1
|
Jia K, Wang M, Steinwurzel C, Ziminski JJ, Xi Y, Emir U, Kourtzi Z. Recurrent inhibition refines mental templates to optimize perceptual decisions. SCIENCE ADVANCES 2024; 10:eado7378. [PMID: 39083601 PMCID: PMC11290482 DOI: 10.1126/sciadv.ado7378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
Translating sensory inputs to perceptual decisions relies on building internal representations of features critical for solving complex tasks. Yet, we still lack a mechanistic account of how the brain forms these mental templates of task-relevant features to optimize decision-making. Here, we provide evidence for recurrent inhibition: an experience-dependent plasticity mechanism that refines mental templates by enhancing γ-aminobutyric acid (GABA)-mediated (GABAergic) inhibition and recurrent processing in superficial visual cortex layers. We combine ultrahigh-field (7 T) functional magnetic resonance imaging at submillimeter resolution with magnetic resonance spectroscopy to investigate the fine-scale functional and neurochemical plasticity mechanisms for optimized perceptual decisions. We demonstrate that GABAergic inhibition increases following training on a visual (i.e., fine orientation) discrimination task, enhancing the discriminability of orientation representations in superficial visual cortex layers that are known to support recurrent processing. Modeling functional and neurochemical plasticity interactions reveals that recurrent inhibitory processing optimizes brain computations for perpetual decisions and adaptive behavior.
Collapse
Affiliation(s)
- Ke Jia
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Mengxin Wang
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | | | - Joseph J. Ziminski
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Yinghua Xi
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Uzay Emir
- Purdue University School of Health Sciences, West Lafayette, IN 47906, USA
| | - Zoe Kourtzi
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| |
Collapse
|
2
|
Huang S, De Brigard F, Cabeza R, Davis SW. Connectivity analyses for task-based fMRI. Phys Life Rev 2024; 49:139-156. [PMID: 38728902 PMCID: PMC11116041 DOI: 10.1016/j.plrev.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Functional connectivity is conventionally defined by measuring the similarity between brain signals from two regions. The technique has become widely adopted in the analysis of functional magnetic resonance imaging (fMRI) data, where it has provided cognitive neuroscientists with abundant information on how brain regions interact to support complex cognition. However, in the past decade the notion of "connectivity" has expanded in both the complexity and heterogeneity of its application to cognitive neuroscience, resulting in greater difficulty of interpretation, replication, and cross-study comparisons. In this paper, we begin with the canonical notions of functional connectivity and then introduce recent methodological developments that either estimate some alternative form of connectivity or extend the analytical framework, with the hope of bringing better clarity for cognitive neuroscience researchers.
Collapse
Affiliation(s)
- Shenyang Huang
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, United States; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States.
| | - Felipe De Brigard
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, United States; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States; Department of Philosophy, Duke University, Durham, NC 27708, United States
| | - Roberto Cabeza
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, United States; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States
| | - Simon W Davis
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, United States; Department of Philosophy, Duke University, Durham, NC 27708, United States; Department of Neurology, Duke University School of Medicine, Durham, NC 27708, United States
| |
Collapse
|
3
|
Worden BL, Tolin DF, Stevens MC. An exploration of neural predictors of treatment compliance in cognitive-behavioral group therapy for hoarding disorder. J Affect Disord 2024; 345:410-418. [PMID: 38706461 PMCID: PMC11068362 DOI: 10.1016/j.jad.2023.10.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 05/07/2024]
Abstract
A persistent and influential barrier to effective cognitive-behavioral therapy (CBT) for patients with hoarding disorder (HD) is treatment retention and compliance. Recent research has suggested that HD patients have abnormal brain activity identified by functional magnetic resonance (fMRI) in regions often engaged for executive functioning (e.g., right superior frontal gyrus, anterior insula, and anterior cingulate), which raises questions about whether these abnormalities could relate to patients' ability to attend, understand, and engage in HD treatment. We examined data from 74 HD-diagnosed adults who completed fMRI-measured brain activity during a discarding task designed to elicit symptom-related brain dysfunction, exploring which regions' activity might predict treatment compliance variables, including treatment engagement (within-session compliance), homework completion (between-session compliance), and treatment attendance. Brain activity that was significantly related to within- and between-session compliance was found largely in insula, parietal, and premotor areas. No brain regions were associated with treatment attendance. The results add to findings from prior research that have found prefrontal, cingulate, and insula activity abnormalities in HD by suggesting that some aspects of HD brain dysfunction might play a role in preventing the engagement needed for therapeutic benefit.
Collapse
Affiliation(s)
| | - David F Tolin
- Institute of Living/ Hartford Hospital, Hartford, CT
- Yale University School of Medicine, New Haven, CT
| | - Michael C Stevens
- Institute of Living/ Hartford Hospital, Hartford, CT
- Yale University School of Medicine, New Haven, CT
| |
Collapse
|
4
|
Haarsma J, Deveci N, Corbin N, Callaghan MF, Kok P. Expectation Cues and False Percepts Generate Stimulus-Specific Activity in Distinct Layers of the Early Visual Cortex. J Neurosci 2023; 43:7946-7957. [PMID: 37739797 PMCID: PMC10669763 DOI: 10.1523/jneurosci.0998-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023] Open
Abstract
Perception has been proposed to result from the integration of feedforward sensory signals with internally generated feedback signals. Feedback signals are believed to play an important role in driving false percepts, that is, seeing things that are not actually there. Feedforward and feedback influences on perception can be studied using layer-specific fMRI, which we used here to interrogate neural activity underlying high-confidence false percepts while healthy human participants (N = 25, male and female) performed a perceptual orientation discrimination task. Auditory cues implicitly signaled the most likely upcoming orientation (referred to here as expectations). These expectations induced orientation-specific templates in the deep and superficial layers of V2, without affecting perception. In contrast, the orientation of falsely perceived stimuli with high confidence was reflected in the middle input layers of V2, suggesting a feedforward signal contributing to false percepts. The prevalence of high-confidence false percepts was related to everyday hallucination severity in a separate online sample (N = 100), suggesting a possible link with abnormal perceptual experiences. These results reveal a potential feedforward mechanism underlying false percepts, reflected by spontaneous stimulus-like activity in the input layers of the visual cortex, independent of top-down signals reflecting cued orientations.SIGNIFICANCE STATEMENT False percepts have been suggested to arise through excessive feedback signals. However, feedforward contributions to false percepts have remained largely understudied. Laminar fMRI has been shown to be useful in distinguishing feedforward from feedback activity as it allows the imaging of different cortical layers. In the present study we demonstrate that although cued orientations are encoded in the feedback layers of the visual cortex, the content of the false percepts are encoded in the feedforward layers and did not rely on these cued orientations. This shows that false percepts can in principle emerge from random feedforward signals in the visual cortex, with possible implications for disorders hallmarked by hallucinations like schizophrenia and Parkinson's disease.
Collapse
Affiliation(s)
- Joost Haarsma
- Wellcome Centre for Human Neuroimaging, University College London Queen Square Institute of Neurology, University College London, London WC1N 3AR, United Kingdom
| | - Narin Deveci
- Wellcome Centre for Human Neuroimaging, University College London Queen Square Institute of Neurology, University College London, London WC1N 3AR, United Kingdom
| | - Nadege Corbin
- Wellcome Centre for Human Neuroimaging, University College London Queen Square Institute of Neurology, University College London, London WC1N 3AR, United Kingdom
- Centre de Résonance Magnétique des Systèmes Biologiques, Unité Mixte de Recherche 5536, Centre National de la Recherche Scientifique, Université de Bordeaux, 33076 Bordeaux, France
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, University College London Queen Square Institute of Neurology, University College London, London WC1N 3AR, United Kingdom
| | - Peter Kok
- Wellcome Centre for Human Neuroimaging, University College London Queen Square Institute of Neurology, University College London, London WC1N 3AR, United Kingdom
| |
Collapse
|
5
|
Malekian V, Graedel NN, Hickling A, Aghaeifar A, Dymerska B, Corbin N, Josephs O, Maguire EA, Callaghan MF. Mitigating susceptibility-induced distortions in high-resolution 3DEPI fMRI at 7T. Neuroimage 2023; 279:120294. [PMID: 37517572 PMCID: PMC10951962 DOI: 10.1016/j.neuroimage.2023.120294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/08/2023] [Accepted: 07/22/2023] [Indexed: 08/01/2023] Open
Abstract
Geometric distortion is a major limiting factor for spatial specificity in high-resolution fMRI using EPI readouts and is exacerbated at higher field strengths due to increased B0 field inhomogeneity. Prominent correction schemes are based on B0 field-mapping or acquiring reverse phase-encoded (reversed-PE) data. However, to date, comparisons of these techniques in the context of fMRI have only been performed on 2DEPI data, either at lower field or lower resolution. In this study, we investigate distortion compensation in the context of sub-millimetre 3DEPI data at 7T. B0 field-mapping and reversed-PE distortion correction techniques were applied to both partial coverage BOLD-weighted and whole brain MT-weighted 3DEPI data with matched distortion. Qualitative assessment showed overall improvement in cortical alignment for both correction techniques in both 3DEPI fMRI and whole-brain MT-3DEPI datasets. The distortion-corrected MT-3DEPI images were quantitatively evaluated by comparing cortical alignment with an anatomical reference using dice coefficient (DC) and correlation ratio (CR) measures. These showed that B0 field-mapping and reversed-PE methods both improved correspondence between the MT-3DEPI and anatomical data, with more substantial improvements consistently obtained using the reversed-PE approach. Regional analyses demonstrated that the largest benefit of distortion correction, and in particular of the reversed-PE approach, occurred in frontal and temporal regions where susceptibility-induced distortions are known to be greatest, but had not led to complete signal dropout. In conclusion, distortion correction based on reversed-PE data has shown the greater capacity for achieving faithful alignment with anatomical data in the context of high-resolution fMRI at 7T using 3DEPI.
Collapse
Affiliation(s)
- Vahid Malekian
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK.
| | - Nadine N Graedel
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK
| | - Alice Hickling
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK
| | - Ali Aghaeifar
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK; MR Research Collaborations, Siemens Healthcare Limited, Frimley, UK
| | - Barbara Dymerska
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK
| | - Nadège Corbin
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK; Centre de Résonance Magnétique des Systèmes Biologiques, CNRS-University Bordeaux, Bordeaux, France
| | - Oliver Josephs
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK
| |
Collapse
|
6
|
Jia K, Goebel R, Kourtzi Z. Ultra-High Field Imaging of Human Visual Cognition. Annu Rev Vis Sci 2023; 9:479-500. [PMID: 37137282 DOI: 10.1146/annurev-vision-111022-123830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Functional magnetic resonance imaging (fMRI), the key methodology for mapping the functions of the human brain in a noninvasive manner, is limited by low temporal and spatial resolution. Recent advances in ultra-high field (UHF) fMRI provide a mesoscopic (i.e., submillimeter resolution) tool that allows us to probe laminar and columnar circuits, distinguish bottom-up versus top-down pathways, and map small subcortical areas. We review recent work demonstrating that UHF fMRI provides a robust methodology for imaging the brain across cortical depths and columns that provides insights into the brain's organization and functions at unprecedented spatial resolution, advancing our understanding of the fine-scale computations and interareal communication that support visual cognition.
Collapse
Affiliation(s)
- Ke Jia
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom;
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Zoe Kourtzi
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
7
|
Kennedy B, Bex P, Hunter DG, Nasr S. Two fine-scale channels for encoding motion and stereopsis within the human magnocellular stream. Prog Neurobiol 2023; 220:102374. [PMID: 36403864 PMCID: PMC9832588 DOI: 10.1016/j.pneurobio.2022.102374] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/16/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
In humans and non-human primates (NHPs), motion and stereopsis are processed within fine-scale cortical sites, including V2 thick stripes and their extensions into areas V3 and V3A that are believed to be under the influence of magnocellular stream. However, in both species, the relative functional organization (overlapping vs. none overlapping) of these sites remains unclear. Using high-resolution functional MRI (fMRI), we found evidence for two minimally-overlapping channels within human extrastriate areas that contribute to processing motion and stereopsis. Across multiple experiments that included different stimuli (random dots, gratings, and natural scenes), the functional selectivity of these channels for motion vs. stereopsis remained consistent. Furthermore, an analysis of resting-state functional connectivity revealed stronger functional connectivity within the two channels rather than between them. This finding provides a new perspective toward the mesoscale organization of the magnocellular stream within the human extrastriate visual cortex, beyond our previous understanding based on animal models.
Collapse
Affiliation(s)
- B Kennedy
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - P Bex
- Department of Psychology, Northeastern University, Boston, MA, United States
| | - D G Hunter
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Boston's Children Hospital, Boston, MA, United States
| | - S Nasr
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States; Department of Radiology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
8
|
Xi S, Zhou Y, Yao J, Ye X, Zhang P, Wen W, Zhao C. Cortical Deficits are Correlated with Impaired Stereopsis in Patients with Strabismus. Neurosci Bull 2022:10.1007/s12264-022-00987-7. [DOI: 10.1007/s12264-022-00987-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/21/2022] [Indexed: 12/13/2022] Open
Abstract
AbstractIn this study, we explored the neural mechanism underlying impaired stereopsis and possible functional plasticity after strabismus surgery. We enrolled 18 stereo-deficient patients with intermittent exotropia before and after surgery, along with 18 healthy controls. Functional magnetic resonance imaging data were collected when participants viewed three-dimensional stimuli. Compared with controls, preoperative patients showed hypoactivation in higher-level dorsal (visual and parietal) areas and ventral visual areas. Pre- and postoperative activation did not significantly differ in patients overall; patients with improved stereopsis showed stronger postoperative activation than preoperative activation in the right V3A and left intraparietal sulcus. Worse stereopsis and fusional control were correlated with preoperative hypoactivation, suggesting that cortical deficits along the two streams might reflect impaired stereopsis in intermittent exotropia. The correlation between improved stereopsis and activation in the right V3A after surgery indicates that functional plasticity may underlie the improvement of stereopsis. Thus, additional postoperative strategies are needed to promote functional plasticity and enhance the recovery of stereopsis.
Collapse
|
9
|
Ziegler DA, Anguera JA, Gallen CL, Hsu WY, Wais PE, Gazzaley A. Leveraging technology to personalize cognitive enhancement methods in aging. NATURE AGING 2022; 2:475-483. [PMID: 35873177 PMCID: PMC9302894 DOI: 10.1038/s43587-022-00237-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
As population aging advances at an increasing rate, efforts to help people maintain or improve cognitive function late in life are critical. Although some studies have shown promise, the question of whether cognitive training is an effective tool for improving general cognitive ability remains incompletely explored, and study results to date have been inconsistent. Most approaches to cognitive enhancement in older adults have taken a 'one size fits all' tack, as opposed to tailoring interventions to the specific needs of individuals. In this Perspective, we argue that modern technology has the potential to enable large-scale trials of public health interventions to enhance cognition in older adults in a personalized manner. Technology-based cognitive interventions that rely on closed-loop systems can be tailored to individuals in real time and have the potential for global testing, extending their reach to large and diverse populations of older adults. We propose that the future of cognitive enhancement in older adults will rely on harnessing new technologies in scientifically informed ways.
Collapse
Affiliation(s)
- David A. Ziegler
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Neuroscape, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Correspondence should be addressed to David A. Ziegler or Adam Gazzaley. ;
| | - Joaquin A. Anguera
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Neuroscape, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Courtney L. Gallen
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Neuroscape, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Wan-Yu Hsu
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Peter E. Wais
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Neuroscape, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Adam Gazzaley
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Neuroscape, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Correspondence should be addressed to David A. Ziegler or Adam Gazzaley. ;
| |
Collapse
|