1
|
Fan R, Gong X, Yu Z, Lin S, Ruan Y, Qian L, Si Z, Li L, Zhou W, Liu Y. The role of heterodimers formed by histamine H3 receptors and dopamine D1 receptors on the methamphetamine-induced conditioned place preference. Eur J Pharmacol 2024; 981:176866. [PMID: 39089461 DOI: 10.1016/j.ejphar.2024.176866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
RATIONALE The rewarding effect of Methamphetamine (METH) is commonly believed to play an important role in METH use disorder. The altered expression of dopamine D1 receptor (D1R) has been suggested to be essential to the rewarding effect of METH. Notably, D1R could interact with histamine H3 receptors (H3R) by forming a H3R-D1R heteromer (H3R-D1R). OBJECTIVES This study was designed to specifically investigate the involvement of H3R-D1R in the rewarding effect of METH. METHODS C57BL/6 mice were treated with intraperitoneal injections of a selective H3R antagonist (Thioperamide, THIO; 20 mg/kg), an H1R antagonist (Pyrilamine, PYRI; 10 mg/kg), or microinjections of cytomegalovirus (CMV)-transmembrane domain 5 (TM5) into the nucleus accumbens (NAc). The animal model of Conditioned Place Preference (CPP) was applied to determine the impact of H3R-D1R on the rewarding effect of METH. RESULTS METH resulted in a significant preference for the drug-associated chamber, in conjunction with increased H3R and decreased D1R expression in both NAc and the ventral tegmental area (VTA). THIO significantly attenuated the rewarding effect of METH, accompanied by decreased H3R and increased D1R expression. In contrast, pyrilamine failed to produce the similar effects. Moreover, the inhibitory effect of THIO on METH-induced CPP was reversed by SKF38393, a D1R agonist. Furthermore, SCH23390, a D1R antagonist, counteracted the ameliorative effect of SKF38393 on THIO. Co-immunoprecipitation (CO-IP) experiments further demonstrated the specific interaction between H3R and D1R in METH CPP mice. The rewarding effect of METH was also significantly blocked by the interruption of CMV-transmembrane domain 5 (TM5), but not CMV-transmembrane domain 7 (TM7) in NAc. CONCLUSION These results suggest that modulating the activity of H3R-D1R complex holds promise for regulating METH use disorder and serves as a potential drug target for its treatment.
Collapse
Affiliation(s)
- Runyue Fan
- School of Public Health, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, PR China
| | - Xinshuang Gong
- School of Public Health, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, PR China
| | - Zhaoyin Yu
- School of Teaching and Education, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, PR China
| | - Shujun Lin
- School of Teaching and Education, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, PR China
| | - Yuer Ruan
- School of Teaching and Education, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, PR China
| | - Liyin Qian
- School of Public Health, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, PR China
| | - Zizhen Si
- Department of Physiology and Pharmacology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, PR China, Ningbo
| | - Longhui Li
- Ningbo Kangning Hospital, 1 South Zhuangyu Road, Ningbo, Zhejiang, 315201, PR China
| | - Wenhua Zhou
- Ningbo Kangning Hospital, 1 South Zhuangyu Road, Ningbo, Zhejiang, 315201, PR China
| | - Yu Liu
- Department of Physiology and Pharmacology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, PR China, Ningbo.
| |
Collapse
|
2
|
Finlay DB, Mackie W, Webb HDJ, Thomsen LR, Nimick M, Rosengren RJ, Marusich JA, Glass M, Wiley JL. The piperazine analogue para-fluorophenylpiperazine alters timing of the physiological effects of the synthetic cannabinoid receptor agonist AMB-FUBINACA, without changing its discriminative stimulus, signalling effects, or metabolism. Pharmacol Biochem Behav 2023; 223:173530. [PMID: 36805861 PMCID: PMC10020421 DOI: 10.1016/j.pbb.2023.173530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
AMB-FUBINACA is a synthetic cannabinoid receptor agonist (SCRA), which has been associated with substantial abuse and health harm since 2016 in many countries including New Zealand. A characteristic of AMB-FUBINACA use in New Zealand has included the observation that forensic samples (from autopsies) and drugs seized by police have often been found to contain para-fluorophenylpiperazine (pFPP), a relatively little-characterised piperazine analogue that has been suggested to act through 5HT1a serotonin receptors. In the current study, we aimed to characterise the interactions of these two agents in rat physiological endpoints using plethysmography and telemetry, and to examine whether pFPP altered the subjective effects of AMB-FUBINACA in mice trained to differentiate a cannabinoid (THC) from vehicle. Though pFPP did not alter the ability of AMB-FUBINACA to substitute for THC, it did appear to abate some of the physiological effects of AMB-FUBINACA in rats by delaying the onset of AMB-FUBINACA-mediated hypothermia and shortening duration of bradycardia. In HEK cells stably expressing the CB1 cannabinoid receptor, 5HT1a, or both CB1 and 5HT1a, cAMP signalling was recorded using a BRET biosensor (CAMYEL) to assess possible direct receptor interactions. Although low potency pFPP agonism at 5HT1a was confirmed, little evidence for signalling interactions was detected in these assays: additive or synergistic effects on potency or efficacy were not detected between pFPP and AMB-FUBINACA-mediated cAMP inhibition. Experiments utilising higher potency, classical 5HT1a ligands (agonist 8OH-DPAT and antagonist WAY100635) also failed to reveal evidence for mutual CB1/5HT1a interactions or cross-antagonism. Finally, the ability of pFPP to alter the metabolism of AMB-FUBINACA in rat and human liver microsomes into its primary carboxylic acid metabolite via carboxylesterase-1 was assessed by HPLC; no inhibition was detected. Overall, the effects we have observed do not suggest that increased harm/toxicity would result from the combination of pFPP and AMB-FUBINACA.
Collapse
Affiliation(s)
- David B Finlay
- Department of Pharmacology & Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| | - Warwick Mackie
- Department of Pharmacology & Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Hunter D J Webb
- Department of Pharmacology & Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Lucy R Thomsen
- Department of Pharmacology & Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Mhairi Nimick
- Department of Pharmacology & Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rhonda J Rosengren
- Department of Pharmacology & Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | | | - Michelle Glass
- Department of Pharmacology & Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
3
|
Torrico B, Antón-Galindo E, Fernàndez-Castillo N, Rojo-Francàs E, Ghorbani S, Pineda-Cirera L, Hervás A, Rueda I, Moreno E, Fullerton JM, Casadó V, Buitelaar JK, Rommelse N, Franke B, Reif A, Chiocchetti AG, Freitag C, Kleppe R, Haavik J, Toma C, Cormand B. Involvement of the 14-3-3 Gene Family in Autism Spectrum Disorder and Schizophrenia: Genetics, Transcriptomics and Functional Analyses. J Clin Med 2020; 9:E1851. [PMID: 32545830 PMCID: PMC7356291 DOI: 10.3390/jcm9061851] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
The 14-3-3 protein family are molecular chaperones involved in several biological functions and neurological diseases. We previously pinpointed YWHAZ (encoding 14-3-3ζ) as a candidate gene for autism spectrum disorder (ASD) through a whole-exome sequencing study, which identified a frameshift variant within the gene (c.659-660insT, p.L220Ffs*18). Here, we explored the contribution of the seven human 14-3-3 family members in ASD and other psychiatric disorders by investigating the: (i) functional impact of the 14-3-3ζ mutation p.L220Ffs*18 by assessing solubility, target binding and dimerization; (ii) contribution of common risk variants in 14-3-3 genes to ASD and additional psychiatric disorders; (iii) burden of rare variants in ASD and schizophrenia; and iv) 14-3-3 gene expression using ASD and schizophrenia transcriptomic data. We found that the mutant 14-3-3ζ protein had decreased solubility and lost its ability to form heterodimers and bind to its target tyrosine hydroxylase. Gene-based analyses using publicly available datasets revealed that common variants in YWHAE contribute to schizophrenia (p = 6.6 × 10-7), whereas ultra-rare variants were found enriched in ASD across the 14-3-3 genes (p = 0.017) and in schizophrenia for YWHAZ (meta-p = 0.017). Furthermore, expression of 14-3-3 genes was altered in post-mortem brains of ASD and schizophrenia patients. Our study supports a role for the 14-3-3 family in ASD and schizophrenia.
Collapse
Affiliation(s)
- Bàrbara Torrico
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Eva Rojo-Francàs
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Sadaf Ghorbani
- Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, N5009 Bergen, Norway; (S.G.); (R.K.); (J.H.)
| | - Laura Pineda-Cirera
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Amaia Hervás
- Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, 08221 Terrassa, Spain; (A.H.); (I.R.)
- IGAIN, Global Institute of Integral Attention to Neurodevelopment, 08007 Barcelona, Spain
| | - Isabel Rueda
- Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, 08221 Terrassa, Spain; (A.H.); (I.R.)
| | - Estefanía Moreno
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Janice M. Fullerton
- Neuroscience Research Australia, Sydney, NSW 2031, Australia;
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vicent Casadó
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Jan K. Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 HR Nijmegen, The Netherlands;
- Karakter Child and Adolescent Psychiatry University Centre, 6525 GC Nijmegen, The Netherlands;
| | - Nanda Rommelse
- Karakter Child and Adolescent Psychiatry University Centre, 6525 GC Nijmegen, The Netherlands;
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 HR Nijmegen, The Netherlands;
| | - Barbara Franke
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 HR Nijmegen, The Netherlands;
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 HR Nijmegen, The Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany;
| | - Andreas G. Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence Frankfurt, JW Goethe University, 60323 Frankfurt am Main, Germany; (A.G.C.); (C.F.)
| | - Christine Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence Frankfurt, JW Goethe University, 60323 Frankfurt am Main, Germany; (A.G.C.); (C.F.)
| | - Rune Kleppe
- Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, N5009 Bergen, Norway; (S.G.); (R.K.); (J.H.)
- Division of Psychiatry, Haukeland University Hospital, 5021 Bergen, Norway
| | - Jan Haavik
- Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, N5009 Bergen, Norway; (S.G.); (R.K.); (J.H.)
| | - Claudio Toma
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Neuroscience Research Australia, Sydney, NSW 2031, Australia;
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid/CSIC, C/Nicolás Cabrera, 1, Campus UAM, 28049 Madrid, Spain
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| |
Collapse
|
4
|
Genders SG, Scheller KJ, Djouma E. Neuropeptide modulation of addiction: Focus on galanin. Neurosci Biobehav Rev 2020; 110:133-149. [DOI: 10.1016/j.neubiorev.2018.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/07/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022]
|
5
|
Zhou H, Tai J, Xu H, Lu X, Meng D. Xanthoceraside Could Ameliorate Alzheimer's Disease Symptoms of Rats by Affecting the Gut Microbiota Composition and Modulating the Endogenous Metabolite Levels. Front Pharmacol 2019; 10:1035. [PMID: 31572201 PMCID: PMC6753234 DOI: 10.3389/fphar.2019.01035] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 08/14/2019] [Indexed: 01/29/2023] Open
Abstract
Xanthoceraside (XAN) is a natural-derived compound with anti-Alzheimer activity from the husks of Xanthoceras sorbifolia. Although its therapeutic effect had been confirmed in previous studies, the mechanism was still unclear due to its poor solubility and low permeability. In this study, the pharmacological effect of XAN on Alzheimer's disease (AD) was confirmed by behavior experiments and H&E staining observation. Fecal microbiota transplantation (FMT) experiment also replicated the therapeutic effects, which indicates the potential targets of XAN on gut microbiota. The sequencing of 16S rRNA genes in fecal samples demonstrated that XAN reversed gut microbiota dysbiosis in AD animals. XAN could change the relative abundances of several phyla and genus of bacterial, particularly the ratio of Firmicutes/Bacteroidetes. Among them, Clostridium IV, Desulfovibrio, Corynebacterium, and Enterorhabdus had been reported to be involved in the pathologic developments of AD and other central nervous system disease. In metabolomics study, a series of host endogenous metabolites were detected, including amino acids, lysophosphatidylcholine, dihydrosphingosine, phytosphingosine, inosine, and hypoxanthine, which were all closely associated with the development of AD. Combined with the Spearman's correlation analysis, it was confirmed that the increases of five bacterial strains and decreases of six bacterial strains were closely correlated with the increases of nine host metabolites and the decreases of another five host metabolites. Therefore, XAN can modulate the structure of gut microbiota in AD rats; the changes of gut microbiota were significantly correlated with endogenous metabolites, and symptom of AD was ultimately alleviated. Our findings suggest that XAN may be a potential therapeutic drug for AD, and the gut microbiota may be potential targeting territory of XAN via microbiome-gut-brain pathway.
Collapse
Affiliation(s)
- Hongxu Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jingjie Tai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Haiyan Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiumei Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Dali Meng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
6
|
Perez de la Mora M, Hernandez-Mondragon C, Crespo-Ramirez M, Rejon-Orantes J, Borroto-Escuela DO, Fuxe K. Conventional and Novel Pharmacological Approaches to Treat Dopamine-Related Disorders: Focus on Parkinson's Disease and Schizophrenia. Neuroscience 2019; 439:301-318. [PMID: 31349007 DOI: 10.1016/j.neuroscience.2019.07.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/25/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
The dopaminergic system integrated by cell groups distributed in several brain regions exerts a modulatory role in brain. Particularly important for this task are the mesencephalic dopamine neurons, which from the substantia nigra and ventral tegmental area project to the dorsal striatum and the cortical/subcortical limbic systems, respectively. Dopamine released from these neurons operates mainly via the short distance extrasynaptic volume transmission and activates five different dopaminergic receptor subtypes modulating synaptic GABA and glutamate transmission. To accomplish this task dopaminergic neurons keep mutual modulating interactions with neurons of other neurotransmitter systems, including allosteric receptor-receptor interactions in heteroreceptor complexes. As a result of its modulatory role dopaminergic mechanisms are involved in either the etiology or physiopathology of many brain diseases such as Parkinsońs disease and schizophrenia. The aim of this work is to review some novel and conventional approaches that either have been used or are currently employed to treat these diseases. Particular attention is paid to the approaches derived from the knowledge recently acquired in the realm of receptor-receptor interactions taking place through multiple dopamine heteroreceptor complexes in the plasma membrane. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
- Miguel Perez de la Mora
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | | | - Minerva Crespo-Ramirez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Rejon-Orantes
- Pharmacobiology Experimental laboratory, Faculty of Medicine, Universidad Autónoma de Chiapas
| | | | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Galindo L, Moreno E, López-Armenta F, Guinart D, Cuenca-Royo A, Izquierdo-Serra M, Xicota L, Fernandez C, Menoyo E, Fernández-Fernández JM, Benítez-King G, Canela EI, Casadó V, Pérez V, de la Torre R, Robledo P. Cannabis Users Show Enhanced Expression of CB1-5HT2A Receptor Heteromers in Olfactory Neuroepithelium Cells. Mol Neurobiol 2018; 55:6347-6361. [DOI: 10.1007/s12035-017-0833-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
|
8
|
Rico AJ, Dopeso-Reyes IG, Martínez-Pinilla E, Sucunza D, Pignataro D, Roda E, Marín-Ramos D, Labandeira-García JL, George SR, Franco R, Lanciego JL. Neurochemical evidence supporting dopamine D1-D2 receptor heteromers in the striatum of the long-tailed macaque: changes following dopaminergic manipulation. Brain Struct Funct 2016; 222:1767-1784. [PMID: 27612857 PMCID: PMC5406426 DOI: 10.1007/s00429-016-1306-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/06/2016] [Indexed: 11/13/2022]
Abstract
Although it has long been widely accepted that dopamine receptor types D1 and D2 form GPCR heteromers in the striatum, the presence of D1–D2 receptor heteromers has been recently challenged. In an attempt to properly characterize D1–D2 receptor heteromers, here we have used the in situ proximity ligation assay (PLA) in striatal sections comprising the caudate nucleus, the putamen and the core and shell territories of the nucleus accumbens. Experiments were carried out in control macaques as well as in MPTP-treated animals (with and without dyskinesia). Obtained data support the presence of D1–D2 receptor heteromers within all the striatal subdivisions, with the highest abundance in the accumbens shell. Dopamine depletion by MPTP resulted in an increase of D1–D2 density in caudate and putamen which was normalized by levodopa treatment. Two different sizes of heteromers were consistently found, thus suggesting that besides individual heteromers, D1–D2 receptor heteromers are sometimes organized in macromolecular complexes made of a number of D1–D2 heteromers. Furthermore, the PLA technique was combined with different neuronal markers to properly characterize the identities of striatal neurons expressing D1–D2 heteromers. We have found that striatal projection neurons giving rise to either the direct or the indirect basal ganglia pathways expressed D1–D2 heteromers. Interestingly, macromolecular complexes of D1–D2 heteromers were only found within cholinergic interneurons. In summary, here we provide overwhelming proof that D1 and D2 receptors form heteromeric complexes in the macaque striatum, thus representing a very appealing target for a number of brain diseases involving dopamine dysfunction.
Collapse
Affiliation(s)
- Alberto J Rico
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Iria G Dopeso-Reyes
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Eva Martínez-Pinilla
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Diego Sucunza
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Diego Pignataro
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Elvira Roda
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - David Marín-Ramos
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain
| | - José L Labandeira-García
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Morphological Sciences, University of Santiago de Compostela, Santiago De Compostela, Spain
| | - Susan R George
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Departments of Medicine and Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Rafael Franco
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
| | - José L Lanciego
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
9
|
Bu L, Chang X, Cheng X, Yao Q, Su B, Sheng C, Qu S. Activated central galanin type 1 receptor alleviated insulin resistance in diabetic rat muscle. J Neurosci Res 2016; 94:947-55. [PMID: 27410235 DOI: 10.1002/jnr.23775] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/27/2016] [Accepted: 05/02/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Le Bu
- Department of Endocrinology; Shanghai 10th People's Hospital, Tongji University School of Medicine; Shanghai People's Republic of China
| | - Xusheng Chang
- Department of General Surgery; Yancheng City First People's Hospital; Yancheng City Jiangsu People's Republic of China
| | - Xiaoyun Cheng
- Department of Endocrinology; Shanghai 10th People's Hospital, Tongji University School of Medicine; Shanghai People's Republic of China
| | - Qian Yao
- Key Laboratory of Sichuan Province of Medicinal Chemistry; Chengdu University; Chengdu People's Republic of China
| | - Bin Su
- Department of Endocrinology; Shanghai 10th People's Hospital, Tongji University School of Medicine; Shanghai People's Republic of China
| | - Chunjun Sheng
- Department of Endocrinology; Shanghai 10th People's Hospital, Tongji University School of Medicine; Shanghai People's Republic of China
| | - Shen Qu
- Department of Endocrinology; Shanghai 10th People's Hospital, Tongji University School of Medicine; Shanghai People's Republic of China
| |
Collapse
|
10
|
Heteroreceptor Complexes Formed by Dopamine D 1, Histamine H 3, and N-Methyl-D-Aspartate Glutamate Receptors as Targets to Prevent Neuronal Death in Alzheimer's Disease. Mol Neurobiol 2016; 54:4537-4550. [PMID: 27370794 DOI: 10.1007/s12035-016-9995-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder causing progressive memory loss and cognitive dysfunction. Anti-AD strategies targeting cell receptors consider them as isolated units. However, many cell surface receptors cooperate and physically contact each other forming complexes having different biochemical properties than individual receptors. We here report the discovery of dopamine D1, histamine H3, and N-methyl-D-aspartate (NMDA) glutamate receptor heteromers in heterologous systems and in rodent brain cortex. Heteromers were detected by co-immunoprecipitation and in situ proximity ligation assays (PLA) in the rat cortex where H3 receptor agonists, via negative cross-talk, and H3 receptor antagonists, via cross-antagonism, decreased D1 receptor agonist signaling determined by ERK1/2 or Akt phosphorylation, and counteracted D1 receptor-mediated excitotoxic cell death. Both D1 and H3 receptor antagonists also counteracted NMDA toxicity suggesting a complex interaction between NMDA receptors and D1-H3 receptor heteromer function. Likely due to heteromerization, H3 receptors act as allosteric regulator for D1 and NMDA receptors. By bioluminescence resonance energy transfer (BRET), we demonstrated that D1 or H3 receptors form heteromers with NR1A/NR2B NMDA receptor subunits. D1-H3-NMDA receptor complexes were confirmed by BRET combined with fluorescence complementation. The endogenous expression of complexes in mouse cortex was determined by PLA and similar expression was observed in wild-type and APP/PS1 mice. Consistent with allosteric receptor-receptor interactions within the complex, H3 receptor antagonists reduced NMDA or D1 receptor-mediated excitotoxic cell death in cortical organotypic cultures. Moreover, H3 receptor antagonists reverted the toxicity induced by ß1-42-amyloid peptide. Thus, histamine H3 receptors in D1-H3-NMDA heteroreceptor complexes arise as promising targets to prevent neurodegeneration.
Collapse
|
11
|
Psichas A, Glass LL, Sharp SJ, Reimann F, Gribble FM. Galanin inhibits GLP-1 and GIP secretion via the GAL1 receptor in enteroendocrine L and K cells. Br J Pharmacol 2016; 173:888-98. [PMID: 26661062 PMCID: PMC4761093 DOI: 10.1111/bph.13407] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 11/26/2015] [Accepted: 12/03/2015] [Indexed: 12/19/2022] Open
Abstract
Background and Purpose Galanin is a widely expressed neuropeptide, which in the gut is thought to modulate gastrointestinal motility and secretion. We aimed to elucidate the poorly characterised mechanisms underlying the inhibitory effect of galanin and the potential involvement of G‐protein coupled inwardly rectifying potassium, Kir3, (GIRK) channels in glucagon‐like peptide 1 (GLP‐1) and glucose‐dependent insulinotropic polypeptide (GIP) secretion. Experimental Approach Purified murine L and K cells were analysed for expression of galanin receptors and GIRK subunits. Hormone secretion was measured from primary murine intestinal cultures. Intracellular cAMP was monitored in primary L cells derived from mice expressing the Epac2camps sensor under the control of the proglucagon promoter. Key Results Galanin receptor 1 (GAL1, Galr1) and GIRK channel 1 (Kir3.1, Kcnj3) and 4 (Kir3.4, Kcnj5) mRNA expression was highly enriched in K and L cells. Galanin and a selective GAL1 receptor agonist (M617) potently inhibited GLP‐1 and GIP secretion from primary small intestinal cultures. In L cells, galanin significantly inhibited the forskolin‐induced cAMP response. The GIRK1/4 activator ML297 significantly reduced glucose‐stimulated and IBMX‐stimulated GLP‐1 secretion but had no effect on GIP. The GIRK blocker tertiapin‐Q did not impair galanin‐mediated GLP‐1 inhibition. Conclusions and Implications Galanin, acting via the GAL1 receptor and Gi‐coupled signalling in L and K cells, is a potent inhibitor of GLP‐1 and GIP secretion. Although GIRK1/4 channels are expressed in these cells, their activation does not appear to play a major role in galanin‐mediated inhibition of incretin secretion.
Collapse
Affiliation(s)
- Arianna Psichas
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Leslie L Glass
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Stephen J Sharp
- MRC Epidemiology Unit, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Frank Reimann
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Fiona M Gribble
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, WT-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
12
|
Gan L, England E, Yang JY, Toulme N, Ambati S, Hartzell DL, Meagher RB, Baile CA. A 72-hour high fat diet increases transcript levels of the neuropeptide galanin in the dorsal hippocampus of the rat. BMC Neurosci 2015; 16:51. [PMID: 26260473 PMCID: PMC4531388 DOI: 10.1186/s12868-015-0188-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/28/2015] [Indexed: 01/03/2023] Open
Abstract
Background Recent evidence identifies the hippocampus, a brain structure commonly associated with learning and memory, as key to the regulation of food intake and the development and consequences of obesity. Intake of a high fat diet (HFD) results in altered consumptive behavior, hippocampal damage, and cognitive deficits. While many studies report the effects of HFD after chronic consumption and in the instance of obesity, few examine the events that occur following acute HFD consumption. In this study, male rats were fed either a control diet (10% fat by kcal) or HFD (45% fat by kcal) for 72 h. At the end of the 72-h period, serum and tissues were collected and weighed. Brains were rapidly frozen or formalin-fixed in preparation for qRT-PCR or immunohistochemistry, respectively. Results Acute intake of HFD resulted in higher serum levels of leptin and cholesterol, with no significant changes in final body weight or adipose tissue mass. In the dorsal hippocampus, transcription of the neuroprotective peptide galanin was significantly upregulated along with a trend for an increase in brain-derived neurotrophic factor and histone deacetylase 2 in the rats fed HFD. In the ventral hippocampus, there was a significant increase in histone deacetylase 4 and a decrease in galanin receptor 1 in this group. Results from immunohistochemistry validate strong presence of the galanin peptide in the CA1/CA2 region of the dorsal hippocampus. Conclusions These results provide evidence for a distinct response in specific functional regions of the hippocampus following acute HFD intake.
Collapse
Affiliation(s)
- Ling Gan
- Veterinary Medicine Department, Rongchang Campus, Southwest University, Rongchang, Chongqing, People's Republic of China. .,Animal and Dairy Science, University of Georgia, Athens, GA, USA.
| | - Emily England
- Neuroscience Division Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA.
| | - Jeong-Yeh Yang
- Animal and Dairy Science, University of Georgia, Athens, GA, USA.
| | - Natalie Toulme
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | - Suresh Ambati
- Animal and Dairy Science, University of Georgia, Athens, GA, USA.
| | - Diane L Hartzell
- Animal and Dairy Science, University of Georgia, Athens, GA, USA.
| | | | - Clifton A Baile
- Animal and Dairy Science, University of Georgia, Athens, GA, USA.
| |
Collapse
|
13
|
Viñals X, Moreno E, Lanfumey L, Cordomí A, Pastor A, de La Torre R, Gasperini P, Navarro G, Howell LA, Pardo L, Lluís C, Canela EI, McCormick PJ, Maldonado R, Robledo P. Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors. PLoS Biol 2015; 13:e1002194. [PMID: 26158621 PMCID: PMC4497644 DOI: 10.1371/journal.pbio.1002194] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 06/03/2015] [Indexed: 11/19/2022] Open
Abstract
Activation of cannabinoid CB1 receptors (CB1R) by delta9-tetrahydrocannabinol (THC) produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR) revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties.
Collapse
MESH Headings
- Amnesia/chemically induced
- Analgesia
- Animals
- Anxiety/chemically induced
- Brain/drug effects
- Brain/metabolism
- Cognition Disorders/chemically induced
- Dimerization
- Dorsal Raphe Nucleus/drug effects
- Dronabinol/adverse effects
- HEK293 Cells
- Humans
- Hypothermia/chemically induced
- Locomotion/drug effects
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Serotonin, 5-HT2A/drug effects
- Receptor, Serotonin, 5-HT2A/metabolism
Collapse
Affiliation(s)
- Xavier Viñals
- Neuropharmacology Laboratory, University Pompeu Fabra, Barcelona, Spain
| | - Estefanía Moreno
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Laurence Lanfumey
- CPN, INSERM UMR S894, Université Paris Descartes, UMR S894, Paris, France
| | - Arnau Cordomí
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Antoni Pastor
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Rafael de La Torre
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Paola Gasperini
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Gemma Navarro
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Lesley A. Howell
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carmen Lluís
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Enric I. Canela
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Peter J. McCormick
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Rafael Maldonado
- Neuropharmacology Laboratory, University Pompeu Fabra, Barcelona, Spain
| | - Patricia Robledo
- Neuropharmacology Laboratory, University Pompeu Fabra, Barcelona, Spain
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| |
Collapse
|
14
|
Lang R, Gundlach AL, Holmes FE, Hobson SA, Wynick D, Hökfelt T, Kofler B. Physiology, signaling, and pharmacology of galanin peptides and receptors: three decades of emerging diversity. Pharmacol Rev 2015; 67:118-75. [PMID: 25428932 DOI: 10.1124/pr.112.006536] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Galanin was first identified 30 years ago as a "classic neuropeptide," with actions primarily as a modulator of neurotransmission in the brain and peripheral nervous system. Other structurally-related peptides-galanin-like peptide and alarin-with diverse biologic actions in brain and other tissues have since been identified, although, unlike galanin, their cognate receptors are currently unknown. Over the last two decades, in addition to many neuronal actions, a number of nonneuronal actions of galanin and other galanin family peptides have been described. These include actions associated with neural stem cells, nonneuronal cells in the brain such as glia, endocrine functions, effects on metabolism, energy homeostasis, and paracrine effects in bone. Substantial new data also indicate an emerging role for galanin in innate immunity, inflammation, and cancer. Galanin has been shown to regulate its numerous physiologic and pathophysiological processes through interactions with three G protein-coupled receptors, GAL1, GAL2, and GAL3, and signaling via multiple transduction pathways, including inhibition of cAMP/PKA (GAL1, GAL3) and stimulation of phospholipase C (GAL2). In this review, we emphasize the importance of novel galanin receptor-specific agonists and antagonists. Also, other approaches, including new transgenic mouse lines (such as a recently characterized GAL3 knockout mouse) represent, in combination with viral-based techniques, critical tools required to better evaluate galanin system physiology. These in turn will help identify potential targets of the galanin/galanin-receptor systems in a diverse range of human diseases, including pain, mood disorders, epilepsy, neurodegenerative conditions, diabetes, and cancer.
Collapse
Affiliation(s)
- Roland Lang
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Andrew L Gundlach
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Fiona E Holmes
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Sally A Hobson
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - David Wynick
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Tomas Hökfelt
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Barbara Kofler
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| |
Collapse
|
15
|
Schwartz N, Temkin P, Jurado S, Lim BK, Heifets BD, Polepalli JS, Malenka RC. Chronic pain. Decreased motivation during chronic pain requires long-term depression in the nucleus accumbens. Science 2014; 345:535-42. [PMID: 25082697 DOI: 10.1126/science.1253994] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several symptoms associated with chronic pain, including fatigue and depression, are characterized by reduced motivation to initiate or complete goal-directed tasks. However, it is unknown whether maladaptive modifications in neural circuits that regulate motivation occur during chronic pain. Here, we demonstrate that the decreased motivation elicited in mice by two different models of chronic pain requires a galanin receptor 1-triggered depression of excitatory synaptic transmission in indirect pathway nucleus accumbens medium spiny neurons. These results demonstrate a previously unknown pathological adaption in a key node of motivational neural circuitry that is required for one of the major sequela of chronic pain states and syndromes.
Collapse
Affiliation(s)
- Neil Schwartz
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Paul Temkin
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Sandra Jurado
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA. Department of Pharmacology, School of Medicine, University of Maryland, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | - Byung Kook Lim
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA. Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Boris D Heifets
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Jai S Polepalli
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
16
|
Moreno E, Moreno-Delgado D, Navarro G, Hoffmann HM, Fuentes S, Rosell-Vilar S, Gasperini P, Rodríguez-Ruiz M, Medrano M, Mallol J, Cortés A, Casadó V, Lluís C, Ferré S, Ortiz J, Canela E, McCormick PJ. Cocaine disrupts histamine H3 receptor modulation of dopamine D1 receptor signaling: σ1-D1-H3 receptor complexes as key targets for reducing cocaine's effects. J Neurosci 2014; 34:3545-58. [PMID: 24599455 PMCID: PMC3942573 DOI: 10.1523/jneurosci.4147-13.2014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/16/2014] [Accepted: 01/27/2014] [Indexed: 01/19/2023] Open
Abstract
The general effects of cocaine are not well understood at the molecular level. What is known is that the dopamine D1 receptor plays an important role. Here we show that a key mechanism may be cocaine's blockade of the histamine H3 receptor-mediated inhibition of D1 receptor function. This blockade requires the σ1 receptor and occurs upon cocaine binding to σ1-D1-H3 receptor complexes. The cocaine-mediated disruption leaves an uninhibited D1 receptor that activates Gs, freely recruits β-arrestin, increases p-ERK 1/2 levels, and induces cell death when over activated. Using in vitro assays with transfected cells and in ex vivo experiments using both rats acutely treated or self-administered with cocaine along with mice depleted of σ1 receptor, we show that blockade of σ1 receptor by an antagonist restores the protective H3 receptor-mediated brake on D1 receptor signaling and prevents the cell death from elevated D1 receptor signaling. These findings suggest that a combination therapy of σ1R antagonists with H3 receptor agonists could serve to reduce some effects of cocaine.
Collapse
Affiliation(s)
- Estefanía Moreno
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)
- Institute of Biomedicine of the University of Barcelona (IBUB) and
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, 08028 Spain
| | - David Moreno-Delgado
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)
- Institute of Biomedicine of the University of Barcelona (IBUB) and
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, 08028 Spain
| | - Gemma Navarro
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)
- Institute of Biomedicine of the University of Barcelona (IBUB) and
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, 08028 Spain
| | - Hanne M. Hoffmann
- Neuroscience Institute and Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitat Autónoma de Barcelona, 08193 Bellaterra, Spain
| | - Silvia Fuentes
- Neuroscience Institute and Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitat Autónoma de Barcelona, 08193 Bellaterra, Spain
| | - Santi Rosell-Vilar
- Neuroscience Institute and Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitat Autónoma de Barcelona, 08193 Bellaterra, Spain
| | - Paola Gasperini
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)
- Institute of Biomedicine of the University of Barcelona (IBUB) and
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, 08028 Spain
| | - Mar Rodríguez-Ruiz
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)
- Institute of Biomedicine of the University of Barcelona (IBUB) and
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, 08028 Spain
| | - Mireia Medrano
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)
- Institute of Biomedicine of the University of Barcelona (IBUB) and
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, 08028 Spain
| | - Josefa Mallol
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)
- Institute of Biomedicine of the University of Barcelona (IBUB) and
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, 08028 Spain
| | - Antoni Cortés
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)
- Institute of Biomedicine of the University of Barcelona (IBUB) and
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, 08028 Spain
| | - Vicent Casadó
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)
- Institute of Biomedicine of the University of Barcelona (IBUB) and
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, 08028 Spain
| | - Carme Lluís
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)
- Institute of Biomedicine of the University of Barcelona (IBUB) and
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, 08028 Spain
| | - Sergi Ferré
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224, and
| | - Jordi Ortiz
- Neuroscience Institute and Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitat Autónoma de Barcelona, 08193 Bellaterra, Spain
| | - Enric Canela
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)
- Institute of Biomedicine of the University of Barcelona (IBUB) and
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, 08028 Spain
| | - Peter J. McCormick
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)
- Institute of Biomedicine of the University of Barcelona (IBUB) and
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, 08028 Spain
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom NR4 7TJ
| |
Collapse
|
17
|
Sánchez-Jiménez F, Ruiz-Pérez MV, Urdiales JL, Medina MA. Pharmacological potential of biogenic amine-polyamine interactions beyond neurotransmission. Br J Pharmacol 2013; 170:4-16. [PMID: 23347064 PMCID: PMC3764843 DOI: 10.1111/bph.12109] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/10/2012] [Accepted: 12/31/2012] [Indexed: 12/14/2022] Open
Abstract
Histamine, serotonin and dopamine are biogenic amines involved in intercellular communication with multiple effects on human pathophysiology. They are products of two highly homologous enzymes, histidine decarboxylase and l-aromatic amino acid decarboxylase, and transmit their signals through different receptors and signal transduction mechanisms. Polyamines derived from ornithine (putrescine, spermidine and spermine) are mainly involved in intracellular effects related to cell proliferation and death mechanisms. This review summarizes structural and functional evidence for interactions between components of all these amine metabolic and signalling networks (decarboxylases, transporters, oxidases, receptors etc.) at cellular and tissue levels, distinct from nervous and neuroendocrine systems, where the crosstalk among these amine-related components can also have important pathophysiological consequences. The discussion highlights aspects that could help to predict and discuss the effects of intervention strategies.
Collapse
Affiliation(s)
- F Sánchez-Jiménez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, Spain.
| | | | | | | |
Collapse
|
18
|
Agasse F, Xapelli S, Coronas V, Christiansen SH, Rosa AI, Sardá-Arroyo L, Santos T, Ferreira R, Schitine C, Harnois T, Bourmeyster N, Bragança J, Bernardino L, Malva JO, Woldbye DP. Galanin Promotes Neuronal Differentiation in Murine Subventricular Zone Cell Cultures. Stem Cells Dev 2013; 22:1693-708. [PMID: 23327619 DOI: 10.1089/scd.2012.0161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Fabienne Agasse
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| | - Sara Xapelli
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| | - Valérie Coronas
- Institut de Physiologie et Biologie Cellulaires, University of Poitiers, CNRS FRE 3511, Poitiers Cedex, France
| | - Søren H. Christiansen
- Protein Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Alexandra I. Rosa
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| | - Laura Sardá-Arroyo
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| | - Tiago Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| | - Raquel Ferreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| | - Clarissa Schitine
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
- Neurochemistry Laboratory, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thomas Harnois
- Institut de Physiologie et Biologie Cellulaires, University of Poitiers, CNRS FRE 3511, Poitiers Cedex, France
- CHU de Poitiers, Poitiers Cedex, France
| | - Nicolas Bourmeyster
- Institut de Physiologie et Biologie Cellulaires, University of Poitiers, CNRS FRE 3511, Poitiers Cedex, France
- CHU de Poitiers, Poitiers Cedex, France
| | - José Bragança
- Centre for Molecular and Structural Biomedicine, Institute for Biotechnology and Bioengineering, University of Algarve, Faro, Portugal
| | - Liliana Bernardino
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| | - João O. Malva
- Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| | - David P.D. Woldbye
- Protein Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Navarro G, Moreno E, Bonaventura J, Brugarolas M, Farré D, Aguinaga D, Mallol J, Cortés A, Casadó V, Lluís C, Ferre S, Franco R, Canela E, McCormick PJ. Cocaine inhibits dopamine D2 receptor signaling via sigma-1-D2 receptor heteromers. PLoS One 2013; 8:e61245. [PMID: 23637801 PMCID: PMC3630156 DOI: 10.1371/journal.pone.0061245] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/08/2013] [Indexed: 11/19/2022] Open
Abstract
Under normal conditions the brain maintains a delicate balance between inputs of reward seeking controlled by neurons containing the D1-like family of dopamine receptors and inputs of aversion coming from neurons containing the D2-like family of dopamine receptors. Cocaine is able to subvert these balanced inputs by altering the cell signaling of these two pathways such that D1 reward seeking pathway dominates. Here, we provide an explanation at the cellular and biochemical level how cocaine may achieve this. Exploring the effect of cocaine on dopamine D2 receptors function, we present evidence of σ1 receptor molecular and functional interaction with dopamine D2 receptors. Using biophysical, biochemical, and cell biology approaches, we discovered that D2 receptors (the long isoform of the D2 receptor) can complex with σ1 receptors, a result that is specific to D2 receptors, as D3 and D4 receptors did not form heteromers. We demonstrate that the σ1-D2 receptor heteromers consist of higher order oligomers, are found in mouse striatum and that cocaine, by binding to σ1 -D2 receptor heteromers, inhibits downstream signaling in both cultured cells and in mouse striatum. In contrast, in striatum from σ1 knockout animals these complexes are not found and this inhibition is not seen. Taken together, these data illuminate the mechanism by which the initial exposure to cocaine can inhibit signaling via D2 receptor containing neurons, destabilizing the delicate signaling balance influencing drug seeking that emanates from the D1 and D2 receptor containing neurons in the brain.
Collapse
Affiliation(s)
- Gemma Navarro
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) and Institute of Biomedicine of the University of Barcelona (IBUB) and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Estefania Moreno
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) and Institute of Biomedicine of the University of Barcelona (IBUB) and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Jordi Bonaventura
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) and Institute of Biomedicine of the University of Barcelona (IBUB) and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Marc Brugarolas
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) and Institute of Biomedicine of the University of Barcelona (IBUB) and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Daniel Farré
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) and Institute of Biomedicine of the University of Barcelona (IBUB) and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - David Aguinaga
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) and Institute of Biomedicine of the University of Barcelona (IBUB) and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Josefa Mallol
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) and Institute of Biomedicine of the University of Barcelona (IBUB) and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Antoni Cortés
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) and Institute of Biomedicine of the University of Barcelona (IBUB) and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Vicent Casadó
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) and Institute of Biomedicine of the University of Barcelona (IBUB) and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Carmen Lluís
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) and Institute of Biomedicine of the University of Barcelona (IBUB) and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Sergi Ferre
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland, United States of America
| | - Rafael Franco
- Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Enric Canela
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) and Institute of Biomedicine of the University of Barcelona (IBUB) and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Peter J. McCormick
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) and Institute of Biomedicine of the University of Barcelona (IBUB) and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Einstein EB, Asaka Y, Yeckel MF, Higley MJ, Picciotto MR. Galanin-induced decreases in nucleus accumbens/striatum excitatory postsynaptic potentials and morphine conditioned place preference require both galanin receptor 1 and galanin receptor 2. Eur J Neurosci 2013; 37:1541-9. [PMID: 23387435 DOI: 10.1111/ejn.12151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/03/2013] [Accepted: 01/09/2013] [Indexed: 12/12/2022]
Abstract
The neuropeptide galanin has been shown to alter the rewarding properties of morphine. To identify potential cellular mechanisms that might be involved in the ability of galanin to modulate opiate reward, we measured excitatory postsynaptic potentials (EPSPs), using both field and whole-cell recordings from striatal brain slices extracted from wild-type mice and mice lacking specific galanin receptor (GalR) subtypes. We found that galanin decreased the amplitude of EPSPs in both the dorsal striatum and nucleus accumbens. We then performed recordings in slices from knockout mice lacking either the GalR1 or GalR2 gene, and found that the ability of galanin to decrease EPSP amplitude was absent from both mouse lines, suggesting that both receptor subtypes are required for this effect. In order to determine whether behavioral responses to opiates were dependent on the same receptor subtypes, we tested GalR1 and GalR2 knockout mice for morphine conditioned place preference (CPP). Morphine CPP was significantly attenuated in both GalR1 and GalR2 knockout mice. These data suggest that mesolimbic excitatory signaling is significantly modulated by galanin in a GalR1-dependent and GalR2-dependent manner, and that morphine CPP is dependent on the same receptor subtypes.
Collapse
Affiliation(s)
- Emily B Einstein
- Division of Molecular Psychiatry, Department of Psychiatry, Yale University School of Medicine, 34 Park Street - 3rd floor research, New Haven, CT 06508, USA
| | | | | | | | | |
Collapse
|
21
|
Giuliani A, Beggiato S, Baldassarro VA, Mangano C, Giardino L, Imbimbo BP, Antonelli T, Calzà L, Ferraro L. CHF5074 restores visual memory ability and pre-synaptic cortical acetylcholine release in pre-plaque Tg2576 mice. J Neurochem 2013; 124:613-20. [PMID: 23278303 DOI: 10.1111/jnc.12136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 12/23/2012] [Accepted: 12/24/2012] [Indexed: 12/11/2022]
Abstract
CHF5074, a new microglial modulator, attenuates memory deficit in Alzheimer's disease transgenic mice. In this study, the effect of an acute or subacute CHF5074 treatment on in vivo novel object recognition test and on [³H]Acetylcholine (ACh) and GABA release in pre-plaque (7-month-old) Tg2576 mice have been compared with those induced by the γ-secretase inhibitor LY450139 (semagacestat). Vehicle-treated Tg2576 mice displayed an impairment of recognition memory compared with wild-type animals. This impairment was recovered in transgenic animals acutely treated with CHF5074 (30 mg/kg), while LY450139 (1, 3, 10 mg/kg) was ineffective. In frontal cortex synaptosomes from vehicle-treated Tg2576 mice, K⁺-evoked [³H]ACh release was lower than that measured in wild-type mice. This reduction was absent in transgenic animals subacutely treated with CHF5074 (30 mg/kg daily for 8 days), while it was slightly, not significantly, amplified by LY450139 (3 mg/kg daily for 8 days). There were no differences between the groups on spontaneous [³H]ACh release as well as spontaneous and K⁺-evoked GABA release. These results suggest that CHF5074 has beneficial effects on visual memory and cortical cholinergic dysfunctions in pre-plaque Tg2576 mice. Together with previous findings, these data suggest that CHF5074 could be a possible candidate for early Alzheimer's disease therapeutic regimens.
Collapse
Affiliation(s)
- Alessandro Giuliani
- Department of Veterinary Medicine and Health Science, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
González S, Moreno-Delgado D, Moreno E, Pérez-Capote K, Franco R, Mallol J, Cortés A, Casadó V, Lluís C, Ortiz J, Ferré S, Canela E, McCormick PJ. Circadian-related heteromerization of adrenergic and dopamine D₄ receptors modulates melatonin synthesis and release in the pineal gland. PLoS Biol 2012; 10:e1001347. [PMID: 22723743 PMCID: PMC3378626 DOI: 10.1371/journal.pbio.1001347] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 05/10/2012] [Indexed: 11/18/2022] Open
Abstract
Dopamine and adrenergic receptor complexes form under a circadian-regulated cycle and directly modulate melatonin synthesis and release from the pineal gland. The role of the pineal gland is to translate the rhythmic cycles of night and day encoded by the retina into hormonal signals that are transmitted to the rest of the neuronal system in the form of serotonin and melatonin synthesis and release. Here we describe that the production of both melatonin and serotonin by the pineal gland is regulated by a circadian-related heteromerization of adrenergic and dopamine D4 receptors. Through α1B-D4 and β1-D4 receptor heteromers dopamine inhibits adrenergic receptor signaling and blocks the synthesis of melatonin induced by adrenergic receptor ligands. This inhibition was not observed at hours of the day when D4 was not expressed. These data provide a new perspective on dopamine function and constitute the first example of a circadian-controlled receptor heteromer. The unanticipated heteromerization between adrenergic and dopamine D4 receptors provides a feedback mechanism for the neuronal hormone system in the form of dopamine to control circadian inputs. Animals respond to cycles of light and dark with patterns in sleeping, feeding, body temperature alterations, and other biological functions. The pineal gland translates these light signals received from the retina into a language understandable to the rest of the body through the rhythmic synthesis and release of melatonin in response to the light and dark cycle. This process is controlled by adrenergic receptors. One impressive and mysterious aspect of the system is the rapid ability of rhythmic melatonin production and/or degradation to respond to changes in the cycle. In this study, we demonstrate that part of this response is due to the formation of receptor-receptor complexes (heteromers) between the adrenergic receptors α1B or β1 and the D4 dopamine receptor. Using both biochemical and biophysical methods in transfected cells and in ex vivo tissue we show that dopamine, a neurotransmitter, inhibits adrenergic receptor signaling through these heteromers. This inhibition causes a dramatic decrease in melatonin production of the pineal gland. We postulate that these heteromers provide a rapid feedback mechanism for the neuronal hormone system to modulate circadian-controlled outputs.
Collapse
MESH Headings
- Animals
- CHO Cells
- Circadian Rhythm/physiology
- Cricetinae
- Dopamine/metabolism
- HEK293 Cells
- Humans
- Male
- Melatonin/biosynthesis
- Pineal Gland/metabolism
- Rats
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Dopamine D4/genetics
- Receptors, Dopamine D4/metabolism
- Serotonin/biosynthesis
- Transfection
Collapse
Affiliation(s)
- Sergio González
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - David Moreno-Delgado
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Estefanía Moreno
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Kamil Pérez-Capote
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Rafael Franco
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Josefa Mallol
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Antoni Cortés
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Vicent Casadó
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Carme Lluís
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Jordi Ortiz
- Neuroscience Institute and Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Sergi Ferré
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland, United States of America
| | - Enric Canela
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Peter J. McCormick
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
23
|
Callén L, Moreno E, Barroso-Chinea P, Moreno-Delgado D, Cortés A, Mallol J, Casadó V, Lanciego JL, Franco R, Lluis C, Canela EI, McCormick PJ. Cannabinoid receptors CB1 and CB2 form functional heteromers in brain. J Biol Chem 2012; 287:20851-65. [PMID: 22532560 DOI: 10.1074/jbc.m111.335273] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Exploring the role of cannabinoid CB(2) receptors in the brain, we present evidence of CB(2) receptor molecular and functional interaction with cannabinoid CB(1) receptors. Using biophysical and biochemical approaches, we discovered that CB(2) receptors can form heteromers with CB(1) receptors in transfected neuronal cells and in rat brain pineal gland, nucleus accumbens, and globus pallidus. Within CB(1)-CB(2) receptor heteromers expressed in a neuronal cell model, agonist co-activation of CB(1) and CB(2) receptors resulted in a negative cross-talk in Akt phosphorylation and neurite outgrowth. Moreover, one specific characteristic of CB(1)-CB(2) receptor heteromers consists of both the ability of CB(1) receptor antagonists to block the effect of CB(2) receptor agonists and, conversely, the ability of CB(2) receptor antagonists to block the effect of CB(1) receptor agonists, showing a bidirectional cross-antagonism phenomenon. Taken together, these data illuminate the mechanism by which CB(2) receptors can negatively modulate CB(1) receptor function.
Collapse
Affiliation(s)
- Lucía Callén
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, Tarakanov AO, Calvo F, Garriga P, Tena M, Narvaez M, Millón C, Parrado C, Ciruela F, Agnati LF, Narvaez JA, Díaz-Cabiale Z. On the existence and function of galanin receptor heteromers in the central nervous system. Front Endocrinol (Lausanne) 2012; 3:127. [PMID: 23112793 PMCID: PMC3481144 DOI: 10.3389/fendo.2012.00127] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 10/05/2012] [Indexed: 12/04/2022] Open
Abstract
Galanin receptor (GalR) subtypes 1-3 linked to central galanin neurons may form heteromers with each other and other types of G protein-coupled receptors in the central nervous system (CNS). These heteromers may be one molecular mechanism for galanin peptides and their N-terminal fragments (gal 1-15) to modulate the function of different types of glia-neuronal networks in the CNS, especially the emotional and the cardiovascular networks. GalR-5-HT1A heteromers likely exist with antagonistic GalR-5-HT1A receptor-receptor interactions in the ascending midbrain raphe 5-HT neuron systems and their target regions. They represent a novel target for antidepressant drugs. Evidence is given for the existence of GalR1-5-HT1A heteromers in cellular models with trans-inhibition of the protomer signaling. A GalR1-GalR2 heteromer is proposed to be a galanin N-terminal fragment preferring receptor (1-15) in the CNS. Furthermore, a GalR1-GalR2-5-HT1A heterotrimer is postulated to explain why only galanin (1-15) but not galanin (1-29) can antagonistically modulate the 5-HT1A receptors in the dorsal hippocampus rich in gal fragment binding sites. The results underline a putative role of different types of GalR-5-HT1A heteroreceptor complexes in depression. GalR antagonists may also have therapeutic actions in depression by blocking the antagonistic GalR-NPYY1 receptor interactions in putative GalR-NPYY1 receptor heteromers in the CNS resulting in increases in NPYY1 transmission and antidepressant effects. In contrast the galanin fragment receptor (a postulated GalR1-GalR2 heteromer) appears to be linked to the NPYY2 receptor enhancing the affinity of the NPYY2 binding sites in a putative GalR1-GalR2-NPYY2 heterotrimer. Finally, putative GalR-α2-adrenoreceptor heteromers with antagonistic receptor-receptor interactions may be a widespread mechanism in the CNS for integration of galanin and noradrenaline signals also of likely relevance for depression.
Collapse
Affiliation(s)
- Kjell Fuxe
- Department of Neuroscience, Karolinska InstitutetStockholm, Sweden
- *Correspondence: Kjell Fuxe, Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177 Stockholm, Sweden. e-mail:
| | | | | | - Alexander O. Tarakanov
- St. Petersburg Institute for Informatics and Automation, Russian Academy of SciencesSaint Petersburg, Russia
| | - Feliciano Calvo
- Department of Neuroscience, Karolinska InstitutetStockholm, Sweden
| | - Pere Garriga
- Centre de Biotecnologia Molecular, Departament d’Enginyeria Química, Universitat Politécnica de CatalunyaBarcelona, Spain
| | - Mercé Tena
- Centre de Biotecnologia Molecular, Departament d’Enginyeria Química, Universitat Politécnica de CatalunyaBarcelona, Spain
| | - Manuel Narvaez
- Department of Physiology, School of Medicine, University of MálagaMálaga, Spain
| | - Carmelo Millón
- Department of Physiology, School of Medicine, University of MálagaMálaga, Spain
| | - Concepción Parrado
- Department of Histology, School of Medicine, University of MálagaMálaga, Spain
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapéutica Experimental, Universitat de BarcelonaBarcelona, Spain
| | - Luigi F. Agnati
- Department of Biomedical Sciences, University of Modena and Reggio EmiliaModena, Italy
- Istituto di Ricovero e Cura a Carattere ScientificoLido Venice, Italy
| | - José A. Narvaez
- Department of Physiology, School of Medicine, University of MálagaMálaga, Spain
| | - Zaida Díaz-Cabiale
- Department of Physiology, School of Medicine, University of MálagaMálaga, Spain
| |
Collapse
|
25
|
Aymerich MS, López-Azcárate J, Bonaventura J, Navarro G, Fernández-Suárez D, Casadó V, Mayor F, Lluís C, Valencia M, Artieda J, Franco R. Real-time G-protein-coupled receptor imaging to understand and quantify receptor dynamics. ScientificWorldJournal 2011; 11:1995-2010. [PMID: 22125451 PMCID: PMC3217607 DOI: 10.1100/2011/690858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 09/08/2011] [Indexed: 11/17/2022] Open
Abstract
Understanding the trafficking of G-protein-coupled receptors (GPCRs) and their regulation by agonists and antagonists is fundamental to develop more effective drugs. Optical methods using fluorescent-tagged receptors and spinning disk confocal microscopy are useful tools to investigate membrane receptor dynamics in living cells. The aim of this study was to develop a method to characterize receptor dynamics using this system which offers the advantage of very fast image acquisition with minimal cell perturbation. However, in short-term assays photobleaching was still a problem. Thus, we developed a procedure to perform a photobleaching-corrected image analysis. A study of short-term dynamics of the long isoform of the dopamine type 2 receptor revealed an agonist-induced increase in the mobile fraction of receptors with a rate of movement of 0.08 μm/s For long-term assays, the ratio between the relative fluorescence intensity at the cell surface versus that in the intracellular compartment indicated that receptor internalization only occurred in cells co-expressing G protein-coupled receptor kinase 2. These results indicate that the lateral movement of receptors and receptor internalization are not directly coupled. Thus, we believe that live imaging of GPCRs using spinning disk confocal image analysis constitutes a powerful tool to study of receptor dynamics.
Collapse
Affiliation(s)
- María S Aymerich
- Área de Neurociencias, CIMA, Universidad de Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|