japan
| | - Risa Uemura
- Laboratory of Veterinary Pathology, Osaka Prefecture University, 1-58 Ourai-kita, Izumisano, Osaka 598-8531, Japan
| | - Miyuu Tanaka
- Laboratory of Veterinary Pathology, Osaka Prefecture University, 1-58 Ourai-kita, Izumisano, Osaka 598-8531, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Osaka Prefecture University, 1-58 Ourai-kita, Izumisano, Osaka 598-8531, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Osaka Prefecture University, 1-58 Ourai-kita, Izumisano, Osaka 598-8531, Japan
| | - Takashi Kuramoto
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan
| | - Takehito Kaneko
- Laboratory of Animal Reproduction and Development, Graduate School of Science and Engineering, Iwate University, 4-35 Ueda, Morioka-shi, Iwate 020-8551, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, the University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Takashi Yamamoto
- Molecular Genetics Laboratory, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Tadao Serikawa
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Osaka Prefecture University, 1-58 Ourai-kita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
17
|
Vega-García A, Orozco-Suárez S, Villa A, Rocha L, Feria-Romero I, Alonso Vanegas MA, Guevara-Guzmán R. Cortical expression of IL1-β, Bcl-2, Caspase-3 and 9, SEMA-3a, NT-3 and P-glycoprotein as biological markers of intrinsic severity in drug-resistant temporal lobe epilepsy. Brain Res 2021; 1758:147303. [PMID: 33516813 DOI: 10.1016/j.brainres.2021.147303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/24/2020] [Accepted: 01/15/2021] [Indexed: 12/22/2022]
Abstract
Mesial temporal lobe epilepsy (mTLE) is the most common epilepsy induced by previous cerebral injury, and one out of three mTLE patients develops drug resistance (DR). AIM To assess the expression of Bcl-2, Caspase-3, Caspase-9, IL1-β, SEMA-3a, NT-3 and P-glycoprotein in the temporal cortex and their relationship with the progression of mTLE-DR clinical features in patients with mTLE-DR. METHOD Tissue samples from 17 patients were evaluated for protein expression by Western blot and the relationships of the evaluated proteins with the clinical features of the mTLE were assessed through hierarchical cluster analysis. RESULTS The mTLE-DR group showed significantly higher P-glycoprotein, Bcl-2 and Caspase-9 levels ***p < 0.0001, ****p < 0.0001 and ***p < 0.0002, respectively, than the autopsy control group. Four patient clusters were identified: Clusters 1 and 3 showed relationships among the age of mTLE onset, duration of mTLE-DR, average number of epileptic seizures per week, number of previous antiepileptic drugs (AEDs) and increased expression of Caspase-3, Caspase-9, Neurotrophin-3 and Semaphorin-3a. Clusters 2 and 4 showed relationships among the mTLE onset age, current age, average number of epileptic seizures per week, number of previous AEDs and increased expression of IL1-β, Bcl-2, P-glycoprotein, Caspase-3 and NT-3. CONCLUSION The relationships among the clinical data the age of mTLE onset, DR duration, number of previous AEDs, and average number of seizures per week and the expression of proteins involved in neuronal death, neuroinflammation and aberrant connection formation, as which are biological markers in the cerebral temporal cortex, are important factors in the progression and severity of mTLE-DR and support the intrinsic severity hypothesis.
Collapse
Affiliation(s)
- A Vega-García
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - S Orozco-Suárez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de México, Mexico.
| | - A Villa
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - L Rocha
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados, Tlalpan, Ciudad de México, Mexico.
| | - I Feria-Romero
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de México, Mexico.
| | - M A Alonso Vanegas
- Unidad de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suarez", Ciudad de México, Mexico; Centro Internacional de Cirugía de Epilepsia, HMG Hospital Coyoacán, Ciudad de México, Mexico.
| | - R Guevara-Guzmán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
18
|
Lenck-Santini PP, Sakkaki S. Alterations of Neuronal Dynamics as a Mechanism for Cognitive Impairment in Epilepsy. Curr Top Behav Neurosci 2021; 55:65-106. [PMID: 33454922 DOI: 10.1007/7854_2020_193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Epilepsy is commonly associated with cognitive and behavioral deficits that dramatically affect the quality of life of patients. In order to identify novel therapeutic strategies aimed at reducing these deficits, it is critical first to understand the mechanisms leading to cognitive impairments in epilepsy. Traditionally, seizures and epileptiform activity in addition to neuronal injury have been considered to be the most significant contributors to cognitive dysfunction. In this review we however highlight the role of a new mechanism: alterations of neuronal dynamics, i.e. the timing at which neurons and networks receive and process neural information. These alterations, caused by the underlying etiologies of epilepsy syndromes, are observed in both animal models and patients in the form of abnormal oscillation patterns in unit firing, local field potentials, and electroencephalogram (EEG). Evidence suggests that such mechanisms significantly contribute to cognitive impairment in epilepsy, independently of seizures and interictal epileptiform activity. Therefore, therapeutic strategies directly targeting neuronal dynamics rather than seizure reduction may significantly benefit the quality of life of patients.
Collapse
Affiliation(s)
- Pierre-Pascal Lenck-Santini
- Aix-Marseille Université, INSERM, INMED, Marseille, France. .,Department of Neurological sciences, University of Vermont, Burlington, VT, USA.
| | - Sophie Sakkaki
- Department of Neurological sciences, University of Vermont, Burlington, VT, USA.,Université de. Montpellier, CNRS, INSERM, IGF, Montpellier, France
| |
Collapse
|
19
|
Beesley S, Sullenberger T, Ailani R, D'Orio C, Crockett MS, Kumar SS. d-Serine Intervention In The Medial Entorhinal Area Alters TLE-Related Pathology In CA1 Hippocampus Via The Temporoammonic Pathway. Neuroscience 2021; 453:168-186. [PMID: 33197499 PMCID: PMC7796904 DOI: 10.1016/j.neuroscience.2020.10.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/15/2023]
Abstract
Entrainment of the hippocampus by the medial entorhinal area (MEA) in Temporal Lobe Epilepsy (TLE), the most common type of drug-resistant epilepsy in adults, is believed to be mediated primarily through the perforant pathway (PP), which connects stellate cells in layer (L) II of the MEA with granule cells of the dentate gyrus (DG) to drive the hippocampal tri-synaptic circuit. Using immunohistochemistry, high-resolution confocal microscopy and the rat pilocarpine model of TLE, we show here that the lesser known temporoammonic pathway (TAP) plays a significant role in transferring MEA pathology to the CA1 region of the hippocampus independently of the PP. The pathology observed was region-specific and restricted primarily to the CA1c subfield of the hippocampus. As shown previously, daily intracranial infusion of d-serine (100 μm), an antagonist of GluN3-containing triheteromeric N-Methyl d-aspartate receptors (t-NMDARs), into the MEA prevented loss of LIII neurons and epileptogenesis. This intervention in the MEA led to the rescue of hippocampal CA1 neurons that would have otherwise perished in the epileptic animals, and down regulation of the expression of astrocytes and microglia thereby mitigating the effects of neuroinflammation. Interestingly, these changes were not observed to a similar extent in other regions of vulnerability like the hilus, DG or CA3, suggesting that the pathology manifest in CA1 is driven predominantly through the TAP. This work highlights TAP's role in the entrainment of the hippocampus and identifies specific areas for therapeutic intervention in dealing with TLE.
Collapse
Affiliation(s)
- Stephen Beesley
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306-4300, United States
| | - Thomas Sullenberger
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306-4300, United States
| | - Roshan Ailani
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306-4300, United States
| | - Cameron D'Orio
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306-4300, United States
| | - Mathew S Crockett
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306-4300, United States
| | - Sanjay S Kumar
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306-4300, United States.
| |
Collapse
|
20
|
D-serine mitigates cell loss associated with temporal lobe epilepsy. Nat Commun 2020; 11:4966. [PMID: 33009404 PMCID: PMC7532172 DOI: 10.1038/s41467-020-18757-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 09/09/2020] [Indexed: 11/23/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common type of drug-resistant epilepsy in adults, with an unknown etiology. A hallmark of TLE is the characteristic loss of layer 3 neurons in the medial entorhinal area (MEA) that underlies seizure development. One approach to intervention is preventing loss of these neurons through better understanding of underlying pathophysiological mechanisms. Here, we show that both neurons and glia together give rise to the pathology that is mitigated by the amino acid D-serine whose levels are potentially diminished under epileptic conditions. Focal administration of D-serine to the MEA attenuates neuronal loss in this region thereby preventing epileptogenesis in an animal model of TLE. Additionally, treatment with D-serine reduces astrocyte counts in the MEA, alters their reactive status, and attenuates proliferation and/or infiltration of microglia to the region thereby curtailing the deleterious consequences of neuroinflammation. Given the paucity of compounds that reduce hyperexcitability and neuron loss, have anti-inflammatory properties, and are well tolerated by the brain, D-serine, an endogenous amino acid, offers new hope as a therapeutic agent for refractory TLE. Temporal lobe epilepsy (TLE) can be unresponsive to treatment. Here, the authors show that treatment with D-Serine mitigates TLE and acts on neurons and glia, attenuating neuronal loss and reducing astro- and microgliosis in rodents.
Collapse
|
21
|
Domínguez-Álvaro M, Montero-Crespo M, Blazquez-Llorca L, DeFelipe J, Alonso-Nanclares L. 3D Ultrastructural Study of Synapses in the Human Entorhinal Cortex. Cereb Cortex 2020; 31:410-425. [PMID: 32887978 PMCID: PMC7727377 DOI: 10.1093/cercor/bhaa233] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 01/01/2023] Open
Abstract
The entorhinal cortex (EC) is a brain region that has been shown to be essential for memory functions and spatial navigation. However, detailed three-dimensional (3D) synaptic morphology analysis and identification of postsynaptic targets at the ultrastructural level have not been performed before in the human EC. In the present study, we used Focused Ion Beam/Scanning Electron Microscopy to perform a 3D analysis of the synapses in the neuropil of medial EC in layers II and III from human brain autopsies. Specifically, we studied synaptic structural parameters of 3561 synapses, which were fully reconstructed in 3D. We analyzed the synaptic density, 3D spatial distribution, and type (excitatory and inhibitory), as well as the shape and size of each synaptic junction. Moreover, the postsynaptic targets of synapses could be clearly determined. The present work constitutes a detailed description of the synaptic organization of the human EC, which is a necessary step to better understand the functional organization of this region in both health and disease.
Collapse
Affiliation(s)
- M Domínguez-Álvaro
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid. Pozuelo de Alarcón, Madrid 28223, Spain
| | - M Montero-Crespo
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid. Pozuelo de Alarcón, Madrid 28223, Spain.,Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce, 37 Madrid, 28002, Spain
| | - L Blazquez-Llorca
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid. Pozuelo de Alarcón, Madrid 28223, Spain.,Depto. Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), c/Juan del Rosal, 10, Madrid 28040, Spain
| | - J DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid. Pozuelo de Alarcón, Madrid 28223, Spain.,Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce, 37 Madrid, 28002, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), c/Valderrebollo, 5, Madrid 28031, Spain
| | - L Alonso-Nanclares
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid. Pozuelo de Alarcón, Madrid 28223, Spain.,Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce, 37 Madrid, 28002, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), c/Valderrebollo, 5, Madrid 28031, Spain
| |
Collapse
|
22
|
Shrestha S, Anderson NC, Grabel LB, Naegele JR, Aaron GB. Development of electrophysiological and morphological properties of human embryonic stem cell-derived GABAergic interneurons at different times after transplantation into the mouse hippocampus. PLoS One 2020; 15:e0237426. [PMID: 32813731 PMCID: PMC7444508 DOI: 10.1371/journal.pone.0237426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 07/27/2020] [Indexed: 12/16/2022] Open
Abstract
Transplantation of human embryonic stem cell (hESC)-derived neural progenitors is a potential treatment for neurological disorders, but relatively little is known about the time course for human neuron maturation after transplantation and the emergence of morphological and electrophysiological properties. To address this gap, we transplanted hESC-derived human GABAergic interneuron progenitors into the mouse hippocampus, and then characterized their electrophysiological properties and dendritic arborizations after transplantation by means of ex vivo whole-cell patch clamp recording, followed by biocytin staining, confocal imaging and neuron reconstruction software. We asked whether particular electrophysiological and morphological properties showed maturation-dependent changes after transplantation. We also investigated whether the emergence of particular electrophysiological properties were linked to increased complexity of the dendritic arbors. Human neurons were classified into five distinct neuronal types (Type I-V), ranging from immature to mature fast-spiking interneurons. Hierarchical clustering of the dendritic morphology and Sholl analyses suggested four morphologically distinct classes (Class A-D), ranging from simple/immature to highly complex. Incorporating all of our data regardless of neuronal classification, we investigated whether any electrophysiological and morphological features correlated with time post-transplantation. This analysis demonstrated that both dendritic arbors and electrophysiological properties matured after transplantation.
Collapse
Affiliation(s)
- Swechhya Shrestha
- Department of Biology, Wesleyan University, Middletown, Connecticut, United States of America
- * E-mail:
| | - Nickesha C. Anderson
- Department of Biology, Wesleyan University, Middletown, Connecticut, United States of America
| | - Laura B. Grabel
- Department of Biology, Wesleyan University, Middletown, Connecticut, United States of America
| | - Janice R. Naegele
- Department of Biology, Wesleyan University, Middletown, Connecticut, United States of America
- Program in Neuroscience and Behavior, Wesleyan University, Middletown, Connecticut, United States of America
| | - Gloster B. Aaron
- Department of Biology, Wesleyan University, Middletown, Connecticut, United States of America
- Program in Neuroscience and Behavior, Wesleyan University, Middletown, Connecticut, United States of America
| |
Collapse
|
23
|
Beesley S, Sullenberger T, Kumar SS. The GluN3 subunit regulates ion selectivity within native N-methyl-d-aspartate receptors. IBRO Rep 2020; 9:147-156. [PMID: 32775760 PMCID: PMC7399132 DOI: 10.1016/j.ibror.2020.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022] Open
Abstract
The GluN3 subunit is the least understood of all subunits that make up functional NMDARs in the brain. We show through ion substitution experiments that NMDARs containing GluN3 are more permeable to Ca2+ than those containing just GluN1 and GluN2. We attribute these differences to their ability to screen for Ca2+ over Na+. Subunit-dependent cation selectivity represents a hitherto unrealized mechanism for finer control of Ca2+ influx enhancing the repertoire of synaptic NMDARs.
Glutamatergic N-methyl-d-aspartate receptors (NMDARs) are heterotetrameric proteins whose subunits are derived from three gene families, GRIN1 (codes for GluN1), GRIN2 (GluN2) and GRIN3 (GluN3). In addition to providing binding sites for glutamate and the co-agonist glycine, these subunits in their di (d-) and tri (t-) heteromeric configurations regulate various aspects of receptor function in the brain. For example, the decay kinetics of NMDAR-mediated synaptic currents depend on the type of GluN2 subunit (GluN2A-GluN2D) in the receptor subunit composition. While much is known about the contributions of GluN1 and GluN2 to d-NMDAR function, we know comparatively little about how GluN3 influences the function of t-NMDARs composed of one or more subunits from each of the three gene families. We report here that in addition to altering kinetics and voltage-dependent properties, the GluN3 subunit endows these receptors with ion selectivity wherein influx of Ca2+ is preferred over Na+. This became apparent in the process of assessing Ca2+ permeability through these receptors and is of significance given that NMDARs are generally believed to be nonselective to cations and increased selectivity can lead to enhanced permeability. This was true of two independent brain regions where t-NMDARs are expressed, the somatosensory cortex, where both receptor subtypes are expressed at separate inputs onto single neurons, and the entorhinal cortex, where they are co-expressed at individual synaptic inputs. Based on this data and the sequence of amino acids lining selectivity filters within these subunits, we propose GluN3 to be a regulatory subunit for ion selectivity in t-NMDARs.
Collapse
Affiliation(s)
- Stephen Beesley
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306-4300, United States
| | - Thomas Sullenberger
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306-4300, United States
| | - Sanjay S Kumar
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306-4300, United States
| |
Collapse
|
24
|
Wang X, Cao L, Guan Y, He Q, He X, Zhou J, Li T, Luan G. The role of adenosine A1 receptor agonist in adenosine augmentation therapy for patients with refractory epilepsy in Sturge-Weber syndrome: An in vitro electrophysiological study. Epilepsy Behav 2020; 106:107034. [PMID: 32208337 DOI: 10.1016/j.yebeh.2020.107034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 02/04/2023]
Abstract
PURPOSES This study was to further explore the adenosine dysfunction in refractory epilepsy in Sturge-Weber Syndrome (SWS), to evaluate the neuronal-level effect of the A1 receptor (A1R) agonist on both excitatory pyramidal neurons and inhibitory interneurons, to discuss the possibility of adenosine augmentation therapy (AAT) using A1R agonist for treating refractory epilepsy in SWS. MATERIALS AND METHODS The intrinsic excitatory properties of pyramidal cells (PCs) and fast-spiking (FS) interneurons from human brain tissues with SWS cases and malformations of cortical development (MCD) cases were compared using electrophysiology. With application of either A1R agonist or antagonist, the neuronal-level effect of A1R agonist was evaluated in vitro in PCs and FS interneurons from SWS cases and MCD cases. RESULTS No significant difference of passive excitatory properties of PCs and FS interneurons was found between SWS cases and MCD cases. In terms of the neuronal-level effect of A1R agonist, with 22.88 ± 1.12% percentage of decreased frequency, FS interneurons showed relatively highest sensitivity of A1R agonist application, compared with PCs from SWS cases and FS interneurons and PCs from MCD cases. CONCLUSION Our results supported the potential of AATs using A1R agonist to be a novel therapy for reducing life burden from patients with refractory epilepsy in SWS, with application to epileptic generation region but not propagation region.
Collapse
Affiliation(s)
- Xiongfei Wang
- Department of Neurosurgery, Sanbo Brain Hospital Capital Medical University, Beijing, China; Brain Research Institute, Sanbo Brain Hospital Capital Medical University, Beijing, China; Beijing Key Laboratory of Epilepsy, Beijing, China
| | - Lintian Cao
- Department of Neurosurgery, Sanbo Brain Hospital Capital Medical University, Beijing, China; Brain Research Institute, Sanbo Brain Hospital Capital Medical University, Beijing, China; Beijing Key Laboratory of Epilepsy, Beijing, China
| | - Yuguang Guan
- Department of Neurosurgery, Sanbo Brain Hospital Capital Medical University, Beijing, China; Brain Research Institute, Sanbo Brain Hospital Capital Medical University, Beijing, China; Beijing Key Laboratory of Epilepsy, Beijing, China
| | - Quansheng He
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekou Wai Street, Beijing, 100875, China
| | - Xinghui He
- Department of Neurosurgery, Sanbo Brain Hospital Capital Medical University, Beijing, China; Brain Research Institute, Sanbo Brain Hospital Capital Medical University, Beijing, China; Beijing Key Laboratory of Epilepsy, Beijing, China
| | - Jian Zhou
- Department of Neurosurgery, Sanbo Brain Hospital Capital Medical University, Beijing, China; Brain Research Institute, Sanbo Brain Hospital Capital Medical University, Beijing, China; Beijing Key Laboratory of Epilepsy, Beijing, China
| | - Tianfu Li
- Department of Neurology, Sanbo Brain Hospital Capital Medical University, Beijing, China; Brain Research Institute, Sanbo Brain Hospital Capital Medical University, Beijing, China; Beijing Key Laboratory of Epilepsy, Beijing, China
| | - Guoming Luan
- Department of Neurosurgery, Sanbo Brain Hospital Capital Medical University, Beijing, China; Brain Research Institute, Sanbo Brain Hospital Capital Medical University, Beijing, China; Beijing Key Laboratory of Epilepsy, Beijing, China.
| |
Collapse
|
25
|
Lee L, Boorman L, Glendenning E, Christmas C, Sharp P, Redgrave P, Shabir O, Bracci E, Berwick J, Howarth C. Key Aspects of Neurovascular Control Mediated by Specific Populations of Inhibitory Cortical Interneurons. Cereb Cortex 2020; 30:2452-2464. [PMID: 31746324 PMCID: PMC7174996 DOI: 10.1093/cercor/bhz251] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/20/2019] [Accepted: 10/01/2019] [Indexed: 01/21/2023] Open
Abstract
Inhibitory interneurons can evoke vasodilation and vasoconstriction, making them potential cellular drivers of neurovascular coupling. However, the specific regulatory roles played by particular interneuron subpopulations remain unclear. Our purpose was therefore to adopt a cell-specific optogenetic approach to investigate how somatostatin (SST) and neuronal nitric oxide synthase (nNOS)-expressing interneurons might influence the neurovascular relationship. In mice, specific activation of SST- or nNOS-interneurons was sufficient to evoke hemodynamic changes. In the case of nNOS-interneurons, robust hemodynamic changes occurred with minimal changes in neural activity, suggesting that the ability of blood oxygen level dependent functional magnetic resonance imaging (BOLD fMRI) to reliably reflect changes in neuronal activity may be dependent on type of neuron recruited. Conversely, activation of SST-interneurons produced robust changes in evoked neural activity with shallow cortical excitation and pronounced deep layer cortical inhibition. Prolonged activation of SST-interneurons often resulted in an increase in blood volume in the centrally activated area with an accompanying decrease in blood volume in the surrounding brain regions, analogous to the negative BOLD signal. These results demonstrate the role of specific populations of cortical interneurons in the active control of neurovascular function.
Collapse
Affiliation(s)
- L Lee
- Department of Psychology, University of Sheffield, Sheffield S1 2LT, UK
| | - L Boorman
- Department of Psychology, University of Sheffield, Sheffield S1 2LT, UK
| | - E Glendenning
- Department of Psychology, University of Sheffield, Sheffield S1 2LT, UK
| | - C Christmas
- Department of Psychology, University of Sheffield, Sheffield S1 2LT, UK
| | - P Sharp
- Department of Psychology, University of Sheffield, Sheffield S1 2LT, UK
| | - P Redgrave
- Department of Psychology, University of Sheffield, Sheffield S1 2LT, UK
| | - O Shabir
- Department of Psychology, University of Sheffield, Sheffield S1 2LT, UK
| | - E Bracci
- Department of Psychology, University of Sheffield, Sheffield S1 2LT, UK
| | - J Berwick
- Department of Psychology, University of Sheffield, Sheffield S1 2LT, UK
| | - C Howarth
- Department of Psychology, University of Sheffield, Sheffield S1 2LT, UK
| |
Collapse
|
26
|
Kim S, Kim H, Park D, Kim J, Hong J, Kim JS, Jung H, Kim D, Cheong E, Ko J, Um JW. Loss of IQSEC3 Disrupts GABAergic Synapse Maintenance and Decreases Somatostatin Expression in the Hippocampus. Cell Rep 2020; 30:1995-2005.e5. [PMID: 32049026 DOI: 10.1016/j.celrep.2020.01.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/28/2019] [Accepted: 01/16/2020] [Indexed: 12/31/2022] Open
Abstract
Gephyrin interacts with various GABAergic synaptic proteins to organize GABAergic synapse development. Among the multitude of gephyrin-binding proteins is IQSEC3, a recently identified component at GABAergic synapses that acts through its ADP ribosylation factor-guanine nucleotide exchange factor (ARF-GEF) activity to orchestrate GABAergic synapse formation. Here, we show that IQSEC3 knockdown (KD) reduced GABAergic synaptic density in vivo, suggesting that IQSEC3 is required for GABAergic synapse maintenance in vivo. We further show that IQSEC3 KD in the dentate gyrus (DG) increases seizure susceptibility and triggers selective depletion of somatostatin (SST) peptides in the DG hilus in an ARF-GEP activity-dependent manner. Strikingly, selective introduction of SST into SST interneurons in DG-specific IQSEC3-KD mice reverses GABAergic synaptic deficits. Thus, our data suggest that IQSEC3 is required for linking gephyrin-GABAA receptor complexes with ARF-dependent pathways to prevent aberrant, runaway excitation and thereby contributes to the integrity of SST interneurons and proper GABAergic synapse maintenance.
Collapse
Affiliation(s)
- Seungjoon Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - Hyeonho Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - Dongseok Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - Jinhu Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - Joohyeon Hong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jae Seong Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hyeji Jung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - Dongwook Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea.
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea; Core Protein Resources Center, DGIST, 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, Korea.
| |
Collapse
|
27
|
Intranasally Administered Human MSC-Derived Extracellular Vesicles Pervasively Incorporate into Neurons and Microglia in both Intact and Status Epilepticus Injured Forebrain. Int J Mol Sci 2019; 21:ijms21010181. [PMID: 31888012 PMCID: PMC6981466 DOI: 10.3390/ijms21010181] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) derived from human bone marrow mesenchymal stem cells (hMSCs) have great promise as biologics to treat neurological and neurodegenerative conditions due to their robust antiinflammatory and neuroprotective properties. Besides, intranasal (IN) administration of EVs has caught much attention because the procedure is noninvasive, amenable for repetitive dispensation, and leads to a quick penetration of EVs into multiple regions of the forebrain. Nonetheless, it is unknown whether brain injury-induced signals are essential for the entry of IN-administered EVs into different brain regions. Therefore, in this study, we investigated the distribution of IN-administered hMSC-derived EVs into neurons and microglia in the intact and status epilepticus (SE) injured rat forebrain. Ten billion EVs labeled with PKH26 were dispensed unilaterally into the left nostril of naïve rats, and rats that experienced two hours of kainate-induced SE. Six hours later, PKH26 + EVs were quantified from multiple forebrain regions using serial brain sections processed for different neural cell markers and confocal microscopy. Remarkably, EVs were seen bilaterally in virtually all regions of intact and SE-injured forebrain. The percentage of neurons incorporating EVs were comparable for most forebrain regions. However, in animals that underwent SE, a higher percentage of neurons incorporated EVs in the hippocampal CA1 subfield and the entorhinal cortex, the regions that typically display neurodegeneration after SE. In contrast, the incorporation of EVs by microglia was highly comparable in every region of the forebrain measured. Thus, unilateral IN administration of EVs is efficient for delivering EVs bilaterally into neurons and microglia in multiple regions in the intact or injured forebrain. Furthermore, incorporation of EVs by neurons is higher in areas of brain injury, implying that injury-related signals likely play a role in targeting of EVs into neurons, which may be beneficial for EV therapy in various neurodegenerative conditions including traumatic brain injury, stroke, multiple sclerosis, and Alzheimer's disease.
Collapse
|
28
|
Komendantov AO, Venkadesh S, Rees CL, Wheeler DW, Hamilton DJ, Ascoli GA. Quantitative firing pattern phenotyping of hippocampal neuron types. Sci Rep 2019; 9:17915. [PMID: 31784578 PMCID: PMC6884469 DOI: 10.1038/s41598-019-52611-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/20/2019] [Indexed: 01/19/2023] Open
Abstract
Systematically organizing the anatomical, molecular, and physiological properties of cortical neurons is important for understanding their computational functions. Hippocampome.org defines 122 neuron types in the rodent hippocampal formation based on their somatic, axonal, and dendritic locations, putative excitatory/inhibitory outputs, molecular marker expression, and biophysical properties. We augmented the electrophysiological data of this knowledge base by collecting, quantifying, and analyzing the firing responses to depolarizing current injections for every hippocampal neuron type from published experiments. We designed and implemented objective protocols to classify firing patterns based on 5 transients (delay, adapting spiking, rapidly adapting spiking, transient stuttering, and transient slow-wave bursting) and 4 steady states (non-adapting spiking, persistent stuttering, persistent slow-wave bursting, and silence). This automated approach revealed 9 unique (plus one spurious) families of firing pattern phenotypes while distinguishing potential new neuronal subtypes. Novel statistical associations emerged between firing responses and other electrophysiological properties, morphological features, and molecular marker expression. The firing pattern parameters, experimental conditions, spike times, references to the original empirical evidences, and analysis scripts are released open-source through Hippocampome.org for all neuron types, greatly enhancing the existing search and browse capabilities. This information, collated online in human- and machine-accessible form, will help design and interpret both experiments and model simulations.
Collapse
Affiliation(s)
- Alexander O Komendantov
- Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, MS 2A1, Fairfax, Virginia, 2230, USA.
| | - Siva Venkadesh
- Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, MS 2A1, Fairfax, Virginia, 2230, USA
| | - Christopher L Rees
- Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, MS 2A1, Fairfax, Virginia, 2230, USA
| | - Diek W Wheeler
- Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, MS 2A1, Fairfax, Virginia, 2230, USA
| | - David J Hamilton
- Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, MS 2A1, Fairfax, Virginia, 2230, USA
| | - Giorgio A Ascoli
- Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, MS 2A1, Fairfax, Virginia, 2230, USA.
| |
Collapse
|
29
|
Tannich F, Tlili A, Pintard C, Chniguir A, Eto B, Dang PMC, Souilem O, El-Benna J. Activation of the phagocyte NADPH oxidase/NOX2 and myeloperoxidase in the mouse brain during pilocarpine-induced temporal lobe epilepsy and inhibition by ketamine. Inflammopharmacology 2019; 28:487-497. [PMID: 31667656 DOI: 10.1007/s10787-019-00655-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/04/2019] [Indexed: 02/08/2023]
Abstract
Excessive reactive oxygen species (ROS) production can induce tissue injury involved in a variety of neurodegenerative disorders such as neurodegeneration observed in pilocarpine-induced temporal lobe epilepsy. Ketamine, a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist has beneficial effects in pilocarpine-induced temporal lobe epilepsy, when administered within minutes of seizure to avoid the harmful neurological lesions induced by pilocarpine. However, the enzymes involved in ROS productions and the effect of ketamine on this process remain less documented. Here we show that during pilocarpine-induced epilepsy in mice, the expression of the phagocyte NADPH oxidase NOX2 subunits (NOX2/gp91phox, p22phox, and p47phox) and the expression of myeloperoxidase (MPO) were dramatically increased in mice brain treated with pilocarpine. Interestingly, treatment of mice with ketamine before or after pilocarpine administration decreased this process, mainly when injected before pilocarpine. Finally, our results showed that pilocarpine induced p47phox phosphorylation and H2O2 production in mice brain and ketamine was able to inhibit these processes. Our results show that pilocarpine induced NOX2 activation to produce ROS in mice brain and that administration of ketamine before or after the induction of temporal lobe epilepsy by pilocarpine inhibited this activation in mice brain. These results suggest a key role of the phagocyte NADPH oxidase NOX2 and MPO in epilepsy and identify a novel effect of ketamine.
Collapse
Affiliation(s)
- Fatma Tannich
- Laboratory of Physiology and Pharmacology, National School of Veterinary Medicine, University of Manouba, Sidi Thabet, Tunisia. .,Neurophysiology Laboratory and Functional Pathology, Department of Biological Sciences, Faculty of Sciences of Tunis, University Campus of Al-Manar, Tunis, Tunisia. .,INSERM U1149, ERL 8252 CNRS, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, 16 rue Henri Huchard, 75018, Paris, France.
| | - Asma Tlili
- INSERM U1149, ERL 8252 CNRS, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, 16 rue Henri Huchard, 75018, Paris, France
| | - Coralie Pintard
- INSERM U1149, ERL 8252 CNRS, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, 16 rue Henri Huchard, 75018, Paris, France
| | - Amina Chniguir
- INSERM U1149, ERL 8252 CNRS, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, 16 rue Henri Huchard, 75018, Paris, France
| | - Bruno Eto
- Laboratoires TBC, Faculty of Pharmaceutical and Biological Sciences, 59006, Lille, France
| | - Pham My-Chan Dang
- INSERM U1149, ERL 8252 CNRS, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, 16 rue Henri Huchard, 75018, Paris, France
| | - Ouajdi Souilem
- Laboratory of Physiology and Pharmacology, National School of Veterinary Medicine, University of Manouba, Sidi Thabet, Tunisia
| | - Jamel El-Benna
- INSERM U1149, ERL 8252 CNRS, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, 16 rue Henri Huchard, 75018, Paris, France.
| |
Collapse
|
30
|
Sullenberger T, Don H, Kumar SS. Functional Connectivity of the Parasubiculum and Its Role in Temporal Lobe Epilepsy. Neuroscience 2019; 410:217-238. [PMID: 31121261 DOI: 10.1016/j.neuroscience.2019.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/22/2019] [Accepted: 05/05/2019] [Indexed: 10/26/2022]
Abstract
Temporal lobe epilepsy (TLE) is the commonest of adult epilepsies, often refractory to antiepileptic medications, whose prevention and treatment rely on understanding basic pathophysiological mechanisms in interlinked structures of the temporal lobe. The medial entorhinal area (MEA) is affected in TLE but mechanisms underlying hyperexcitability of MEA neurons require further elucidation. Previous studies have examined the role of the presubiculum (PrS) in mediating MEA pathophysiology but not the juxtaposed parasubiculum (Par). Here, we report on an electrophysiological assessment of the cells and circuits of the Par, their excitability under normal and epileptic conditions, and alterations in functional connectivity with neighboring PrS and MEA using the rat pilocarpine model of TLE. We show that Par, unlike the cell heterogeneous PrS, has a single dominant neuronal population whose excitability under epileptic conditions is altered by changes in both intrinsic properties and synaptic drive. These neurons experience significant reductions in synaptic inhibition and perish under chronic epileptic conditions. Connectivity between brain regions was deduced through changes in excitatory and inhibitory synaptic drive to neurons recorded in one region upon focal application of glutamate followed by NBQX to neurons in another using a microfluidic technique called CESOP and TLE-related circuit reorganization was assessed using data from normal and epileptic animals. The region-specific changes in Par and neighboring PrS and MEA together with their unexpected interactions are of significance in identifying ictogenic cells and circuits within the parahippocampal region and in unraveling pathophysiological mechanisms underlying TLE.
Collapse
Affiliation(s)
- Thomas Sullenberger
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306-4300, United States of America
| | - Hershel Don
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306-4300, United States of America
| | - Sanjay S Kumar
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience, Florida State University, 1115 W. Call Street, Tallahassee, FL 32306-4300, United States of America.
| |
Collapse
|
31
|
de Curtis M, Librizzi L, Uva L, Gnatkovsky V. GABAA receptor-mediated networks during focal seizure onset and progression in vitro. Neurobiol Dis 2019; 125:190-197. [DOI: 10.1016/j.nbd.2019.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/08/2019] [Accepted: 02/07/2019] [Indexed: 02/02/2023] Open
|
32
|
Moxon KA, Shahlaie K, Girgis F, Saez I, Kennedy J, Gurkoff GG. From adagio to allegretto: The changing tempo of theta frequencies in epilepsy and its relation to interneuron function. Neurobiol Dis 2019; 129:169-181. [PMID: 30798003 DOI: 10.1016/j.nbd.2019.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/06/2019] [Accepted: 02/20/2019] [Indexed: 12/29/2022] Open
Abstract
Despite decades of research, our understanding of epilepsy, including how seizures are generated and propagate, is incomplete. However, there is growing recognition that epilepsy is more than just the occurrence of seizures, with patients often experiencing comorbid deficits in cognition that are poorly understood. In addition, the available therapies for treatment of epilepsy, from pharmaceutical treatment to surgical resection and seizure prevention devices, often exacerbate deficits in cognitive function. In this review, we discuss the hypothesis that seizure generation and cognitive deficits have a similar pathological source characterized by, but not limited to, deficits in theta oscillations and their influence on interneurons. We present a new framework that describes oscillatory states in epilepsy as alternating between hyper- and hypo-synchrony rather than solely the spontaneous transition to hyper-excitability characterized by the seizures. This framework suggests that as neural oscillations, specifically in the theta range, vary their tempo from a slowed almost adagio tempo during interictal periods to faster, more rhythmic allegretto tempo preictally, they impact the function of interneurons, modulating their ability to control seizures and their role in cognitive processing. This slow wave oscillatory framework may help explain why current therapies that work to reduce hyper-excitability do not completely eliminate seizures and often lead to exacerbated cognitive deficits.
Collapse
Affiliation(s)
- Karen A Moxon
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America.
| | - Kiarash Shahlaie
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, United States of America; Center for Neuroscience, University of California Davis, Davis, CA 95618, United States of America
| | - Fady Girgis
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, United States of America
| | - Ignacio Saez
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, United States of America; Center for Neuroscience, University of California Davis, Davis, CA 95618, United States of America
| | - Jeffrey Kennedy
- Department of Neurology, University of California Davis, Sacramento, CA 95817, United States of America
| | - Gene G Gurkoff
- Department of Neurological Surgery, University of California Davis, Sacramento, CA 95817, United States of America; Center for Neuroscience, University of California Davis, Davis, CA 95618, United States of America
| |
Collapse
|
33
|
Jumping to Conclusions About Focal Seizure Spread. Epilepsy Curr 2018; 18:394-395. [PMID: 30568559 DOI: 10.5698/1535-7597.18.6.394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
[Box: see text]
Collapse
|
34
|
Beesley S, Sullenberger T, Pilli J, Abbasi S, Gunjan A, Kumar SS. Colocalization of distinct NMDA receptor subtypes at excitatory synapses in the entorhinal cortex. J Neurophysiol 2018; 121:238-254. [PMID: 30461362 DOI: 10.1152/jn.00468.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The subunit composition of N-methyl-d-aspartate receptors (NMDARs) at synaptic inputs onto a neuron can either vary or be uniform depending on the type of neuron and/or brain region. Excitatory pyramidal neurons in the frontal and somatosensory cortices (L5), for example, show pathway-specific differences in NMDAR subunit composition in contrast with the entorhinal cortex (L3), where we now show colocalization of NMDARs with distinct subunit compositions at individual synaptic inputs onto these neurons. Subunit composition was deduced electrophysiologically based on alterations of current-voltage relationship ( I-V) profiles, amplitudes, and decay kinetics of minimally evoked, pharmacologically isolated, NMDAR-mediated excitatory postsynaptic currents by known subunit-preferring antagonists. The I-Vs were outwardly rectifying in a majority of neurons assayed (~80%), indicating expression of GluN1/GluN2/GluN3-containing triheteromeric NMDARs ( t-NMDARs) and of the conventional type, reversing close to 0 mV with prominent regions of negative slope, in the rest of the neurons sampled (~20%), indicating expression of GluN1/GluN2-containing diheteromeric NMDARs ( d-NMDARs). Blocking t-NMDARs in neurons with outwardly rectifying I-Vs pharmacologically unmasked d-NMDARs, with all responses antagonized using D-AP5. Coimmunoprecipitation assays of membrane-bound protein complexes isolated from the medial entorhinal area using subunit-selective antibodies corroborated stoichiometry and together suggested the coexpression of t- and d-NMDARs at these synapses. Colocalization of functionally distinct NMDAR subtypes at individual synaptic inputs likely enhances the repertoire of pyramidal neurons for information processing and plasticity within the entorhinal cortex. NEW & NOTEWORTHY The subunit composition of a N-methyl-d-aspartate (NMDA) receptor, which dictates most aspects of its function, can vary between neurons in different brain regions and/or between synaptic inputs onto single neurons. Here we demonstrate colocalization of tri- and diheteromeric-NMDA receptors at the same/single synaptic input onto excitatory neurons in the entorhinal cortex. Synaptic colocalization of distinct NMDAR subtypes might endow entorhinal cortical neurons with the ability to encode distinct patterns of neuronal activity through single synapses.
Collapse
Affiliation(s)
- Stephen Beesley
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Thomas Sullenberger
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Jyotsna Pilli
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Saad Abbasi
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Akash Gunjan
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Sanjay S Kumar
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience, Florida State University , Tallahassee, Florida
| |
Collapse
|
35
|
Katsarou AM, Li Q, Liu W, Moshé SL, Galanopoulou AS. Acquired parvalbumin-selective interneuronopathy in the multiple-hit model of infantile spasms: A putative basis for the partial responsiveness to vigabatrin analogs? Epilepsia Open 2018; 3:155-164. [PMID: 30564774 PMCID: PMC6293059 DOI: 10.1002/epi4.12280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2018] [Indexed: 12/13/2022] Open
Abstract
West syndrome, an age-specific epileptic encephalopathy, manifests with infantile spasms (IS) and impaired neurodevelopmental outcomes and epilepsy. The multiple-hit rat model of IS is a chronic model of IS due to structural etiology, in which spasms respond partially to vigabatrin analogs. Using this model, we investigated whether IS due to structural etiology may have deficits in parvalbumin (PRV) and somatostatin (SST) immunoreactive (-ir) interneurons, and calretinin-ir (CR-ir) neurons of the primary somatosensory cortex of postnatal day (PN) 20-24 rats, using specific immunohistochemical assays. PN3 Sprague-Dawley male rats underwent the multiple-hit induction protocol, were monitored until PN20-24, and were transcardially perfused to collect brains for histology. Age-matched sham and naive control male rats were also used. Coronal brain cryosections were stained with anti-PRV, anti-CR, and anti-SST antibodies, and regions of interest (ROIs) from the primary somatosensory cortices were selected to determine PRV-, CR-, and SST-ir cell counts and cortical ROI volumes, with blinding to experimental group. Statistical analyses were done using a linear mixed model accounting for repeated measures. We found PRV-ir interneuronal selective reduction, sparing of the CR-ir and SST-ir neurons, and bilateral cortical atrophy. Our findings provide evidence for acquired PRV-selective interneuronopathy, possibly underlying the pathogenesis of IS, neurodevelopmental deficits, and epilepsy, and potentially contributing to the partial response to vigabatrin analogs in this model.
Collapse
Affiliation(s)
- Anna-Maria Katsarou
- Laboratory of Developmental Epilepsy Saul R. Korey Department of Neurology Albert Einstein College of Medicine Bronx New York U.S.A
| | - Qianyun Li
- Laboratory of Developmental Epilepsy Saul R. Korey Department of Neurology Albert Einstein College of Medicine Bronx New York U.S.A
| | - Wei Liu
- Laboratory of Developmental Epilepsy Saul R. Korey Department of Neurology Albert Einstein College of Medicine Bronx New York U.S.A
| | - Solomon L Moshé
- Laboratory of Developmental Epilepsy Saul R. Korey Department of Neurology Albert Einstein College of Medicine Bronx New York U.S.A.,Laboratory of Developmental Epilepsy Isabelle Rapin Division of Child Neurology Dominick P. Purpura Department of Neuroscience Albert Einstein College of Medicine Einstein/Montefiore Epilepsy Center Montefiore Medical Center Bronx New York U.S.A.,Department of Pediatrics Albert Einstein College of Medicine Einstein/Montefiore Epilepsy Center Montefiore Medical Center Bronx New York U.S.A
| | - Aristea S Galanopoulou
- Laboratory of Developmental Epilepsy Saul R. Korey Department of Neurology Albert Einstein College of Medicine Bronx New York U.S.A.,Laboratory of Developmental Epilepsy Isabelle Rapin Division of Child Neurology Dominick P. Purpura Department of Neuroscience Albert Einstein College of Medicine Einstein/Montefiore Epilepsy Center Montefiore Medical Center Bronx New York U.S.A
| |
Collapse
|
36
|
McGarrity S, Mason R, Fone KC, Pezze M, Bast T. Hippocampal Neural Disinhibition Causes Attentional and Memory Deficits. Cereb Cortex 2018; 27:4447-4462. [PMID: 27550864 DOI: 10.1093/cercor/bhw247] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 07/18/2016] [Indexed: 12/18/2022] Open
Abstract
Subconvulsive hippocampal neural disinhibition, that is reduced GABAergic inhibition, has been implicated in neuropsychiatric disorders characterized by attentional and memory deficits, including schizophrenia and age-related cognitive decline. Considering that neural disinhibition may disrupt both intra-hippocampal processing and processing in hippocampal projection sites, we hypothesized that hippocampal disinhibition disrupts hippocampus-dependent memory performance and, based on strong hippocampo-prefrontal connectivity, also prefrontal-dependent attention. In support of this hypothesis, we report that acute hippocampal disinhibition by microinfusion of the GABA-A receptor antagonist picrotoxin in rats impaired hippocampus-dependent everyday-type rapid place learning performance on the watermaze delayed-matching-to-place test and prefrontal-dependent attentional performance on the 5-choice-serial-reaction-time test, which does not normally require the hippocampus. For comparison, we also examined psychosis-related sensorimotor effects, using startle/prepulse inhibition (PPI) and locomotor testing. Hippocampal picrotoxin moderately increased locomotion and slightly reduced startle reactivity, without affecting PPI. In vivo electrophysiological recordings in the vicinity of the infusion site showed that picrotoxin mainly enhanced burst firing of hippocampal neurons. In conclusion, hippocampal neural disinhibition disrupts hippocampus-dependent memory performance and also manifests through deficits in not normally hippocampus-dependent attentional performance. These behavioral deficits may reflect a disrupted control of burst firing, which may disrupt hippocampal processing and cause aberrant drive to hippocampal projection sites.
Collapse
Affiliation(s)
- Stephanie McGarrity
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, UK.,Neuroscience@Nottingham, University of Nottingham, Nottingham NG7 2RD, UK
| | - Rob Mason
- Neuroscience@Nottingham, University of Nottingham, Nottingham NG7 2RD, UK.,School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Kevin C Fone
- Neuroscience@Nottingham, University of Nottingham, Nottingham NG7 2RD, UK.,School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Marie Pezze
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, UK.,Neuroscience@Nottingham, University of Nottingham, Nottingham NG7 2RD, UK
| | - Tobias Bast
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, UK.,Neuroscience@Nottingham, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
37
|
Gu F, Parada I, Yang T, Longo FM, Prince DA. Partial TrkB receptor activation suppresses cortical epileptogenesis through actions on parvalbumin interneurons. Neurobiol Dis 2018; 113:45-58. [PMID: 29408225 DOI: 10.1016/j.nbd.2018.01.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/21/2018] [Accepted: 01/24/2018] [Indexed: 01/17/2023] Open
Abstract
Post-traumatic epilepsy is one of the most common and difficult to treat forms of acquired epilepsy worldwide. Currently, there is no effective way to prevent post-traumatic epileptogenesis. It is known that abnormalities of interneurons, particularly parvalbumin-containing interneurons, play a critical role in epileptogenesis following traumatic brain injury. Thus, enhancing the function of existing parvalbumin interneurons might provide a logical therapeutic approach to prevention of post-traumatic epilepsy. The known positive effects of brain-derived neurotrophic factor on interneuronal growth and function through activation of its receptor tropomyosin receptor kinase B, and its decrease after traumatic brain injury, led us to hypothesize that enhancing trophic support might improve parvalbumin interneuronal function and decrease epileptogenesis. To test this hypothesis, we used the partial neocortical isolation ('undercut', UC) model of posttraumatic epileptogenesis in mature rats that were treated for 2 weeks, beginning on the day of injury, with LM22A-4, a newly designed partial agonist at the tropomyosin receptor kinase B. Effects of treatment were assessed with Western blots to measure pAKT/AKT; immunocytochemistry and whole cell patch clamp recordings to examine functional and structural properties of GABAergic interneurons; field potential recordings of epileptiform discharges in vitro; and video-EEG recordings of PTZ-induced seizures in vivo. Results showed that LM22A-4 treatment 1) increased pyramidal cell perisomatic immunoreactivity for VGAT, GAD65 and parvalbumin; 2) increased the density of close appositions of VGAT/gephyrin immunoreactive puncta (putative inhibitory synapses) on pyramidal cell somata; 3) increased the frequency of mIPSCs in pyramidal cells; and 4) decreased the incidence of spontaneous and evoked epileptiform discharges in vitro. 5) Treatment of rats with PTX BD4-3, another partial TrkB receptor agonist, reduced the incidence of bicuculline-induced ictal episodes in vitro and PTZ induced electrographic and behavioral ictal episodes in vivo. 6) Inactivation of TrkB receptors in undercut TrkBF616A mice with 1NMPP1 abolished both LM22A-4-induced effects on mIPSCs and on increased perisomatic VGAT-IR. Results indicate that chronic activation of the tropomyosin receptor kinase B by a partial agonist after cortical injury can enhance structural and functional measures of GABAergic inhibition and suppress posttraumatic epileptogenesis. Although the full agonist effects of brain-derived neurotrophic factor and tropomyosin receptor kinase B activation in epilepsy models have been controversial, the present results indicate that such trophic activation by a partial agonist may potentially serve as an effective therapeutic option for prophylactic treatment of posttraumatic epileptogenesis, and treatment of other neurological and psychiatric disorders whose pathogenesis involves impaired parvalbumin interneuronal function.
Collapse
Affiliation(s)
- Feng Gu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, United States
| | - Isabel Parada
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, United States
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, United States
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, United States
| | - David A Prince
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, United States.
| |
Collapse
|
38
|
Willems JGP, Wadman WJ, Cappaert NLM. Parvalbumin interneuron mediated feedforward inhibition controls signal output in the deep layers of the perirhinal-entorhinal cortex. Hippocampus 2018; 28:281-296. [PMID: 29341361 PMCID: PMC5900730 DOI: 10.1002/hipo.22830] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 11/11/2022]
Abstract
The perirhinal (PER) and lateral entorhinal (LEC) cortex form an anatomical link between the neocortex and the hippocampus. However, neocortical activity is transmitted through the PER and LEC to the hippocampus with a low probability, suggesting the involvement of the inhibitory network. This study explored the role of interneuron mediated inhibition, activated by electrical stimulation in the agranular insular cortex (AiP), in the deep layers of the PER and LEC. Activated synaptic input by AiP stimulation rarely evoked action potentials in the PER‐LEC deep layer excitatory principal neurons, most probably because the evoked synaptic response consisted of a small excitatory and large inhibitory conductance. Furthermore, parvalbumin positive (PV) interneurons—a subset of interneurons projecting onto the axo‐somatic region of principal neurons—received synaptic input earlier than principal neurons, suggesting recruitment of feedforward inhibition. This synaptic input in PV interneurons evoked varying trains of action potentials, explaining the fast rising, long lasting synaptic inhibition received by deep layer principal neurons. Altogether, the excitatory input from the AiP onto deep layer principal neurons is overruled by strong feedforward inhibition. PV interneurons, with their fast, extensive stimulus‐evoked firing, are able to deliver this fast evoked inhibition in principal neurons. This indicates an essential role for PV interneurons in the gating mechanism of the PER‐LEC network.
Collapse
Affiliation(s)
- Janske G P Willems
- Center for Neuroscience, Sammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, Amsterdam 1098 XH, The Netherlands
| | - Wytse J Wadman
- Center for Neuroscience, Sammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, Amsterdam 1098 XH, The Netherlands
| | - Natalie L M Cappaert
- Center for Neuroscience, Sammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
39
|
Deficiency of the Thyroid Hormone Transporter Monocarboxylate Transporter 8 in Neural Progenitors Impairs Cellular Processes Crucial for Early Corticogenesis. J Neurosci 2017; 37:11616-11631. [PMID: 29109240 DOI: 10.1523/jneurosci.1917-17.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/02/2017] [Indexed: 11/21/2022] Open
Abstract
Thyroid hormones (THs) are essential for establishing layered brain structures, a process called corticogenesis, by acting on transcriptional activity of numerous genes. In humans, deficiency of the monocarboxylate transporter 8 (MCT8), involved in cellular uptake of THs before their action, results in severe neurological abnormalities, known as the Allan-Herndon-Dudley syndrome. While the brain lesions predominantly originate prenatally, it remains unclear how and when exactly MCT8 dysfunction affects cellular processes crucial for corticogenesis. We investigated this by inducing in vivo RNAi vector-based knockdown of MCT8 in neural progenitors of the chicken optic tectum, a layered structure that shares many developmental features with the mammalian cerebral cortex. MCT8 knockdown resulted in cellular hypoplasia and a thinner optic tectum. This could be traced back to disrupted cell-cycle kinetics and a premature shift to asymmetric cell divisions impairing progenitor cell pool expansion. Birth-dating experiments confirmed diminished neurogenesis in the MCT8-deficient cell population as well as aberrant migration of both early-born and late-born neuroblasts, which could be linked to reduced reelin signaling and disorganized radial glial cell fibers. Impaired neurogenesis resulted in a reduced number of glutamatergic and GABAergic neurons, but the latter additionally showed decreased differentiation. Moreover, an accompanying reduction in untransfected GABAergic neurons suggests hampered intercellular communication. These results indicate that MCT8-dependent TH uptake in the neural progenitors is essential for early events in corticogenesis, and help to understand the origin of the problems in cortical development and function in Allan-Herndon-Dudley syndrome patients.SIGNIFICANCE STATEMENT Thyroid hormones (THs) are essential to establish the stereotypical layered structure of the human forebrain during embryonic development. Before their action on gene expression, THs require cellular uptake, a process facilitated by the TH transporter monocarboxylate transporter 8 (MCT8). We investigated how and when dysfunctional MCT8 can induce brain lesions associated with the Allan-Herndon-Dudley syndrome, characterized by psychomotor retardation. We used the layered chicken optic tectum to model cortical development, and induced MCT8 deficiency in neural progenitors. Impaired cell proliferation, migration, and differentiation resulted in an underdeveloped optic tectum and a severe reduction in nerve cells. Our data underline the need for MCT8-dependent TH uptake in neural progenitors and stress the importance of local TH action in early development.
Collapse
|
40
|
Anatomical and Electrophysiological Clustering of Superficial Medial Entorhinal Cortex Interneurons. eNeuro 2017; 4:eN-NWR-0263-16. [PMID: 29085901 PMCID: PMC5659260 DOI: 10.1523/eneuro.0263-16.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/19/2017] [Accepted: 09/29/2017] [Indexed: 01/03/2023] Open
Abstract
Local GABAergic interneurons regulate the activity of spatially-modulated principal cells in the medial entorhinal cortex (MEC), mediating stellate-to-stellate connectivity and possibly enabling grid formation via recurrent inhibitory circuitry. Despite the important role interneurons seem to play in the MEC cortical circuit, the combination of low cell counts and functional diversity has made systematic electrophysiological studies of these neurons difficult. For these reasons, there remains a paucity of knowledge on the electrophysiological profiles of superficial MEC interneuron populations. Taking advantage of glutamic acid decarboxylase 2 (GAD2)-IRES-tdTomato and PV-tdTomato transgenic mice, we targeted GABAergic interneurons for whole-cell patch-clamp recordings and characterized their passive membrane features, basic input/output properties and action potential (AP) shape. These electrophysiologically characterized cells were then anatomically reconstructed, with emphasis on axonal projections and pial depth. K-means clustering of interneuron anatomical and electrophysiological data optimally classified a population of 106 interneurons into four distinct clusters. The first cluster is comprised of layer 2- and 3-projecting, slow-firing interneurons. The second cluster is comprised largely of PV+ fast-firing interneurons that project mainly to layers 2 and 3. The third cluster contains layer 1- and 2-projecting interneurons, and the fourth cluster is made up of layer 1-projecting horizontal interneurons. These results, among others, will provide greater understanding of the electrophysiological characteristics of MEC interneurons, help guide future in vivo studies, and may aid in uncovering the mechanism of grid field formation.
Collapse
|
41
|
Gu F, Parada I, Shen F, Li J, Bacci A, Graber K, Taghavi RM, Scalise K, Schwartzkroin P, Wenzel J, Prince DA. Structural alterations in fast-spiking GABAergic interneurons in a model of posttraumatic neocortical epileptogenesis. Neurobiol Dis 2017; 108:100-114. [PMID: 28823934 DOI: 10.1016/j.nbd.2017.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 01/22/2023] Open
Abstract
Electrophysiological experiments in the partial cortical isolation ("undercut" or "UC") model of injury-induced neocortical epileptogenesis have shown alterations in GABAergic synaptic transmission attributable to abnormalities in presynaptic terminals. To determine whether the decreased inhibition was associated with structural abnormalities in GABAergic interneurons, we used immunocytochemical techniques, confocal microscopy and EM in UC and control sensorimotor rat cortex to analyze structural alterations in fast-spiking parvalbumin-containing interneurons and pyramidal (Pyr) cells of layer V. Principle findings were: 1) there were no decreases in counts of parvalbumin (PV)- or GABA-immunoreactive interneurons in UC cortex, however there were significant reductions in expression of VGAT and GAD-65 and -67 in halos of GABAergic terminals around Pyr somata in layer V. 2) Consistent with previous results, somatic size and density of Pyr cells was decreased in infragranular layers of UC cortex. 3) Dendrites of biocytin-filled FS interneurons were significantly decreased in volume. 4) There were decreases in the size and VGAT content of GABAergic boutons in axons of biocytin-filled FS cells in the UC, together with a decrease in colocalization with postsynaptic gephyrin, suggesting a reduction in GABAergic synapses. Quantitative EM of layer V Pyr somata confirmed the reduction in inhibitory synapses. 5) There were marked and lasting reductions in brain derived neurotrophic factor (BDNF)-IR and -mRNA in Pyr cells and decreased TrkB-IR on PV cells in UC cortex. 6) Results lead to the hypothesis that reduction in trophic support by BDNF derived from Pyr cells may contribute to the regressive changes in axonal terminals and dendrites of FS cells in the UC cortex and decreased GABAergic inhibition. SIGNIFICANCE Injury to cortical structures is a major cause of epilepsy, accounting for about 20% of cases in the general population, with an incidence as high as ~50% among brain-injured personnel in wartime. Loss of GABAergic inhibitory interneurons is a significant pathophysiological factor associated with epileptogenesis following brain trauma and other etiologies. Results of these experiments show that the largest population of cortical interneurons, the parvalbumin-containing fast-spiking (FS) interneurons, are preserved in the partial neocortical isolation model of partial epilepsy. However, axonal terminals of these cells are structurally abnormal, have decreased content of GABA synthetic enzymes and vesicular GABA transporter and make fewer synapses onto pyramidal neurons. These structural abnormalities underlie defects in GABAergic neurotransmission that are a key pathophysiological factor in epileptogenesis found in electrophysiological experiments. BDNF, and its TrkB receptor, key factors for maintenance of interneurons and pyramidal neurons, are decreased in the injured cortex. Results suggest that supplying BDNF to the injured epileptogenic brain may reverse the structural and functional abnormalities in the parvalbumin FS interneurons and provide an antiepileptogenic therapy.
Collapse
Affiliation(s)
- Feng Gu
- Epilepsy Research Laboratories, Stanford Univ. Sch. of Medicine, United States
| | - Isabel Parada
- Epilepsy Research Laboratories, Stanford Univ. Sch. of Medicine, United States
| | - Fran Shen
- Epilepsy Research Laboratories, Stanford Univ. Sch. of Medicine, United States
| | - Judith Li
- Epilepsy Research Laboratories, Stanford Univ. Sch. of Medicine, United States
| | - Alberto Bacci
- ICM - Hôpital Pitié Salpêtrière, 7, bd de l'hôpital, 75013 Paris, France
| | - Kevin Graber
- Epilepsy Research Laboratories, Stanford Univ. Sch. of Medicine, United States
| | - Reza Moein Taghavi
- Epilepsy Research Laboratories, Stanford Univ. Sch. of Medicine, United States
| | - Karina Scalise
- Epilepsy Research Laboratories, Stanford Univ. Sch. of Medicine, United States
| | - Philip Schwartzkroin
- Department of Neurological Surgery, University of California, Davis, United States
| | - Jurgen Wenzel
- Department of Neurological Surgery, University of California, Davis, United States
| | - David A Prince
- Epilepsy Research Laboratories, Stanford Univ. Sch. of Medicine, United States.
| |
Collapse
|
42
|
Lee J, Park J, Yang S, Kim H, Choi YS, Kim HJ, Lee HW, Lee BU. Early Seizure Detection by Applying Frequency-Based Algorithm Derived from the Principal Component Analysis. Front Neuroinform 2017; 11:52. [PMID: 28860984 PMCID: PMC5562675 DOI: 10.3389/fninf.2017.00052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/26/2017] [Indexed: 11/24/2022] Open
Abstract
The use of automatic electrical stimulation in response to early seizure detection has been introduced as a new treatment for intractable epilepsy. For the effective application of this method as a successful treatment, improving the accuracy of the early seizure detection is crucial. In this paper, we proposed the application of a frequency-based algorithm derived from principal component analysis (PCA), and demonstrated improved efficacy for early seizure detection in a pilocarpine-induced epilepsy rat model. A total of 100 ictal electroencephalographs (EEG) during spontaneous recurrent seizures from 11 epileptic rats were finally included for the analysis. PCA was applied to the covariance matrix of a conventional EEG frequency band signal. Two PCA results were compared: one from the initial segment of seizures (5 sec of seizure onset) and the other from the whole segment of seizures. In order to compare the accuracy, we obtained the specific threshold satisfying the target performance from the training set, and compared the False Positive (FP), False Negative (FN), and Latency (Lat) of the PCA based feature derived from the initial segment of seizures to the other six features in the testing set. The PCA based feature derived from the initial segment of seizures performed significantly better than other features with a 1.40% FP, zero FN, and 0.14 s Lat. These results demonstrated that the proposed frequency-based feature from PCA that captures the characteristics of the initial phase of seizure was effective for early detection of seizures. Experiments with rat ictal EEGs showed an improved early seizure detection rate with PCA applied to the covariance of the initial 5 s segment of visual seizure onset instead of using the whole seizure segment or other conventional frequency bands.
Collapse
Affiliation(s)
- Jiseon Lee
- Department of Electronics Engineering, Ewha Womans University College of EngineeringSeoul, South Korea.,Department of Neurology, Ewha Medical Research Institute, Ewha Womans University School of MedicineSeoul, South Korea.,Department of Medical Science, Ewha Medical Research Institute, Ewha Womans University School of MedicineSeoul, South Korea
| | - Junhee Park
- Department of Electronics Engineering, Ewha Womans University College of EngineeringSeoul, South Korea
| | - Sejung Yang
- Department of Electronics Engineering, Ewha Womans University College of EngineeringSeoul, South Korea
| | - Hani Kim
- Department of Neurology, Ewha Medical Research Institute, Ewha Womans University School of MedicineSeoul, South Korea.,Department of Medical Science, Ewha Medical Research Institute, Ewha Womans University School of MedicineSeoul, South Korea
| | - Yun Seo Choi
- Department of Neurology, Ewha Medical Research Institute, Ewha Womans University School of MedicineSeoul, South Korea.,Department of Medical Science, Ewha Medical Research Institute, Ewha Womans University School of MedicineSeoul, South Korea
| | - Hyeon Jin Kim
- Department of Neurology, Ewha Medical Research Institute, Ewha Womans University School of MedicineSeoul, South Korea.,Department of Medical Science, Ewha Medical Research Institute, Ewha Womans University School of MedicineSeoul, South Korea
| | - Hyang Woon Lee
- Department of Neurology, Ewha Medical Research Institute, Ewha Womans University School of MedicineSeoul, South Korea.,Department of Medical Science, Ewha Medical Research Institute, Ewha Womans University School of MedicineSeoul, South Korea
| | - Byung-Uk Lee
- Department of Electronics Engineering, Ewha Womans University College of EngineeringSeoul, South Korea
| |
Collapse
|
43
|
Witter MP, Doan TP, Jacobsen B, Nilssen ES, Ohara S. Architecture of the Entorhinal Cortex A Review of Entorhinal Anatomy in Rodents with Some Comparative Notes. Front Syst Neurosci 2017; 11:46. [PMID: 28701931 PMCID: PMC5488372 DOI: 10.3389/fnsys.2017.00046] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/07/2017] [Indexed: 12/18/2022] Open
Abstract
The entorhinal cortex (EC) is the major input and output structure of the hippocampal formation, forming the nodal point in cortico-hippocampal circuits. Different division schemes including two or many more subdivisions have been proposed, but here we will argue that subdividing EC into two components, the lateral EC (LEC) and medial EC (MEC) might suffice to describe the functional architecture of EC. This subdivision then leads to an anatomical interpretation of the different phenotypes of LEC and MEC. First, we will briefly summarize the cytoarchitectonic differences and differences in hippocampal projection patterns on which the subdivision between LEC and MEC traditionally is based and provide a short comparative perspective. Second, we focus on main differences in cortical connectivity, leading to the conclusion that the apparent differences may well correlate with the functional differences. Cortical connectivity of MEC is features interactions with areas such as the presubiculum, parasubiculum, retrosplenial cortex (RSC) and postrhinal cortex, all areas that are considered to belong to the "spatial processing domain" of the cortex. In contrast, LEC is strongly connected with olfactory areas, insular, medial- and orbitofrontal areas and perirhinal cortex. These areas are likely more involved in processing of object information, attention and motivation. Third, we will compare the intrinsic networks involving principal- and inter-neurons in LEC and MEC. Together, these observations suggest that the different phenotypes of both EC subdivisions likely depend on the combination of intrinsic organization and specific sets of inputs. We further suggest a reappraisal of the notion of EC as a layered input-output structure for the hippocampal formation.
Collapse
Affiliation(s)
- Menno P. Witter
- Functional Neuroanatomy, KavlI Institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheim, Norway
| | - Thanh P. Doan
- Functional Neuroanatomy, KavlI Institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheim, Norway
| | - Bente Jacobsen
- Functional Neuroanatomy, KavlI Institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheim, Norway
| | - Eirik S. Nilssen
- Functional Neuroanatomy, KavlI Institute for Systems Neuroscience, Center for Computational Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and TechnologyTrondheim, Norway
| | - Shinya Ohara
- Division of Systems Neuroscience, Tohoku University Graduate School of Life ScienceSendai, Japan
| |
Collapse
|
44
|
Bast T, Pezze M, McGarrity S. Cognitive deficits caused by prefrontal cortical and hippocampal neural disinhibition. Br J Pharmacol 2017; 174:3211-3225. [PMID: 28477384 DOI: 10.1111/bph.13850] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/18/2017] [Accepted: 05/03/2017] [Indexed: 12/22/2022] Open
Abstract
We review recent evidence concerning the significance of inhibitory GABA transmission and of neural disinhibition, that is, deficient GABA transmission, within the prefrontal cortex and the hippocampus, for clinically relevant cognitive functions. Both regions support important cognitive functions, including attention and memory, and their dysfunction has been implicated in cognitive deficits characterizing neuropsychiatric disorders. GABAergic inhibition shapes cortico-hippocampal neural activity, and, recently, prefrontal and hippocampal neural disinhibition has emerged as a pathophysiological feature of major neuropsychiatric disorders, especially schizophrenia and age-related cognitive decline. Regional neural disinhibition, disrupting spatio-temporal control of neural activity and causing aberrant drive of projections, may disrupt processing within the disinhibited region and efferent regions. Recent studies in rats showed that prefrontal and hippocampal neural disinhibition (by local GABA antagonist microinfusion) dysregulates burst firing, which has been associated with important aspects of neural information processing. Using translational tests of clinically relevant cognitive functions, these studies showed that prefrontal and hippocampal neural disinhibition disrupts regional cognitive functions (including prefrontal attention and hippocampal memory function). Moreover, hippocampal neural disinhibition disrupted attentional performance, which does not require the hippocampus but requires prefrontal-striatal circuits modulated by the hippocampus. However, some prefrontal and hippocampal functions (including inhibitory response control) are spared by regional disinhibition. We consider conceptual implications of these findings, regarding the distinct relationships of distinct cognitive functions to prefrontal and hippocampal GABA tone and neural activity. Moreover, the findings support the proposition that prefrontal and hippocampal neural disinhibition contributes to clinically relevant cognitive deficits, and we consider pharmacological strategies for ameliorating cognitive deficits by rebalancing disinhibition-induced aberrant neural activity. Linked Articles This article is part of a themed section on Pharmacology of Cognition: a Panacea for Neuropsychiatric Disease? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.19/issuetoc.
Collapse
Affiliation(s)
- Tobias Bast
- School of Psychology and Neuroscience @Nottingham, University of Nottingham, Nottingham, UK
| | - Marie Pezze
- School of Psychology and Neuroscience @Nottingham, University of Nottingham, Nottingham, UK
| | - Stephanie McGarrity
- School of Psychology and Neuroscience @Nottingham, University of Nottingham, Nottingham, UK
| |
Collapse
|
45
|
Faria LC, Gu F, Parada I, Barres B, Luo ZD, Prince DA. Epileptiform activity and behavioral arrests in mice overexpressing the calcium channel subunit α2δ-1. Neurobiol Dis 2017; 102:70-80. [PMID: 28193459 DOI: 10.1016/j.nbd.2017.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/17/2017] [Accepted: 01/25/2017] [Indexed: 10/20/2022] Open
Abstract
The alpha2delta-1 subunit (α2δ-1) of voltage-gated calcium channels is a receptor for astrocyte-secreted thrombospondins that promote developmental synaptogenesis. Alpha2delta-1 receptors are upregulated in models of injury-induced peripheral pain and epileptogenic neocortical trauma associated with an enhancement of excitatory synaptic connectivity. These results lead to the hypothesis that overexpression of α2δ-1 alone in neocortex of uninjured transgenic (TG) mice might result in increased excitatory connectivity and consequent cortical hyperexcitability and epileptiform activity. Whole cell recordings from layer V pyramidal neurons in somatosensory cortical slices of TG mice showed increased frequency and amplitude of miniature and spontaneous EPSCs and prolonged bursts of polysynaptic EPSCs. Epileptiform field potentials were evoked in layers II/III and V of brain slices from TG mice, but not controls. Dual immunoreactivity for Vglut-2 and PSD95 showed increased density of close appositions in TG mice compared to controls, suggesting an increased number of excitatory synapses. Video-EEG monitoring showed that 13/13 implanted TG mice aged >P21, but not controls, had frequent abnormal spontaneous epileptiform events, consisting of variable duration, high amplitude bi-hemispheric irregular bursts of delta activity, spikes and sharp waves lasting many seconds, with a variable peak frequency of ~1-3Hz, associated with behavioral arrest. The epileptiform EEG abnormalities and behavioral arrests were reversibly eliminated by treatment with i.p. ethosuximide. Behavioral seizures, consisting of ~15-30s duration episodes of rigid arched tail and head and body extension, followed by loss of balance and falling, frequently occurred in adult TG mice during recovery from isoflurane-induced anesthesia, but were rare in WT mice. Results show that over-expression of α2δ-1 subunits increases cortical excitatory connectivity and leads to neocortical hyperexcitability and epileptiform activity associated with behavioral arrests in adult TG mice. Similar increases in expression of α2δ-1 in models of cortical injury may play an important role in epileptogenesis. SIGNIFICANCE Binding of astrocytic-secreted thrombospondins to their α2δ-1 receptor facilitates excitatory synapse formation and excitatory transmission during cortical development and after injury. Upregulation of α2δ-1 is present in models of injury-induced pain and epileptogenic cortical trauma, along with many other molecular alterations. Here we show that overexpression of α2δ-1 alone in TG mice can enhance excitatory connectivity in neocortex and lead to neural circuit hyperexcitability and episodes of electrographic epileptiform activity, associated with behavioral arrests in transgenic mice. α2δ-1 is the high-affinity receptor for gabapentinoids and a potential target for prophylactic treatment of posttraumatic epilepsy and other disorders in which excessive aberrant excitatory connectivity is a pathophysiological feature.
Collapse
Affiliation(s)
- Leonardo C Faria
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Feng Gu
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Isabel Parada
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Ben Barres
- Department of Neurobiology, Stanford University, Howard Hughes Medical Institute, Stanford School of Medicine, Stanford, CA 94305-5125, USA
| | - Z David Luo
- Department of Anesthesiology and Perioperative Care, Department of Pharmacology, University of California, Irvine Medical Center, Orange, CA 92868, USA
| | - David A Prince
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
46
|
Janz P, Savanthrapadian S, Häussler U, Kilias A, Nestel S, Kretz O, Kirsch M, Bartos M, Egert U, Haas CA. Synaptic Remodeling of Entorhinal Input Contributes to an Aberrant Hippocampal Network in Temporal Lobe Epilepsy. Cereb Cortex 2017; 27:2348-2364. [PMID: 27073230 DOI: 10.1093/cercor/bhw093] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The hippocampus is reciprocally connected with the entorhinal cortex. Although several studies emphasized a role for the entorhinal cortex in mesial temporal lobe epilepsy (MTLE), it remains uncertain whether its synaptic connections with the hippocampus are altered. To address this question, we traced hippocampo-entorhinal and entorhino-hippocampal projections, assessed their connectivity with the respective target cells and examined functional alterations in a mouse model for MTLE. We show that hippocampal afferents to the dorsal entorhinal cortex are lost in the epileptic hippocampus. Conversely, entorhino-dentate projections via the medial perforant path (MPP) are preserved, but appear substantially altered on the synaptic level. Confocal imaging and 3D-reconstruction revealed that new putative contacts are established between MPP fibers and dentate granule cells (DGCs). Immunohistochemical identification of pre- and postsynaptic elements indicated that these contacts are functionally mature synapses. On the ultrastructural level, pre- and postsynaptic compartments of MPP synapses were strongly enlarged. The length and complexity of postsynaptic densities were also increased pointing to long-term potentiation-related morphogenesis. Finally, whole-cell recordings of DGCs revealed an enhancement of evoked excitatory postsynaptic currents. In conclusion, the synaptic rearrangement of excitatory inputs to DGCs from the medial entorhinal cortex may contribute to the epileptogenic circuitry in MTLE.
Collapse
Affiliation(s)
- Philipp Janz
- Experimental Epilepsy Research, Department of Neurosurgery.,Faculty of Biology
| | | | - Ute Häussler
- Experimental Epilepsy Research, Department of Neurosurgery
| | - Antje Kilias
- Faculty of Biology.,Laboratory for Biomicrotechnology, Department of Microsystems Engineering, Freiburg im Breisgau 79110, Germany.,Bernstein Center Freiburg, Freiburg im Breisgau 79104, Germany
| | - Sigrun Nestel
- Neuroanatomy, Department of Anatomy and Cell Biology
| | - Oliver Kretz
- Renal Division, Department of Medicine, University Medical Center Freiburg, Freiburg im Breisgau 79106, Germany
| | | | - Marlene Bartos
- Institute for Physiology I, Systemic and Cellular Neurophysiology.,Bernstein Center Freiburg, Freiburg im Breisgau 79104, Germany.,BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg im Breisgau 79110, Germany
| | - Ulrich Egert
- Laboratory for Biomicrotechnology, Department of Microsystems Engineering, Freiburg im Breisgau 79110, Germany.,Bernstein Center Freiburg, Freiburg im Breisgau 79104, Germany.,BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg im Breisgau 79110, Germany
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery.,Bernstein Center Freiburg, Freiburg im Breisgau 79104, Germany.,BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg im Breisgau 79110, Germany
| |
Collapse
|
47
|
Killen AC, Barber M, Paulin JJW, Ranscht B, Parnavelas JG, Andrews WD. Protective role of Cadherin 13 in interneuron development. Brain Struct Funct 2017; 222:3567-3585. [PMID: 28386779 PMCID: PMC5676827 DOI: 10.1007/s00429-017-1418-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/30/2017] [Indexed: 12/21/2022]
Abstract
Cortical interneurons are generated in the ganglionic eminences and migrate through the ventral and dorsal telencephalon before finding their final positions within the cortical plate. During early stages of migration, these cells are present in two well-defined streams within the developing cortex. In an attempt to identify candidate genes which may play a role in interneuron stream specification, we previously carried out a microarray analysis which identified a number of cadherin receptors that were differentially expressed in these streams, including Cadherin-13 (Cdh13). Expression analysis confirmed Cdh13 to be present in the preplate layer at E13.5 and, later in development, in some cortical interneurons and pyramidal cells. Analysis of Cdh13 knockout mice at E18.5, but not at E15.5, showed a reduction in the number of interneurons and late born pyramidal neurons and a concomitant increase in apoptotic cells in the cortex. These observations were confirmed in dissociated cell cultures using overexpression and short interfering RNAs (siRNAs) constructs and dominant negative inhibitory proteins. Our findings identified a novel protective role for Cdh13 in cortical neuron development.
Collapse
Affiliation(s)
- Abigail C Killen
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Melissa Barber
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Joshua J W Paulin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Barbara Ranscht
- Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - John G Parnavelas
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - William D Andrews
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
48
|
Shubina L, Aliev R, Kitchigina V. Endocannabinoid-dependent protection against kainic acid-induced long-term alteration of brain oscillations in guinea pigs. Brain Res 2017; 1661:1-14. [DOI: 10.1016/j.brainres.2017.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 01/12/2023]
|
49
|
Lam PM, Carlsen J, González MI. A calpain inhibitor ameliorates seizure burden in an experimental model of temporal lobe epilepsy. Neurobiol Dis 2017; 102:1-10. [PMID: 28237317 DOI: 10.1016/j.nbd.2017.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/27/2017] [Accepted: 02/20/2017] [Indexed: 01/08/2023] Open
Abstract
In this study, we used the pilocarpine model of epilepsy to evaluate the involvement of calpain dysregulation on epileptogenesis. Detection of spectrin breakdown products (SBDPs, a hallmark of calpain activation) after induction of pilocarpine-induced status epilepticus (SE) and before appearance of spontaneous seizure suggested the existence of sustained calpain activation during epileptogenesis. Acute treatment with a cell permeable inhibitor of calpain, MDL-28170, resulted in a partial but significant reduction on seizure burden. The reduction on seizure burden was associated with a limited reduction on the generation of SBDPs but was correlated with a reduction in astrocytosis, microglia activation and cell sprouting. Together, these observations provide evidence for the role of calpain in epileptogenesis. In addition, provide proof-of-principle for the use of calpain inhibitors as a novel strategy to prevent epileptic seizures and its associated pathologies.
Collapse
Affiliation(s)
- Philip M Lam
- Department of Pediatrics, Division of Neurology and Translational Epilepsy Research Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jessica Carlsen
- Department of Pediatrics, Division of Neurology and Translational Epilepsy Research Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Marco I González
- Department of Pediatrics, Division of Neurology and Translational Epilepsy Research Program, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
50
|
Optogenetic Low-Frequency Stimulation of Specific Neuronal Populations Abates Ictogenesis. J Neurosci 2017; 37:2999-3008. [PMID: 28209738 DOI: 10.1523/jneurosci.2244-16.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 01/27/2017] [Accepted: 02/09/2017] [Indexed: 11/21/2022] Open
Abstract
Despite many advances made in understanding the pathophysiology of epileptic disorders, seizures remain poorly controlled in approximately one-third of patients with mesial temporal lobe epilepsy. Here, we established the efficacy of cell type-specific low-frequency stimulation (LFS) in controlling ictogenesis in the mouse entorhinal cortex (EC) in an in vitro brain slice preparation. Specifically, we used 1 Hz optogenetic stimulation of calcium/calmodulin-dependent protein kinase II-positive principal cells as well as of parvalbumin- or somatostatin-positive interneurons to study the effects of such repetitive activation on epileptiform discharges induced by 4-aminopyridine. We found that 1 Hz stimulation of any of these cell types reduced the frequency and duration of ictal discharges in some trials, while completely blocking them in others. The field responses evoked by the stimulation of each cell type revealed that their duration and amplitude were higher when principal cells were targeted. Furthermore, following a short period of silence ranging from 67 to 135 s, ictal discharges were re-established with similar duration and frequency as before stimulation; however, this period of silence was longer following principal cell stimulation compared with parvalbumin- or somatostatin-positive interneuron stimulation. Our results show that LFS of either excitatory or inhibitory cell networks in EC are effective in controlling ictogenesis. Although optogenetic stimulation of either cell type significantly reduced the occurrence of ictal discharges, principal cell stimulation resulted in a more prolonged suppression of ictogenesis, and, thus, it may constitute a better approach for controlling seizures.SIGNIFICANCE STATEMENT Epilepsy is a neurological disorder characterized by an imbalance between excitation and inhibition leading to seizures. Many epileptic patients do not achieve adequate seizure control using antiepileptic drugs. Low-frequency stimulation (LFS) is an alternative tool for controlling epileptiform activity in these patients. However, despite the temporal and spatial control offered by LFS, such a procedure lacks cell specificity, which may limit its efficacy. Using an optogenetic approach, we report here that LFS of two interneuron subtypes and, even more so, of principal cells can reliably shorten or abolish seizures in vitro Our work suggests that targeted LFS may constitute a reliable means for controlling seizures in patients presenting with focal seizures.
Collapse
|