1
|
Tavalin SJ. Familial Alzheimer's disease mutations in amyloid precursor protein impair calcineurin signaling to NMDA receptors. J Biol Chem 2024; 301:108147. [PMID: 39732167 DOI: 10.1016/j.jbc.2024.108147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024] Open
Abstract
Familial Alzheimer's disease (FAD) is frequently associated with mutations in the amyloid precursor protein (APP), which are thought to lead to cognitive deficits by impairing NMDA receptor (NMDAR)-dependent forms of synaptic plasticity. Given the reliance of synaptic plasticity on NMDAR-mediated Ca2+ entry, shaping of NMDAR activity by APP and/or its disease-causing variants could provide a basis for understanding synaptic plasticity impairments associated with FAD. A region of APP (residues 639-644 within APP695) processed by the γ-secretase complex, which generates amyloid-β peptides, is a hotspot for FAD mutations. This region bears similarity to a binding motif for calcineurin (CaN), a Ca2+/calmodulin-dependent phosphatase. Interaction assays confirm that APP associates with CaN in native tissue as well as in a heterologous expression system. This capacity to bind CaN extends to APP family members amyloid precursor-like protein 1 and amyloid precursor-like protein 2 (APLP1 and APLP2, respectively). Electrophysiological analysis demonstrates that APP and its family members limit NMDAR activity, in a manner consistent with CaN-dependent regulation of NMDAR desensitization. FAD mutations, in this region of APP, impair this regulation and consequently enhance NMDAR activity. Thus, by altering the landscape for CaN regulation of NMDA receptors, FAD mutations in APP may contribute to faulty information processing by modifying the dynamic range and temporal window of a critical signal for synaptic plasticity.
Collapse
Affiliation(s)
- Steven J Tavalin
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, USA.
| |
Collapse
|
2
|
Thiankhaw K, Chattipakorn N, Chattipakorn SC. How calcineurin inhibitors affect cognition. Acta Physiol (Oxf) 2024; 240:e14161. [PMID: 38747643 DOI: 10.1111/apha.14161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
AIMS With a focus on the discrepancy between preclinical and clinical findings, this review will gather comprehensive information about the effects of calcineurin inhibitors (CNI) on cognitive function and related brain pathology from in vitro, in vivo, and clinical studies. We also summarize the potential mechanisms that underlie the pathways related to CNI-induced cognitive impairment. METHODS We systematically searched articles in PubMed using keywords 'calcineurin inhibitor*' and 'cognition' to identify related articles, which the final list pertaining to underlying mechanisms of CNI on cognition. RESULTS Several studies have reported an association between calcineurin and the neuropathology of Alzheimer's disease (AD). AD is the most common neurocognitive disorder associated with amyloid plaques and neurofibrillary tangles in the brain, leading to cognitive impairment. CNI, including tacrolimus and cyclosporin A, are commonly prescribed for patients with transplantation of solid organs such as kidney, liver, or heart, those drugs are currently being used as long-term immunosuppressive therapy. Although preclinical models emphasize the favorable effects of CNI on the restoration of brain pathology due to the impacts of calcineurin on the alleviation of amyloid-beta deposition and tau hyperphosphorylation, or rescuing synaptic and mitochondrial functions, treatment-related neurotoxicity, resulting in cognitive dysfunctions has been observed in clinical settings of patients who received CNI. CONCLUSION Inconsistent results of CNI on cognition from clinical studies have been observed due to impairment of the blood-brain barrier, neuroinflammation mediated by reactive oxygen species, and alteration in mitochondrial fission, and extended research is required to confirm its promising use in cognitive impairment.
Collapse
Affiliation(s)
- Kitti Thiankhaw
- Division of Neurology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siripron C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
3
|
Martinez TP, Larsen ME, Sullivan E, Woolfrey KM, Dell’Acqua ML. Amyloid-β-induced dendritic spine elimination requires Ca 2+-permeable AMPA receptors, AKAP-Calcineurin-NFAT signaling, and the NFAT target gene Mdm2. eNeuro 2024; 11:ENEURO.0175-23.2024. [PMID: 38331575 PMCID: PMC10925900 DOI: 10.1523/eneuro.0175-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
Alzheimer's Disease (AD) is associated with brain accumulation of synaptotoxic amyloid-β (Aβ) peptides produced by the proteolytic processing of amyloid precursor protein (APP). Cognitive impairments associated with AD correlate with dendritic spine and excitatory synapse loss, particularly within the hippocampus. In rodents, soluble Aβ oligomers impair hippocampus-dependent learning and memory, promote dendritic spine loss, inhibit NMDA-type glutamate receptor (NMDAR)-dependent long-term potentiation (LTP), and promote synaptic depression (LTD), at least in part through activation of the Ca2+-CaM-dependent phosphatase calcineurin (CaN). Yet, questions remain regarding Aβ-dependent postsynaptic CaN signaling specifically at the synapse to mediate its synaptotoxicity. Here, we use pharmacologic and genetic approaches to demonstrate a role for postsynaptic signaling via A kinase-anchoring protein 150 (AKAP150)-scaffolded CaN in mediating Aβ-induced dendritic spine loss in hippocampal neurons from rats and mice of both sexes. In particular, we found that Ca2+-permeable AMPA-type glutamate receptors (CP-AMPARs), which were previously shown to signal through AKAP-anchored CaN to promote both LTD and Aβ-dependent inhibition of LTP, are also required upstream of AKAP-CaN signaling to mediate spine loss via overexpression of APP containing multiple mutations linked to familial, early-onset AD and increased Aβ production. In addition, we found that the CaN-dependent nuclear factor of activated T-cells (NFAT) transcription factors are required downstream to promote Aβ-mediated dendritic spine loss. Finally, we identified the E3-ubiquitin ligase Mdm2, which was previously linked to LTD and developmental synapse elimination, as a downstream NFAT target gene upregulated by Aβ whose enzymatic activity is required for Aβ-mediated spine loss.Significance Statement Impaired hippocampal function and synapse loss are hallmarks of AD linked to Aβ oligomers. Aβ exposure acutely blocks hippocampal LTP and enhances LTD and chronically leads to dendritic spine synapse loss. In particular, Aβ hijacks normal plasticity mechanisms, biasing them toward synapse weakening/elimination, with previous studies broadly linking CaN phosphatase signaling to this synaptic dysfunction. However, we do not understand how Aβ engages signaling specifically at synapses. Here we elucidate a synapse-to-nucleus signaling pathway coordinated by the postsynaptic scaffold protein AKAP150 that is activated by Ca2+ influx through CP-AMPARs and transduced to nucleus by CaN-NFAT signaling to transcriptionally upregulate the E3-ubiquitin ligase Mdm2 that is required for Aβ-mediated spine loss. These findings identify Mdm2 as potential therapeutic target for AD.
Collapse
Affiliation(s)
- Tyler P. Martinez
- Pharmacology PhD Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Matthew E. Larsen
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Neuroscience PhD Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Emily Sullivan
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Kevin M. Woolfrey
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Mark L. Dell’Acqua
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Neurotechnology Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
4
|
Rodriguez-Jimenez FJ, Ureña-Peralta J, Jendelova P, Erceg S. Alzheimer's disease and synapse Loss: What can we learn from induced pluripotent stem Cells? J Adv Res 2023; 54:105-118. [PMID: 36646419 DOI: 10.1016/j.jare.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/21/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Synaptic dysfunction is a major contributor to Alzheimeŕs disease (AD) pathogenesis in addition to the formation of neuritic β-amyloid plaques and neurofibrillary tangles of hyperphosphorylated Tau protein. However, how these features contribute to synaptic dysfunction and axonal loss remains unclear. While years of considerable effort have been devoted to gaining an improved understanding of this devastating disease, the unavailability of patient-derived tissues, considerable genetic heterogeneity, and lack of animal models that faithfully recapitulate human AD have hampered the development of effective treatment options. Ongoing progress in human induced pluripotent stem cell (hiPSC) technology has permitted the derivation of patient- and disease-specific stem cells with unlimited self-renewal capacity. These cells can differentiate into AD-affected cell types, which support studies of disease mechanisms, drug discovery, and the development of cell replacement therapies in traditional and advanced cell culture models. AIM OF REVIEW To summarize current hiPSC-based AD models, highlighting the associated achievements and challenges with a primary focus on neuron and synapse loss. KEY SCIENTIFIC CONCEPTS OF REVIEW We aim to identify how hiPSC models can contribute to understanding AD-associated synaptic dysfunction and axonal loss. hiPSC-derived neural cells, astrocytes, and microglia, as well as more sophisticated cellular organoids, may represent reliable models to investigate AD and identify early markers of AD-associated neural degeneration.
Collapse
Affiliation(s)
- Francisco Javier Rodriguez-Jimenez
- Stem Cell Therapies in Neurodegenerative Diseases Lab., Centro de Investigación Principe Felipe (CIPF), c/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| | - Juan Ureña-Peralta
- Stem Cell Therapies in Neurodegenerative Diseases Lab., Centro de Investigación Principe Felipe (CIPF), c/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| | - Pavla Jendelova
- Institute of Experimental Medicine, Department of Neuroregeneration, Czech Academy of Science, Prague, Czech Republic.
| | - Slaven Erceg
- Stem Cell Therapies in Neurodegenerative Diseases Lab., Centro de Investigación Principe Felipe (CIPF), c/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Institute of Experimental Medicine, Department of Neuroregeneration, Czech Academy of Science, Prague, Czech Republic; National Stem Cell Bank-Valencia Node, Centro de Investigacion Principe Felipe, c/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| |
Collapse
|
5
|
Mackiewicz J, Lisek M, Boczek T. Targeting CaN/NFAT in Alzheimer's brain degeneration. Front Immunol 2023; 14:1281882. [PMID: 38077352 PMCID: PMC10701682 DOI: 10.3389/fimmu.2023.1281882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of cognitive functions. While the exact causes of this debilitating disorder remain elusive, numerous investigations have characterized its two core pathologies: the presence of β-amyloid plaques and tau tangles. Additionally, multiple studies of postmortem brain tissue, as well as results from AD preclinical models, have consistently demonstrated the presence of a sustained inflammatory response. As the persistent immune response is associated with neurodegeneration, it became clear that it may also exacerbate other AD pathologies, providing a link between the initial deposition of β-amyloid plaques and the later development of neurofibrillary tangles. Initially discovered in T cells, the nuclear factor of activated T-cells (NFAT) is one of the main transcription factors driving the expression of inflammatory genes and thus regulating immune responses. NFAT-dependent production of inflammatory mediators is controlled by Ca2+-dependent protein phosphatase calcineurin (CaN), which dephosphorylates NFAT and promotes its transcriptional activity. A substantial body of evidence has demonstrated that aberrant CaN/NFAT signaling is linked to several pathologies observed in AD, including neuronal apoptosis, synaptic deficits, and glia activation. In view of this, the role of NFAT isoforms in AD has been linked to disease progression at different stages, some of which are paralleled to diminished cognitive status. The use of classical inhibitors of CaN/NFAT signaling, such as tacrolimus or cyclosporine, or adeno-associated viruses to specifically inhibit astrocytic NFAT activation, has alleviated some symptoms of AD by diminishing β-amyloid neurotoxicity and neuroinflammation. In this article, we discuss the recent findings related to the contribution of CaN/NFAT signaling to the progression of AD and highlight the possible benefits of targeting this pathway in AD treatment.
Collapse
Affiliation(s)
| | | | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
6
|
Gudkov SV, Burmistrov DE, Kondakova EV, Sarimov RM, Yarkov RS, Franceschi C, Vedunova MV. An emerging role of astrocytes in aging/neuroinflammation and gut-brain axis with consequences on sleep and sleep disorders. Ageing Res Rev 2023; 83:101775. [PMID: 36334910 DOI: 10.1016/j.arr.2022.101775] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/05/2022] [Accepted: 10/30/2022] [Indexed: 11/18/2022]
Abstract
Understanding the role of astrocytes in the central nervous system has changed dramatically over the last decade. The accumulating findings indicate that glial cells are involved not only in the maintenance of metabolic and ionic homeostasis and in the implementation of trophic functions but also in cognitive functions and information processing in the brain. Currently, there are some controversies regarding the role of astrocytes in complex processes such as aging of the nervous system and the pathogenesis of age-related neurodegenerative diseases. Many findings confirm the important functional role of astrocytes in age-related brain changes, including sleep disturbance and the development of neurodegenerative diseases and particularly Alzheimer's disease. Until recent years, neurobiological research has focused mainly on neuron-glial interactions, in which individual astrocytes locally modulate neuronal activity and communication between neurons. The review considers the role of astrocytes in the physiology of sleep and as an important "player" in the development of neurodegenerative diseases. In addition, the features of the astrocytic network reorganization during aging are discussed.
Collapse
Affiliation(s)
- Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., 119991 Moscow, Russia; Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| | - Dmitriy E Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., 119991 Moscow, Russia.
| | - Elena V Kondakova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| | - Ruslan M Sarimov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., 119991 Moscow, Russia.
| | - Roman S Yarkov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| | - Claudio Franceschi
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| | - Maria V Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| |
Collapse
|
7
|
Wang J, Huang Z, Ji L, Chen C, Wan Q, Xin Y, Pu Z, Li K, Jiao J, Yin Y, Hu Y, Gong L, Zhang R, Yang X, Fang X, Wang M, Zhang B, Shao J, Zou J. SHF Acts as a Novel Tumor Suppressor in Glioblastoma Multiforme by Disrupting STAT3 Dimerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200169. [PMID: 35843865 PMCID: PMC9475553 DOI: 10.1002/advs.202200169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/28/2022] [Indexed: 05/28/2023]
Abstract
Sustained activation of signal transducer and activator of transcription 3 (STAT3) is a critical contributor in tumorigenesis and chemoresistance, thus making it an attractive cancer therapeutic target. Here, SH2 domain-containing adapter protein F (SHF) is identified as a tumor suppressor in glioblastoma Multiforme (GBM) and its negative regulation of STAT3 activity is characterized. Mechanically, SHF selectively binds and inhibits acetylated STAT3 dimerization without affecting STAT3 phosphorylation or acetylation. Additionally, by blocking STAT3-DNMT1 (DNA Methyltransferase 1) interaction, SHF relieves methylation of tumor suppressor genes. The SH2 domain is documented to be essential for SHF's actions on STAT3, and almost entirely replaces the functions of SHF on STAT3 independently. Moreover, the peptide C16 a peptide derived from the STAT3-binding sites of SHF inhibits STAT3 dimerization and STAT3/DNMT1 interaction, and achieves remarkable growth inhibition in GBM cells in vitro and in vivo. These findings strongly identify targeting of the SHF/STAT3 interaction as a promising strategy for developing an optimal STAT3 inhibitor and provide early evidence of the potential clinical efficacy of STAT3 inhibitors such as C16 in GBM.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Zixuan Huang
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Li Ji
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Cheng Chen
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Quan Wan
- Department of NeurosurgeryThe Affiliated Wuxi Second Hospital of Nanjing Medical UniversityWuxiJiangsu214002P. R. China
| | - Yu Xin
- Key Laboratory of Industry BiotechnologySchool of BiotechnologyJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Zhening Pu
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Koukou Li
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Jiantong Jiao
- Department of NeurosurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Ying Yin
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Yaling Hu
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Lingli Gong
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Rui Zhang
- Department of NeurosurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Xusheng Yang
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Xiangming Fang
- Department of RadiologyWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Mei Wang
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Bo Zhang
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Junfei Shao
- Department of NeurosurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Jian Zou
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| |
Collapse
|
8
|
Fujii H, Bito H. Deciphering Ca2+-controlled biochemical computation governing neural circuit dynamics via multiplex imaging. Neurosci Res 2022; 179:79-90. [DOI: 10.1016/j.neures.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/25/2022]
|
9
|
Inferiority complex: why do sensory ion channels multimerize? Biochem Soc Trans 2022; 50:213-222. [PMID: 35166323 PMCID: PMC9022975 DOI: 10.1042/bst20211002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/17/2022]
Abstract
Peripheral somatosensory nerves are equipped with versatile molecular sensors which respond to acute changes in the physical environment. Most of these sensors are ion channels that, when activated, depolarize the sensory nerve terminal causing it to generate action potentials, which is the first step in generation of most somatic sensations, including pain. The activation and inactivation of sensory ion channels is tightly regulated and modulated by a variety of mechanisms. Amongst such mechanisms is the regulation of sensory ion channel activity via direct molecular interactions with other proteins in multi-protein complexes at the plasma membrane of sensory nerve terminals. In this brief review, we will consider several examples of such complexes formed around a prototypic sensory receptor, transient receptor potential vanilloid type 1 (TRPV1). We will also discuss some inherent conceptual difficulties arising from the multitude of reported complexes.
Collapse
|
10
|
Perez-Nievas BG, Johnson L, Beltran-Lobo P, Hughes MM, Gammallieri L, Tarsitano F, Myszczynska MA, Vazquez-Villasenor I, Jimenez-Sanchez M, Troakes C, Wharton SB, Ferraiuolo L, Noble W. Astrocytic C-X-C motif chemokine ligand-1 mediates β-amyloid-induced synaptotoxicity. J Neuroinflammation 2021; 18:306. [PMID: 34963475 PMCID: PMC8715604 DOI: 10.1186/s12974-021-02371-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/22/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Pathological interactions between β-amyloid (Aβ) and tau drive synapse loss and cognitive decline in Alzheimer's disease (AD). Reactive astrocytes, displaying altered functions, are also a prominent feature of AD brain. This large and heterogeneous population of cells are increasingly recognised as contributing to early phases of disease. However, the contribution of astrocytes to Aβ-induced synaptotoxicity in AD is not well understood. METHODS We stimulated mouse and human astrocytes with conditioned medium containing concentrations and species of human Aβ that mimic those in human AD brain. Medium from stimulated astrocytes was collected and immunodepleted of Aβ before being added to naïve rodent or human neuron cultures. A cytokine, identified in unbiased screens of stimulated astrocyte media and in postmortem human AD brain lysates was also applied to neurons, including those pre-treated with a chemokine receptor antagonist. Tau mislocalisation, synaptic markers and dendritic spine numbers were measured in cultured neurons and organotypic brain slice cultures. RESULTS We found that conditioned medium from stimulated astrocytes induces exaggerated synaptotoxicity that is recapitulated following spiking of neuron culture medium with recombinant C-X-C motif chemokine ligand-1 (CXCL1), a chemokine upregulated in AD brain. Antagonism of neuronal C-X-C motif chemokine receptor 2 (CXCR2) prevented synaptotoxicity in response to CXCL1 and Aβ-stimulated astrocyte secretions. CONCLUSIONS Our data indicate that astrocytes exacerbate the synaptotoxic effects of Aβ via interactions of astrocytic CXCL1 and neuronal CXCR2 receptors, highlighting this chemokine-receptor pair as a novel target for therapeutic intervention in AD.
Collapse
Affiliation(s)
- Beatriz G Perez-Nievas
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London, SE5 9RX, UK.
| | - Louisa Johnson
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London, SE5 9RX, UK
| | - Paula Beltran-Lobo
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London, SE5 9RX, UK
| | - Martina M Hughes
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London, SE5 9RX, UK
| | - Luciana Gammallieri
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London, SE5 9RX, UK
| | - Francesca Tarsitano
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London, SE5 9RX, UK
| | - Monika A Myszczynska
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, S10 2HQ, UK
| | - Irina Vazquez-Villasenor
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, S10 2HQ, UK
| | - Maria Jimenez-Sanchez
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London, SE5 9RX, UK
| | - Claire Troakes
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London, SE5 9RX, UK
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, S10 2HQ, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, S10 2HQ, UK
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London, SE5 9RX, UK.
| |
Collapse
|
11
|
Imaging intracellular protein interactions/activity in neurons using 2-photon fluorescence lifetime imaging microscopy. Neurosci Res 2021; 179:31-38. [PMID: 34666101 DOI: 10.1016/j.neures.2021.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022]
Abstract
Through the decades, 2-photon fluorescence microscopy has allowed visualization of microstructures, such as synapses, with high spatial resolution in deep brain tissue. However, signal transduction, such as protein activity and protein-protein interaction in neurons in tissues and in vivo, has remained elusive because of the technical difficulty of observing biochemical reactions at the level of subcellular resolution in light-scattering tissues. Recently, 2-photon fluorescence microscopy combined with fluorescence lifetime imaging microscopy (2pFLIM) has enabled visualization of various protein activities and protein-protein interactions at submicrometer resolution in tissue with a reasonable temporal resolution. Thus far, 2pFLIM has been extensively applied for imaging kinase and small GTPase activation in dendritic spines of hippocampal neurons in slice cultures. However, it has been recently applied to various subcellular structures, such as axon terminals and nuclei, and has increased our understanding of spatially organized molecular dynamics. One of the future directions of 2pFLIM utilization is to combine various optogenetic tools for manipulating protein activity. This combination allows the activation of specific proteins with light and visualization of its readout as the activation of downstream molecules. Here, we have introduced the recent application of 2pFLIM for neurons and present the utilization of a new optogenetic tool in combination with 2pFLIM.
Collapse
|
12
|
Sompol P, Gollihue JL, Kraner SD, Artiushin IA, Cloyd RA, Chishti EA, Koren SA, Nation GK, Abisambra JF, Huzian O, Nagy LI, Santha M, Hackler L, Puskas LG, Norris CM. Q134R: Small chemical compound with NFAT inhibitory properties improves behavioral performance and synapse function in mouse models of amyloid pathology. Aging Cell 2021; 20:e13416. [PMID: 34117818 PMCID: PMC8282246 DOI: 10.1111/acel.13416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/30/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022] Open
Abstract
Inhibition of the protein phosphatase calcineurin (CN) ameliorates pathophysiologic and cognitive changes in aging rodents and mice with aging-related Alzheimer's disease (AD)-like pathology. However, concerns over adverse effects have slowed the transition of common CN-inhibiting drugs to the clinic for the treatment of AD and AD-related disorders. Targeting substrates of CN, like the nuclear factor of activated T cells (NFATs), has been suggested as an alternative, safer approach to CN inhibitors. However, small chemical inhibitors of NFATs have only rarely been described. Here, we investigate a newly developed neuroprotective hydroxyquinoline derivative (Q134R) that suppresses NFAT signaling, without inhibiting CN activity. Q134R partially inhibited NFAT activity in primary rat astrocytes, but did not prevent CN-mediated dephosphorylation of a non-NFAT target, either in vivo, or in vitro. Acute (≤1 week) oral delivery of Q134R to APP/PS1 (12 months old) or wild-type mice (3-4 months old) infused with oligomeric Aβ peptides led to improved Y maze performance. Chronic (≥3 months) oral delivery of Q134R appeared to be safe, and, in fact, promoted survival in wild-type (WT) mice when given for many months beyond middle age. Finally, chronic delivery of Q134R to APP/PS1 mice during the early stages of amyloid pathology (i.e., between 6 and 9 months) tended to reduce signs of glial reactivity, prevented the upregulation of astrocytic NFAT4, and ameliorated deficits in synaptic strength and plasticity, without noticeably altering parenchymal Aβ plaque pathology. The results suggest that Q134R is a promising drug for treating AD and aging-related disorders.
Collapse
Affiliation(s)
- Pradoldej Sompol
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Jenna L. Gollihue
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Susan D. Kraner
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Irina A. Artiushin
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Ryan A. Cloyd
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Emad A. Chishti
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Shon A. Koren
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Grant K. Nation
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| | - Jose F. Abisambra
- Center for Translational Research in Neurodegenerative Disease University of Florida Gainesville FL USA
| | | | | | | | | | | | - Christopher M. Norris
- Sanders‐Brown Center on Aging University of Kentucky College of Medicine Lexington KY USA
| |
Collapse
|
13
|
Novel Botanical Therapeutic NB-02 Effectively Treats Alzheimer's Neuropathophysiology in an APP/PS1 Mouse Model. eNeuro 2021; 8:ENEURO.0389-20.2021. [PMID: 33926907 PMCID: PMC8146489 DOI: 10.1523/eneuro.0389-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/29/2022] Open
Abstract
Alzheimer’s disease (AD) is an incurable neurodegenerative disorder and a major cause of dementia. Some of the hallmarks of AD include presence of amyloid plaques in brain parenchyma, calcium dysregulation within individual neurons, and neuroinflammation. A promising therapeutic would reverse or stymie these pathophysiologies in an animal model of AD. We tested the effect of NB-02, previously known as DA-9803, a novel multimodal therapeutic, on amyloid deposition, neuronal calcium regulation and neuroinflammation in 8- to 10-month-old APP/PS1 mice, an animal model of AD. In vivo multiphoton microscopy revealed that two-month-long administration of NB-02 halted amyloid plaque deposition and cleared amyloid in the cortex. Postmortem analysis verified NB-02-dependent decrease in plaque deposition in the cortex as well as hippocampus. Furthermore, drug treatment reversed neuronal calcium elevations, thus restoring neuronal function. Finally, NB-02 restored spine density and transformed the morphology of astrocytes as well as microglia to a more phagocytic state, affecting neuroinflammation. NB-02 was effective at reversing AD neuropathophysiology in an animal model. Therefore, in addition to serving as a promising preventative agent, NB-02 holds potential as a treatment for AD in the clinic.
Collapse
|
14
|
A53T Mutant Alpha-Synuclein Induces Tau-Dependent Postsynaptic Impairment Independently of Neurodegenerative Changes. J Neurosci 2018; 38:9754-9767. [PMID: 30249789 DOI: 10.1523/jneurosci.0344-18.2018] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022] Open
Abstract
Abnormalities in α-synuclein are implicated in the pathogenesis of Parkinson's disease (PD). Because α-synuclein is highly concentrated within presynaptic terminals, presynaptic dysfunction has been proposed as a potential pathogenic mechanism. Here, we report novel, tau-dependent, postsynaptic deficits caused by A53T mutant α-synuclein, which is linked to familial PD. We analyzed synaptic activity in hippocampal slices and cultured hippocampal neurons from transgenic mice of either sex expressing human WT, A53T, and A30P α-synuclein. Increased α-synuclein expression leads to decreased spontaneous synaptic vesicle release regardless of genotype. However, only those neurons expressing A53T α-synuclein exhibit postsynaptic dysfunction, including decreased miniature postsynaptic current amplitude and decreased AMPA to NMDA receptor current ratio. We also found that long-term potentiation and spatial learning were impaired by A53T α-synuclein expression. Mechanistically, postsynaptic dysfunction requires glycogen synthase kinase 3β-mediated tau phosphorylation, tau mislocalization to dendritic spines, and calcineurin-dependent AMPA receptor internalization. Previous studies reveal that human A53T α-synuclein has a high aggregation potential, which may explain the mutation's unique capacity to induce postsynaptic deficits. However, patients with sporadic PD with severe tau pathology are also more likely to have early onset cognitive decline. Our results here show a novel, functional role for tau: mediating the effects of α-synuclein on postsynaptic signaling. Therefore, the unraveled tau-mediated signaling cascade may contribute to the pathogenesis of dementia in A53T α-synuclein-linked familial PD cases, as well as some subgroups of PD cases with extensive tau pathology.SIGNIFICANCE STATEMENT Here, we report mutation-specific postsynaptic deficits that are caused by A53T mutant α-synuclein, which is linked to familial Parkinson's disease (PD). The overexpression of WT, A53T, or A30P human α-synuclein leads to decreased spontaneous synaptic vesicle release. However, only those neurons expressing A53T α-synuclein exhibit tau phosphorylation-dependent postsynaptic dysfunction, which is characterized by decreased miniature postsynaptic current amplitude and decreased AMPA to NMDA receptor current ratio. The mutation-specific postsynaptic effects caused by human A53T α-synuclein will help us better understand the neurobiological basis of this specific form of familial PD. The differential effects of exogenous human WT, A53T, A30P, and E46K α-synuclein on glutamatergic synaptic responses will help to explain the clinical heterogeneity of sporadic and familial PD.
Collapse
|
15
|
Neuroprotective effects of cordycepin inhibit Aβ-induced apoptosis in hippocampal neurons. Neurotoxicology 2018; 68:73-80. [DOI: 10.1016/j.neuro.2018.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/26/2018] [Accepted: 07/15/2018] [Indexed: 12/12/2022]
|
16
|
Sompol P, Norris CM. Ca 2+, Astrocyte Activation and Calcineurin/NFAT Signaling in Age-Related Neurodegenerative Diseases. Front Aging Neurosci 2018; 10:199. [PMID: 30038565 PMCID: PMC6046440 DOI: 10.3389/fnagi.2018.00199] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
Mounting evidence supports a fundamental role for Ca2+ dysregulation in astrocyte activation. Though the activated astrocyte phenotype is complex, cell-type targeting approaches have revealed a number of detrimental roles of activated astrocytes involving neuroinflammation, release of synaptotoxic factors and loss of glutamate regulation. Work from our lab and others has suggested that the Ca2+/calmodulin dependent protein phosphatase, calcineurin (CN), provides a critical link between Ca2+ dysregulation and the activated astrocyte phenotype. A proteolyzed, hyperactivated form of CN appears at high levels in activated astrocytes in both human tissue and rodent tissue around regions of amyloid and vascular pathology. Similar upregulation of the CN-dependent transcription factor nuclear factor of activated T cells (NFAT4) also appears in activated astrocytes in mouse models of Alzheimer's disease (ADs) and traumatic brain injury (TBI). Major consequences of hyperactivated CN/NFAT4 signaling in astrocytes are neuroinflammation, synapse dysfunction and glutamate dysregulation/excitotoxicity, which will be covered in this review article.
Collapse
Affiliation(s)
- Pradoldej Sompol
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Christopher M Norris
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States.,Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
17
|
Kara E, Marks JD, Roe AD, Commins C, Fan Z, Calvo-Rodriguez M, Wegmann S, Hudry E, Hyman BT. A flow cytometry-based in vitro assay reveals that formation of apolipoprotein E (ApoE)-amyloid beta complexes depends on ApoE isoform and cell type. J Biol Chem 2018; 293:13247-13256. [PMID: 29950521 DOI: 10.1074/jbc.ra117.001388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 05/21/2018] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein E (ApoE) is a secreted apolipoprotein with three isoforms, E2, E3, and E4, that binds to lipids and facilitates their transport in the extracellular environment of the brain and the periphery. The E4 allele is a major genetic risk factor for the sporadic form of Alzheimer's disease (AD), and studies of human brain and mouse models have revealed that E4 significantly exacerbates the deposition of amyloid beta (Aβ). It has been suggested that this deposition could be attributed to the formation of soluble ApoE isoform-specific ApoE-Aβ complexes. However, previous studies have reported conflicting results regarding the directionality and strength of those interactions. In this study, using a series of flow cytometry assays that maintain the physiological integrity of ApoE-Aβ complexes, we systematically assessed the association of Aβ with ApoE2, E3, or E4. We used ApoE secreted from HEK cells or astrocytes overexpressing ApoE fused with a GFP tag. As a source of soluble Aβ peptide, we used synthetic Aβ40 or Aβ42 or physiological Aβ secreted from CHO cell lines overexpressing WT or V717F variant amyloid precursor protein (APP). We observed significant interactions between the different ApoE isoforms and Aβ, with E4 interacting with Aβ more strongly than the E2 and E3 isoforms. We also found subtle differences depending on the Aβ type and the ApoE-producing cell type. In conclusion, these results indicate that the strength of the ApoE-Aβ association depends on the source of Aβ or ApoE.
Collapse
Affiliation(s)
- Eleanna Kara
- From the Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| | - Jordan D Marks
- From the Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| | - Allyson D Roe
- From the Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| | - Caitlin Commins
- From the Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| | - Zhanyun Fan
- From the Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| | - Maria Calvo-Rodriguez
- From the Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| | - Susanne Wegmann
- From the Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| | - Eloise Hudry
- From the Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| | - Bradley T Hyman
- From the Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| |
Collapse
|
18
|
Benarroch EE. Glutamatergic synaptic plasticity and dysfunction in Alzheimer disease. Neurology 2018; 91:125-132. [DOI: 10.1212/wnl.0000000000005807] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
19
|
Stallings NR, O'Neal MA, Hu J, Kavalali ET, Bezprozvanny I, Malter JS. Pin1 mediates Aβ 42-induced dendritic spine loss. Sci Signal 2018; 11:11/522/eaap8734. [PMID: 29559586 PMCID: PMC6136423 DOI: 10.1126/scisignal.aap8734] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Early-stage Alzheimer's disease is characterized by the loss of dendritic spines in the neocortex of the brain. This phenomenon precedes tau pathology, plaque formation, and neurodegeneration and likely contributes to synaptic loss, memory impairment, and behavioral changes in patients. Studies suggest that dendritic spine loss is induced by soluble, multimeric amyloid-β (Aβ42), which, through postsynaptic signaling, activates the protein phosphatase calcineurin. We investigated how calcineurin caused spine pathology and found that the cis-trans prolyl isomerase Pin1 was a critical downstream target of Aβ42-calcineurin signaling. In dendritic spines, Pin1 interacted with and was dephosphorylated by calcineurin, which rapidly suppressed its isomerase activity. Knockout of Pin1 or exposure to Aβ42 induced the loss of mature dendritic spines, which was prevented by exogenous Pin1. The calcineurin inhibitor FK506 blocked dendritic spine loss in Aβ42-treated wild-type cells but had no effect on Pin1-null neurons. These data implicate Pin1 in dendritic spine maintenance and synaptic loss in early Alzheimer's disease.
Collapse
Affiliation(s)
- Nancy R Stallings
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Melissa A O'Neal
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jie Hu
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ege T Kavalali
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ilya Bezprozvanny
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - James S Malter
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
20
|
Wild AR, Dell'Acqua ML. Potential for therapeutic targeting of AKAP signaling complexes in nervous system disorders. Pharmacol Ther 2017; 185:99-121. [PMID: 29262295 DOI: 10.1016/j.pharmthera.2017.12.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A common feature of neurological and neuropsychiatric disorders is a breakdown in the integrity of intracellular signal transduction pathways. Dysregulation of ion channels and receptors in the cell membrane and the enzymatic mediators that link them to intracellular effectors can lead to synaptic dysfunction and neuronal death. However, therapeutic targeting of these ubiquitous signaling elements can lead to off-target side effects due to their widespread expression in multiple systems of the body. A-kinase anchoring proteins (AKAPs) are multivalent scaffolding proteins that compartmentalize a diverse range of receptor and effector proteins to streamline signaling within nanodomain signalosomes. A number of essential neurological processes are known to critically depend on AKAP-directed signaling and an understanding of the role AKAPs play in nervous system disorders has emerged in recent years. Selective targeting of AKAP protein-protein interactions may be a means to uncouple pathologically active signaling pathways in neurological disorders with a greater degree of specificity. In this review we will discuss the role of AKAPs in both regulating normal nervous system function and dysfunction associated with disease, and the potential for therapeutic targeting of AKAP signaling complexes.
Collapse
Affiliation(s)
- Angela R Wild
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
21
|
Reddy PH, Manczak M, Kandimalla R. Mitochondria-targeted small molecule SS31: a potential candidate for the treatment of Alzheimer's disease. Hum Mol Genet 2017; 26:1483-1496. [PMID: 28186562 DOI: 10.1093/hmg/ddx052] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/07/2017] [Indexed: 12/11/2022] Open
Abstract
The objective of our study was to better understand the protective effects of the mitochondria-targeted tetra-peptide SS31 against amyloid beta (Aβ)-induced mitochondrial and synaptic toxicities in Alzheimer's disease (AD) progression. Using intraperitoneal injections, we administered SS31 to an AD mouse model (APP) over a period of 6 weeks, beginning when the APP mice were 12 months of age. We studied their cortical tissues after SS31 treatment and determined that SS31 crosses the blood brain barrier and reaches mitochondrial sites of free radical production. We also determined: (1) plasma and brain levels of SS31, (2) mRNA levels and levels of mitochondrial dynamics, biogenesis proteins and synaptic proteins, (3) soluble Aβ levels and immunoreactivity of mutant APP and Aβ levels and (4) mitochondrial function by measuring H2O2, lipid peroxidation, cytochrome c oxidase activity and mitochondrial ATP. We found reduced mRNA expression and reduced protein levels of fission genes, and increased levels of mitochondrial fusion, biogenesis and synaptic genes in SS31-treated APP mice relative to SS31-untreated APP mice. Immunofluorescence analysis revealed reduced full-length mutant APP and soluble/insoluble Aβ levels in the SS31-treated APP mice. Sandwich ELISA assays revealed significantly reduced soluble Aβ levels in the SS31-treated APP mice relative to the untreated APP mice. Mitochondrial function was maintained in the SS31-treated APP mice over the 6 weeks of SS31 treatment compared with mitochondrial function in the untreated APP mice. Our findings indicate that SS31 treatment reduces Aβ production, reduces mitochondrial dysfunction, maintains mitochondrial dynamics and enhances mitochondrial biogenesis and synaptic activity in APP mice; and that SS31 may confer protective effects against mitochondrial and synaptic toxicities in APP transgenic mice.
Collapse
Affiliation(s)
- P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, MS 9424 Lubbock, TX 79430, USA.,Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, MS 7495 Lubbock, TX 79413, USA.,Cell Biology & Biochemistry Department.,Pharmacology & Neuroscience Department.,Neurology Department.,Speech, Language and Hearing Sciences Department, Texas Tech University Health Sciences Center, MS 9424 Lubbock, TX 79430, USA.,Department of Public Health, Graduate School of Biomedical Sciences, MS 9424 Lubbock, TX 79430, USA
| | - Maria Manczak
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, MS 9424 Lubbock, TX 79430, USA
| | - Ramesh Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, MS 9424 Lubbock, TX 79430, USA
| |
Collapse
|
22
|
Arbel-Ornath M, Hudry E, Boivin JR, Hashimoto T, Takeda S, Kuchibhotla KV, Hou S, Lattarulo CR, Belcher AM, Shakerdge N, Trujillo PB, Muzikansky A, Betensky RA, Hyman BT, Bacskai BJ. Soluble oligomeric amyloid-β induces calcium dyshomeostasis that precedes synapse loss in the living mouse brain. Mol Neurodegener 2017; 12:27. [PMID: 28327181 PMCID: PMC5361864 DOI: 10.1186/s13024-017-0169-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/17/2017] [Indexed: 02/06/2023] Open
Abstract
Background Amyloid-β oligomers (oAβ) are thought to mediate neurotoxicity in Alzheimer’s disease (AD), and previous studies in AD transgenic mice suggest that calcium dysregulation may contribute to these pathological effects. Even though AD mouse models remain a valuable resource to investigate amyloid neurotoxicity, the concomitant presence of soluble Aβ species, fibrillar Aβ, and fragments of amyloid precursor protein (APP) complicate the interpretation of the phenotypes. Method To explore the specific contribution of soluble oligomeric Aβ (oAβ) to calcium dyshomeostasis and synaptic morphological changes, we acutely exposed the healthy mouse brain, at 3 to 6 months of age, to naturally occurring soluble oligomers and investigated their effect on calcium levels using in vivo multiphoton imaging. Results We observed a dramatic increase in the levels of neuronal resting calcium, which was dependent upon extracellular calcium influx and activation of NMDA receptors. Ryanodine receptors, previously implicated in AD models, did not appear to be primarily involved using this experimental setting. We used the high resolution cortical volumes acquired in-vivo to measure the effect on synaptic densities and observed that, while spine density remained stable within the first hour of oAβ exposure, a significant decrease in the number of dendritic spines was observed 24 h post treatment, despite restoration of intraneuronal calcium levels at this time point. Conclusions These observations demonstrate a specific effect of oAβ on NMDA-mediated calcium influx, which triggers synaptic collapse in vivo. Moreover, this work leverages a method to quantitatively measure calcium concentration at the level of neuronal processes, cell bodies and single synaptic elements repeatedly and thus can be applicable to testing putative drugs and/or other intervention methodologies. Electronic supplementary material The online version of this article (doi:10.1186/s13024-017-0169-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michal Arbel-Ornath
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St., Charlestown, MA, 02129, USA
| | - Eloise Hudry
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St., Charlestown, MA, 02129, USA
| | - Josiah R Boivin
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St., Charlestown, MA, 02129, USA
| | - Tadafumi Hashimoto
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St., Charlestown, MA, 02129, USA.,Department of Neuropathology, The University of Tokyo, Tokyo, Japan
| | - Shuko Takeda
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St., Charlestown, MA, 02129, USA
| | - Kishore V Kuchibhotla
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St., Charlestown, MA, 02129, USA.,Skirball Institute, NYU School of Medicine, New York, NY, 10016, USA
| | - Steven Hou
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St., Charlestown, MA, 02129, USA
| | - Carli R Lattarulo
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St., Charlestown, MA, 02129, USA
| | - Arianna M Belcher
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St., Charlestown, MA, 02129, USA
| | - Naomi Shakerdge
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St., Charlestown, MA, 02129, USA
| | - Pariss B Trujillo
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St., Charlestown, MA, 02129, USA
| | - Alona Muzikansky
- Department of Biostatistics, Harvard School of Public Health, 50 Staniford Street, Boston, MA, USA
| | - Rebecca A Betensky
- Department of Biostatistics, Harvard School of Public Health, 50 Staniford Street, Boston, MA, USA
| | - Bradley T Hyman
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St., Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St., Charlestown, MA, 02129, USA.
| |
Collapse
|
23
|
Manocha GD, Ghatak A, Puig KL, Kraner SD, Norris CM, Combs CK. NFATc2 Modulates Microglial Activation in the AβPP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2017; 58:775-787. [PMID: 28505967 PMCID: PMC6265241 DOI: 10.3233/jad-151203] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) brains are characterized by fibrillar amyloid-β (Aβ) peptide containing plaques and associated reactive microglia. The proinflammatory phenotype of the microglia suggests that they may negatively affect disease course and contribute to behavioral decline. This hypothesis predicts that attenuating microglial activation may provide benefit against disease. Prior work from our laboratory and others has characterized a role for the transcription factor, nuclear factor of activated T cells (NFAT), in regulating microglial phenotype in response to different stimuli, including Aβ peptide. We observed that the NFATc2 isoform was the most highly expressed in murine microglia cultures, and inhibition or deletion of NFATc2 was sufficient to attenuate the ability of the microglia to secrete cytokines. In order to determine whether the NFATc2 isoform, in particular, was a valid immunomodulatory target in vivo, we crossed an NFATc2-/- line to a well-known AD mouse model, an AβPP/PS1 mouse line. As expected, the AβPP/PS1 x NFATc2-/- mice had attenuated cytokine levels compared to AβPP/PS1 mice as well as reduced microgliosis and astrogliosis with no effect on plaque load. Although some species differences in relative isoform expression may exist between murine and human microglia, it appears that microglial NFAT activity is a viable target for modulating the proinflammatory changes that occur during AD.
Collapse
Affiliation(s)
- Gunjan D. Manocha
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Atreyi Ghatak
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Kendra L. Puig
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Susan D. Kraner
- Department of Pharmacology and Nutritional Sciences and the Sanders Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Christopher M. Norris
- Department of Pharmacology and Nutritional Sciences and the Sanders Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Colin K. Combs
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| |
Collapse
|
24
|
Wegmann S, Nicholls S, Takeda S, Fan Z, Hyman BT. Formation, release, and internalization of stable tau oligomers in cells. J Neurochem 2016; 139:1163-1174. [PMID: 27731899 DOI: 10.1111/jnc.13866] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 09/26/2016] [Accepted: 10/04/2016] [Indexed: 11/30/2022]
Abstract
Tau is a neuronal microtubule-binding protein that, in Alzheimer's disease and other neurodegenerative diseases, can form oligomeric and large fibrillar aggregates, which deposit in neurofibrillary tangles. Tau's physiological state of multimerization appears to vary across conditions, and a stable dimeric form of soluble tau has been suggested from experiments using recombinant tau in vitro. We tested if tau dimerization or oligomerization, also occurs in cells, and if soluble tau oligomers are relevant for the release and internalization of tau. We developed a sensitive tau split-luciferase assay to show the rapid intracellular formation of stable tau dimers that are released and taken up by cells. Our data further suggest that tau dimerization can be accelerated slightly by aggregation catalysts. We conclude that tau oligomers are a stable physiological form of tau, and that tau oligomerization does not necessarily lead to tau aggregation.
Collapse
Affiliation(s)
- Susanne Wegmann
- Department of Neurology, Massachusetts General Hospital, MassGeneral Institute of Neurodegenerative Diseases (MIND), Charlestown, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Samantha Nicholls
- Department of Neurology, Massachusetts General Hospital, MassGeneral Institute of Neurodegenerative Diseases (MIND), Charlestown, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shuko Takeda
- Department of Neurology, Massachusetts General Hospital, MassGeneral Institute of Neurodegenerative Diseases (MIND), Charlestown, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhanyun Fan
- Department of Neurology, Massachusetts General Hospital, MassGeneral Institute of Neurodegenerative Diseases (MIND), Charlestown, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, MassGeneral Institute of Neurodegenerative Diseases (MIND), Charlestown, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases. J Aging Res 2016; 2016:5081021. [PMID: 27597899 PMCID: PMC5002468 DOI: 10.1155/2016/5081021] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/21/2016] [Indexed: 12/27/2022] Open
Abstract
The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT) signaling pathway, a Ca2+/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca2+-ATPase (PMCA) and regulator of calcineurin 1 (RCAN1) also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects.
Collapse
|
26
|
Zoltowska KM, Maesako M, Berezovska O. Interrelationship between Changes in the Amyloid β 42/40 Ratio and Presenilin 1 Conformation. Mol Med 2016; 22:329-337. [PMID: 27391800 DOI: 10.2119/molmed.2016.00127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/05/2016] [Indexed: 11/06/2022] Open
Abstract
The ratio of the longer (i.e., Aβ42/Aβ43) to shorter (i.e. Aβ40) species is a critical factor determining amyloid fibril formation, neurotoxicity and progression of the amyloid pathology in Alzheimer's disease. The relative levels of the different Aβ species are affected by activity and conformation of the γ-secretase complex catalytic component - presenilin 1 (PS1). The enzyme exists in a dynamic equilibrium of the conformational states, with so-called "close" conformation associated with the shift of the γ-secretase cleavage towards the production of longer, neurotoxic Aβ species. In the current study, fluorescence lifetime imaging microscopy, spectral Förster resonance energy transfer, calcium imaging and cytotoxicity assays were utilized to explore reciprocal link between the Aβ42 and Aβ40 peptides present at various ratios and PS1 conformation in primary neurons. We report that exposure to Aβ peptides at a relatively high ratio of Aβ42/40 causes conformational change within the PS1 subdomain architecture towards the pathogenic "closed" state. Mechanistically, the Aβ42/40 peptides present at the relatively high ratio increase intracellular calcium levels, which were shown to trigger pathogenic PS1 conformation. This indicates that there is a reciprocal crosstalk between the extracellular Aβ peptides and PS1 conformation within a neuron, with Aβ40 showing some protective effect. The pathogenic shift within the PS1 domain architecture may further shift the production of Aβ peptides towards the longer, neurotoxic Aβ species. These findings link elevated calcium, Aβ42 and PS1/γ-secretase conformation, and offer possible mechanistic explanation of the impending exacerbation of the amyloid pathology.
Collapse
Affiliation(s)
- Katarzyna Marta Zoltowska
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Department of Neurology, Charlestown, Massachusetts, United States of America
| | - Masato Maesako
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Department of Neurology, Charlestown, Massachusetts, United States of America
| | - Oksana Berezovska
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Department of Neurology, Charlestown, Massachusetts, United States of America
| |
Collapse
|
27
|
Dallérac G, Rouach N. Astrocytes as new targets to improve cognitive functions. Prog Neurobiol 2016; 144:48-67. [PMID: 26969413 DOI: 10.1016/j.pneurobio.2016.01.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/07/2016] [Accepted: 01/24/2016] [Indexed: 01/09/2023]
Abstract
Astrocytes are now viewed as key elements of brain wiring as well as neuronal communication. Indeed, they not only bridge the gap between metabolic supplies by blood vessels and neurons, but also allow fine control of neurotransmission by providing appropriate signaling molecules and insulation through a tight enwrapping of synapses. Recognition that astroglia is essential to neuronal communication is nevertheless fairly recent and the large body of evidence dissecting such role has focused on the synaptic level by identifying neuro- and gliotransmitters uptaken and released at synaptic or extrasynaptic sites. Yet, more integrated research deciphering the impact of astroglial functions on neuronal network activity have led to the reasonable assumption that the role of astrocytes in supervising synaptic activity translates in influencing neuronal processing and cognitive functions. Several investigations using recent genetic tools now support this notion by showing that inactivating or boosting astroglial function directly affects cognitive abilities. Accordingly, brain diseases resulting in impaired cognitive functions have seen their physiopathological mechanisms revisited in light of this primary protagonist of brain processing. We here provide a review of the current knowledge on the role of astrocytes in cognition and in several brain diseases including neurodegenerative disorders, psychiatric illnesses, as well as other conditions such as epilepsy. Potential astroglial therapeutic targets are also discussed.
Collapse
Affiliation(s)
- Glenn Dallérac
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University, Paris, France.
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University, Paris, France.
| |
Collapse
|
28
|
Unsain N, Barker PA. New Views on the Misconstrued: Executioner Caspases and Their Diverse Non-apoptotic Roles. Neuron 2016; 88:461-74. [PMID: 26539888 DOI: 10.1016/j.neuron.2015.08.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Initially characterized for their roles in apoptosis, executioner caspases have emerged as important regulators of an array of cellular activities. This is especially true in the nervous system, where sublethal caspase activity has been implicated in axonal pathfinding and branching, axonal degeneration, dendrite pruning, regeneration, long-term depression, and metaplasticity. Here we examine the roles of sublethal executioner caspase activity in nervous system development and maintenance, consider the mechanisms that locally activate and restrain these potential killers, and discuss how their activity be subverted in neurodegenerative disease.
Collapse
Affiliation(s)
- Nicolas Unsain
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, Instituto Nacional de Investigación Médica Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Friuli 2434, Córdoba (5016), Argentina
| | - Philip A Barker
- Irving K. Barber School of Arts and Sciences, University of British Columbia, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
29
|
Gao L, Tian M, Zhao HY, Xu QQ, Huang YM, Si QC, Tian Q, Wu QM, Hu XM, Sun LB, McClintock SM, Zeng Y. TrkB activation by 7, 8-dihydroxyflavone increases synapse AMPA subunits and ameliorates spatial memory deficits in a mouse model of Alzheimer's disease. J Neurochem 2015; 136:620-36. [DOI: 10.1111/jnc.13432] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/20/2015] [Accepted: 11/06/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Lei Gao
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Mi Tian
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Hong-Yun Zhao
- The Fifth Ward of Neurology Rehabilitation Center; Hangzhou Armed Police Hospital; Hangzhou China
| | - Qian-Qian Xu
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Yu-Ming Huang
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Qun-Cao Si
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Qing Tian
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Qing-Ming Wu
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Xia-Min Hu
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Li-Bo Sun
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Shawn M. McClintock
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
- Division of Brain Stimulation and Neurophysiology; Department of Psychiatry and Behavioral Sciences; Duke University School of Medicine; Durham North Carolina USA
- Department of Psychiatry; UT Southwestern Medical Center; Dallas Texas USA
| | - Yan Zeng
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| |
Collapse
|
30
|
Umeda T, Ramser EM, Yamashita M, Nakajima K, Mori H, Silverman MA, Tomiyama T. Intracellular amyloid β oligomers impair organelle transport and induce dendritic spine loss in primary neurons. Acta Neuropathol Commun 2015; 3:51. [PMID: 26293809 PMCID: PMC4546183 DOI: 10.1186/s40478-015-0230-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/09/2015] [Indexed: 12/15/2022] Open
Abstract
Introduction Synaptic dysfunction and intracellular transport defects are early events in Alzheimer’s disease (AD). Extracellular amyloid β (Aβ) oligomers cause spine alterations and impede the transport of proteins and organelles such as brain-derived neurotrophic factor (BDNF) and mitochondria that are required for synaptic function. Meanwhile, intraneuronal accumulation of Aβ precedes its extracellular deposition and is also associated with synaptic dysfunction in AD. However, the links between intracellular Aβ, spine alteration, and mechanisms that support synaptic maintenance such as organelle trafficking are poorly understood. Results We compared the effects of wild-type and Osaka (E693Δ)-mutant amyloid precursor proteins: the former secretes Aβ into extracellular space and the latter accumulates Aβ oligomers within cells. First we investigated the effects of intracellular Aβ oligomers on dendritic spines in primary neurons and their tau-dependency using tau knockout neurons. We found that intracellular Aβ oligomers caused a reduction in mushroom, or mature spines, independently of tau. We also found that intracellular Aβ oligomers significantly impaired the intracellular transport of BDNF, mitochondria, and recycling endosomes: cargoes essential for synaptic maintenance. A reduction in BDNF transport by intracellular Aβ oligomers was also observed in tau knockout neurons. Conclusions Our findings indicate that intracellular Aβ oligomers likely contribute to early synaptic pathology in AD and argue against the consensus that Aβ-induced spine loss and transport defects require tau.
Collapse
|
31
|
Sui HJ, Zhang LL, Liu Z, Jin Y. Atorvastatin prevents Aβ oligomer-induced neurotoxicity in cultured rat hippocampal neurons by inhibiting Tau cleavage. Acta Pharmacol Sin 2015; 36:553-64. [PMID: 25891085 DOI: 10.1038/aps.2014.161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/10/2014] [Indexed: 01/01/2023] Open
Abstract
AIM The proteolytic cleavage of Tau is involved in Aβ-induced neuronal dysfunction and cell death. In this study, we investigated whether atorvastatin could prevent Tau cleavage and hence prevent Aβ1-42 oligomer (AβO)-induced neurotoxicity in cultured cortical neurons. METHODS Cultured rat hippocampal neurons were incubated in the presence of AβOs (1.25 μmol/L) with or without atorvastatin pretreatment. ATP content and LDH in the culture medium were measured to assess the neuronal viability. Caspase-3/7 and calpain protease activities were detected. The levels of phospho-Akt, phospho-Erk1/2, phospho-GSK3β, p35 and Tau proteins were measured using Western blotting. RESULTS Treatment of the neurons with AβO significantly decreased the neuronal viability, induced rapid activation of calpain and caspase-3/7 proteases, accompanied by Tau degradation and relatively stable fragments generated in the neurons. AβO also suppressed Akt and Erk1/2 kinase activity, while increased GSK3β and Cdk5 activity in the neurons. Pretreatment with atorvastatin (0.5, 1, 2.5 μmol/L) dose-dependently inhibited AβO-induced activation of calpain and caspase-3/7 proteases, and effectively diminished the generation of Tau fragments, attenuated synaptic damage and increased neuronal survival. Atorvastatin pretreatment also prevented AβO-induced decreases in Akt and Erk1/2 kinase activity and the increases in GSK3β and Cdk5 kinase activity. CONCLUSION Atorvastatin prevents AβO-induced neurotoxicity in cultured rat hippocampal neurons by inhibiting calpain- and caspase-mediated Tau cleavage.
Collapse
|
32
|
Astrocyte physiopathology: At the crossroads of intercellular networking, inflammation and cell death. Prog Neurobiol 2015; 130:86-120. [PMID: 25930681 DOI: 10.1016/j.pneurobio.2015.04.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/15/2015] [Accepted: 04/20/2015] [Indexed: 12/11/2022]
Abstract
Recent breakthroughs in neuroscience have led to the awareness that we should revise our traditional mode of thinking and studying the CNS, i.e. by isolating the privileged network of "intelligent" synaptic contacts. We may instead need to contemplate all the variegate communications occurring between the different neural cell types, and centrally involving the astrocytes. Basically, it appears that a single astrocyte should be considered as a core that receives and integrates information from thousands of synapses, other glial cells and the blood vessels. In turn, it generates complex outputs that control the neural circuitry and coordinate it with the local microcirculation. Astrocytes thus emerge as the possible fulcrum of the functional homeostasis of the healthy CNS. Yet, evidence indicates that the bridging properties of the astrocytes can change in parallel with, or as a result of, the morphological, biochemical and functional alterations these cells undergo upon injury or disease. As a consequence, they have the potential to transform from supportive friends and interactive partners for neurons into noxious foes. In this review, we summarize the currently available knowledge on the contribution of astrocytes to the functioning of the CNS and what goes wrong in various pathological conditions, with a particular focus on Amyotrophic Lateral Sclerosis, Alzheimer's Disease and ischemia. The observations described convincingly demonstrate that the development and progression of several neurological disorders involve the de-regulation of a finely tuned interplay between multiple cell populations. Thus, it seems that a better understanding of the mechanisms governing the integrated communication and detrimental responses of the astrocytes as well as their impact towards the homeostasis and performance of the CNS is fundamental to open novel therapeutic perspectives.
Collapse
|
33
|
Zhang J, Shapiro MS. Mechanisms and dynamics of AKAP79/150-orchestrated multi-protein signalling complexes in brain and peripheral nerve. J Physiol 2015; 594:31-7. [PMID: 25653013 DOI: 10.1113/jphysiol.2014.287698] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/30/2015] [Indexed: 01/24/2023] Open
Abstract
A-kinase anchoring proteins (AKAPs) have emerged as a converging point of diverse signals to achieve spatiotemporal resolution of directed cellular regulation. With the extensive studies of AKAP79/150 in regulation of ion channel activity, the major questions to be posed centre on the mechanism and functional role of synergistic regulation of ion channels by such signalling proteins. In this review, we summarize recent discoveries of AKAP79/150-mediated modulation of voltage-gated neuronal M-type (KCNQ, Kv7) K(+) channels and L-type CaV 1 Ca(2+) channels, on both short- and longer-term time scales, highlighting the dynamics of the macromolecular signalling complexes in brain and peripheral nerve We also discuss several models for the possible mechanisms of these multi-protein assemblies and how they serve the agenda of the neurons in which they occur.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Physiology, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
| | - Mark S Shapiro
- Department of Physiology, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
| |
Collapse
|
34
|
Rojanathammanee L, Floden AM, Manocha GD, Combs CK. Attenuation of microglial activation in a mouse model of Alzheimer's disease via NFAT inhibition. J Neuroinflammation 2015; 12:42. [PMID: 25889879 PMCID: PMC4355356 DOI: 10.1186/s12974-015-0255-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/25/2015] [Indexed: 12/21/2022] Open
Abstract
Background Amyloid β (Aβ) peptide is hypothesized to stimulate microglia to acquire their characteristic proinflammatory phenotype in Alzheimer’s disease (AD) brains. The specific mechanisms by which Aβ leads to microglial activation remain an area of interest for identifying attractive molecular targets for intervention. Based upon the fact that microglia express the proinflammatory transcription factor, nuclear factor of activated T cells (NFAT), we hypothesized that NFAT activity is required for the Aβ-stimulated microgliosis that occurs during disease. Methods Primary murine microglia cultures were stimulated with Aβ in the absence or presence of NFAT inhibitors, FK506 and tat-VIVIT peptide, to quantify secretion of cytokines, neurotoxins, or Aβ phagocytosis. A transgenic mouse model of AD, APP/PS1, was treated subcutaneously via mini-osmotic pumps with FK506 or tat-VIVIT to quantify effects on cytokines, microgliosis, plaque load, and memory. Results Expression of various NFAT isoforms was verified in primary murine microglia through Western blot analysis. Microglial cultures were stimulated with Aβ fibrils in the absence or presence of the NFAT inhibitors, FK506 and tat-VIVIT, to demonstrate that NFAT activity regulated Aβ phagocytosis, neurotoxin secretion, and cytokine secretion. Delivery of FK506 and tat-VIVIT to transgenic APP/PS1 mice attenuated spleen but not brain cytokine levels. However, FK506 and tat-VIVIT significantly attenuated both microgliosis and Aβ plaque load in treated mice compared to controls. Surprisingly, this did not correlate with changes in memory performance via T-maze testing. Conclusions Our findings suggest that development of specific NFAT inhibitors may offer promise as an effective strategy for attenuating the microgliosis and Aβ plaque deposition that occur in AD. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0255-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lalida Rojanathammanee
- Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree Subdistric, Nakhon Ratchasima, 30000, Thailand. .,Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, 504 Hamline Street, Neuroscience Building, Grand Forks, ND, 58203, USA.
| | - Angela M Floden
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, 504 Hamline Street, Neuroscience Building, Grand Forks, ND, 58203, USA.
| | - Gunjan D Manocha
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, 504 Hamline Street, Neuroscience Building, Grand Forks, ND, 58203, USA.
| | - Colin K Combs
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, 504 Hamline Street, Neuroscience Building, Grand Forks, ND, 58203, USA.
| |
Collapse
|
35
|
Dubal DB, Zhu L, Sanchez PE, Worden K, Broestl L, Johnson E, Ho K, Yu GQ, Kim D, Betourne A, Kuro-O M, Masliah E, Abraham CR, Mucke L. Life extension factor klotho prevents mortality and enhances cognition in hAPP transgenic mice. J Neurosci 2015; 35:2358-71. [PMID: 25673831 PMCID: PMC4323521 DOI: 10.1523/jneurosci.5791-12.2015] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 12/06/2014] [Accepted: 12/21/2014] [Indexed: 12/11/2022] Open
Abstract
Aging is the principal demographic risk factor for Alzheimer disease (AD), the most common neurodegenerative disorder. Klotho is a key modulator of the aging process and, when overexpressed, extends mammalian lifespan, increases synaptic plasticity, and enhances cognition. Whether klotho can counteract deficits related to neurodegenerative diseases, such as AD, is unknown. Here we show that elevating klotho expression decreases premature mortality and network dysfunction in human amyloid precursor protein (hAPP) transgenic mice, which simulate key aspects of AD. Increasing klotho levels prevented depletion of NMDA receptor (NMDAR) subunits in the hippocampus and enhanced spatial learning and memory in hAPP mice. Klotho elevation in hAPP mice increased the abundance of the GluN2B subunit of NMDAR in postsynaptic densities and NMDAR-dependent long-term potentiation, which is critical for learning and memory. Thus, increasing wild-type klotho levels or activities improves synaptic and cognitive functions, and may be of therapeutic benefit in AD and other cognitive disorders.
Collapse
Affiliation(s)
- Dena B Dubal
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, Department of Neurology, University of California, San Francisco, California 94158,
| | - Lei Zhu
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, Department of Neurology, University of California, San Francisco, California 94158
| | - Pascal E Sanchez
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, Department of Neurology, University of California, San Francisco, California 94158
| | - Kurtresha Worden
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, Department of Neurology, University of California, San Francisco, California 94158
| | - Lauren Broestl
- Department of Neurology, University of California, San Francisco, California 94158
| | - Erik Johnson
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, Department of Neurology, University of California, San Francisco, California 94158
| | - Kaitlyn Ho
- Gladstone Institute of Neurological Disease, San Francisco, California 94158
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, San Francisco, California 94158
| | - Daniel Kim
- Gladstone Institute of Neurological Disease, San Francisco, California 94158
| | - Alexander Betourne
- Department of Neurology, University of California, San Francisco, California 94158
| | - Makoto Kuro-O
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Eliezer Masliah
- Departments of Neurosciences and Pathology, University of California, San Diego, San Diego, California 92093, and
| | - Carmela R Abraham
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, Department of Neurology, University of California, San Francisco, California 94158,
| |
Collapse
|
36
|
Mehta S, Zhang J. Dynamic visualization of calcium-dependent signaling in cellular microdomains. Cell Calcium 2015; 58:333-41. [PMID: 25703691 DOI: 10.1016/j.ceca.2015.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 11/17/2022]
Abstract
Cells rely on the coordinated action of diverse signaling molecules to sense, interpret, and respond to their highly dynamic external environment. To ensure the specific and robust flow of information, signaling molecules are often spatially organized to form distinct signaling compartments, and our understanding of the molecular mechanisms that guide intracellular signaling hinges on the ability to directly probe signaling events within these cellular microdomains. Ca(2+) signaling in particular owes much of its functional versatility to this type of exquisite spatial regulation. As discussed below, a number of methods have been developed to investigate the mechanistic and functional implications of microdomains of Ca(2+) signaling, ranging from the application of Ca(2+) buffers to the direct and targeted visualization of Ca(2+) signaling microdomains using genetically encoded fluorescent reporters.
Collapse
Affiliation(s)
- Sohum Mehta
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
37
|
Gan KJ, Silverman MA. Dendritic and axonal mechanisms of Ca2+ elevation impair BDNF transport in Aβ oligomer-treated hippocampal neurons. Mol Biol Cell 2015; 26:1058-71. [PMID: 25609087 PMCID: PMC4357506 DOI: 10.1091/mbc.e14-12-1612] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intracellular Ca2+ dysregulation and transport disruption precede cell death in Alzheimer's disease. Mechanisms of AβO-induced Ca2+ elevation are identified that regulate the onset, severity, and spatiotemporal progression of BDNF transport defects. The results challenge dogmatic views on mechanisms of AβO toxicity and subcellular sites of action. Disruption of fast axonal transport (FAT) and intracellular Ca2+ dysregulation are early pathological events in Alzheimer's disease (AD). Amyloid-β oligomers (AβOs), a causative agent of AD, impair transport of BDNF independent of tau by nonexcitotoxic activation of calcineurin (CaN). Ca2+-dependent mechanisms that regulate the onset, severity, and spatiotemporal progression of BDNF transport defects from dendritic and axonal AβO binding sites are unknown. Here we show that BDNF transport defects in dendrites and axons are induced simultaneously but exhibit different rates of decline. The spatiotemporal progression of FAT impairment correlates with Ca2+ elevation and CaN activation first in dendrites and subsequently in axons. Although many axonal pathologies have been described in AD, studies have primarily focused only on the dendritic effects of AβOs despite compelling reports of presynaptic AβOs in AD models and patients. Indeed, we observe that dendritic CaN activation converges on Ca2+ influx through axonal voltage-gated Ca2+ channels to impair FAT. Finally, FAT defects are prevented by dantrolene, a clinical compound that reduces Ca2+ release from the ER. This work establishes a novel role for Ca2+ dysregulation in BDNF transport disruption and tau-independent Aβ toxicity in early AD.
Collapse
Affiliation(s)
- Kathlyn J Gan
- Department of Molecular Biology and Biochemistry and
| | - Michael A Silverman
- Department of Molecular Biology and Biochemistry and Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada Brain Research Centre, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| |
Collapse
|
38
|
Afanador L, Roltsch EA, Holcomb L, Campbell KS, Keeling DA, Zhang Y, Zimmer DB. The Ca2+ sensor S100A1 modulates neuroinflammation, histopathology and Akt activity in the PSAPP Alzheimer's disease mouse model. Cell Calcium 2014; 56:68-80. [DOI: 10.1016/j.ceca.2014.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 11/25/2022]
|
39
|
Mehta S, Aye-Han NN, Ganesan A, Oldach L, Gorshkov K, Zhang J. Calmodulin-controlled spatial decoding of oscillatory Ca2+ signals by calcineurin. eLife 2014; 3:e03765. [PMID: 25056880 PMCID: PMC4141273 DOI: 10.7554/elife.03765] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Calcineurin is responsible for mediating a wide variety of cellular processes in response to dynamic calcium (Ca(2+)) signals, yet the precise mechanisms involved in the spatiotemporal control of calcineurin signaling are poorly understood. Here, we use genetically encoded fluorescent biosensors to directly probe the role of cytosolic Ca(2+) oscillations in modulating calcineurin activity dynamics in insulin-secreting MIN6 β-cells. We show that Ca(2+) oscillations induce distinct temporal patterns of calcineurin activity in the cytosol and plasma membrane vs at the ER and mitochondria in these cells. Furthermore, we found that these differential calcineurin activity patterns are determined by variations in the subcellular distribution of calmodulin (CaM), indicating that CaM plays an active role in shaping both the spatial and temporal aspects of calcineurin signaling. Together, our findings provide new insights into the mechanisms by which oscillatory signals are decoded to generate specific functional outputs within different cellular compartments.
Collapse
Affiliation(s)
- Sohum Mehta
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Nwe-Nwe Aye-Han
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Ambhighainath Ganesan
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, United States
| | - Laurel Oldach
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Kirill Gorshkov
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, United States Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
40
|
Laprairie RB, Bagher AM, Kelly MEM, Dupré DJ, Denovan-Wright EM. Type 1 cannabinoid receptor ligands display functional selectivity in a cell culture model of striatal medium spiny projection neurons. J Biol Chem 2014; 289:24845-62. [PMID: 25037227 DOI: 10.1074/jbc.m114.557025] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Modulation of type 1 cannabinoid receptor (CB1) activity has been touted as a potential means of treating addiction, anxiety, depression, and neurodegeneration. Different agonists of CB1 are known to evoke varied responses in vivo. Functional selectivity is the ligand-specific activation of certain signal transduction pathways at a receptor that can signal through multiple pathways. To understand cannabinoid-specific functional selectivity, different groups have examined the effect of individual cannabinoids on various signaling pathways in heterologous expression systems. In the current study, we compared the functional selectivity of six cannabinoids, including two endocannabinoids (2-arachidonyl glycerol (2-AG) and anandamide (AEA)), two synthetic cannabinoids (WIN55,212-2 and CP55,940), and two phytocannabinoids (cannabidiol (CBD) and Δ(9)-tetrahydrocannabinol (THC)) on arrestin2-, Gα(i/o)-, Gβγ-, Gα(s)-, and Gα(q)-mediated intracellular signaling in the mouse STHdh(Q7/Q7) cell culture model of striatal medium spiny projection neurons that endogenously express CB1. In this system, 2-AG, THC, and CP55,940 were more potent mediators of arrestin2 recruitment than other cannabinoids tested. 2-AG, AEA, and WIN55,212-2, enhanced Gα(i/o) and Gβγ signaling, with 2-AG and AEA treatment leading to increased total CB1 levels. 2-AG, AEA, THC, and WIN55,212-2 also activated Gα(q)-dependent pathways. CP55,940 and CBD both signaled through Gα(s). CP55,940, but not CBD, activated downstream Gα(s) pathways via CB1 targets. THC and CP55,940 promoted CB1 internalization and decreased CB1 protein levels over an 18-h period. These data demonstrate that individual cannabinoids display functional selectivity at CB1 leading to activation of distinct signaling pathways. To effectively match cannabinoids with therapeutic goals, these compounds must be screened for their signaling bias.
Collapse
Affiliation(s)
- Robert B Laprairie
- From the Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Amina M Bagher
- From the Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Melanie E M Kelly
- From the Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Denis J Dupré
- From the Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Eileen M Denovan-Wright
- From the Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
41
|
Goure WF, Krafft GA, Jerecic J, Hefti F. Targeting the proper amyloid-beta neuronal toxins: a path forward for Alzheimer's disease immunotherapeutics. ALZHEIMERS RESEARCH & THERAPY 2014; 6:42. [PMID: 25045405 PMCID: PMC4100318 DOI: 10.1186/alzrt272] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Levels of amyloid-beta monomer and deposited amyloid-beta in the Alzheimer’s
disease brain are orders of magnitude greater than soluble amyloid-beta oligomer
levels. Monomeric amyloid-beta has no known direct toxicity. Insoluble fibrillar
amyloid-beta has been proposed to be an in vivo mechanism for removal of
soluble amyloid-beta and exhibits relatively low toxicity. In contrast, soluble
amyloid-beta oligomers are widely reported to be the most toxic amyloid-beta form,
both causing acute synaptotoxicity and inducing neurodegenerative processes. None of
the amyloid-beta immunotherapies currently in clinical development selectively target
soluble amyloid-beta oligomers, and their lack of efficacy is not unexpected
considering their selectivity for monomeric or fibrillar amyloid-beta (or both)
rather than soluble amyloid-beta oligomers. Because they exhibit acute,
memory-compromising synaptic toxicity and induce chronic neurodegenerative toxicity
and because they exist at very low in vivo levels in the Alzheimer’s
disease brain, soluble amyloid-beta oligomers constitute an optimal immunotherapeutic
target that should be pursued more aggressively.
Collapse
Affiliation(s)
- William F Goure
- Acumen Pharmaceuticals, Inc., 4453 North First Street, #360, Livermore, CA 94551, USA
| | - Grant A Krafft
- Acumen Pharmaceuticals, Inc., 4453 North First Street, #360, Livermore, CA 94551, USA
| | - Jasna Jerecic
- Acumen Pharmaceuticals, Inc., 4453 North First Street, #360, Livermore, CA 94551, USA
| | - Franz Hefti
- Acumen Pharmaceuticals, Inc., 4453 North First Street, #360, Livermore, CA 94551, USA
| |
Collapse
|
42
|
Spires-Jones TL, Hyman BT. The intersection of amyloid beta and tau at synapses in Alzheimer's disease. Neuron 2014; 82:756-71. [PMID: 24853936 PMCID: PMC4135182 DOI: 10.1016/j.neuron.2014.05.004] [Citation(s) in RCA: 780] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2014] [Indexed: 02/07/2023]
Abstract
The collapse of neural networks important for memory and cognition, including death of neurons and degeneration of synapses, causes the debilitating dementia associated with Alzheimer's disease (AD). We suggest that synaptic changes are central to the disease process. Amyloid beta and tau form fibrillar lesions that are the classical hallmarks of AD. Recent data indicate that both molecules may have normal roles at the synapse, and that the accumulation of soluble toxic forms of the proteins at the synapse may be on the critical path to neurodegeneration. Further, the march of neurofibrillary tangles through brain circuits appears to take advantage of recently described mechanisms of transsynaptic spread of pathological forms of tau. These two key phenomena, synapse loss and the spread of pathology through the brain via synapses, make it critical to understand the physiological and pathological roles of amyloid beta and tau at the synapse.
Collapse
Affiliation(s)
- Tara L Spires-Jones
- Centre for Cognitive and Neural Systems, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK; The Euan MacDonald Centre, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK.
| | - Bradley T Hyman
- Massachusetts General Hospital, Harvard Medical School, Neurology, 114 16(th) Street, Charlestown, MA 02129, USA.
| |
Collapse
|
43
|
Cochran JN, Hall AM, Roberson ED. The dendritic hypothesis for Alzheimer's disease pathophysiology. Brain Res Bull 2014; 103:18-28. [PMID: 24333192 PMCID: PMC3989444 DOI: 10.1016/j.brainresbull.2013.12.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 11/28/2013] [Accepted: 12/02/2013] [Indexed: 01/02/2023]
Abstract
Converging evidence indicates that processes occurring in and around neuronal dendrites are central to the pathogenesis of Alzheimer's disease. These data support the concept of a "dendritic hypothesis" of AD, closely related to the existing synaptic hypothesis. Here we detail dendritic neuropathology in the disease and examine how Aβ, tau, and AD genetic risk factors affect dendritic structure and function. Finally, we consider potential mechanisms by which these key drivers could affect dendritic integrity and disease progression. These dendritic mechanisms serve as a framework for therapeutic target identification and for efforts to develop disease-modifying therapeutics for Alzheimer's disease.
Collapse
Affiliation(s)
- J Nicholas Cochran
- Center for Neurodegeneration and Experimental Therapeutics, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Alicia M Hall
- Center for Neurodegeneration and Experimental Therapeutics, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Erik D Roberson
- Center for Neurodegeneration and Experimental Therapeutics, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
44
|
Abstract
Synapse loss occurs normally during development and pathologically during neurodegenerative disease. Long-term depression, a proposed physiological correlate of synapse elimination, requires caspase-3 and the mitochondrial pathway of apoptosis. Here, we show that caspase-3 activity is essential--and can act locally within neurons--for regulation of spine density and dendrite morphology. By photostimulation of Mito-KillerRed, we induced caspase-3 activity in defined dendritic regions of cultured neurons. Within the photostimulated region, local elimination of dendritic spines and dendrite retraction occurred in a caspase-3-dependent manner without inducing cell death. However, pharmacological inhibition of inhibitor of apoptosis proteins or proteasome function led to neuronal death, suggesting that caspase activation is spatially restricted by these "molecular brakes" on apoptosis. Caspase-3 knock-out mice have increased spine density and altered miniature EPSCs, confirming a physiological involvement of caspase-3 in the regulation of spines in vivo.
Collapse
|
45
|
Oldach L, Zhang J. Genetically encoded fluorescent biosensors for live-cell visualization of protein phosphorylation. ACTA ACUST UNITED AC 2014; 21:186-97. [PMID: 24485761 DOI: 10.1016/j.chembiol.2013.12.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/22/2013] [Accepted: 12/10/2013] [Indexed: 11/30/2022]
Abstract
Fluorescence-based, genetically encodable biosensors are widely used tools for real-time analysis of biological processes. Over the last few decades, the number of available genetically encodable biosensors and the types of processes they can monitor have increased rapidly. Here, we aim to introduce the reader to general principles and practices in biosensor development and highlight ways in which biosensors can be used to illuminate outstanding questions of biological function. Specifically, we focus on sensors developed for monitoring kinase activity and use them to illustrate some common considerations for biosensor design. We describe several uses to which kinase and second-messenger biosensors have been put, and conclude with considerations for the use of biosensors once they are developed. Overall, as fluorescence-based biosensors continue to diversify and improve, we expect them to continue to be widely used as reliable and fruitful tools for gaining deeper insights into cellular and organismal function.
Collapse
Affiliation(s)
- Laurel Oldach
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 307 Hunterian Building, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 307 Hunterian Building, 725 North Wolfe Street, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Department of Oncology, The Johns Hopkins University School of Medicine, 307 Hunterian Building, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
46
|
Mitochondria-Targeted Antioxidant SS31 Prevents Amyloid Beta-Induced Mitochondrial Abnormalities and Synaptic Degeneration in Alzheimer's Disease. Pharmaceuticals (Basel) 2013; 5:1103-19. [PMID: 23226091 PMCID: PMC3513393 DOI: 10.3390/ph5101103] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In neuronal systems, the health and activity of mitochondria and synapses are tightly coupled. For this reason, it has been postulated that mitochondrial abnormalities may, at least in part, drive neurodegeneration in conditions such as Alzheimer’s disease (AD). Mounting evidence from multiple Alzheimer’s disease cell and mouse models and postmortem brains suggest that loss of mitochondrial integrity may be a key factor that mediates synaptic loss. Therefore, the prevention or rescue of mitochondrial dysfunction may help delay or altogether prevent AD-associated neurodegeneration. Since mitochondrial health is heavily dependent on antioxidant defenses, researchers have begun to explore the use of mitochondria-targeted antioxidants as therapeutic tools to prevent neurodegenerative diseases. This review will highlight advances made using a model mitochondria-targeted antioxidant peptide, SS31, as a potential treatment for AD.
Collapse
|
47
|
Kopeikina KJ, Polydoro M, Tai HC, Yaeger E, Carlson GA, Pitstick R, Hyman BT, Spires-Jones TL. Synaptic alterations in the rTg4510 mouse model of tauopathy. J Comp Neurol 2013; 521:1334-53. [PMID: 23047530 DOI: 10.1002/cne.23234] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/07/2012] [Accepted: 10/02/2012] [Indexed: 01/01/2023]
Abstract
Synapse loss, rather than the hallmark amyloid-β (Aβ) plaques or tau-filled neurofibrillary tangles (NFT), is considered the most predictive pathological feature associated with cognitive status in the Alzheimer's disease (AD) brain. The role of Aβ in synapse loss is well established, but despite data linking tau to synaptic function, the role of tau in synapse loss remains largely undetermined. Here we test the hypothesis that human mutant P301L tau overexpression in a mouse model (rTg4510) will lead to age-dependent synaptic loss and dysfunction. Using array tomography and two methods of quantification (automated, threshold-based counting and a manual stereology-based technique) we demonstrate that overall synapse density is maintained in the neuropil, implicating synapse loss commensurate with the cortical atrophy known to occur in this model. Multiphoton in vivo imaging reveals close to 30% loss of apical dendritic spines of individual pyramidal neurons, suggesting these cells may be particularly vulnerable to tau-induced degeneration. Postmortem, we confirm the presence of tau in dendritic spines of rTg4510-YFP mouse brain by array tomography. These data implicate tau-induced loss of a subset of synapses that may be accompanied by compensatory increases in other synaptic subtypes, thereby preserving overall synapse density. Biochemical fractionation of synaptosomes from rTg4510 brain demonstrates a significant decrease in expression of several synaptic proteins, suggesting a functional deficit of remaining synapses in the rTg4510 brain. Together, these data show morphological and biochemical synaptic consequences in response to tau overexpression in the rTg4510 mouse model.
Collapse
Affiliation(s)
- Katherine J Kopeikina
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ramser EM, Gan KJ, Decker H, Fan EY, Suzuki MM, Ferreira ST, Silverman MA. Amyloid-β oligomers induce tau-independent disruption of BDNF axonal transport via calcineurin activation in cultured hippocampal neurons. Mol Biol Cell 2013; 24:2494-505. [PMID: 23783030 PMCID: PMC3744947 DOI: 10.1091/mbc.e12-12-0858] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The role of tau in axonal transport disruption during early-stage Alzheimer disease is controversial. The amyloid-β oligomers markedly impair BDNF transport in primary wild-type and tau-knockout neurons. This occurs by nonexcitotoxic activation of calcineurin, and inhibition of calcineurin rescues transport defects independent of tau. Disruption of fast axonal transport (FAT) is an early pathological event in Alzheimer's disease (AD). Soluble amyloid-β oligomers (AβOs), increasingly recognized as proximal neurotoxins in AD, impair organelle transport in cultured neurons and transgenic mouse models. AβOs also stimulate hyperphosphorylation of the axonal microtubule-associated protein, tau. However, the role of tau in FAT disruption is controversial. Here we show that AβOs reduce vesicular transport of brain-derived neurotrophic factor (BDNF) in hippocampal neurons from both wild-type and tau-knockout mice, indicating that tau is not required for transport disruption. FAT inhibition is not accompanied by microtubule destabilization or neuronal death. Significantly, inhibition of calcineurin (CaN), a calcium-dependent phosphatase implicated in AD pathogenesis, rescues BDNF transport. Moreover, inhibition of protein phosphatase 1 and glycogen synthase kinase 3β, downstream targets of CaN, prevents BDNF transport defects induced by AβOs. We further show that AβOs induce CaN activation through nonexcitotoxic calcium signaling. Results implicate CaN in FAT regulation and demonstrate that tau is not required for AβO-induced BDNF transport disruption.
Collapse
Affiliation(s)
- Elisa M Ramser
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | | | | | | | | | | | | |
Collapse
|
49
|
NMDA receptor subunit composition determines beta-amyloid-induced neurodegeneration and synaptic loss. Cell Death Dis 2013; 4:e608. [PMID: 23618906 PMCID: PMC3641351 DOI: 10.1038/cddis.2013.129] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aggregates of amyloid-beta (Aβ) and tau are hallmarks of Alzheimer's disease (AD) leading to neurodegeneration and synaptic loss. While increasing evidence suggests that inhibition of N-methyl-𝒟-aspartate receptors (NMDARs) may mitigate certain aspects of AD neuropathology, the precise role of different NMDAR subtypes for Aβ- and tau-mediated toxicity remains to be elucidated. Using mouse organotypic hippocampal slice cultures from arcAβ transgenic mice combined with Sindbis virus-mediated expression of human wild-type tau protein (hTau), we show that Aβ caused dendritic spine loss independently of tau. However, the presence of hTau was required for Aβ-induced cell death accompanied by increased hTau phosphorylation. Inhibition of NR2B-containing NMDARs abolished Aβ-induced hTau phosphorylation and toxicity by preventing GSK-3β activation but did not affect dendritic spine loss. Inversely, NR2A-containing NMDAR inhibition as well as NR2A-subunit knockout diminished dendritic spine loss but not the Aβ effect on hTau. Activation of extrasynaptic NMDARs in primary neurons caused degeneration of hTau-expressing neurons, which could be prevented by NR2B–NMDAR inhibition but not by NR2A knockout. Furthermore, caspase-3 activity was increased in arcAβ transgenic cultures. Activity was reduced by NR2A knockout but not by NR2B inhibition. Accordingly, caspase-3 inhibition abolished spine loss but not hTau-dependent toxicity in arcAβ transgenic slice cultures. Our data show that Aβ induces dendritic spine loss via a pathway involving NR2A-containing NMDARs and active caspase-3 whereas activation of eSyn NR2B-containing NMDARs is required for hTau-dependent neurodegeneration, independent of caspase-3.
Collapse
|
50
|
Zhang J, Shapiro MS. Activity-dependent transcriptional regulation of M-Type (Kv7) K(+) channels by AKAP79/150-mediated NFAT actions. Neuron 2013; 76:1133-46. [PMID: 23259949 DOI: 10.1016/j.neuron.2012.10.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2012] [Indexed: 10/27/2022]
Abstract
M-type K(+) channels, encoded by KCNQ2-KCNQ5 genes, play key roles in regulation of neuronal excitability; however, less is known about the mechanisms controlling their transcriptional expression. Here, we discovered a mechanism regulating KCNQ2/3 transcriptional expression by neuronal activity in rodent neurons, involving activation of calcineurin and nuclear factor of activated T cell (NFAT) transcription factors, orchestrated by A kinase-anchoring protein (AKAP)79/150. The signal requires Ca(2+) influx through L-type Ca(2+) channels and both local and global Ca(2+) elevations. We postulate increased M-channel expression to act as a negative feedback to suppress neuronal hyperexcitability, demonstrated by profoundly upregulated KCNQ2/3 transcription in hippocampi from wild-type, but not AKAP150(-/-), mice after drug-induced seizures. Thus, we suggest a distinct role of AKAP79/150 and the complex it organizes in activity-dependent M-channel transcription, which may potentially serve throughout the nervous system to limit overexcitability associated with disease states such as epilepsy.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Physiology, MS 7756, University of Texas Health Science Center, San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | |
Collapse
|