1
|
Powers RE, Fogel PA, Reeves JH, Madrid P, Moschak TM. Distinct populations suppress or escalate intake of cocaine paired with aversive quinine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601599. [PMID: 39005463 PMCID: PMC11244943 DOI: 10.1101/2024.07.01.601599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Only a subset of individuals who encounter drugs of abuse become habitual users. Aversive subjective effects like coughing and unpleasant taste are predictors for continued use. While several preclinical studies have explored self-administration involving aversive cues, none have simultaneously introduced aversion with the initial drug self-administration. We aimed to develop a clinically relevant model by pairing intravenous cocaine with intraoral quinine self-administration from the outset and investigating whether repeated exposure to an aversive stimulus would alter its hedonic value under laboratory conditions. Methods Twenty-seven male and female Sprague Dawley rats self-administered intravenous/intraoral (cocaine/quinine) for 2 hr/day over 14 days. This was followed by a 1-day quinine-only extinction session, a 3-day return to self-administration, and an intraoral infusion session to assess quinine taste reactivity (TR). Results We identified three distinct groups. The first self-administered very little cocaine, while the second sharply escalated cocaine intake. Both groups had similar aversive TR to quinine, suggesting that the escalating group did not habituate to the aversive cue but pursued drug despite it. We also identified a third group with high initial intake that decreased over time. This decrease predicted high aversive TR, and we argue this group may represent individuals who "overindulge" on their first use and subsequently find self-administration to be aversive. Conclusions Our novel model mimics real-world variability in initial interactions with drugs of abuse and yields three distinct groups that differ in self-administration patterns and aversive cue valuation.
Collapse
Affiliation(s)
- Rosalie E Powers
- Department of Biological Sciences, University of Texas at El Paso, 500 W University Ave, El Paso, TX, USA, 79902
| | - Peter A Fogel
- Department of Biological Sciences, University of Texas at El Paso, 500 W University Ave, El Paso, TX, USA, 79902
| | - Jayson H Reeves
- Department of Biological Sciences, University of Texas at El Paso, 500 W University Ave, El Paso, TX, USA, 79902
| | - Pamela Madrid
- El Paso Community College, 919 Hunter Dr, El Paso, TX, USA
| | - Travis M Moschak
- Department of Biological Sciences, University of Texas at El Paso, 500 W University Ave, El Paso, TX, USA, 79902
| |
Collapse
|
2
|
Zhu F, Kanda H, Neyama H, Wu Y, Kato S, Hu D, Duan S, Noguchi K, Watanabe Y, Kobayashi K, Dai Y, Cui Y. Modulation of Nicotine-Associated Behaviour in Rats By μ-Opioid Signals from the Medial Prefrontal Cortex to the Nucleus Accumbens Shell. Neurosci Bull 2024:10.1007/s12264-024-01230-1. [PMID: 38850386 DOI: 10.1007/s12264-024-01230-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/08/2024] [Indexed: 06/10/2024] Open
Abstract
Nicotine addiction is a concern worldwide. Most mechanistic investigations are on nicotine substance dependence properties based on its pharmacological effects. However, no effective therapeutic treatment has been established. Nicotine addiction is reinforced by environments or habits. We demonstrate the neurobiological basis of the behavioural aspect of nicotine addiction. We utilized the conditioned place preference to establish nicotine-associated behavioural preferences (NABP) in rats. Brain-wide neuroimaging analysis revealed that the medial prefrontal cortex (mPFC) was activated and contributed to NABP. Chemogenetic manipulation of µ-opioid receptor positive (MOR+) neurons in the mPFC or the excitatory outflow to the nucleus accumbens shell (NAcShell) modulated the NABP. Electrophysiological recording confirmed that the MOR+ neurons directly regulate the mPFC-NAcShell circuit via GABAA receptors. Thus, the MOR+ neurons in the mPFC modulate the formation of behavioural aspects of nicotine addiction via direct excitatory innervation to the NAcShell, which may provide new insight for the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Anatomy and Neuroscience, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan
| | - Hirosato Kanda
- School of Pharmacy, Hyogo Medical University, Kobe, Hyogo, 650-8530, Japan
| | - Hiroyuki Neyama
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Yuping Wu
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Fukushima Medical University Institute of Biomedical Sciences, Fukushima, 960-1295, Japan
| | - Di Hu
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Shaoqi Duan
- Department of Anatomy and Neuroscience, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan
| | - Yasuyoshi Watanabe
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Fukushima Medical University Institute of Biomedical Sciences, Fukushima, 960-1295, Japan
| | - Yi Dai
- Department of Anatomy and Neuroscience, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Yilong Cui
- Department of Anatomy and Neuroscience, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan.
- Laboratory for Brain-Gut Homeostasis, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan.
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
3
|
Greiner EM, Witt ME, Moran SJ, Petrovich GD. Activation patterns in male and female forebrain circuitries during food consumption under novelty. Brain Struct Funct 2024; 229:403-429. [PMID: 38193917 DOI: 10.1007/s00429-023-02742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/22/2023] [Indexed: 01/10/2024]
Abstract
The influence of novelty on feeding behavior is significant and can override both homeostatic and hedonic drives due to the uncertainty of potential danger. Previous work found that novel food hypophagia is enhanced in a novel environment and that males habituate faster than females. The current study's aim was to identify the neural substrates of separate effects of food and context novelty. Adult male and female rats were tested for consumption of a novel or familiar food in either a familiar or in a novel context. Test-induced Fos expression was measured in the amygdalar, thalamic, striatal, and prefrontal cortex regions that are important for appetitive responding, contextual processing, and reward motivation. Food and context novelty induced strikingly different activation patterns. Novel context induced Fos robustly in almost every region analyzed, including the central (CEA) and basolateral complex nuclei of the amygdala, the thalamic paraventricular (PVT) and reuniens nuclei, the nucleus accumbens (ACB), the medial prefrontal cortex prelimbic and infralimbic areas, and the dorsal agranular insular cortex (AI). Novel food induced Fos in a few select regions: the CEA, anterior basomedial nucleus of the amygdala, anterior PVT, and posterior AI. There were also sex differences in activation patterns. The capsular and lateral CEA had greater activation for male groups and the anterior PVT, ACB ventral core and shell had greater activation for female groups. These activation patterns and correlations between regions, suggest that distinct functional circuitries control feeding behavior when food is novel and when eating occurs in a novel environment.
Collapse
Affiliation(s)
- Eliza M Greiner
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Mary E Witt
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Stephanie J Moran
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Gorica D Petrovich
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
4
|
Pace SA, Lukinic E, Wallace T, McCartney C, Myers B. Cortical-brainstem circuitry attenuates physiological stress reactivity. J Physiol 2024; 602:949-966. [PMID: 38353989 PMCID: PMC10940195 DOI: 10.1113/jp285627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Exposure to stressful stimuli promotes multi-system biological responses to restore homeostasis. Catecholaminergic neurons in the rostral ventrolateral medulla (RVLM) facilitate sympathetic activity and promote physiological adaptations, including glycaemic mobilization and corticosterone release. While it is unclear how brain regions involved in the cognitive appraisal of stress regulate RVLM neural activity, recent studies found that the rodent ventromedial prefrontal cortex (vmPFC) mediates stress appraisal and physiological stress responses. Thus, a vmPFC-RVLM connection could represent a circuit mechanism linking stress appraisal and physiological reactivity. The current study investigated a direct vmPFC-RVLM circuit utilizing genetically encoded anterograde and retrograde tract tracers. Together, these studies found that stress-activated vmPFC neurons project to catecholaminergic neurons throughout the ventrolateral medulla in male and female rats. Next, we utilized optogenetic terminal stimulation to evoke vmPFC synaptic glutamate release in the RVLM. Photostimulating the vmPFC-RVLM circuit during restraint stress suppressed glycaemic stress responses in males, without altering the female response. However, circuit stimulation decreased corticosterone responses to stress in both sexes. Circuit stimulation did not modulate affective behaviour in either sex. Further analysis indicated that circuit stimulation preferentially activated non-catecholaminergic medullary neurons in both sexes. Additionally, vmPFC terminals targeted medullary inhibitory neurons. Thus, both male and female rats have a direct vmPFC projection to the RVLM that reduces endocrine stress responses, likely by recruiting local RVLM inhibitory neurons. Ultimately, the excitatory/inhibitory balance of vmPFC synapses in the RVLM may regulate stress reactivity and stress-related health outcomes. KEY POINTS: Glutamatergic efferents from the ventromedial prefrontal cortex target catecholaminergic neurons throughout the ventrolateral medulla. Partially segregated, stress-activated ventromedial prefrontal cortex populations innervate the rostral and caudal ventrolateral medulla. Stimulating ventromedial prefrontal cortex synapses in the rostral ventrolateral medulla decreases stress-induced glucocorticoid release in males and females. Stimulating ventromedial prefrontal cortex terminals in the rostral ventrolateral medulla preferentially activates non-catecholaminergic neurons. Ventromedial prefrontal cortex terminals target medullary inhibitory neurons.
Collapse
Affiliation(s)
- Sebastian A. Pace
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA 80523
| | - Ema Lukinic
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA 80523
| | - Tyler Wallace
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA 80523
| | - Carlie McCartney
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA 80523
| | - Brent Myers
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA 80523
| |
Collapse
|
5
|
Douton JE, Carelli RM. Unraveling Sex Differences in Affect Processing: Unique Oscillatory Signaling Dynamics in the Infralimbic Cortex and Nucleus Accumbens Shell. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:354-362. [PMID: 38298775 PMCID: PMC10829636 DOI: 10.1016/j.bpsgos.2023.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 02/02/2024] Open
Abstract
Background Negative affect is prevalent in psychiatric diseases such as depression and addiction. Projections from the infralimbic cortex (IL) to the nucleus accumbens shell (NAcSh) are causally linked to learned negative affect as 20 Hz optogenetic stimulation of this circuit reduces conditioned taste aversion (CTA) in male but not female rats. However, the prior study did not provide insight into how innate versus learned negative affect are processed in these areas across sex. Methods To address this issue, local field potential activity was simultaneously recorded in the IL and NAcSh in response to intraoral infusion of rewarding (saccharin) and aversive (quinine) tastants and following induction of a CTA in male and female Sprague Dawley rats. Results Local field potential oscillatory activity within each brain region to saccharin varied across sex. In males, CTA increased IL resting-state power, which was correlated with the strength of the learned aversion, and reduced beta power and IL-NAcSh coherence. In females, CTA increased gamma power in the NAcSh. Similar effects were observed in males and females after CTA in theta-low gamma phase-amplitude coupling. Finally, while quinine produced similar effects in oscillatory power across sex, females showed differences in phase-amplitude coupling within the NAcSh that may be linked to aversion resistance. Conclusions We revealed sex-specific hedonic processing in the IL and NAcSh and how oscillatory signaling is disrupted in learned negative affect, revealing translationally relevant insight into potential treatment strategies that can help to reduce the deleterious effects of learned negative affect in psychiatric illnesses.
Collapse
Affiliation(s)
- Joaquin E. Douton
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina
| | - Regina M. Carelli
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
6
|
Cui LL, Wang XX, Liu H, Luo F, Li CH. Projections from infralimbic medial prefrontal cortex glutamatergic outputs to amygdala mediates opioid induced hyperalgesia in male rats. Mol Pain 2024; 20:17448069241226960. [PMID: 38172075 PMCID: PMC10851759 DOI: 10.1177/17448069241226960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/13/2013] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
Repeated use of opioid analgesics may cause a paradoxically exacerbated pain known as opioid-induced hyperalgesia (OIH), which hinders effective clinical intervention for severe pain. Currently, little is known about the neural circuits underlying OIH modulation. Previous studies suggest that laterocapsular division of the central nucleus of amygdala (CeLC) is critically involved in the regulation of OIH. Our purpose is to clarify the role of the projections from infralimbic medial prefrontal cortex (IL) to CeLC in OIH. We first produced an OIH model by repeated fentanyl subcutaneous injection in male rats. Immunofluorescence staining revealed that c-Fos-positive neurons were significantly increased in the right CeLC in OIH rats than the saline controls. Then, we used calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) labeling and the patch-clamp recordings with ex vivo optogenetics to detect the functional projections from glutamate pyramidal neurons in IL to the CeLC. The synaptic transmission from IL to CeLC, shown in the excitatory postsynaptic currents (eEPSCs), inhibitory postsynaptic currents (eIPSCs) and paired-pulse ratio (PPR), was observably enhanced after fentanyl administration. Moreover, optogenetic activation of this IL-CeLC pathway decreased c-Fos expression in CeLC and ameliorated mechanical and thermal pain in OIH. On the contrary, silencing this pathway by chemogenetics exacerbated OIH by activating the CeLC. Combined with the electrophysiology results, the enhanced synaptic transmission from IL to CeLC might be a cortical gain of IL to relieve OIH rather than a reason for OIH generation. Scaling up IL outputs to CeLC may be an effective neuromodulation strategy to treat OIH.
Collapse
Affiliation(s)
- Ling-Ling Cui
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi-Xi Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Liu
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Fang Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen-Hong Li
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
7
|
Johnson CS, Chapp AD, Lind EB, Thomas MJ, Mermelstein PG. Sex differences in mouse infralimbic cortex projections to the nucleus accumbens shell. Biol Sex Differ 2023; 14:87. [PMID: 38082417 PMCID: PMC10712109 DOI: 10.1186/s13293-023-00570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The nucleus accumbens (NAc) is an important region in motivation and reward. Glutamatergic inputs from the infralimbic cortex (ILC) to the shell region of the NAc (NAcSh) have been implicated in driving the motivation to seek reward through repeated action-based behavior. While this has primarily been studied in males, observed sex differences in motivational circuitry and behavior suggest that females may be more sensitive to rewarding stimuli. These differences have been implicated for the observed vulnerability in women to substance use disorders. METHODS We used an optogenetic self-stimulation task in addition to ex vivo electrophysiological recordings of NAcSh neurons in mouse brain slices to investigate potential sex differences in ILC-NAcSh circuitry in reward-seeking behavior. Glutamatergic neurons in the ILC were infected with an AAV delivering DNA encoding for channelrhodopsin. Entering the designated active corner of an open field arena resulted in photostimulation of the ILC terminals in the NAcSh. Self-stimulation occurred during two consecutive days of testing over three consecutive weeks: first for 10 Hz, then 20 Hz, then 30 Hz. Whole-cell recordings of medium spiny neurons in the NAcSh assessed both optogenetically evoked local field potentials and intrinsic excitability. RESULTS Although both sexes learned to seek the active zone, within the first day, females entered the zone more than males, resulting in a greater amount of photostimulation. Increasing the frequency of optogenetic stimulation amplified female reward-seeking behavior. Males were less sensitive to ILC stimulation, with higher frequencies and repeated days required to increase male reward-seeking behavior. Unexpectedly, ex vivo optogenetic local field potentials in the NAcSh were greater in slices from male animals. In contrast, female medium-spiny neurons (MSNs) displayed significantly greater intrinsic neuronal excitability. CONCLUSIONS Taken together, these data indicate that there are sex differences in the motivated behavior driven by glutamate within the ILC-NAcSh circuit. Though glutamatergic signaling was greater in males, heightened intrinsic excitability in females appears to drive this sex difference.
Collapse
Affiliation(s)
- Caroline S Johnson
- Department of Neuroscience, School of Medicine, University of Minnesota, 4-140 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
| | - Andrew D Chapp
- Department of Neuroscience, School of Medicine, University of Minnesota, 4-140 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
| | - Erin B Lind
- Department of Neuroscience, School of Medicine, University of Minnesota, 4-140 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
| | - Mark J Thomas
- Department of Neuroscience, School of Medicine, University of Minnesota, 4-140 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
| | - Paul G Mermelstein
- Department of Neuroscience, School of Medicine, University of Minnesota, 4-140 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA.
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
8
|
Hurley SW, Douton JE, Carelli RM. Neuronal Ensembles in the Infralimbic Cortex Dynamically Process Distinct Aspects of Hedonic Value. J Neurosci 2023; 43:8032-8042. [PMID: 37816597 PMCID: PMC10669753 DOI: 10.1523/jneurosci.0253-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/01/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023] Open
Abstract
Hedonic processing is critical for guiding appropriate behavior, and the infralimbic cortex (IL) is a key neural substrate associated with this function in rodents and humans. We used deep brain in vivo calcium imaging and taste reactivity in freely behaving male and female Sprague Dawley rats to examine whether the infralimbic cortex is involved in encoding innate versus conditioned hedonic states. In experiment 1, we examined the IL neuronal ensemble responsiveness to intraoral innately rewarding (sucrose) versus aversive (quinine) tastants. Most IL neurons responded to either sucrose only or both sucrose and quinine, with fewer neurons selectively processing quinine. Among neurons that responded to both stimuli, some appear to encode hedonic processing. In experiment 2, we examined how IL neurons process devalued sucrose using conditioned taste aversion (CTA). We found that neurons that responded exclusively to sucrose were disengaged while additional quinine-exclusive neurons were recruited. Moreover, tastant-specific neurons that did not change their neuronal activity after CTA appeared to encode objective hedonic value. However, other neuronal ensembles responded to both tastants and appear to encode distinct aspects of hedonic processing. Specifically, some neurons responded differently to quinine and sucrose and shifted from appetitive-like to aversive-like activity after CTA, thus encoding the subjective hedonic value of the stimulus. Conversely, neurons that responded similarly to both tastants were heightened after CTA. Our findings show dynamic shifts in IL ensembles encoding devalued sucrose and support a role for parallel processing of objective and subjective hedonic value.SIGNIFICANCE STATEMENT Disrupted affective processing contributes to psychiatric disorders including depression, substance use disorder, and schizophrenia. We assessed how the infralimbic cortex, a key neural substrate involved in affect generation and affect regulation, processes innate and learned hedonic states using deep brain in vivo calcium imaging in freely behaving rats. We report that unique infralimbic cortex ensembles encode stimulus subjective and objective hedonic value. Further, our findings support similarities and differences in innate versus learned negative affective states. This study provides insight into the neural mechanisms underlying affect generation and helps to establish a foundation for the development of novel treatment strategies to reduce negative affective states that arise in many psychiatric disorders.
Collapse
Affiliation(s)
- Seth W Hurley
- Department of Psychology and Neuroscience, The University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599
| | - Joaquin E Douton
- Department of Psychology and Neuroscience, The University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599
| | - Regina M Carelli
- Department of Psychology and Neuroscience, The University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
9
|
Greiner EM, Witt ME, Moran SJ, Petrovich GD. Activation patterns in male and female forebrain circuitries during food consumption under novelty. RESEARCH SQUARE 2023:rs.3.rs-3328570. [PMID: 37790415 PMCID: PMC10543437 DOI: 10.21203/rs.3.rs-3328570/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The influence of novelty on feeding behavior is significant and can override both homeostatic and hedonic drives due to the uncertainty of potential danger. Previous work found that novel food hypophagia is enhanced in a novel environment and that males habituate faster than females. The current study's aim was to identify the neural substrates of separate effects of food and context novelty. Adult male and female rats were tested for consumption of a novel or family food in either a familiar or in a novel context. Test-induced Fos expression was measured in the amygdalar, thalamic, striatal, and prefrontal cortex regions that are important for appetitive responding, contextual processing, and reward motivation. Food and context novelty induced strikingly different activation patterns. Novel context induced Fos robustly in almost every region analyzed, including the central (CEA) and basolateral complex nuclei of the amygdala, the thalamic paraventricular (PVT) and reuniens nuclei, the nucleus accumbens (ACB), the medial prefrontal cortex prelimbic and infralimbic areas, and the dorsal agranular insular cortex (AI). Novel food induced Fos in a few select regions: the CEA, anterior basomedial nucleus of the amygdala, anterior PVT, and posterior AI. There were also sex differences in activation patterns. The capsular and lateral CEA had greater activation for male groups and the anterior PVT, ACB ventral core and shell had greater activation for female groups. These activation patterns and correlations between regions, suggest that distinct functional circuitries control feeding behavior when food is novel and when eating occurs in a novel environment.
Collapse
|
10
|
Pace SA, Lukinic E, Wallace T, McCartney C, Myers B. Cortical-brainstem circuitry attenuates physiological stress reactivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549781. [PMID: 37502866 PMCID: PMC10370137 DOI: 10.1101/2023.07.19.549781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Exposure to stressful stimuli promotes multi-system biological responses to restore homeostasis. Catecholaminergic neurons in the rostral ventrolateral medulla (RVLM) facilitate sympathetic activity and promote physiological adaptations, including glycemic mobilization and corticosterone release. While it is unclear how brain regions involved in the cognitive appraisal of stress regulate RVLM neural activity, recent studies found that the rodent ventromedial prefrontal cortex (vmPFC) mediates stress appraisal and physiological stress responses. Thus, a vmPFC-RVLM connection could represent a circuit mechanism linking stress appraisal and physiological reactivity. The current study investigated a direct vmPFC-RVLM circuit utilizing genetically-encoded anterograde and retrograde tract tracers. Together, these studies found that stress-reactive vmPFC neurons project to catecholaminergic neurons throughout the ventrolateral medulla in male and female rats. Next, we utilized optogenetic terminal stimulation to evoke vmPFC synaptic glutamate release in the RVLM. Photostimulating the vmPFC-RVLM circuit during restraint stress suppressed glycemic stress responses in males, without altering the female response. However, circuit stimulation decreased corticosterone responses to stress in both sexes. Circuit stimulation did not modulate affective behavior in either sex. Further analysis indicated that circuit stimulation preferentially activated non-catecholaminergic medullary neurons in both sexes. Additionally, vmPFC terminals targeted medullary inhibitory neurons. Thus, both male and female rats have a direct vmPFC projection to the RVLM that reduces endocrine stress responses, likely through the recruitment of local RVLM inhibitory neurons. Ultimately, the excitatory/inhibitory balance of vmPFC synapses in the RVLM may regulate stress reactivity as well as stress-related health outcomes.
Collapse
Affiliation(s)
- Sebastian A. Pace
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA 80523
| | - Ema Lukinic
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA 80523
| | - Tyler Wallace
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA 80523
| | - Carlie McCartney
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA 80523
| | - Brent Myers
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA 80523
| |
Collapse
|
11
|
Shoji H, Ikeda K, Miyakawa T. Behavioral phenotype, intestinal microbiome, and brain neuronal activity of male serotonin transporter knockout mice. Mol Brain 2023; 16:32. [PMID: 36991468 PMCID: PMC10061809 DOI: 10.1186/s13041-023-01020-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
The serotonin transporter (5-HTT) plays a critical role in the regulation of serotonin neurotransmission. Mice genetically deficient in 5-HTT expression have been used to study the physiological functions of 5-HTT in the brain and have been proposed as a potential animal model for neuropsychiatric and neurodevelopmental disorders. Recent studies have provided evidence for a link between the gut-brain axis and mood disorders. However, the effects of 5-HTT deficiency on gut microbiota, brain function, and behavior remain to be fully characterized. Here we investigated the effects of 5-HTT deficiency on different types of behavior, the gut microbiome, and brain c-Fos expression as a marker of neuronal activation in response to the forced swim test for assessing depression-related behavior in male 5-HTT knockout mice. Behavioral analysis using a battery of 16 different tests showed that 5-HTT-/- mice exhibited markedly reduced locomotor activity, decreased pain sensitivity, reduced motor function, increased anxiety-like and depression-related behavior, altered social behavior in novel and familiar environments, normal working memory, enhanced spatial reference memory, and impaired fear memory compared to 5-HTT+/+ mice. 5-HTT+/- mice showed slightly reduced locomotor activity and impaired social behavior compared to 5-HTT+/+ mice. Analysis of 16S rRNA gene amplicons showed that 5-HTT-/- mice had altered gut microbiota abundances, such as a decrease in Allobaculum, Bifidobacterium, Clostridium sensu stricto, and Turicibacter, compared to 5-HTT+/+ mice. This study also showed that after exposure to the forced swim test, the number of c-Fos-positive cells was higher in the paraventricular thalamus and lateral hypothalamus and was lower in the prefrontal cortical regions, nucleus accumbens shell, dorsolateral septal nucleus, hippocampal regions, and ventromedial hypothalamus in 5-HTT-/- mice than in 5-HTT+/+ mice. These phenotypes of 5-HTT-/- mice partially recapitulate clinical observations in humans with major depressive disorder. The present findings indicate that 5-HTT-deficient mice serve as a good and valid animal model to study anxiety and depression with altered gut microbial composition and abnormal neuronal activity in the brain, highlighting the importance of 5-HTT in brain function and the mechanisms underlying the regulation of anxiety and depression.
Collapse
Affiliation(s)
- Hirotaka Shoji
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
12
|
Konar-Nié M, Guzman-Castillo A, Armijo-Weingart L, Aguayo LG. Aging in nucleus accumbens and its impact on alcohol use disorders. Alcohol 2023; 107:73-90. [PMID: 36087859 DOI: 10.1016/j.alcohol.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 02/06/2023]
Abstract
Ethanol is one of the most widely consumed drugs in the world and prolonged excessive ethanol intake might lead to alcohol use disorders (AUDs), which are characterized by neuroadaptations in different brain regions, such as in the reward circuitry. In addition, the global population is aging, and it appears that they are increasing their ethanol consumption. Although research involving the effects of alcohol in aging subjects is limited, differential effects have been described. For example, studies in human subjects show that older adults perform worse in tests assessing working memory, attention, and cognition as compared to younger adults. Interestingly, in the field of the neurobiological basis of ethanol actions, there is a significant dichotomy between what we know about the effects of ethanol on neurochemical targets in young animals and how it might affect them in the aging brain. To be able to understand the distinct effects of ethanol in the aging brain, the following questions need to be answered: (1) How does physiological aging impact the function of an ethanol-relevant region (e.g., the nucleus accumbens)? and (2) How does ethanol affect these neurobiological systems in the aged brain? This review discusses the available data to try to understand how aging affects the nucleus accumbens (nAc) and its neurochemical response to alcohol. The data show that there is little information on the effects of ethanol in aged mice and rats, and that many studies had considered 2-3-month-old mice as adults, which needs to be reconsidered since more recent literature defines 6 months as young adults and >18 months as an older mouse. Considering the actual relevance of an aged worldwide population and that this segment is drinking more frequently, it appears at least reasonable to explore how ethanol affects the brain in adult and aged models.
Collapse
Affiliation(s)
- Macarena Konar-Nié
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile.
| | - Alejandra Guzman-Castillo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile; Programa en Neurociencia, Psiquiatría y Salud Mental, Universidad de Concepción, Concepcion, Chile.
| | - Lorena Armijo-Weingart
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile; Programa en Neurociencia, Psiquiatría y Salud Mental, Universidad de Concepción, Concepcion, Chile.
| | - Luis Gerardo Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile; Programa en Neurociencia, Psiquiatría y Salud Mental, Universidad de Concepción, Concepcion, Chile.
| |
Collapse
|
13
|
Genes and pathways associated with fear discrimination identified by genome-wide DNA methylation and RNA-seq analyses in nucleus accumbens in mice. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110643. [PMID: 36152737 DOI: 10.1016/j.pnpbp.2022.110643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022]
Abstract
Fear memory is critical for individual survival. However, the maladaptive fear response is one of the hallmarks of fear-related disorders, which is characterized by the failure to discriminate threatening signals from neutral or safe cues. The biological mechanisms of fear discrimination remain to be clarified. In this study, we found that the nucleus accumbens (NAc) was indispensable for the formation of cued fear memory in mice, during which the expression of DNA methyltransferase 3a gene (DNMT3a) increased. Injection of Zebularine, a nonspecific DNMT inhibitor, into NAc immediately after conditioning induced a maladaptive fear response to neutral cue (CS-). Using whole-genome bisulfite sequencing (WGBS), differentially methylated sites and methylated regions (DMRs) were investigated. 16,226 DMRs in the genenome were identified, in which, 214 genes with significant differences in their methylation levels and mRNA expression profiles were identified through correlation analysis. Notably, 15 genes were synaptic function-related and 8 genes were enriched in the cGMP-PKG signaling pathway. Moreover, inhibition of PKG impaired fear discrimination. Together, our results revealed the profile and role of genome-wide DNA methylation in NAc in the regulation of fear discrimination.
Collapse
|
14
|
Effect of early-life stress or fluoxetine exposure on later-life conditioned taste aversion learning in Sprague-Dawley rats. Neurosci Lett 2022; 787:136818. [PMID: 35931277 DOI: 10.1016/j.neulet.2022.136818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/12/2022] [Accepted: 07/23/2022] [Indexed: 01/06/2023]
Abstract
In rodents, early-life exposure to environmental stress or antidepressant medication treatment has been shown to induce similar long-term consequences on memory- and depression-related behavior in adulthood. To expand on this line of work, we evaluated how juvenile exposure to chronic variable stress (CVS) or the selective serotonin reuptake inhibitor fluoxetine (FLX) influences conditioned taste aversion (CTA) learning in adulthood. To do this, in Experiment 1, we examined how adolescent CVS alone (postnatal day [PND] 35-48), or with prenatal stress (PNS) history (PNS + CVS), influenced the acquisition and extinction of CTA in adult male Sprague Dawley rats. Specifically, at PND70+ (adulthood), rats were presented with 0.15 % saccharin followed by an intraperitoneal (i.p.) injection of lithium chloride (LiCl) to induce visceral malaise. A total of four saccharin (conditioned stimulus) and LiCl (unconditioned stimulus) pairings occurred across the CTA acquisition phase. Next, saccharin was presented without aversive consequences, and intake was measured across consecutive days of the extinction phase. No differences in body weight gain across the experimental days, rate of CTA acquisition, or extinction of CTA, were observed among the experimental groups (control, n = 7; CVS, n = 12; PNS + CVS, n = 9). In Experiment 2, we evaluated if early-life FLX exposure alters CTA learning in adulthood. Specifically, adolescent stress naïve male and female rats received FLX (0 or 20 mg/kg/i.p) once daily for 15 consecutive days (PND35-49). During antidepressant exposure, FLX decreased body weight gain in both male (n = 7) and female rats (n = 7), when compared to respective controls (male control, n = 8; female control, n = 8). However, juvenile FLX exposure decreased body weight-gain in adult male, but not female, rats. Lastly, adolescent FLX history had no effect on CTA acquisition or extinction in adulthood (PND70), in neither male nor female rats. Together, the data indicate that juvenile FLX exposure results in a long-term decrease of body weight-gain in a male-specific manner. Yet, independent of sex, neither early-life stress nor FLX exposure alters CTA learning in adulthood.
Collapse
|
15
|
Bernanke A, Burnette E, Murphy J, Hernandez N, Zimmerman S, Walker QD, Wander R, Sette S, Reavis Z, Francis R, Armstrong C, Risher ML, Kuhn C. Behavior and Fos activation reveal that male and female rats differentially assess affective valence during CTA learning and expression. PLoS One 2021; 16:e0260577. [PMID: 34898621 PMCID: PMC8668140 DOI: 10.1371/journal.pone.0260577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 12/02/2022] Open
Abstract
Females are more affected by psychiatric illnesses including eating disorders, depression, and post-traumatic stress disorder than males. However, the neural mechanisms mediating these sex differences are poorly understood. Animal models can be useful in exploring such neural mechanisms. Conditioned taste aversion (CTA) is a behavioral task that assesses how animals process the competition between associated reinforcing and aversive stimuli in subsequent task performance, a process critical to healthy behavior in many domains. The purpose of the present study was to identify sex differences in this behavior and associated neural responses. We hypothesized that females would value the rewarding stimulus (Boost®) relative to the aversive stimulus (LiCl) more than males in performing CTA. We evaluated behavior (Boost® intake, LiCl-induced behaviors, ultrasonic vocalizations (USVs), CTA performance) and Fos activation in relevant brain regions after the acute stimuli [acute Boost® (AB), acute LiCl (AL)] and the context-only task control (COT), Boost® only task (BOT) and Boost®-LiCl task (BLT). Acutely, females drank more Boost® than males but showed similar aversive behaviors after LiCl. Females and males performed CTA similarly. Both sexes produced 55 kHz USVs anticipating BOT and inhibited these calls in the BLT. However, more females emitted both 22 kHz and 55 kHz USVs in the BLT than males: the latter correlated with less CTA. Estrous cycle stage also influenced 55 kHz USVs. Fos responses were similar in males and females after AB or AL. Females engaged the gustatory cortex and ventral tegmental area (VTA) more than males during the BOT and males engaged the amygdala more than females in both the BOT and BLT. Network analysis of correlated Fos responses across brain regions identified two unique networks characterizing the BOT and BLT, in both of which the VTA played a central role. In situ hybridization with RNAscope identified a population of D1-receptor expressing cells in the CeA that responded to Boost® and D2 receptor-expressing cells that responded to LiCl. The present study suggests that males and females differentially process the affective valence of a stimulus to produce the same goal-directed behavior.
Collapse
Affiliation(s)
- Alyssa Bernanke
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Elizabeth Burnette
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Justine Murphy
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Nathaniel Hernandez
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Sara Zimmerman
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Q. David Walker
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Rylee Wander
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Samantha Sette
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Zackery Reavis
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Reynold Francis
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Christopher Armstrong
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Mary-Louise Risher
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | - Cynthia Kuhn
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
16
|
Wallace T, Myers B. Effects of Biological Sex and Stress Exposure on Ventromedial Prefrontal Regulation of Mood-Related Behaviors. Front Behav Neurosci 2021; 15:737960. [PMID: 34512290 PMCID: PMC8426926 DOI: 10.3389/fnbeh.2021.737960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
The ventral portion of the medial prefrontal cortex (vmPFC) regulates mood, sociability, and context-dependent behaviors. Consequently, altered vmPFC activity has been implicated in the biological basis of emotional disorders. Recent methodological advances have greatly enhanced the ability to investigate how specific prefrontal cell populations regulate mood-related behaviors, as well as the impact of long-term stress on vmPFC function. However, emerging preclinical data identify prominent sexual divergence in vmPFC behavioral regulation and stress responsivity. Notably, the rodent infralimbic cortex (IL), a vmPFC subregion critical for anti-depressant action, shows marked functional divergence between males and females. Accordingly, this review examines IL encoding and modulation of mood-related behaviors, including coping style, reward, and sociability, with a focus on sex-based outcomes. We also review how these processes are impacted by prolonged stress exposure. Collectively, the data suggest that chronic stress has sex-specific effects on IL excitatory/inhibitory balance that may account for sex differences in the prevalence and course of mood disorders.
Collapse
Affiliation(s)
- Tyler Wallace
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Brent Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
17
|
Moschak TM. Prefrontal-Limbic Connectivity in Depressive Behavior: Sex as a Critical Factor. Biol Psychiatry 2021; 90:e9-e10. [PMID: 34266622 DOI: 10.1016/j.biopsych.2021.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Travis M Moschak
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas.
| |
Collapse
|