1
|
Lin NH, Jian WS, Snider N, Perng MD. Glial fibrillary acidic protein is pathologically modified in Alexander disease. J Biol Chem 2024; 300:107402. [PMID: 38782207 PMCID: PMC11259701 DOI: 10.1016/j.jbc.2024.107402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Here, we describe pathological events potentially involved in the disease pathogenesis of Alexander disease (AxD). This is a primary genetic disorder of astrocyte caused by dominant gain-of-function mutations in the gene coding for an intermediate filament protein glial fibrillary acidic protein (GFAP). Pathologically, this disease is characterized by the upregulation of GFAP and its accumulation as Rosenthal fibers. Although the genetic basis linking GFAP mutations with Alexander disease has been firmly established, the initiating events that promote GFAP accumulation and the role of Rosenthal fibers (RFs) in the disease process remain unknown. Here, we investigate the hypothesis that disease-associated mutations promote GFAP aggregation through aberrant posttranslational modifications. We found high molecular weight GFAP species in the RFs of AxD brains, indicating abnormal GFAP crosslinking as a prominent pathological feature of this disease. In vitro and cell-based studies demonstrate that cystine-generating mutations promote GFAP crosslinking by cysteine-dependent oxidation, resulting in defective GFAP assembly and decreased filament solubility. Moreover, we found GFAP was ubiquitinated in RFs of AxD patients and rodent models, supporting this modification as a critical factor linked to GFAP aggregation. Finally, we found that arginine could increase the solubility of aggregation-prone mutant GFAP by decreasing its ubiquitination and aggregation. Our study suggests a series of pathogenic events leading to AxD, involving interplay between GFAP aggregation and abnormal modifications by GFAP ubiquitination and oxidation. More important, our findings provide a basis for investigating new strategies to treat AxD by targeting abnormal GFAP modifications.
Collapse
Affiliation(s)
- Ni-Hsuan Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Wan-Syuan Jian
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Natasha Snider
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ming-Der Perng
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan; School of Medicine, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
2
|
Leventoux N, Morimoto S, Ishikawa M, Nakamura S, Ozawa F, Kobayashi R, Watanabe H, Supakul S, Okamoto S, Zhou Z, Kobayashi H, Kato C, Hirokawa Y, Aiba I, Takahashi S, Shibata S, Takao M, Yoshida M, Endo F, Yamanaka K, Kokubo Y, Okano H. Aberrant CHCHD2-associated mitochondriopathy in Kii ALS/PDC astrocytes. Acta Neuropathol 2024; 147:84. [PMID: 38750212 DOI: 10.1007/s00401-024-02734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/28/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC), a rare and complex neurological disorder, is predominantly observed in the Western Pacific islands, including regions of Japan, Guam, and Papua. This enigmatic condition continues to capture medical attention due to affected patients displaying symptoms that parallel those seen in either classical amyotrophic lateral sclerosis (ALS) or Parkinson's disease (PD). Distinctly, postmortem examinations of the brains of affected individuals have shown the presence of α-synuclein aggregates and TDP-43, which are hallmarks of PD and classical ALS, respectively. These observations are further complicated by the detection of phosphorylated tau, accentuating the multifaceted proteinopathic nature of ALS/PDC. The etiological foundations of this disease remain undetermined, and genetic investigations have yet to provide conclusive answers. However, emerging evidence has implicated the contribution of astrocytes, pivotal cells for maintaining brain health, to neurodegenerative onset, and likely to play a significant role in the pathogenesis of ALS/PDC. Leveraging advanced induced pluripotent stem cell technology, our team cultivated multiple astrocyte lines to further investigate the Japanese variant of ALS/PDC (Kii ALS/PDC). CHCHD2 emerged as a significantly dysregulated gene when disease astrocytes were compared to healthy controls. Our analyses also revealed imbalances in the activation of specific pathways: those associated with astrocytic cilium dysfunction, known to be involved in neurodegeneration, and those related to major neurological disorders, including classical ALS and PD. Further in-depth examinations revealed abnormalities in the mitochondrial morphology and metabolic processes of the affected astrocytes. A particularly striking observation was the reduced expression of CHCHD2 in the spinal cord, motor cortex, and oculomotor nuclei of patients with Kii ALS/PDC. In summary, our findings suggest a potential reduction in the support Kii ALS/PDC astrocytes provide to neurons, emphasizing the need to explore the role of CHCHD2 in maintaining mitochondrial health and its implications for the disease.
Collapse
Affiliation(s)
- Nicolas Leventoux
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Mie, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Shiho Nakamura
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Fumiko Ozawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Reona Kobayashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hirotaka Watanabe
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
| | - Sopak Supakul
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Okamoto
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Zhi Zhou
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroya Kobayashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Chris Kato
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yoshifumi Hirokawa
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Mie, Japan
| | - Ikuko Aiba
- Department of Neurology, NHO, Higashinagoya National Hospital, Aichi, Japan
| | - Shinichi Takahashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Department of Neurology and Stroke, International Medical Centre, Saitama Medical University, Saitama, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaki Takao
- Department of Clinical Laboratory, National Centre of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Fumito Endo
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Yasumasa Kokubo
- Kii ALS/PDC Research Centre, Mie University Graduate School of Regional Innovation Studies, Mie, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan.
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan.
| |
Collapse
|
3
|
Gammie SC, Messing A, Hill MA, Kelm-Nelson CA, Hagemann TL. Large-scale gene expression changes in APP/PSEN1 and GFAP mutation models exhibit high congruence with Alzheimer's disease. PLoS One 2024; 19:e0291995. [PMID: 38236817 PMCID: PMC10796008 DOI: 10.1371/journal.pone.0291995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/10/2023] [Indexed: 01/22/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder with both genetic and non-genetic causes. Animal research models are available for a multitude of diseases and conditions affecting the central nervous system (CNS), and large-scale CNS gene expression data exist for many of these. Although there are several models specifically for AD, each recapitulates different aspects of the human disease. In this study we evaluate over 500 animal models to identify those with CNS gene expression patterns matching human AD datasets. Approaches included a hypergeometric based scoring system that rewards congruent gene expression patterns but penalizes discordant gene expression patterns. The top two models identified were APP/PS1 transgenic mice expressing mutant APP and PSEN1, and mice carrying a GFAP mutation that is causative of Alexander disease, a primary disorder of astrocytes in the CNS. The APP/PS1 and GFAP models both matched over 500 genes moving in the same direction as in human AD, and both had elevated GFAP expression and were highly congruent with one another. Also scoring highly were the 5XFAD model (with five mutations in APP and PSEN1) and mice carrying CK-p25, APP, and MAPT mutations. Animals with the APOE3 and 4 mutations combined with traumatic brain injury ranked highly. Bulbectomized rats scored high, suggesting anosmia could be causative of AD-like gene expression. Other matching models included the SOD1G93A strain and knockouts for SNORD116 (Prader-Willi mutation), GRID2, INSM1, XBP1, and CSTB. Many top models demonstrated increased expression of GFAP, and results were similar across multiple human AD datasets. Heatmap and Uniform Manifold Approximation Plot results were consistent with hypergeometric ranking. Finally, some gene manipulation models, including for TYROBP and ATG7, were identified with reversed AD patterns, suggesting possible neuroprotective effects. This study provides insight for the pathobiology of AD and the potential utility of available animal models.
Collapse
Affiliation(s)
- Stephen C. Gammie
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Albee Messing
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mason A. Hill
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Cynthia A. Kelm-Nelson
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tracy L. Hagemann
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
4
|
Carlos AF, Sekiya H, Koga S, Gatto RG, Casey MC, Pham NTT, Sintini I, Machulda MM, Jack CR, Lowe VJ, Whitwell JL, Petrucelli L, Reichard RR, Petersen RC, Dickson DW, Josephs KA. Clinicopathologic features of a novel star-shaped transactive response DNA-binding protein 43 (TDP-43) pathology in the oldest old. J Neuropathol Exp Neurol 2023; 83:36-52. [PMID: 38086178 PMCID: PMC10746697 DOI: 10.1093/jnen/nlad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023] Open
Abstract
Transactive response DNA-binding protein 43 (TDP-43) pathology is categorized as type A-E in frontotemporal lobar degeneration and as type α-β in Alzheimer disease (AD) based on inclusion type. We screened amygdala slides of 131 cases with varying ages at death, clinical/neuroimaging findings, and AD neuropathologic changes for TDP-43 pathology using anti-phospho-TDP-43 antibodies. Seven cases (5%) only showed atypical TDP-43 inclusions that could not be typed. Immunohistochemistry and immunofluorescence assessed the atypical star-shaped TDP-43 pathology including its distribution, species, cellular localization, and colocalization with tau. All 7 had died at an extremely old age (median: 100 years [IQR: 94-101]) from nonneurological causes and none had dementia (4 cognitively unimpaired, 3 with amnestic mild cognitive impairment). Neuroimaging showed mild medial temporal involvement. Pathologically, the star-shaped TDP-43-positive inclusions were found in medial (subpial) amygdala and, occasionally, in basolateral regions. Hippocampus only showed TDP-43-positive neurites in the fimbria and subiculum while the frontal lobe was free of TDP-43 inclusions. The star-shaped inclusions were better detected with antibodies against N-terminal than C-terminal TDP-43. Double-labeling studies confirmed deposition of TDP-43 within astrocytes and colocalization with tau. We have identified a novel TDP-43 pathology with star-shaped morphology associated with superaging, with a homogeneous clinicopathologic picture, possibly representing a novel, true aging-related TDP-43 pathology.
Collapse
Affiliation(s)
- Arenn F Carlos
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Rodolfo G Gatto
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Irene Sintini
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mary M Machulda
- Department of Psychiatry (Psychology), Mayo Clinic, Rochester, Minnesota, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - R Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Niedowicz DM, Katsumata Y, Nelson PT. In severe ADNC, hippocampi with comorbid LATE-NC and hippocampal sclerosis have substantially more astrocytosis than those with LATE-NC or hippocampal sclerosis alone. J Neuropathol Exp Neurol 2023; 82:987-994. [PMID: 37935530 PMCID: PMC10658353 DOI: 10.1093/jnen/nlad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) and hippocampal sclerosis of aging (HS-A) pathologies are found together at autopsy in ∼20% of elderly demented persons. Although astrocytosis is known to occur in neurodegenerative diseases, it is currently unknown how the severity of astrocytosis is correlated with the common combinations of pathologies in aging brains. To address this knowledge gap, we analyzed a convenience sample of autopsied subjects from the University of Kentucky Alzheimer's Disease Research Center community-based autopsy cohort. The subjects were stratified into 5 groups (n = 51 total): pure ADNC, ADNC + LATE-NC, ADNC + HS-A, ADNC + LATE-NC + HS-A, and low-pathology controls. Following GFAP immunostaining and digital slide scanning with a ScanScope, we measured GFAP-immunoreactive astrocytosis. The severities of GFAP-immunoreactive astrocytosis in hippocampal subfield CA1 and subiculum were compared between groups. The group with ADNC + LATE-NC + HS-A had the most astrocytosis as operationalized by either any GFAP+ or strong GFAP+ immunoreactivity in both CA1 and subiculum. In comparison to that pathologic combination, ADNC + HS or ADNC + LATE-NC alone showed lower astrocytosis. Pure ADNC had only marginally increased astrocytosis in CA1 and subiculum, in comparison to low-pathology controls. We conclude that there appeared to be pathogenetic synergy such that ADNC + LATE-NC + HS-A cases had relatively high levels of astrocytosis in the hippocampal formation.
Collapse
|
6
|
Nag S, Schneider JA. Limbic-predominant age-related TDP43 encephalopathy (LATE) neuropathological change in neurodegenerative diseases. Nat Rev Neurol 2023; 19:525-541. [PMID: 37563264 PMCID: PMC10964248 DOI: 10.1038/s41582-023-00846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 08/12/2023]
Abstract
TAR DNA-binding protein 43 (TDP43) is a focus of research in late-onset dementias. TDP43 pathology in the brain was initially identified in amyotrophic lateral sclerosis and frontotemporal lobar degeneration, and later in Alzheimer disease (AD), other neurodegenerative diseases and ageing. Limbic-predominant age-related TDP43 encephalopathy (LATE), recognized as a clinical entity in 2019, is characterized by amnestic dementia resembling AD dementia and occurring most commonly in adults over 80 years of age. Neuropathological findings in LATE, referred to as LATE neuropathological change (LATE-NC), consist of neuronal and glial cytoplasmic TDP43 localized predominantly in limbic areas with or without coexisting hippocampal sclerosis and/or AD neuropathological change and without frontotemporal lobar degeneration or amyotrophic lateral sclerosis pathology. LATE-NC is frequently associated with one or more coexisting pathologies, mainly AD neuropathological change. The focus of this Review is the pathology, genetic risk factors and nature of the cognitive impairments and dementia in pure LATE-NC and in LATE-NC associated with coexisting pathologies. As the clinical and cognitive profile of LATE is currently not easily distinguishable from AD dementia, it is important to develop biomarkers to aid in the diagnosis of this condition in the clinic. The pathogenesis of LATE-NC should be a focus of future research to form the basis for the development of preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Sukriti Nag
- Rush Alzheimer's Disease Center, Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL, USA.
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
7
|
Licht-Murava A, Meadows SM, Palaguachi F, Song SC, Jackvony S, Bram Y, Zhou C, Schwartz RE, Froemke RC, Orr AL, Orr AG. Astrocytic TDP-43 dysregulation impairs memory by modulating antiviral pathways and interferon-inducible chemokines. SCIENCE ADVANCES 2023; 9:eade1282. [PMID: 37075107 PMCID: PMC10115456 DOI: 10.1126/sciadv.ade1282] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Transactivating response region DNA binding protein 43 (TDP-43) pathology is prevalent in dementia, but the cell type-specific effects of TDP-43 pathology are not clear, and therapeutic strategies to alleviate TDP-43-linked cognitive decline are lacking. We found that patients with Alzheimer's disease or frontotemporal dementia have aberrant TDP-43 accumulation in hippocampal astrocytes. In mouse models, induction of widespread or hippocampus-targeted accumulation in astrocytic TDP-43 caused progressive memory loss and localized changes in antiviral gene expression. These changes were cell-autonomous and correlated with impaired astrocytic defense against infectious viruses. Among the changes, astrocytes had elevated levels of interferon-inducible chemokines, and neurons had elevated levels of the corresponding chemokine receptor CXCR3 in presynaptic terminals. CXCR3 stimulation altered presynaptic function and promoted neuronal hyperexcitability, akin to the effects of astrocytic TDP-43 dysregulation, and blockade of CXCR3 reduced this activity. Ablation of CXCR3 also prevented TDP-43-linked memory loss. Thus, astrocytic TDP-43 dysfunction contributes to cognitive impairment through aberrant chemokine-mediated astrocytic-neuronal interactions.
Collapse
Affiliation(s)
- Avital Licht-Murava
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Samantha M. Meadows
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Fernando Palaguachi
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Soomin C. Song
- Skirball Institute, Neuroscience Institute, Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Stephanie Jackvony
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Yaron Bram
- Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Constance Zhou
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Medicine–Rockefeller–Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY USA
| | - Robert E. Schwartz
- Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Robert C. Froemke
- Skirball Institute, Neuroscience Institute, Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Adam L. Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Anna G. Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Medicine–Rockefeller–Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY USA
| |
Collapse
|
8
|
Nelson PT, Lee EB, Cykowski MD, Alafuzoff I, Arfanakis K, Attems J, Brayne C, Corrada MM, Dugger BN, Flanagan ME, Ghetti B, Grinberg LT, Grossman M, Grothe MJ, Halliday GM, Hasegawa M, Hokkanen SRK, Hunter S, Jellinger K, Kawas CH, Keene CD, Kouri N, Kovacs GG, Leverenz JB, Latimer CS, Mackenzie IR, Mao Q, McAleese KE, Merrick R, Montine TJ, Murray ME, Myllykangas L, Nag S, Neltner JH, Newell KL, Rissman RA, Saito Y, Sajjadi SA, Schwetye KE, Teich AF, Thal DR, Tomé SO, Troncoso JC, Wang SHJ, White CL, Wisniewski T, Yang HS, Schneider JA, Dickson DW, Neumann M. LATE-NC staging in routine neuropathologic diagnosis: an update. Acta Neuropathol 2023; 145:159-173. [PMID: 36512061 PMCID: PMC9849315 DOI: 10.1007/s00401-022-02524-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
An international consensus report in 2019 recommended a classification system for limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC). The suggested neuropathologic staging system and nomenclature have proven useful for autopsy practice and dementia research. However, some issues remain unresolved, such as cases with unusual features that do not fit with current diagnostic categories. The goal of this report is to update the neuropathologic criteria for the diagnosis and staging of LATE-NC, based primarily on published data. We provide practical suggestions about how to integrate available genetic information and comorbid pathologies [e.g., Alzheimer's disease neuropathologic changes (ADNC) and Lewy body disease]. We also describe recent research findings that have enabled more precise guidance on how to differentiate LATE-NC from other subtypes of TDP-43 pathology [e.g., frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS)], and how to render diagnoses in unusual situations in which TDP-43 pathology does not follow the staging scheme proposed in 2019. Specific recommendations are also made on when not to apply this diagnostic term based on current knowledge. Neuroanatomical regions of interest in LATE-NC are described in detail and the implications for TDP-43 immunohistochemical results are specified more precisely. We also highlight questions that remain unresolved and areas needing additional study. In summary, the current work lays out a number of recommendations to improve the precision of LATE-NC staging based on published reports and diagnostic experience.
Collapse
Affiliation(s)
- Peter T Nelson
- University of Kentucky, Rm 575 Todd Building, Lexington, KY, USA.
| | - Edward B Lee
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Konstantinos Arfanakis
- Rush University Medical Center, Chicago, IL, USA
- Illinois Institute of Technology, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología Y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | | | - Masato Hasegawa
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Canada
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | | | | | | | - Qinwen Mao
- University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | - Liisa Myllykangas
- University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sukriti Nag
- Rush University Medical Center, Chicago, IL, USA
| | - Janna H Neltner
- University of Kentucky, Rm 575 Todd Building, Lexington, KY, USA
| | | | | | - Yuko Saito
- Tokyo Metropolitan Geriatric Hospital & Institute of Gerontology, Tokyo, Japan
| | | | | | | | - Dietmar R Thal
- Laboratory for Neuropathology, Department of Imaging and Pathoogy, and Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Sandra O Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathoogy, and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | | | - Charles L White
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Hyun-Sik Yang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, BostonBoston, MAMA, USA
| | | | | | | |
Collapse
|
9
|
Yang AW, Lin NH, Yeh TH, Snider N, Perng MD. Effects of Alexander disease-associated mutations on the assembly and organization of GFAP intermediate filaments. Mol Biol Cell 2022; 33:ar69. [PMID: 35511821 PMCID: PMC9635275 DOI: 10.1091/mbc.e22-01-0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 02/02/2023] Open
Abstract
Alexander disease is a primary genetic disorder of astrocytes caused by dominant mutations in the gene encoding glial fibrillary acidic protein (GFAP). How single-amino-acid changes can lead to cytoskeletal catastrophe and brain degeneration remains poorly understood. In this study, we have analyzed 14 missense mutations located in the GFAP rod domain to investigate how these mutations affect in vitro filament assembly. Whereas the internal rod mutants assembled into filaments that were shorter than those of wild type, the rod end mutants formed structures with one or more of several atypical characteristics, including short filament length, irregular width, roughness of filament surface, and filament aggregation. When transduced into primary astrocytes, GFAP mutants with in vitro assembly defects usually formed cytoplasmic aggregates, which were more resistant to biochemical extraction. The resistance of GFAP to solubilization was also observed in brain tissues of patients with Alexander disease, in which a significant proportion of insoluble GFAP were accumulated in Rosenthal fiber fractions. These findings provide clinically relevant evidence that link GFAP assembly defects to disease pathology at the tissue level and suggest that altered filament assembly and properties as a result of GFAP mutation are critical initiating factors for the pathogenesis of Alexander disease.
Collapse
Affiliation(s)
- Ai-Wen Yang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ni-Hsuan Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ting-Hung Yeh
- Department of Medical Science, College of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Natasha Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ming-Der Perng
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Medical Science, College of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
10
|
François-Moutal L, Scott DD, Ambrose AJ, Zerio CJ, Rodriguez-Sanchez M, Dissanayake K, May DG, Carlson JM, Barbieri E, Moutal A, Roux KJ, Shorter J, Khanna R, Barmada SJ, McGurk L, Khanna M. Heat shock protein Grp78/BiP/HspA5 binds directly to TDP-43 and mitigates toxicity associated with disease pathology. Sci Rep 2022; 12:8140. [PMID: 35581326 PMCID: PMC9114370 DOI: 10.1038/s41598-022-12191-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/04/2022] [Indexed: 11/09/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no cure or effective treatment in which TAR DNA Binding Protein of 43 kDa (TDP-43) abnormally accumulates into misfolded protein aggregates in affected neurons. It is widely accepted that protein misfolding and aggregation promotes proteotoxic stress. The molecular chaperones are a primary line of defense against proteotoxic stress, and there has been long-standing interest in understanding the relationship between chaperones and aggregated protein in ALS. Of particular interest are the heat shock protein of 70 kDa (Hsp70) family of chaperones. However, defining which of the 13 human Hsp70 isoforms is critical for ALS has presented many challenges. To gain insight into the specific Hsp70 that modulates TDP-43, we investigated the relationship between TDP-43 and the Hsp70s using proximity-dependent biotin identification (BioID) and discovered several Hsp70 isoforms associated with TDP-43 in the nucleus, raising the possibility of an interaction with native TDP-43. We further found that HspA5 bound specifically to the RNA-binding domain of TDP-43 using recombinantly expressed proteins. Moreover, in a Drosophila strain that mimics ALS upon TDP-43 expression, the mRNA levels of the HspA5 homologue (Hsc70.3) were significantly increased. Similarly we observed upregulation of HspA5 in prefrontal cortex neurons from human ALS patients. Finally, overexpression of HspA5 in Drosophila rescued TDP-43-induced toxicity, suggesting that upregulation of HspA5 may have a compensatory role in ALS pathobiology.
Collapse
Affiliation(s)
- Liberty François-Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA.,Center for Innovation in Brain Science, Tucson, AZ, 85721, USA
| | - David Donald Scott
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA.,Center for Innovation in Brain Science, Tucson, AZ, 85721, USA
| | - Andrew J Ambrose
- Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ, 85724, USA
| | - Christopher J Zerio
- Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ, 85724, USA
| | | | - Kumara Dissanayake
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Danielle G May
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD, USA
| | - Jacob M Carlson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA.,Center for Innovation in Brain Science, Tucson, AZ, 85721, USA
| | - Edward Barbieri
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA.,Center for Innovation in Brain Science, Tucson, AZ, 85721, USA
| | - Kyle J Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD, USA.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - James Shorter
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA.,Center for Innovation in Brain Science, Tucson, AZ, 85721, USA
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Leeanne McGurk
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA. .,Center for Innovation in Brain Science, Tucson, AZ, 85721, USA. .,Department of Molecular Pathobiology, NYU, New York, NY, USA. .,Department of Molecular Pathobiology, College of Dentistry, NYU, 433 1st Ave, New York, NY, 10010, USA.
| |
Collapse
|
11
|
Affiliation(s)
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Liao YZ, Ma J, Dou JZ. The Role of TDP-43 in Neurodegenerative Disease. Mol Neurobiol 2022; 59:4223-4241. [DOI: 10.1007/s12035-022-02847-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/23/2022] [Indexed: 12/14/2022]
|
13
|
Smethurst P, Franklin H, Clarke BE, Sidle K, Patani R. The role of astrocytes in prion-like mechanisms of neurodegeneration. Brain 2022; 145:17-26. [PMID: 35265969 PMCID: PMC8967097 DOI: 10.1093/brain/awab366] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/20/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence suggests that neurodegenerative diseases are not merely neuronal in nature but comprise multicellular involvement, with astrocytes emerging as key players. The pathomechanisms of several neurodegenerative diseases involve the deposition of misfolded protein aggregates in neurons that have characteristic prion-like behaviours such as template-directed seeding, intercellular propagation, distinct conformational strains and protein-mediated toxicity. The role of astrocytes in dealing with these pathological prion-like protein aggregates and whether their responses either protect from or conspire with the disease process is currently unclear. Here we review the existing literature implicating astrocytes in multiple neurodegenerative proteinopathies with a focus on prion-like behaviour in this context.
Collapse
Affiliation(s)
- Phillip Smethurst
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Hannah Franklin
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Benjamin E Clarke
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Katie Sidle
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Correspondence may also be addressed to: Katie Sidle E-mail:
| | - Rickie Patani
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Correspondence to: Rickie Patani The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK E-mail:
| |
Collapse
|
14
|
Heo D, Ling JP, Molina-Castro GC, Langseth AJ, Waisman A, Nave KA, Möbius W, Wong PC, Bergles DE. Stage-specific control of oligodendrocyte survival and morphogenesis by TDP-43. eLife 2022; 11:e75230. [PMID: 35311646 PMCID: PMC8970587 DOI: 10.7554/elife.75230] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Generation of oligodendrocytes in the adult brain enables both adaptive changes in neural circuits and regeneration of myelin sheaths destroyed by injury, disease, and normal aging. This transformation of oligodendrocyte precursor cells (OPCs) into myelinating oligodendrocytes requires processing of distinct mRNAs at different stages of cell maturation. Although mislocalization and aggregation of the RNA-binding protein, TDP-43, occur in both neurons and glia in neurodegenerative diseases, the consequences of TDP-43 loss within different stages of the oligodendrocyte lineage are not well understood. By performing stage-specific genetic inactivation of Tardbp in vivo, we show that oligodendrocyte lineage cells are differentially sensitive to loss of TDP-43. While OPCs depend on TDP-43 for survival, with conditional deletion resulting in cascading cell loss followed by rapid regeneration to restore their density, oligodendrocytes become less sensitive to TDP-43 depletion as they mature. Deletion of TDP-43 early in the maturation process led to eventual oligodendrocyte degeneration, seizures, and premature lethality, while oligodendrocytes that experienced late deletion survived and mice exhibited a normal lifespan. At both stages, TDP-43-deficient oligodendrocytes formed fewer and thinner myelin sheaths and extended new processes that inappropriately wrapped neuronal somata and blood vessels. Transcriptional analysis revealed that in the absence of TDP-43, key proteins involved in oligodendrocyte maturation and myelination were misspliced, leading to aberrant incorporation of cryptic exons. Inducible deletion of TDP-43 from oligodendrocytes in the adult central nervous system (CNS) induced the same progressive morphological changes and mice acquired profound hindlimb weakness, suggesting that loss of TDP-43 function in oligodendrocytes may contribute to neuronal dysfunction in neurodegenerative disease.
Collapse
Affiliation(s)
- Dongeun Heo
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jonathan P Ling
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Gian C Molina-Castro
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Abraham J Langseth
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg UniversityMainzGermany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of GöttingenGöttingenGermany
- Electron Microscopy Core Unit, Max-Planck-Institute of Experimental MedicineGöttingenGermany
| | - Phil C Wong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Kavli Neuroscience Discovery Institute, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
15
|
Prater KE, Latimer CS, Jayadev S. Glial TDP-43 and TDP-43 induced glial pathology, focus on neurodegenerative proteinopathy syndromes. Glia 2022; 70:239-255. [PMID: 34558120 PMCID: PMC8722378 DOI: 10.1002/glia.24096] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 02/03/2023]
Abstract
Since its discovery in 2006, TAR DNA binding protein 43 (TDP-43) has driven rapidly evolving research in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and limbic predominant age-related TDP-43 encephalopathy (LATE). TDP-43 mislocalization or aggregation is the hallmark of TDP-43 proteinopathy and is associated with cognitive impairment that can be mapped to its regional deposition. Studies in human tissue and model systems demonstrate that TDP-43 may potentiate other proteinopathies such as the amyloid or tau pathology seen in Alzheimer's Disease (AD) in the combination of AD+LATE. Despite this growing body of literature, there remain gaps in our understanding of whether there is heterogeneity in TDP-43 driven mechanisms across cell types. The growing observations of correlation between TDP-43 proteinopathy and glial pathology suggest a relationship between the two, including pathogenic glial cell-autonomous dysfunction and dysregulated glial immune responses to neuronal TDP-43. In this review, we discuss the available data on TDP-43 in glia within the context of the neurodegenerative diseases ALS and FTLD and highlight the current lack of information about glial TDP-43 interaction in AD+LATE. TDP-43 has proven to be a significant modulator of cognitive and neuropathological outcomes. A deeper understanding of its role in diverse cell types may provide relevant insights into neurodegenerative syndromes.
Collapse
Affiliation(s)
| | - Caitlin S. Latimer
- Division of Neuropathology, Department of Pathology, University of Washington, Seattle, WA 98195
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA 98195,Division of Neuropathology, Department of Pathology, University of Washington, Seattle, WA 98195
| |
Collapse
|
16
|
Heaven MR, Herren AW, Flint DL, Pacheco NL, Li J, Tang A, Khan F, Goldman JE, Phinney BS, Olsen ML. Metabolic Enzyme Alterations and Astrocyte Dysfunction in a Murine Model of Alexander Disease With Severe Reactive Gliosis. Mol Cell Proteomics 2022; 21:100180. [PMID: 34808356 PMCID: PMC8717607 DOI: 10.1016/j.mcpro.2021.100180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022] Open
Abstract
Alexander disease (AxD) is a rare and fatal neurodegenerative disorder caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP). In this report, a mouse model of AxD (GFAPTg;Gfap+/R236H) was analyzed that contains a heterozygous R236H point mutation in murine Gfap as well as a transgene with a GFAP promoter to overexpress human GFAP. Using label-free quantitative proteomic comparisons of brain tissue from GFAPTg;Gfap+/R236H versus wild-type mice confirmed upregulation of the glutathione metabolism pathway and indicated proteins were elevated in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which had not been reported previously in AxD. Relative protein-level differences were confirmed by a targeted proteomics assay, including proteins related to astrocytes and oligodendrocytes. Of particular interest was the decreased level of the oligodendrocyte protein, 2-hydroxyacylsphingosine 1-beta-galactosyltransferase (Ugt8), since Ugt8-deficient mice exhibit a phenotype similar to GFAPTg;Gfap+/R236H mice (e.g., tremors, ataxia, hind-limb paralysis). In addition, decreased levels of myelin-associated proteins were found in the GFAPTg;Gfap+/R236H mice, consistent with the role of Ugt8 in myelin synthesis. Fabp7 upregulation in GFAPTg;Gfap+/R236H mice was also selected for further investigation due to its uncharacterized association to AxD, critical function in astrocyte proliferation, and functional ability to inhibit the anti-inflammatory PPAR signaling pathway in models of amyotrophic lateral sclerosis (ALS). Within Gfap+ astrocytes, Fabp7 was markedly increased in the hippocampus, a brain region subjected to extensive pathology and chronic reactive gliosis in GFAPTg;Gfap+/R236H mice. Last, to determine whether the findings in GFAPTg;Gfap+/R236H mice are present in the human condition, AxD patient and control samples were analyzed by Western blot, which indicated that Type I AxD patients have a significant fourfold upregulation of FABP7. However, immunohistochemistry analysis showed that UGT8 accumulates in AxD patient subpial brain regions where abundant amounts of Rosenthal fibers are located, which was not observed in the GFAPTg;Gfap+/R236H mice.
Collapse
Affiliation(s)
| | - Anthony W Herren
- University of California at Davis Proteomics Core, Davis, California, USA
| | | | - Natasha L Pacheco
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jiangtao Li
- Graduate Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA; School of Neuroscience, Virginia Tech, Blacksburg, Virginia, USA
| | - Alice Tang
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Fatima Khan
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Brett S Phinney
- University of California at Davis Proteomics Core, Davis, California, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia, USA.
| |
Collapse
|
17
|
Abstract
Fifty years have passed since the discovery of glial fibrillary acidic protein (GFAP) by Lawrence Eng and colleagues. Now recognized as a member of the intermediate filament family of proteins, it has become a subject for study in fields as diverse as structural biology, cell biology, gene expression, basic neuroscience, clinical genetics and gene therapy. This review covers each of these areas, presenting an overview of current understanding and controversies regarding GFAP with the goal of stimulating continued study of this fascinating protein.
Collapse
Affiliation(s)
- Albee Messing
- Waisman Center, University of Wisconsin-Madison.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison
| | - Michael Brenner
- Department of Neurobiology, University of Alabama-Birmingham
| |
Collapse
|
18
|
Bright F, Chan G, van Hummel A, Ittner LM, Ke YD. TDP-43 and Inflammation: Implications for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Int J Mol Sci 2021; 22:ijms22157781. [PMID: 34360544 PMCID: PMC8346169 DOI: 10.3390/ijms22157781] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
The abnormal mislocalisation and ubiquitinated protein aggregation of the TAR DNA binding protein 43 (TDP-43) within the cytoplasm of neurons and glia in the central nervous system (CNS) is a pathological hallmark of early-onset neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The pathomechanisms underlying abnormal mislocalisation and aggregation of TDP-43 remain unknown. However, there is a growing body of evidence implicating neuroinflammation and immune-mediated mechanisms in the pathogenesis of neurodegeneration. Importantly, most of the evidence for an active role of immunity and inflammation in the pathogenesis of ALS and FTD relates specifically to TDP-43, posing the question as to whether immune-mediated mechanisms could hold the key to understanding TDP-43’s underlying role in neurodegeneration in both diseases. Therefore, this review aims to piece together key lines of evidence for the specific association of TDP-43 with key immune and inflammatory pathways to explore the nature of this relationship and the implications for potential pathomechanisms underlying neurodegeneration in ALS and FTD.
Collapse
|
19
|
Lin NH, Yang AW, Chang CH, Perng MD. Elevated GFAP isoform expression promotes protein aggregation and compromises astrocyte function. FASEB J 2021; 35:e21614. [PMID: 33908669 DOI: 10.1096/fj.202100087r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/19/2021] [Accepted: 04/06/2021] [Indexed: 01/22/2023]
Abstract
Alexander disease (AxD) caused by mutations in the coding region of GFAP is a neurodegenerative disease characterized by astrocyte dysfunction, GFAP aggregation, and Rosenthal fiber accumulation. Although how GFAP mutations cause disease is not fully understood, Rosenthal fibers could be induced by forced overexpression of human GFAP and this could be lethal in mice implicate that an increase in GFAP levels is central to AxD pathogenesis. Our recent studies demonstrated that intronic GFAP mutations cause disease by altering GFAP splicing, suggesting that an increase in GFAP isoform expression could lead to protein aggregation and astrocyte dysfunction that typify AxD. Here we test this hypothesis by establishing primary astrocyte cultures from transgenic mice overexpressing human GFAP. We found that GFAP-δ and GFAP-κ were disproportionately increased in transgenic astrocytes and both were enriched in Rosenthal fibers of human AxD brains. In vitro assembly studies showed that while the major isoform GFAP-α self-assembled into typical 10-nm filaments, minor isoforms including GFAP-δ, -κ, and -λ were assembly-compromised and aggregation prone. Lentiviral transduction showed that expression of these minor GFAP isoforms decreased filament solubility and increased GFAP stability, leading to the formation of Rosenthal fibers-like aggregates that also disrupted the endogenous intermediate filament networks. The aggregate-bearing astrocytes lost their normal morphology and glutamate buffering capacity, which had a toxic effect on neighboring neurons. In conclusion, our findings provide evidence that links elevated GFAP isoform expression with GFAP aggregation and impaired glutamate transport, and suggest a potential non-cell-autonomous mechanism underlying neurodegeneration through astrocyte dysfunction.
Collapse
Affiliation(s)
- Ni-Hsuan Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Ai-Wen Yang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Hsuan Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Der Perng
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan.,Department of Medical Science, College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
20
|
Bachstetter AD, Garrett FG, Jicha GA, Nelson PT. Space-occupying brain lesions, trauma-related tau astrogliopathy, and ARTAG: a report of two cases and a literature review. Acta Neuropathol Commun 2021; 9:49. [PMID: 33757579 PMCID: PMC7986305 DOI: 10.1186/s40478-021-01152-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Astrocytes with intracellular accumulations of misfolded phosphorylated tau protein have been observed in advanced-stage chronic traumatic encephalopathy (CTE) and in other neurodegenerative conditions. There is a growing awareness that astrocytic tau inclusions are also relatively common in the brains of persons over 70 years of age-affecting approximately one-third of autopsied individuals. The pathologic hallmarks of aging-related tau astrogliopathy (ARTAG) include phosphorylated tau protein within thorn-shaped astrocytes (TSA) in subpial, subependymal, perivascular, and white matter regions, whereas granular-fuzzy astrocytes are often seen in gray matter. CTE and ARTAG share molecular and histopathologic characteristics, suggesting that trauma-related mechanism(s) may predispose to the development of tau astrogliopathy. There are presently few experimental systems to study the pathobiology of astrocytic-tau aggregation, but human studies have made recent progress. For example, leucotomy (also referred to as lobotomy) is associated with a localized ARTAG-like neuropathology decades after the surgical brain injury, suggesting that chronic brain injury of any type may predispose to later life ARTAG. To examine this idea in a different context, we report clinical and pathologic features of two middle-aged men who came to autopsy with large (> 6 cm in greatest dimension) arachnoid cysts that had physically displaced and injured the subjects' left temporal lobes through chronic mechanical stress. Despite the similarity of the size and location of the arachnoid cysts, these individuals had dissimilar neurologic outcomes and neuropathologic findings. We review the evidence for ARTAG in response to brain injury, and discuss how the location and molecular properties of astroglial tau inclusions might alter the physiology of resident astrocytes. These cases and literature review point toward possible mechanism(s) of tau aggregation in astrocytes in response to chronic brain trauma.
Collapse
Affiliation(s)
- Adam D Bachstetter
- Spinal Cord and Brain Injury Research Center, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA.
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA.
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| | - Filip G Garrett
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
21
|
Gelpi E, Aldecoa I, Lopez-Villegas D, Abellan-Vidal MT, Mercadel-Fañanas P, Fortea J, Ribosa R, Morenas E, Gomez-Anson B, Molina-Porcel L, Ximelis T, Borrego S, Antonell A, Rovelet-Lecrux A, Klotz S, Andres-Benito P, Sanchez-Valle R, Ferrer I. Atypical astroglial pTDP-43 pathology in astroglial predominant tauopathy. Neuropathol Appl Neurobiol 2021; 47:1109-1113. [PMID: 33730418 PMCID: PMC9292602 DOI: 10.1111/nan.12707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/27/2021] [Accepted: 03/07/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Ellen Gelpi
- Neurological Tissue Bank of the Biobank-Hospital Clinic-IDIBAPS, Barcelona, Spain.,Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Iban Aldecoa
- Neurological Tissue Bank of the Biobank-Hospital Clinic-IDIBAPS, Barcelona, Spain.,Department of Pathology, Biomedical Diagnostic Centre (CDB), Hospital Clinic - University of Barcelona, Barcelona, Spain
| | - Dolores Lopez-Villegas
- Cognitive Disorders and Psychogeriatry, Institut de Neuropsiquiatria i Addiccions, Centre Emili Mira, Parc de Salut Mar, Barcelona, Spain
| | - Maria Teresa Abellan-Vidal
- Cognitive Disorders and Psychogeriatry, Institut de Neuropsiquiatria i Addiccions, Centre Emili Mira, Parc de Salut Mar, Barcelona, Spain
| | - Pilar Mercadel-Fañanas
- Cognitive Disorders and Psychogeriatry, Institut de Neuropsiquiatria i Addiccions, Centre Emili Mira, Parc de Salut Mar, Barcelona, Spain
| | - Juan Fortea
- Neurology Department, Hospital de la Santa Creu i St Pau, St Pau research Institute, Barcelona, Spain
| | - Roser Ribosa
- Neurology Department, Hospital de la Santa Creu i St Pau, St Pau research Institute, Barcelona, Spain
| | - Estrella Morenas
- Neurology Department, Hospital de la Santa Creu i St Pau, St Pau research Institute, Barcelona, Spain
| | | | - Laura Molina-Porcel
- Neurological Tissue Bank of the Biobank-Hospital Clinic-IDIBAPS, Barcelona, Spain.,Alzheimer's disease and other cognitive disorders unit, Neurology Department, Hospital Clinic I Provincial de Barcelona and Institut d'Investigacions Biomediques August Pi I Sunyer, Barcelona, Spain
| | - Teresa Ximelis
- Neurological Tissue Bank of the Biobank-Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Sergi Borrego
- Neurological Tissue Bank of the Biobank-Hospital Clinic-IDIBAPS, Barcelona, Spain.,Alzheimer's disease and other cognitive disorders unit, Neurology Department, Hospital Clinic I Provincial de Barcelona and Institut d'Investigacions Biomediques August Pi I Sunyer, Barcelona, Spain
| | - Anna Antonell
- Alzheimer's disease and other cognitive disorders unit, Neurology Department, Hospital Clinic I Provincial de Barcelona and Institut d'Investigacions Biomediques August Pi I Sunyer, Barcelona, Spain
| | - Anne Rovelet-Lecrux
- Université de Rouen, Institut de Recherche et d'Innovation Biomédicale (IRIB), Mont-Saint-Aignan, France
| | - Sigrid Klotz
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Pol Andres-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Bellvitge University Hospital-IDIBELL, CIBERNED, Hospitalet de Llobregat, Spain
| | - Raquel Sanchez-Valle
- Neurological Tissue Bank of the Biobank-Hospital Clinic-IDIBAPS, Barcelona, Spain.,Alzheimer's disease and other cognitive disorders unit, Neurology Department, Hospital Clinic I Provincial de Barcelona and Institut d'Investigacions Biomediques August Pi I Sunyer, Barcelona, Spain
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Bellvitge University Hospital-IDIBELL, CIBERNED, Hospitalet de Llobregat, Spain
| |
Collapse
|
22
|
Neumann M, Lee EB, Mackenzie IR. Frontotemporal Lobar Degeneration TDP-43-Immunoreactive Pathological Subtypes: Clinical and Mechanistic Significance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:201-217. [PMID: 33433877 DOI: 10.1007/978-3-030-51140-1_13] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Frontotemporal lobar degeneration with TPD-43-immunoreactive pathology (FTLD-TDP) is subclassified based on the type and cortical laminar distribution of neuronal inclusions. The relevance of these pathological subtypes is supported by the presence of relatively specific clinical and genetic correlations. Recent evidence suggests that the different patterns of pathology are a reflection of biochemical differences in the pathological TDP-43 species, each of which is influenced by differing genetic factors. As a result, patient FTLD-TDP subtype may be an important factor to consider when developing biomarkers and targeted therapies for frontotemporal dementia. In this chapter, we first describe the pathological features, clinical and genetic correlations of the currently recognized FTLD-TDP subtypes. We then discuss a number of novel patterns of TDP-43 pathology. Finally, we provide an overview of what is currently known about the biochemical basis of the different FTLD-TDP subtypes and how this may explain the observed phenotypic and pathological heterogeneity.
Collapse
Affiliation(s)
- Manuela Neumann
- Department of Neuropathology, University of Tübingen, Tübingen, Germany.,DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian R Mackenzie
- Department of Pathology, University of British Columbia, Vancouver, BC, Canada. .,Department of Pathology, Vancouver General Hospital, Vancouver, BC, Canada.
| |
Collapse
|
23
|
Loss of TDP-43 in astrocytes leads to motor deficits by triggering A1-like reactive phenotype and triglial dysfunction. Proc Natl Acad Sci U S A 2020; 117:29101-29112. [PMID: 33127758 DOI: 10.1073/pnas.2007806117] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Patients with amyotrophic lateral sclerosis (ALS) can have abnormal TDP-43 aggregates in the nucleus and cytosol of their surviving neurons and glia. Although accumulating evidence indicates that astroglial dysfunction contributes to motor neuron degeneration in ALS, the normal function of TDP-43 in astrocytes are largely unknown, and the role of astroglial TDP-43 loss to ALS pathobiology remains to be clarified. Herein, we show that TDP-43-deleted astrocytes exhibit a cell-autonomous increase in GFAP immunoreactivity without affecting astrocyte or microglia proliferation. At the transcriptomic level, TDP-43-deleted astrocytes resemble A1-reactive astrocytes and induce microglia to increase C1q expression. These astrocytic changes do not cause loss of motor neurons in the spinal cord or denervation at the neuromuscular junction. In contrast, there is a selective reduction of mature oligodendrocytes, but not oligodendrocyte precursor cells, suggesting triglial dysfunction mediated by TDP-43 loss in astrocytes. Moreover, mice with astroglial TDP-43 deletion develop motor, but not sensory, deficits. Taken together, our results demonstrate that TDP-43 is required to maintain the protective functions of astrocytes relevant to the development of motor deficits in mice.
Collapse
|
24
|
Hock EM, Maniecka Z, Hruska-Plochan M, Reber S, Laferrière F, Sahadevan M K S, Ederle H, Gittings L, Pelkmans L, Dupuis L, Lashley T, Ruepp MD, Dormann D, Polymenidou M. Hypertonic Stress Causes Cytoplasmic Translocation of Neuronal, but Not Astrocytic, FUS due to Impaired Transportin Function. Cell Rep 2020; 24:987-1000.e7. [PMID: 30044993 DOI: 10.1016/j.celrep.2018.06.094] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/14/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
The primarily nuclear RNA-binding protein FUS (fused in sarcoma) forms pathological cytoplasmic inclusions in a subset of early-onset amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients. In response to cellular stress, FUS is recruited to cytoplasmic stress granules, which are hypothesized to act as precursors of pathological inclusions. We monitored the stress-induced nucleocytoplasmic shuttling of endogenous FUS in an ex vivo mouse CNS model and human neural networks. We found that hyperosmolar, but not oxidative, stress induced robust cytoplasmic translocation of neuronal FUS, with transient nuclear clearance and loss of function. Surprisingly, this reaction is independent of stress granule formation and the molecular pathways activated by hyperosmolarity. Instead, it represents a mechanism mediated by cytoplasmic redistribution of Transportin 1/2 and is potentiated by transcriptional inhibition. Importantly, astrocytes, which remain unaffected in ALS/FTD-FUS, are spared from this stress reaction that may signify the initial event in the development of FUS pathology.
Collapse
Affiliation(s)
- Eva-Maria Hock
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Life Science Zurich Graduate School, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Zuzanna Maniecka
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Life Science Zurich Graduate School, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Marian Hruska-Plochan
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Stefan Reber
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Florent Laferrière
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Sonu Sahadevan M K
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Life Science Zurich Graduate School, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Helena Ederle
- BioMedical Center (BMC), Ludwig-Maximiians-University Munich, 82152 Planegg-Martinsried, Germany; Graduate School of Systemic Neurosciences (GSN), 82152 Planegg-Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Lauren Gittings
- Queen Square Brain Bank for Neurological Diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 1PJ, UK
| | - Lucas Pelkmans
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Luc Dupuis
- Faculty of Medicine, INSERM UMR-S1118 and Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 1PJ, UK
| | - Marc-David Ruepp
- UK Dementia Research Institute Centre at King's College London, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Dorothee Dormann
- BioMedical Center (BMC), Ludwig-Maximiians-University Munich, 82152 Planegg-Martinsried, Germany; Graduate School of Systemic Neurosciences (GSN), 82152 Planegg-Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Magdalini Polymenidou
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Life Science Zurich Graduate School, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
Abstract
Background Alexander disease is caused by dominantly acting mutations in glial fibrillary acidic protein (GFAP), the major intermediate filament of astrocytes in the central nervous system. Main body In addition to the sequence variants that represent the origin of disease, GFAP accumulation also takes place, together leading to a gain-of-function that has sometimes been referred to as “GFAP toxicity.” Whether the nature of GFAP toxicity in patients, who have mixtures of both mutant and normal protein, is the same as that produced by simple GFAP excess, is not yet clear. Conclusion The implications of these questions for the design of effective treatments are discussed.
Collapse
|
26
|
Kawakami I, Arai T, Hasegawa M. The basis of clinicopathological heterogeneity in TDP-43 proteinopathy. Acta Neuropathol 2019; 138:751-770. [PMID: 31555895 PMCID: PMC6800885 DOI: 10.1007/s00401-019-02077-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/27/2019] [Accepted: 09/13/2019] [Indexed: 12/15/2022]
Abstract
Transactive response DNA-binding protein 43 kDa (TDP-43) was identified as a major disease-associated component in the brain of patients with amyotrophic lateral sclerosis (ALS), as well as the largest subset of patients with frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U), which characteristically exhibits cytoplasmic inclusions that are positive for ubiquitin but negative for tau and α-synuclein. TDP-43 pathology occurs in distinct brain regions, involves disparate brain networks, and features accumulation of misfolded proteins in various cell types and in different neuroanatomical regions. The clinical phenotypes of ALS and FTLD-TDP (FTLD with abnormal intracellular accumulations of TDP-43) correlate with characteristic distribution patterns of the underlying pathology across specific brain regions with disease progression. Recent studies support the idea that pathological protein spreads from neuron to neuron via axonal transport in a hierarchical manner. However, little is known to date about the basis of the selective cellular and regional vulnerability, although the information would have important implications for the development of targeted and personalized therapies. Here, we aim to summarize recent advances in the neuropathology, genetics and animal models of TDP-43 proteinopathy, and their relationship to clinical phenotypes for the underlying selective neuronal and regional susceptibilities. Finally, we attempt to integrate these findings into the emerging picture of TDP-43 proteinopathy, and to highlight key issues for future therapy and research.
Collapse
Affiliation(s)
- Ito Kawakami
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
- Department of Neuropathology, Tokyo Metropolitan Geriatric Hospital and Institute, Tokyo, Japan
| | - Tetsuaki Arai
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.
| | - Masato Hasegawa
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
27
|
Gao J, Wang L, Gao C, Arakawa H, Perry G, Wang X. TDP-43 inhibitory peptide alleviates neurodegeneration and memory loss in an APP transgenic mouse model for Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165580. [PMID: 31678156 DOI: 10.1016/j.bbadis.2019.165580] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the elderly, characterized clinically by progressive decline in cognitive function and neuropathologically by the presence of senile plaques and neuronal loss in the brain. While current drugs for AD are always employed as symptomatic therapies with variable benefits, there is no treatment to delay its progression or halt neurodegeneration. TAR DNA-binding protein 43 (TDP-43) proteinopathy has increasingly been implicated as a prominent histopathological feature of AD and related dementias. Our recent studies have implicated mitochondria as critical targets of TDP-43 neurotoxicity. Here, we demonstrate that the suppression of mitochondrial-associated TDP-43 protects against neuronal loss and behavioral deficits in 5XFAD transgenic mice recapitulating AD-related phenotypes. In AD patients and 5XFAD mice, the level of TDP-43 is increased in mitochondria, and TDP-43 highly co-localizes with mitochondria in brain neurons exhibiting TDP-43 proteinopathy. Chronic administration of a TDP-43 mitochondrial localization inhibitory peptide, PM1, significantly alleviates TDP-43 proteinopathy, mitochondrial abnormalities, microgliosis and even neuronal loss without effect on amyloid plaque load in 12-month-old 5XFAD mice well after the onset of symptoms. Additionally, PM1 also improves the cognitive and motor function in 12-month-old 5XFAD mice and completely prevents the onset of mild cognitive impairment in 6-month-old 5XFAD mice. These data indicate that mitochondria-associated TDP-43 is likely involved in AD pathogenesis and that the inhibitor of mitochondria-associated TDP-43 may be a valuable drug to treat underlying AD.
Collapse
Affiliation(s)
- Ju Gao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Luwen Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Chao Gao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Hiroyuki Arakawa
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA; Center for Mitochondrial Diseases, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
28
|
Abstract
Our understanding of astrocytes and their role in neurological diseases has increased considerably over the past two decades as the diverse roles of these cells have become recognized. Our evolving understanding of these cells suggests that they are more than support cells for neurons and that they play important roles in CNS homeostasis under normal conditions, in neuroprotection and in disease exacerbation. These multiple functions make them excellent candidates for targeted therapies to treat neurological disorders. New technological advances, including in vivo imaging, optogenetics and chemogenetics, have allowed us to examine astrocytic functions in ways that have uncovered new insights into the dynamic roles of these cells. Furthermore, the use of induced pluripotent stem cell-derived astrocytes from patients with a host of neurological disorders can help to tease out the contributions of astrocytes to human disease. In this Review, we explore some of the technological advances developed over the past decade that have aided our understanding of astrocyte function. We also highlight neurological disorders in which astrocyte function or dysfunction is believed to have a role in disease pathogenesis or propagation and discuss how the technological advances have been and could be used to study each of these diseases.
Collapse
|
29
|
Tau and TDP-43 proteinopathies: kindred pathologic cascades and genetic pleiotropy. J Transl Med 2019; 99:993-1007. [PMID: 30742063 PMCID: PMC6609463 DOI: 10.1038/s41374-019-0196-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
We review the literature on Tau and TDP-43 proteinopathies in aged human brains and the relevant underlying pathogenetic cascades. Complex interacting pathways are implicated in Alzheimer's disease and related dementias (ADRD), wherein multiple proteins tend to misfold in a manner that is "reactive," but, subsequently, each proteinopathy may contribute strongly to the clinical symptoms. Tau proteinopathy exists in brains of individuals across a broad spectrum of primary underlying conditions-e.g., developmental, traumatic, and inflammatory/infectious diseases. TDP-43 proteinopathy is also expressed in a wide range of clinical disorders. Although TDP-43 proteinopathy was first described in the central nervous system of patients with amyotrophic lateral sclerosis (ALS) and in subtypes of frontotemporal dementia (FTD/FTLD), TDP-43 proteinopathy is also present in chronic traumatic encephalopathy, cognitively impaired persons in advanced age with hippocampal sclerosis, Huntington's disease, and other diseases. We list known Tau and TDP-43 proteinopathies. There is also evidence of cellular co-localization between Tau and TDP-43 misfolded proteins, suggesting common pathways or protein interactions facilitating misfolding in one protein by the other. Multiple pleiotropic gene variants can alter risk for Tau or TDP-43 pathologies, and certain gene variants (e.g., APOE ε4, Huntingtin triplet repeats) are associated with increases of both Tau and TDP-43 proteinopathies. Studies of genetic risk factors have provided insights into multiple nodes of the pathologic cascades involved in Tau and TDP-43 proteinopathies. Variants from a specific gene can be either a low-penetrant risk factor for a group of diseases, or alternatively, a different variant of the same gene may be a disease-driving allele that is associated with a relatively aggressive and early-onset version of a clinically and pathologically specific disease type. Overall, a complex but enlightening paradigm has emerged, wherein both Tau and TDP-43 proteinopathies are linked to numerous overlapping upstream influences, and both are associated with multiple downstream pathologically- and clinically-defined deleterious effects.
Collapse
|
30
|
Berning BA, Walker AK. The Pathobiology of TDP-43 C-Terminal Fragments in ALS and FTLD. Front Neurosci 2019; 13:335. [PMID: 31031584 PMCID: PMC6470282 DOI: 10.3389/fnins.2019.00335] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
During neurodegenerative disease, the multifunctional RNA-binding protein TDP-43 undergoes a vast array of post-translational modifications, including phosphorylation, acetylation, and cleavage. Many of these alterations may directly contribute to the pathogenesis of TDP-43 proteinopathies, which include most forms of amyotrophic lateral sclerosis (ALS) and approximately half of all frontotemporal dementia, pathologically identified as frontotemporal lobar degeneration (FTLD) with TDP-43 pathology. However, the relative contributions of the various TDP-43 post-translational modifications to disease remain unclear, and indeed some may be secondary epiphenomena rather than disease-causative. It is therefore critical to determine the involvement of each modification in disease processes to allow the design of targeted treatments. In particular, TDP-43 C-terminal fragments (CTFs) accumulate in the brains of people with ALS and FTLD and are therefore described as a neuropathological signature of these diseases. Remarkably, these TDP-43 CTFs are rarely observed in the spinal cord, even in ALS which involves dramatic degeneration of spinal motor neurons. Therefore, TDP-43 CTFs are not produced non-specifically in the course of all forms of TDP-43-related neurodegeneration, but rather variably arise due to additional factors influenced by regional heterogeneity in the central nervous system. In this review, we summarize how TDP-43 CTFs are generated and degraded by cells, and critique evidence from studies of TDP-43 CTF pathology in human disease tissues, as well as cell and animal models, to analyze the pathophysiological relevance of TDP-43 CTFs to ALS and FTLD. Numerous studies now indicate that, although TDP-43 CTFs are prevalent in ALS and FTLD brains, disease-related pathology is only variably reproduced in TDP-43 CTF cell culture models. Furthermore, TDP-43 CTF expression in both transgenic and viral-mediated in vivo models largely fails to induce motor or behavioral dysfunction reminiscent of human disease. We therefore conclude that although TDP-43 CTFs are a hallmark of TDP-43-related neurodegeneration in the brain, they are not a primary cause of ALS or FTLD.
Collapse
Affiliation(s)
- Britt A. Berning
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Adam K. Walker
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
31
|
TDP-43 proteinopathy in aging: Associations with risk-associated gene variants and with brain parenchymal thyroid hormone levels. Neurobiol Dis 2019; 125:67-76. [PMID: 30682540 DOI: 10.1016/j.nbd.2019.01.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/13/2019] [Accepted: 01/19/2019] [Indexed: 02/08/2023] Open
Abstract
TDP-43 proteinopathy is very prevalent among the elderly (affecting at least 25% of individuals over 85 years of age) and is associated with substantial cognitive impairment. Risk factors implicated in age-related TDP-43 proteinopathy include commonly inherited gene variants, comorbid Alzheimer's disease pathology, and thyroid hormone dysfunction. To test parameters that are associated with aging-related TDP-43 pathology, we performed exploratory analyses of pathologic, genetic, and biochemical data derived from research volunteers in the University of Kentucky Alzheimer's Disease Center autopsy cohort (n = 136 subjects). Digital pathologic methods were used to discriminate and quantify both neuritic and intracytoplasmic TDP-43 pathology in the hippocampal formation. Overall, 46.4% of the cases were positive for TDP-43 intracellular inclusions, which is consistent with results in other prior community-based cohorts. The pathologies were correlated with hippocampal sclerosis of aging (HS-Aging) linked genotypes. We also assayed brain parenchymal thyroid hormone (triiodothyronine [T3] and thyroxine [T4]) levels. In cases with SLCO1A2/IAPP or ABCC9 risk associated genotypes, the T3/T4 ratio tended to be reduced (p = .051 using 2-tailed statistical test), and in cases with low T3/T4 ratios (bottom quintile), there was a higher likelihood of HS-Aging pathology (p = .025 using 2-tailed statistical test). This is intriguing because the SLCO1A2/IAPP and ABCC9 risk associated genotypes have been associated with altered expression of the astrocytic thyroid hormone receptor (protein product of the nearby gene SLCO1C1). These data indicate that dysregulation of thyroid hormone signaling may play a role in age-related TDP-43 proteinopathy.
Collapse
|
32
|
Patient-derived frontotemporal lobar degeneration brain extracts induce formation and spreading of TDP-43 pathology in vivo. Nat Commun 2018; 9:4220. [PMID: 30310141 PMCID: PMC6181940 DOI: 10.1038/s41467-018-06548-9] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
The stereotypical distribution of TAR DNA-binding 43 protein (TDP-43) aggregates in frontotemporal lobar degeneration (FTLD-TDP) suggests that pathological TDP-43 spreads throughout the brain via cell-to-cell transmission and correlates with disease progression, but no in vivo experimental data support this hypothesis. We first develop a doxycycline-inducible cell line expressing GFP-tagged cytoplasmic TDP-43 protein (iGFP-NLSm) as a cell-based system to screen and identify seeding activity of human brain-derived pathological TDP-43 isolated from sporadic FTLD-TDP and familial cases with Granulin (FTLD-TDP-GRN) or C9orf72 repeat expansion mutations (FTLD-TDP-C9+). We demonstrate that intracerebral injections of biologically active pathogenic FTLD-TDP seeds into transgenic mice expressing cytoplasmic human TDP-43 (lines CamKIIa-hTDP-43NLSm, rNLS8, and CamKIIa-208) and non-transgenic mice led to the induction of de-novo TDP-43 pathology. Moreover, TDP-43 pathology progressively spreads throughout the brain in a time-dependent manner via the neuroanatomic connectome. Our study suggests that the progression of FTLD-TDP reflects the templated cell-to-cell transneuronal spread of pathological TDP-43.
Collapse
|
33
|
Kovacs GG, Lee VM, Trojanowski JQ. Protein astrogliopathies in human neurodegenerative diseases and aging. Brain Pathol 2018; 27:675-690. [PMID: 28805003 DOI: 10.1111/bpa.12536] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are characterized by progressive dysfunction and loss of neurons associated with depositions of pathologically altered proteins showing hierarchical involvement of brain regions. The role of astrocytes in the pathogenesis of neurodegenerative diseases is explored as contributors to neuronal degeneration or neuroprotection pathways, and also as potential mediators of the transcellular spreading of disease-associated proteins. Protein astrogliopathy (PAG), including deposition of amyloid-β, prion protein, tau, α-synuclein, and very rarely transactive response DNA-binding protein 43 (TDP-43) is not unprecedented or unusual in neurodegenerative diseases. Morphological characterization of PAG is considered, however, only for the neuropathological diagnosis and classification of tauopathies. Astrocytic tau pathology is seen in primary frontotemporal lobar degeneration (FTLD) associated with tau pathologies (FTLD-Tau), and also in the form of aging-related tau astrogliopathy (ARTAG). Importantly, ARTAG shares common features with primary FTLD-Tau as well as with the astroglial tau pathologies that are thought to be hallmarks of a brain injury-related tauopathy known as chronic traumatic encephalopathy (CTE). Supported by experimental observations, the morphological variability of PAG might reflect distinct pathogenic involvement of different astrocytic populations. PAG might indicate astrocytic contribution to spreading or clearance of disease-associated proteins, however, this might lead to astrocytic dysfunction and eventually contribute to the degeneration of neurons. Here, we review recent advances in understanding ARTAG and other related forms of PAG.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Virginia M Lee
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology and Laboratory Medicine of the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology and Laboratory Medicine of the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
34
|
Gao J, Wang L, Huntley ML, Perry G, Wang X. Pathomechanisms of TDP-43 in neurodegeneration. J Neurochem 2018; 146:10.1111/jnc.14327. [PMID: 29486049 PMCID: PMC6110993 DOI: 10.1111/jnc.14327] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/08/2018] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
Abstract
Neurodegeneration, a term that refers to the progressive loss of structure and function of neurons, is a feature of many neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). There is no cure or treatment available that can prevent or reverse neurodegenerative conditions. The causes of neurodegeneration in these diseases remain largely unknown; yet, an extremely small proportion of these devastating diseases are associated with genetic mutations in proteins involved in a wide range of cellular pathways and processes. Over the past decade, it has become increasingly clear that the most notable neurodegenerative diseases, such as ALS, FTLD, and AD, share a common prominent pathological feature known as TAR DNA-binding protein 43 (TDP-43) proteinopathy, which is usually characterized by the presence of aberrant phosphorylation, ubiquitination, cleavage and/or nuclear depletion of TDP-43 in neurons and glial cells. The role of TDP-43 as a neurotoxicity trigger has been well documented in different in vitro and in vivo experimental models. As such, the investigation of TDP-43 pathomechanisms in various major neurodegenerative diseases is on the rise. Here, after a discussion of stages of TDP-43 proteinopathy during disease progression in various major neurodegenerative diseases, we review previous and most recent studies about the potential pathomechanisms with a particular emphasis on ALS, FTLD, and AD, and discuss the possibility of targeting TDP-43 as a common therapeutic approach to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Ju Gao
- Departments of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Luwen Wang
- Departments of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mikayla L. Huntley
- Departments of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Xinglong Wang
- Departments of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
35
|
Abstract
INTRODUCTION Nuclear factor TDP-43 is a ubiquitously expressed RNA binding protein that plays a key causative role in several neurodegenerative diseases, especially in the ALS/FTD spectrum. In addition, its aberrant aggregation and expression has been recently observed in other type of diseases, such as myopathies and Niemann-Pick C, a lysosomal storage disease. Areas covered: This review aims to specifically cover the post-translational modifications (PTMs) that can affect TDP-43 function and cellular status both in health and disease. To this date, these include phosphorylation, formation of C-terminal fragments, disulfide bridge formation, ubiquitination, acetylation, and sumoylation. Recently published articles on these subjects have been reviewed in this manuscript. Expert opinion: Targeting aberrant TDP-43 expression in neurodegenerative diseases is a very challenging task due to the fact that both its overexpression and downregulation are considerably toxic to cells. This characteristic makes it difficult to therapeutically target this protein in a generalized manner. An alternative approach could be the identification of specific aberrant PTMs that promote its aggregation or toxicity, and developing novel therapeutic approaches toward their selective modification.
Collapse
Affiliation(s)
- Emanuele Buratti
- a Department of Molecular Pathology , International Centre for Genetic Engineering and Biotechnology (ICGEB) , Trieste , Italy
| |
Collapse
|
36
|
Hagemann TL, Powers B, Mazur C, Kim A, Wheeler S, Hung G, Swayze E, Messing A. Antisense suppression of glial fibrillary acidic protein as a treatment for Alexander disease. Ann Neurol 2018; 83:27-39. [PMID: 29226998 DOI: 10.1002/ana.25118] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/24/2017] [Accepted: 12/06/2017] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Alexander disease is a fatal leukodystrophy caused by autosomal dominant gain-of-function mutations in the gene for glial fibrillary acidic protein (GFAP), an intermediate filament protein primarily expressed in astrocytes of the central nervous system. A key feature of pathogenesis is overexpression and accumulation of GFAP, with formation of characteristic cytoplasmic aggregates known as Rosenthal fibers. Here we investigate whether suppressing GFAP with antisense oligonucleotides could provide a therapeutic strategy for treating Alexander disease. METHODS In this study, we use GFAP mutant mouse models of Alexander disease to test the efficacy of antisense suppression and evaluate the effects on molecular and cellular phenotypes and non-cell-autonomous toxicity. Antisense oligonucleotides were designed to target the murine Gfap transcript, and screened using primary mouse cortical cultures. Lead oligonucleotides were then tested for their ability to reduce GFAP transcripts and protein, first in wild-type mice with normal levels of GFAP, and then in adult mutant mice with established pathology and elevated levels of GFAP. RESULTS Nearly complete and long-lasting elimination of GFAP occurred in brain and spinal cord following single bolus intracerebroventricular injections, with a striking reversal of Rosenthal fibers and downstream markers of microglial and other stress-related responses. GFAP protein was also cleared from cerebrospinal fluid, demonstrating its potential utility as a biomarker in future clinical applications. Finally, treatment led to improved body condition and rescue of hippocampal neurogenesis. INTERPRETATION These results demonstrate the efficacy of antisense suppression for an astrocyte target, and provide a compelling therapeutic approach for Alexander disease. Ann Neurol 2018;83:27-39.
Collapse
Affiliation(s)
| | | | | | | | - Steven Wheeler
- Waisman Center, University of Wisconsin-Madison, Madison, WI
| | | | | | - Albee Messing
- Waisman Center, University of Wisconsin-Madison, Madison, WI.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
37
|
Biology and Pathobiology of TDP-43 and Emergent Therapeutic Strategies. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024554. [PMID: 27920024 DOI: 10.1101/cshperspect.a024554] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cytoplasmic TDP-43 mislocalization and aggregation is a pathological hallmark of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. TDP-43 is an RNA-binding protein (RBP) with a prion-like domain (PrLD) that promotes TDP-43 misfolding. PrLDs possess compositional similarity to canonical prion domains of various yeast proteins, including Sup35. Strikingly, disease-causing TDP-43 mutations reside almost exclusively in the PrLD and can enhance TDP-43 misfolding and toxicity. Another ∼70 human RBPs harbor PrLDs, including FUS, TAF15, EWSR1, hnRNPA1, and hnRNPA2, which have surfaced in the etiology of neurodegenerative diseases. Importantly, PrLDs enable RBP function and mediate phase transitions that partition functional ribonucleoprotein compartments. This PrLD activity, however, renders RBPs prone to populating deleterious oligomers or self-templating fibrils that might spread disease, and disease-linked PrLD mutations can exacerbate this risk. Several strategies have emerged to counter TDP-43 proteinopathies, including engineering enhanced protein disaggregases based on Hsp104.
Collapse
|
38
|
van der Knaap MS, Bugiani M. Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol 2017; 134:351-382. [PMID: 28638987 PMCID: PMC5563342 DOI: 10.1007/s00401-017-1739-1] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 12/29/2022]
Abstract
Leukodystrophies are genetically determined disorders characterized by the selective involvement of the central nervous system white matter. Onset may be at any age, from prenatal life to senescence. Many leukodystrophies are degenerative in nature, but some only impair white matter function. The clinical course is mostly progressive, but may also be static or even improving with time. Progressive leukodystrophies are often fatal, and no curative treatment is known. The last decade has witnessed a tremendous increase in the number of defined leukodystrophies also owing to a diagnostic approach combining magnetic resonance imaging pattern recognition and next generation sequencing. Knowledge on white matter physiology and pathology has also dramatically built up. This led to the recognition that only few leukodystrophies are due to mutations in myelin- or oligodendrocyte-specific genes, and many are rather caused by defects in other white matter structural components, including astrocytes, microglia, axons and blood vessels. We here propose a novel classification of leukodystrophies that takes into account the primary involvement of any white matter component. Categories in this classification are the myelin disorders due to a primary defect in oligodendrocytes or myelin (hypomyelinating and demyelinating leukodystrophies, leukodystrophies with myelin vacuolization); astrocytopathies; leuko-axonopathies; microgliopathies; and leuko-vasculopathies. Following this classification, we illustrate the neuropathology and disease mechanisms of some leukodystrophies taken as example for each category. Some leukodystrophies fall into more than one category. Given the complex molecular and cellular interplay underlying white matter pathology, recognition of the cellular pathology behind a disease becomes crucial in addressing possible treatment strategies.
Collapse
Affiliation(s)
- Marjo S van der Knaap
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Functional Genomics, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands.
- Department of Pathology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
39
|
Lin NH, Messing A, Perng MD. Characterization of a panel of monoclonal antibodies recognizing specific epitopes on GFAP. PLoS One 2017; 12:e0180694. [PMID: 28700643 PMCID: PMC5503259 DOI: 10.1371/journal.pone.0180694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/20/2017] [Indexed: 11/19/2022] Open
Abstract
Alexander disease (AxD) is a neurodegenerative disease caused by heterozygous mutations in the GFAP gene, which encodes the major intermediate filament protein of astrocytes. This disease is characterized by the accumulation of cytoplasmic protein aggregates, known as Rosenthal fibers. Antibodies specific to GFAP could provide invaluable tools to facilitate studies of the normal biology of GFAP and to elucidate the pathologic role of this IF protein in disease. While a large number of antibodies to GFAP are available, few if any of them have defined epitopes. Here we described the characterization of a panel of commonly used anti-GFAP antibodies, which recognized epitopes at regions extending across the rod domain of GFAP. We show that all of the antibodies are useful for immunoblotting and immunostaining, and identify a subset that preferentially recognized human GFAP. Using these antibodies, we demonstrate the presence of biochemically modified forms of GFAP in brains of human AxD patients and mouse AxD models. These data suggest that this panel of anti-GFAP antibodies will be useful for studies of animal and cell-based models of AxD and related diseases in which cytoskeletal defects associated with GFAP modifications occur.
Collapse
Affiliation(s)
- Ni-Hsuan Lin
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Albee Messing
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ming-Der Perng
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
40
|
Kardos J, Héja L, Jemnitz K, Kovács R, Palkovits M. The nature of early astroglial protection-Fast activation and signaling. Prog Neurobiol 2017; 153:86-99. [PMID: 28342942 DOI: 10.1016/j.pneurobio.2017.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/22/2016] [Accepted: 03/05/2017] [Indexed: 12/14/2022]
Abstract
Our present review is focusing on the uniqueness of balanced astroglial signaling. The balance of excitatory and inhibitory signaling within the CNS is mainly determined by sharp synaptic transients of excitatory glutamate (Glu) and inhibitory γ-aminobutyrate (GABA) acting on the sub-second timescale. Astroglia is involved in excitatory chemical transmission by taking up i) Glu through neurotransmitter-sodium transporters, ii) K+ released due to presynaptic action potential generation, and iii) water keeping osmotic pressure. Glu uptake-coupled Na+ influx may either ignite long-range astroglial Ca2+ transients or locally counteract over-excitation via astroglial GABA release and increased tonic inhibition. Imbalance of excitatory and inhibitory drives is associated with a number of disease conditions, including prevalent traumatic and ischaemic injuries or the emergence of epilepsy. Therefore, when addressing the potential of early therapeutic intervention, astroglial signaling functions combating progress of Glu excitotoxicity is of critical importance. We suggest, that excitotoxicity is linked primarily to over-excitation induced by the impairment of astroglial Glu uptake and/or GABA release. Within this framework, we discuss the acute alterations of Glu-cycling and metabolism and conjecture the therapeutic promise of regulation. We also confer the role played by key carrier proteins and enzymes as well as their interplay at the molecular, cellular, and organ levels. Moreover, based on our former studies, we offer potential prospect on the emerging theme of astroglial succinate sensing in course of Glu excitotoxicity.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary.
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary
| | - Katalin Jemnitz
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary
| | - Richárd Kovács
- Institute of Neurophysiology, Charité - Universitätsmedizin, Berlin, Germany
| | - Miklós Palkovits
- Human Brain Tissue Bank and Laboratory, Semmelweis University, Budapest, Hungary
| |
Collapse
|
41
|
Moody LR, Barrett-Wilt GA, Sussman MR, Messing A. Glial fibrillary acidic protein exhibits altered turnover kinetics in a mouse model of Alexander disease. J Biol Chem 2017; 292:5814-5824. [PMID: 28223355 DOI: 10.1074/jbc.m116.772020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/15/2017] [Indexed: 12/27/2022] Open
Abstract
Mutations in the astrocyte-specific intermediate filament glial fibrillary acidic protein (GFAP) lead to the rare and fatal disorder, Alexander disease (AxD). A prominent feature of the disease is aberrant accumulation of GFAP. It has been proposed that this accumulation occurs because of an increase in gene transcription coupled with impaired proteasomal degradation, yet this hypothesis remains untested. We therefore sought to directly investigate GFAP turnover in a mouse model of AxD that is heterozygous for a disease-causing point mutation (GfapR236H/+) (and thus expresses both wild-type and mutant protein). Stable isotope labeling by amino acids in cell culture, using primary cortical astrocytes, indicated that the in vitro half-lives of total GFAP in astrocytes from wild-type and mutant mice were similar at ∼3-4 days. Surprisingly, results obtained with stable isotope labeling of mammals revealed that, in vivo, the half-life of GFAP in mutant mice (15.4 ± 0.5 days) was much shorter than that in wild-type mice (27.5 ± 1.6 days). These unexpected in vivo data are most consistent with a model in which synthesis and degradation are both increased. Our work reveals that an AxD-causing mutation alters GFAP turnover kinetics in vivo and provides an essential foundation for future studies aimed at preventing or reducing the accumulation of GFAP. In particular, these data suggest that elimination of GFAP might be possible and occurs more quickly than previously surmised.
Collapse
Affiliation(s)
| | | | | | - Albee Messing
- From the Waisman Center, .,Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin 53705
| |
Collapse
|
42
|
Pehar M, Harlan BA, Killoy KM, Vargas MR. Role and Therapeutic Potential of Astrocytes in Amyotrophic Lateral Sclerosis. Curr Pharm Des 2017; 23:5010-5021. [PMID: 28641533 PMCID: PMC5740017 DOI: 10.2174/1381612823666170622095802] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/04/2017] [Accepted: 06/16/2017] [Indexed: 12/18/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. The molecular mechanism underlying the progressive degeneration of motor neuron remains uncertain but involves a non-cell autonomous process. In acute injury or degenerative diseases astrocytes adopt a reactive phenotype known as astrogliosis. Astrogliosis is a complex remodeling of astrocyte biology and most likely represents a continuum of potential phenotypes that affect neuronal function and survival in an injury-specific manner. In ALS patients, reactive astrocytes surround both upper and lower degenerating motor neurons and play a key role in the pathology. It has become clear that astrocytes play a major role in ALS pathology. Through loss of normal function or acquired new characteristics, astrocytes are able to influence motor neuron fate and the progression of the disease. The use of different cell culture models indicates that ALS-astrocytes are able to induce motor neuron death by secreting a soluble factor(s). Here, we discuss several pathogenic mechanisms that have been proposed to explain astrocyte-mediated motor neuron death in ALS. In addition, examples of strategies that revert astrocyte-mediated motor neuron toxicity are reviewed to illustrate the therapeutic potential of astrocytes in ALS. Due to the central role played by astrocytes in ALS pathology, therapies aimed at modulating astrocyte biology may contribute to the development of integral therapeutic approaches to halt ALS progression.
Collapse
Affiliation(s)
- Mariana Pehar
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Benjamin A. Harlan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kelby M. Killoy
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Marcelo R. Vargas
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
43
|
Nelson PT, Katsumata Y, Nho K, Artiushin SC, Jicha GA, Wang WX, Abner EL, Saykin AJ, Kukull WA, Fardo DW. Genomics and CSF analyses implicate thyroid hormone in hippocampal sclerosis of aging. Acta Neuropathol 2016; 132:841-858. [PMID: 27815632 DOI: 10.1007/s00401-016-1641-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 10/28/2016] [Accepted: 10/28/2016] [Indexed: 11/29/2022]
Abstract
We report evidence of a novel pathogenetic mechanism in which thyroid hormone dysregulation contributes to dementia in elderly persons. Two single nucleotide polymorphisms (SNPs) on chromosome 12p12 were the initial foci of our study: rs704180 and rs73069071. These SNPs were identified by separate research groups as risk alleles for non-Alzheimer's neurodegeneration. We found that the rs73069071 risk genotype was associated with hippocampal sclerosis (HS) pathology among people with the rs704180 risk genotype (National Alzheimer's Coordinating Center/Alzheimer's Disease Genetic Consortium data; n = 2113, including 241 autopsy-confirmed HS cases). Furthermore, both rs704180 and rs73069071 risk genotypes were associated with widespread brain atrophy visualized by MRI (Alzheimer's Disease Neuroimaging Initiative data; n = 1239). In human brain samples from the Braineac database, both rs704180 and rs73069071 risk genotypes were associated with variation in expression of ABCC9, a gene which encodes a metabolic sensor protein in astrocytes. The rs73069071 risk genotype was also associated with altered expression of a nearby astrocyte-expressed gene, SLCO1C1. Analyses of human brain gene expression databases indicated that the chromosome 12p12 locus may regulate particular astrocyte-expressed genes induced by the active form of thyroid hormone, triiodothyronine (T3). This is informative biologically, because the SLCO1C1 protein transports thyroid hormone into astrocytes from blood. Guided by the genomic data, we tested the hypothesis that altered thyroid hormone levels could be detected in cerebrospinal fluid (CSF) obtained from persons with HS pathology. Total T3 levels in CSF were elevated in HS cases (p < 0.04 in two separately analyzed groups), but not in Alzheimer's disease cases, relative to controls. No change was detected in the serum levels of thyroid hormone (T3 or T4) in a subsample of HS cases prior to death. We conclude that brain thyroid hormone perturbation is a potential pathogenetic factor in HS that may also provide the basis for a novel CSF-based clinical biomarker.
Collapse
|
44
|
Lin NH, Huang YS, Opal P, Goldman RD, Messing A, Perng MD. The role of gigaxonin in the degradation of the glial-specific intermediate filament protein GFAP. Mol Biol Cell 2016; 27:3980-3990. [PMID: 27798231 PMCID: PMC5156539 DOI: 10.1091/mbc.e16-06-0362] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/03/2016] [Accepted: 10/19/2016] [Indexed: 01/04/2023] Open
Abstract
Alexander disease (AxD) is a primary genetic disorder of astrocytes caused by dominant mutations in the gene encoding the intermediate filament (IF) protein GFAP. This disease is characterized by excessive accumulation of GFAP, known as Rosenthal fibers, within astrocytes. Abnormal GFAP aggregation also occurs in giant axon neuropathy (GAN), which is caused by recessive mutations in the gene encoding gigaxonin. Given that one of the functions of gigaxonin is to facilitate proteasomal degradation of several IF proteins, we sought to determine whether gigaxonin is involved in the degradation of GFAP. Using a lentiviral transduction system, we demonstrated that gigaxonin levels influence the degradation of GFAP in primary astrocytes and in cell lines that express this IF protein. Gigaxonin was similarly involved in the degradation of some but not all AxD-associated GFAP mutants. In addition, gigaxonin directly bound to GFAP, and inhibition of proteasome reversed the clearance of GFAP in cells achieved by overexpressing gigaxonin. These studies identify gigaxonin as an important factor that targets GFAP for degradation through the proteasome pathway. Our findings provide a critical foundation for future studies aimed at reducing or reversing pathological accumulation of GFAP as a potential therapeutic strategy for AxD and related diseases.
Collapse
Affiliation(s)
- Ni-Hsuan Lin
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yu-Shan Huang
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Puneet Opal
- Davee Department of Neurology, Northwestern University, Chicago, IL 60611.,Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Albee Messing
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705
| | - Ming-Der Perng
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
45
|
Guerrero EN, Wang H, Mitra J, Hegde PM, Stowell SE, Liachko NF, Kraemer BC, Garruto RM, Rao KS, Hegde ML. TDP-43/FUS in motor neuron disease: Complexity and challenges. Prog Neurobiol 2016; 145-146:78-97. [PMID: 27693252 PMCID: PMC5101148 DOI: 10.1016/j.pneurobio.2016.09.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/19/2016] [Accepted: 09/20/2016] [Indexed: 01/05/2023]
Abstract
Amyotrophic lateral sclerosis (ALS), a common motor neuron disease affecting two per 100,000 people worldwide, encompasses at least five distinct pathological subtypes, including, ALS-SOD1, ALS-C9orf72, ALS-TDP-43, ALS-FUS and Guam-ALS. The etiology of a major subset of ALS involves toxicity of the TAR DNA-binding protein-43 (TDP-43). A second RNA/DNA binding protein, fused in sarcoma/translocated in liposarcoma (FUS/TLS) has been subsequently associated with about 1% of ALS patients. While mutations in TDP-43 and FUS have been linked to ALS, the key contributing molecular mechanism(s) leading to cell death are still unclear. One unique feature of TDP-43 and FUS pathogenesis in ALS is their nuclear clearance and simultaneous cytoplasmic aggregation in affected motor neurons. Since the discoveries in the last decade implicating TDP-43 and FUS toxicity in ALS, a majority of studies have focused on their cytoplasmic aggregation and disruption of their RNA-binding functions. However, TDP-43 and FUS also bind to DNA, although the significance of their DNA binding in disease-affected neurons has been less investigated. A recent observation of accumulated genomic damage in TDP-43 and FUS-linked ALS and association of FUS with neuronal DNA damage repair pathways indicate a possible role of deregulated DNA binding function of TDP-43 and FUS in ALS. In this review, we discuss the different ALS disease subtypes, crosstalk of etiopathologies in disease progression, available animal models and their limitations, and recent advances in understanding the specific involvement of RNA/DNA binding proteins, TDP-43 and FUS, in motor neuron diseases.
Collapse
Affiliation(s)
- Erika N. Guerrero
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
- Centre for Neuroscience, Institute for Scientific Research and Technology Services (INDICASAT-AIP), City of Knowledge, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Haibo Wang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Pavana M. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Sara E. Stowell
- Department of Anthropology, Binghamton University, State University of New York, Binghamton, New York
| | - Nicole F Liachko
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Brian C. Kraemer
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Ralph M. Garruto
- Department of Anthropology, Binghamton University, State University of New York, Binghamton, New York
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, New York
| | - K. S. Rao
- Centre for Neuroscience, Institute for Scientific Research and Technology Services (INDICASAT-AIP), City of Knowledge, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
- Houston Methodist Neurological Institute, Houston, Texas 77030 USA
- Weill Medical College of Cornell University, New York
| |
Collapse
|
46
|
Briggs DI, Angoa-Pérez M, Kuhn DM. Prolonged Repetitive Head Trauma Induces a Singular Chronic Traumatic Encephalopathy-Like Pathology in White Matter Despite Transient Behavioral Abnormalities. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2869-2886. [PMID: 27662795 DOI: 10.1016/j.ajpath.2016.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022]
Abstract
Repetitive mild traumatic brain injury (rmTBI), resulting from insults caused by an external mechanical force that disrupts normal brain function, has been linked to the development of neurodegenerative diseases, such as chronic traumatic encephalopathy and Alzheimer disease; however, neither the severity nor frequency of head injury required to trigger adverse behavioral outcomes is well understood. In this study, the administration of 30 head impacts using two different weights to lightly anesthetized, completely unrestrained mice established a paradigm that simulates the highly repetitive nature of sports- and military-related head injury. As the number of head impacts increases, the time to recover consciousness diminishes; however, both the sensorimotor function and behavioral outcomes of impacted mice evolve during the ensuing weeks. Postmortem analyses reveal robust Alzheimer disease and chronic traumatic encephalopathy-like conditions that manifest in a singular manner throughout the white matter concomitant with evidence of chronic oligodendrogenesis. Our data suggest that latency to recover the righting reflex may be an inadequate measure of injury severity and imply that exposure to repeated head impacts may mask the severity of an underlying and developing neuropathologic condition that does not manifest itself until long after head collisions cease. In addition, our data indicate that there is a cumulative and dose-dependent effect of repetitive head impacts that induces the neurobehavioral and neuropathologic outcomes seen in humans with a history of rmTBI.
Collapse
Affiliation(s)
- Denise I Briggs
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, Michigan; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan.
| | - Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, Michigan; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Donald M Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, Michigan; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
47
|
Heaven MR, Flint D, Randall SM, Sosunov AA, Wilson L, Barnes S, Goldman JE, Muddiman DC, Brenner M. Composition of Rosenthal Fibers, the Protein Aggregate Hallmark of Alexander Disease. J Proteome Res 2016; 15:2265-82. [PMID: 27193225 PMCID: PMC5036859 DOI: 10.1021/acs.jproteome.6b00316] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alexander disease (AxD) is a neurodegenerative disorder characterized by astrocytic protein aggregates called Rosenthal fibers (RFs). We used mouse models of AxD to determine the protein composition of RFs to obtain information about disease mechanisms including the hypothesis that sequestration of proteins in RFs contributes to disease. A method was developed for RF enrichment, and analysis of the resulting fraction using isobaric tags for relative and absolute quantitation mass spectrometry identified 77 proteins not previously associated with RFs. Three of five proteins selected for follow-up were confirmed enriched in the RF fraction by immunobloting of both the AxD mouse models and human patients: receptor for activated protein C kinase 1 (RACK1), G1/S-specific cyclin D2, and ATP-dependent RNA helicase DDX3X. Immunohistochemistry validated cyclin D2 as a new RF component, but results for RACK1 and DDX3X were equivocal. None of these was decreased in the non-RF fractions compared to controls. A similar result was obtained for the previously known RF component, alphaB-crystallin, which had been a candidate for sequestration. Thus, no support was obtained for the sequestration hypothesis for AxD. Providing possible insight into disease progression, the association of several of the RF proteins with stress granules suggests a role for stress granules in the origin of RFs.
Collapse
Affiliation(s)
- Michael R. Heaven
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Alabama 35294
| | - Daniel Flint
- Department of Neurobiology and the Civitan International Research Center, Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Shan M. Randall
- Keck Fourier Transform Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | | | - Landon Wilson
- Department of Pharmacology and Toxicology, Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - James E. Goldman
- Department of Pathology & Cell Biology, Columbia University, New York, New York, 10032
| | - David C. Muddiman
- Keck Fourier Transform Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Michael Brenner
- Department of Neurobiology and the Civitan International Research Center, Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
48
|
Nelson PT, Trojanowski JQ, Abner EL, Al-Janabi OM, Jicha GA, Schmitt FA, Smith CD, Fardo DW, Wang WX, Kryscio RJ, Neltner JH, Kukull WA, Cykowski MD, Van Eldik LJ, Ighodaro ET. "New Old Pathologies": AD, PART, and Cerebral Age-Related TDP-43 With Sclerosis (CARTS). J Neuropathol Exp Neurol 2016; 75:482-98. [PMID: 27209644 PMCID: PMC6366658 DOI: 10.1093/jnen/nlw033] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 12/12/2022] Open
Abstract
The pathology-based classification of Alzheimer's disease (AD) and other neurodegenerative diseases is a work in progress that is important for both clinicians and basic scientists. Analyses of large autopsy series, biomarker studies, and genomics analyses have provided important insights about AD and shed light on previously unrecognized conditions, enabling a deeper understanding of neurodegenerative diseases in general. After demonstrating the importance of correct disease classification for AD and primary age-related tauopathy, we emphasize the public health impact of an underappreciated AD "mimic," which has been termed "hippocampal sclerosis of aging" or "hippocampal sclerosis dementia." This pathology affects >20% of individuals older than 85 years and is strongly associated with cognitive impairment. In this review, we provide an overview of current hypotheses about how genetic risk factors (GRN, TMEM106B, ABCC9, and KCNMB2), and other pathogenetic influences contribute to TDP-43 pathology and hippocampal sclerosis. Because hippocampal sclerosis of aging affects the "oldest-old" with arteriolosclerosis and TDP-43 pathologies that extend well beyond the hippocampus, more appropriate terminology for this disease is required. We recommend "cerebral age-related TDP-43 and sclerosis" (CARTS). A detailed case report is presented, which includes neuroimaging and longitudinal neurocognitive data. Finally, we suggest a neuropathology-based diagnostic rubric for CARTS.
Collapse
Affiliation(s)
- Peter T Nelson
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC).
| | - John Q Trojanowski
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Erin L Abner
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Omar M Al-Janabi
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Gregory A Jicha
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Frederick A Schmitt
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Charles D Smith
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - David W Fardo
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Wang-Xia Wang
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Richard J Kryscio
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Janna H Neltner
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Walter A Kukull
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Matthew D Cykowski
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Linda J Van Eldik
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| | - Eseosa T Ighodaro
- From the Department of Pathology, Division of Neuropathology (PTN, JHN), Department of Neurology (GAJ, FAS, CDS), Department of Statistics (DWF, RJK), Department of Anatomy and Neurobiology (PTN, JHN, LJVE, ETI), Department of Epidemiology (ELA), and Sanders-Brown Center on Aging (PTN, ELA, OMA-J, GAJ, FAS, CDS, DWF, WXW, RJK, LJVE, ETI), University of Kentucky, Lexington, Kentucky; Department of Pathology & Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvannia (JQT); Department of Epidemiology, University of Washington, Seattle, Washington (WAK); and Department of Pathology, Houston Methodist Hospital, Houston, Texas (MDC)
| |
Collapse
|
49
|
Dardis A, Zampieri S, Canterini S, Newell KL, Stuani C, Murrell JR, Ghetti B, Fiorenza MT, Bembi B, Buratti E. Altered localization and functionality of TAR DNA Binding Protein 43 (TDP-43) in niemann- pick disease type C. Acta Neuropathol Commun 2016; 4:52. [PMID: 27193329 PMCID: PMC4870731 DOI: 10.1186/s40478-016-0325-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/09/2016] [Indexed: 12/13/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is a lysosomal storage disorder characterized by the occurrence of visceral and neurological symptoms. At present, the molecular mechanisms causing neurodegeneration in this disease are unknown. Here we report the altered expression and/or mislocalization of the TAR-DNA binding protein 43 (TDP-43) in both NPC mouse and in a human neuronal model of the disease. We also report the neuropathologic study of a NPC patient’s brain, showing that while TDP-43 is below immunohistochemical detection in nuclei of cerebellar Purkinje cells, it has a predominant localization in the cytoplasm of these cells. From a functional point of view, the TDP-43 mislocalization, that occurs in a human experimental neuronal model system, is associated with specific alterations in TDP-43 controlled genes. Most interestingly, treatment with N-Acetyl-cysteine (NAC) or beta-cyclodextrin (CD) can partially restore TDP-43 nuclear localization. Taken together, the results of these studies extend the role of TDP-43 beyond the Amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD)/Alzheimer disease (AD) spectrum. These findings may open novel research/therapeutic avenues for a better understanding of both NPC disease and the TDP-43 proteinopathy disease mechanism.
Collapse
|
50
|
Cykowski MD, Takei H, Van Eldik LJ, Schmitt FA, Jicha GA, Powell SZ, Nelson PT. Hippocampal Sclerosis but Not Normal Aging or Alzheimer Disease Is Associated With TDP-43 Pathology in the Basal Forebrain of Aged Persons. J Neuropathol Exp Neurol 2016; 75:397-407. [PMID: 26971127 DOI: 10.1093/jnen/nlw014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transactivating responsive sequence (TAR) DNA-binding protein 43-kDa (TDP-43) pathology has been described in various brain diseases, but the full anatomical distribution and clinical and biological implications of that pathology are incompletely characterized. Here, we describe TDP-43 neuropathology in the basal forebrain, hypothalamus, and adjacent nuclei in 98 individuals (mean age, 86 years; median final mini-mental state examination score, 27). On examination blinded to clinical and pathologic diagnoses, we identified TDP-43 pathology that most frequently involved the ventromedial basal forebrain in 19 individuals (19.4%). As expected, many of these brains had comorbid pathologies including those of Alzheimer disease (AD), Lewy body disease (LBD), and/or hippocampal sclerosis of aging (HS-Aging). The basal forebrain TDP-43 pathology was strongly associated with comorbid HS-Aging (odds ratio = 6.8, p = 0.001), whereas there was no significant association between basal forebrain TDP-43 pathology and either AD or LBD neuropathology. In this sample, there were some cases with apparent preclinical TDP-43 pathology in the basal forebrain that may indicate that this is an early affected area in HS-Aging. We conclude that TDP-43 pathology in the basal forebrain is strongly associated with HS-Aging. These results raise questions about a specific pathogenetic relationship between basal forebrain TDP-43 and non-HS-Aging comorbid diseases (AD and LBD).
Collapse
Affiliation(s)
- Matthew D Cykowski
- From the Department of Pathology and Genomic Medicine (MDC, HT, SZP) and Houston Methodist Neurological Institute (HT, SZP), Houston Methodist Hospital, Houston, Texas; and Sanders-Brown Center on Aging (LJVE, FAS, GAJ, PTN), Department of Anatomy & Neurobiology(LJVE), Department of Neurology(FAS, GAJ), and Division of Neuropathology, Department of Pathology (PTN), University of Kentucky, Lexington, Kentucky.
| | - Hidehiro Takei
- From the Department of Pathology and Genomic Medicine (MDC, HT, SZP) and Houston Methodist Neurological Institute (HT, SZP), Houston Methodist Hospital, Houston, Texas; and Sanders-Brown Center on Aging (LJVE, FAS, GAJ, PTN), Department of Anatomy & Neurobiology(LJVE), Department of Neurology(FAS, GAJ), and Division of Neuropathology, Department of Pathology (PTN), University of Kentucky, Lexington, Kentucky
| | - Linda J Van Eldik
- From the Department of Pathology and Genomic Medicine (MDC, HT, SZP) and Houston Methodist Neurological Institute (HT, SZP), Houston Methodist Hospital, Houston, Texas; and Sanders-Brown Center on Aging (LJVE, FAS, GAJ, PTN), Department of Anatomy & Neurobiology(LJVE), Department of Neurology(FAS, GAJ), and Division of Neuropathology, Department of Pathology (PTN), University of Kentucky, Lexington, Kentucky
| | - Frederick A Schmitt
- From the Department of Pathology and Genomic Medicine (MDC, HT, SZP) and Houston Methodist Neurological Institute (HT, SZP), Houston Methodist Hospital, Houston, Texas; and Sanders-Brown Center on Aging (LJVE, FAS, GAJ, PTN), Department of Anatomy & Neurobiology(LJVE), Department of Neurology(FAS, GAJ), and Division of Neuropathology, Department of Pathology (PTN), University of Kentucky, Lexington, Kentucky
| | - Gregory A Jicha
- From the Department of Pathology and Genomic Medicine (MDC, HT, SZP) and Houston Methodist Neurological Institute (HT, SZP), Houston Methodist Hospital, Houston, Texas; and Sanders-Brown Center on Aging (LJVE, FAS, GAJ, PTN), Department of Anatomy & Neurobiology(LJVE), Department of Neurology(FAS, GAJ), and Division of Neuropathology, Department of Pathology (PTN), University of Kentucky, Lexington, Kentucky
| | - Suzanne Z Powell
- From the Department of Pathology and Genomic Medicine (MDC, HT, SZP) and Houston Methodist Neurological Institute (HT, SZP), Houston Methodist Hospital, Houston, Texas; and Sanders-Brown Center on Aging (LJVE, FAS, GAJ, PTN), Department of Anatomy & Neurobiology(LJVE), Department of Neurology(FAS, GAJ), and Division of Neuropathology, Department of Pathology (PTN), University of Kentucky, Lexington, Kentucky
| | - Peter T Nelson
- From the Department of Pathology and Genomic Medicine (MDC, HT, SZP) and Houston Methodist Neurological Institute (HT, SZP), Houston Methodist Hospital, Houston, Texas; and Sanders-Brown Center on Aging (LJVE, FAS, GAJ, PTN), Department of Anatomy & Neurobiology(LJVE), Department of Neurology(FAS, GAJ), and Division of Neuropathology, Department of Pathology (PTN), University of Kentucky, Lexington, Kentucky
| |
Collapse
|