1
|
Rovný R, Marko M, Michalko D, Mitka M, Cimrová B, Vančová Z, Jarčušková D, Dragašek J, Minárik G, Riečanský I. BDNF Val66Met polymorphism is associated with consolidation of episodic memory during sleep. Biol Psychol 2023; 179:108568. [PMID: 37075935 DOI: 10.1016/j.biopsycho.2023.108568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
The brain-derived neurotrophic factor (BDNF) is an essential regulator of synaptic plasticity, a candidate neurobiological mechanism underlying learning and memory. A functional polymorphism in the BDNF gene, Val66Met (rs6265), has been linked to memory and cognition in healthy individuals and clinical populations. Sleep contributes to memory consolidation, yet information about the possible role of BDNF in this process is scarce. To address this question, we investigated the relationship between the BDNF Val66Met genotype and consolidation of episodic declarative and procedural (motor) non-declarative memories in healthy adults. The carriers of Met66 allele, as compared with Val66 homozygotes, showed stronger forgetting overnight (24hours after encoding), but not over shorter time (immediately or 20minutes after word list presentation). There was no effect of Val66Met genotype on motor learning. These data suggest that BDNF plays a role in neuroplasticity underlying episodic memory consolidation during sleep.
Collapse
Affiliation(s)
- Rastislav Rovný
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Marko
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Drahomír Michalko
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Milan Mitka
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbora Cimrová
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Vančová
- 1st Department of Psychiatry, Faculty of Medicine, Pavol Jozef Šafárik University and University Hospital, Košice, Slovakia
| | - Dominika Jarčušková
- 1st Department of Psychiatry, Faculty of Medicine, Pavol Jozef Šafárik University and University Hospital, Košice, Slovakia
| | - Jozef Dragašek
- 1st Department of Psychiatry, Faculty of Medicine, Pavol Jozef Šafárik University and University Hospital, Košice, Slovakia
| | | | - Igor Riečanský
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia; Department of Psychiatry, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia.
| |
Collapse
|
2
|
Sun W, Mei Y, Li X, Yang Y, An L. Maternal immune activation-induced proBDNF-mediated neural information processing dysfunction at hippocampal CA3-CA1 synapses associated with memory deficits in offspring. Front Cell Dev Biol 2022; 10:1018586. [PMID: 36438556 PMCID: PMC9691851 DOI: 10.3389/fcell.2022.1018586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2023] Open
Abstract
Prenatal exposure to maternal infection increases the risk of offspring developing schizophrenia in adulthood. Current theories suggest that the consequences of MIA on mBDNF secretion may underlie the increased risk of cognitive disorder. There is little evidence for whether the expression of its precursor, proBDNF, is changed and how proBDNF-mediated signaling may involve in learning and memory. In this study, proBDNF levels were detected in the hippocampal CA1 and CA3 regions of male adult rats following MIA by prenatal polyI:C exposure. Behaviorally, learning and memory were assessed in contextual fear conditioning tasks. Local field potentials were recorded in the hippocampal CA3-CA1 pathway. The General Partial Directed Coherence approach was utilized to identify the directional alternation of neural information flow between CA3 and CA1 regions. EPSCs were recorded in CA1 pyramidal neurons to explore a possible mechanism involving the proBDNF-p75NTR signaling pathway. Results showed that the expression of proBDNF in the polyI:C-treated offspring was abnormally enhanced in both CA3 and CA1 regions. Meanwhile, the mBDNF expression was reduced in both hippocampal regions. Intra-hippocampal CA1 but not CA3 injection with anti-proBDNF antibody and p75NTR inhibitor TAT-Pep5 effectively mitigated the contextual memory deficits. Meanwhile, reductions in the phase synchronization between CA3 and CA1 and the coupling directional indexes from CA3 to CA1 were enhanced by the intra-CA1 infusions. Moreover, blocking proBDNF/p75NTR signaling could reverse the declined amplitude of EPSCs in CA1 pyramidal neurons, indicating the changes in postsynaptic information processing in the polyI:C-treated offspring. Therefore, the changes in hippocampal proBDNF activity in prenatal polyI:C exposure represent a potential mechanism involved in NIF disruption leading to contextual memory impairments.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yazi Mei
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Lei An
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, China
- Department of Neurology, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Halonen R, Kuula L, Lahti J, Räikkönen K, Pesonen AK. The association between overnight recognition accuracy and slow oscillation-spindle coupling is moderated by BDNF Val66Met. Behav Brain Res 2022; 428:113889. [DOI: 10.1016/j.bbr.2022.113889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/02/2022]
|
4
|
Vaseghi S, Arjmandi-Rad S, Eskandari M, Ebrahimnejad M, Kholghi G, Zarrindast MR. Modulating role of serotonergic signaling in sleep and memory. Pharmacol Rep 2021; 74:1-26. [PMID: 34743316 DOI: 10.1007/s43440-021-00339-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/02/2023]
Abstract
Serotonin is an important neurotransmitter with various receptors and wide-range effects on physiological processes and cognitive functions including sleep, learning, and memory. In this review study, we aimed to discuss the role of serotonergic receptors in modulating sleep-wake cycle, and learning and memory function. Furthermore, we mentioned to sleep deprivation, its effects on memory function, and the potential interaction with serotonin. Although there are thousands of research articles focusing on the relationship between sleep and serotonin; however, the pattern of serotonergic function in sleep deprivation is inconsistent and it seems that serotonin has not a certain role in the effects of sleep deprivation on memory function. Also, we found that the injection type of serotonergic agents (systemic or local), the doses of these drugs (dose-dependent effects), and up- or down-regulation of serotonergic receptors during training with various memory tasks are important issues that can be involved in the effects of serotonergic signaling on sleep-wake cycle, memory function, and sleep deprivation-induced memory impairments. This comprehensive review was conducted in the PubMed, Scopus, and ScienceDirect databases in June and July 2021, by searching keywords sleep, sleep deprivation, memory, and serotonin.
Collapse
Affiliation(s)
- Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| | - Shirin Arjmandi-Rad
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Maliheh Eskandari
- Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahshid Ebrahimnejad
- Department of Physiology, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Vaseghi S, Arjmandi-Rad S, Kholghi G, Nasehi M. Inconsistent effects of sleep deprivation on memory function. EXCLI JOURNAL 2021; 20:1011-1027. [PMID: 34267613 PMCID: PMC8278215 DOI: 10.17179/excli2021-3764] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022]
Abstract
In this review article, we aimed to discuss the role of sleep deprivation (SD) in learning and memory processing in basic and clinical studies. There are numerous studies investigating the effect of SD on memory, while most of these studies have shown the impairment effect of SD. However, some of these studies have reported conflicting results, indicating that SD does not impair memory performance or even improves it. So far, no study has discussed or compared the conflicting results of SD on learning and memory. Thus, this important issue in the neuroscience of sleep remains unknown. The main goal of this review article is to compare the similar mechanisms between the impairment and the improvement effects of SD on learning and memory, probably leading to a scientific solution that justifies these conflicting results. We focused on the inconsistent effects of SD on some mechanisms involved in learning and memory, and tried to discuss the inconsistent effects of SD on learning and memory.
Collapse
Affiliation(s)
- Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Shirin Arjmandi-Rad
- Institute for Cognitive & Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Gita Kholghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
The association between sleep-wake ratio and overnight picture recognition is moderated by BDNF genotype. Neurobiol Learn Mem 2020; 177:107353. [PMID: 33253827 DOI: 10.1016/j.nlm.2020.107353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/17/2020] [Accepted: 11/24/2020] [Indexed: 11/23/2022]
Abstract
A wealth of studies supports the role of sleep in memory performance. Experimentally controlled studies indicate that prolonged wake after memory encoding is detrimental for memory outcome whereas sleep protects from wake-time interference and promotes memory consolidation. We examined how the natural distribution of wake and sleep between encoding and retrieval associated with overnight picture recognition accuracy among 161 adolescents following their typical sleep schedule with an in-home polysomnography. The memorized pictures varied in their level of arousal (calm to exciting) and valence (negative to positive). Suspecting genotypic influence on the sensitivity for sleep/wake dynamics, we also assessed if these associations were affected by known gene polymorphisms involved in neural plasticity and sleep homeostasis: brain-derived neurotrophic factor (BDNF) Val66Met and Catechol-O-methyltransferase (COMT) Val158Met. In the whole sample, overnight recognition accuracy was associated with the levels of arousal and valence of the pictures, but not with sleep percentage (i.e. the percentage of time spent asleep between memory encoding and retrieval). While the allelic status of BDNF or COMT did not have any main effect on recognition accuracy, a significant moderation by BDNF Val66Met was found (p = .004): the subgroup homozygous for valine allele showed positive association between sleep percentage and recognition accuracy. This was underlain by detrimental influence of wake, rather than by any memory benefit of sleep. Our results complement the mounting evidence that the relation between sleep and memory performance is moderated by BDNF Val66Met. Further studies are needed to clarify the specific mechanisms.
Collapse
|
7
|
Amato N, Caverzasio S, Galati S. Clinical implication of high-density EEG sleep recordings in Parkinson’s disease. J Neurosci Methods 2020; 340:108746. [DOI: 10.1016/j.jneumeth.2020.108746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 11/16/2022]
|
8
|
Ma T, Zhang H, Xu ZP, Lu Y, Fu Q, Wang W, Li GH, Wang YY, Yang YT, Mi WD. Activation of brain-derived neurotrophic factor signaling in the basal forebrain reverses acute sleep deprivation-induced fear memory impairments. Brain Behav 2020; 10:e01592. [PMID: 32157827 PMCID: PMC7177564 DOI: 10.1002/brb3.1592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/15/2020] [Accepted: 02/15/2020] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION The mechanisms underlying sleep deprivation-induced memory impairments and relevant compensatory signaling pathways remain elusive. We tested the hypothesis that increased brain-derived neurotrophic factor (BDNF) expression in the basal forebrain following acute sleep deprivation was a compensatory mechanism to maintain fear memory performance. METHODS Adult male Wistar rats were deprived of 6-hr total sleep from the beginning of the light cycle. The effects of sleep deprivation on BDNF protein expression and activation of downstream tropomyosin receptor kinase B (TrkB)/phospholipase C-γ1 (PLCγ1) signaling in the basal forebrain and fear memory consolidation were examined. BDNF or selective downstream TrkB receptor antagonist ANA-12 was further injected into the basal forebrain bilaterally to observe the changes in fear memory consolidation in response to modulation of the BDNF/TrkB signaling. RESULTS Six hours of sleep deprivation-induced both short- and long-term fear memory impairments. Increased BDNF protein expression and TrkB and PLCγ1 phosphorylation in the basal forebrain were observed after sleep deprivation. Microinjection of BDNF into the basal forebrain partly reversed fear memory deficits caused by sleep deprivation, which were accompanied by increased BDNF protein levels and TrkB/PLCγ1 activation. After ANA-12 microinjection, sleep deprivation-induced activation of the BDNF/TrkB pathway was inhibited and impairments of fear memory consolidation were further aggravated. CONCLUSIONS Acute sleep deprivation induces compensatory increase of BDNF expression in the basal forebrain. Microinjection of BDNF into the basal forebrain mitigates the fear memory impairments caused by sleep deprivation by activating TrkB/PLCγ1 signaling.
Collapse
Affiliation(s)
- Tao Ma
- Anesthesia and Operation Center, Chinese PLA Medical School, Beijing, China.,Department of Anesthesiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Hao Zhang
- Department of Anesthesiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Zhi-Peng Xu
- Anesthesia and Operation Center, Chinese PLA Medical School, Beijing, China
| | - Yan Lu
- Department of Neurology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Qiang Fu
- Anesthesia and Operation Center, Chinese PLA Medical School, Beijing, China
| | - Wei Wang
- Department of Anesthesiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Guan-Hua Li
- Department of Anesthesiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Ying-Ying Wang
- Department of Anesthesiology, PLA Rocket Force Characteristic Medical Center, Beijing, China.,PLA Rocket Force Characteristic Medical Center, Postgraduate Training Base of Jinzhou Medical University, Beijing, China
| | - Yi-Tian Yang
- Anesthesia and Operation Center, Chinese PLA Medical School, Beijing, China
| | - Wei-Dong Mi
- Anesthesia and Operation Center, Chinese PLA Medical School, Beijing, China
| |
Collapse
|
9
|
Halonen R, Kuula L, Lahti J, Makkonen T, Räikkönen K, Pesonen AK. BDNF Val66Met polymorphism moderates the association between sleep spindles and overnight visual recognition. Behav Brain Res 2019; 375:112157. [DOI: 10.1016/j.bbr.2019.112157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 10/26/2022]
|
10
|
The Brain-Derived Neurotrophic Factor: Missing Link Between Sleep Deprivation, Insomnia, and Depression. Neurochem Res 2019; 45:221-231. [PMID: 31782101 DOI: 10.1007/s11064-019-02914-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/08/2019] [Accepted: 11/17/2019] [Indexed: 12/15/2022]
Abstract
The brain-derived neurotrophic factor (BDNF) mediates the plasticity-related changes that associate with memory processing during sleep. Sleep deprivation and chronic stress are associated with propensity to depression, anxiety, and insomnia. We propose a model by which explain alterations in the CNS and serum expression of BDNF associated with chronic sleep deprivation, depression, and insomnia. Mild sleep deprivation activates the cerebral cortex and brainstem to generate the physiologic drive for non-rapid eye movement (NREM) and rapid eye movement (REM) sleep drive respectively, associated with BDNF upregulation in these regions. This physiological response loses effectiveness with longer episodes or during chronic of total or selective REM sleep loss, which are associated with impaired hippocampal BDNF expression, impaired memory and cognition. Chronic sleep deprivation and insomnia can act as an external stressors and result in depression, characterized by hippocampal BDNF downregulation along with disrupted frontal cortical BDNF expression, as well as reduced levels and impaired diurnal alterations in serum BDNF expression. Acute REM sleep deprivation breaks the cycle by restoration of hippocampal, and possibly restoration of cortical and serum expression of BDNF. The BDNF Val66Met polymorphism alters susceptibility to depression, anxiety, and insomnia by altering availability and expression of BDNF in brain and blood. The proposed model is testable and implies that low levels and low variability in serum BDNF are associated with poor response to anti-depressive medications, electroconvulsive therapy, and REM sleep deprivation, in patients with depression. Our mode is also backed up by the existing clinical evidence but is yet to be investigated.
Collapse
|
11
|
Sleep Deprivation Disrupts Acquisition of Contextual Fear Extinction by Affecting Circadian Oscillation of Hippocampal-Infralimbic proBDNF. eNeuro 2019; 6:ENEURO.0165-19.2019. [PMID: 31585927 PMCID: PMC6800296 DOI: 10.1523/eneuro.0165-19.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/22/2019] [Accepted: 09/27/2019] [Indexed: 12/25/2022] Open
Abstract
Extensive evidence showed that mature brain-derived neurotrophic factor (mBDNF) levels displayed a circadian pattern. Circadian disruption, for example, sleep deprivation (SD), induced functional and behavioral deficits. However, compared with that of mature form, the biological role of the pro-peptide, proBDNF, was poorly understood. Here, we found that proBDNF was expressed under circadian rhythm in the ventral hippocampus (vHPC). SD rats exhibited deficits in acquisition of conditioned extinction and damped rhythmicity in vHPC proBDNF activity that were accompanied by SD between zeitgeber time (ZT)0 and ZT4, but not the late stage of sleep period. Furthermore, SD affected fear extinction through vHPC-IL proBDNF signaling, which was associated with NR2B subunits of NMDA receptors. More importantly, infusion of proBDNF could mitigate SD-induced abnormal neural activity, by suppressing the enhanced basal firing rate of IL-RS and elevating the depressed neural response that evoked by acquisition of conditioned extinction. Therefore, this finding provided the first evidence that circadian oscillation of vHPC proBDNF activity contributed to the effects of SD on acquisition of conditioned fear extinction, and suggested a new therapeutic target to reverse the cognitive deficits in sleep-related mental disorder, such as post-traumatic stress disorder (PTSD).
Collapse
|
12
|
Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front Cell Neurosci 2019; 13:363. [PMID: 31440144 PMCID: PMC6692714 DOI: 10.3389/fncel.2019.00363] [Citation(s) in RCA: 722] [Impact Index Per Article: 144.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
Brain Derived Neurotrophic Factor (BDNF) is a key molecule involved in plastic changes related to learning and memory. The expression of BDNF is highly regulated, and can lead to great variability in BDNF levels in healthy subjects. Changes in BDNF expression are associated with both normal and pathological aging and also psychiatric disease, in particular in structures important for memory processes such as the hippocampus and parahippocampal areas. Some interventions like exercise or antidepressant administration enhance the expression of BDNF in normal and pathological conditions. In this review, we will describe studies from rodents and humans to bring together research on how BDNF expression is regulated, how this expression changes in the pathological brain and also exciting work on how interventions known to enhance this neurotrophin could have clinical relevance. We propose that, although BDNF may not be a valid biomarker for neurodegenerative/neuropsychiatric diseases because of its disregulation common to many pathological conditions, it could be thought of as a marker that specifically relates to the occurrence and/or progression of the mnemonic symptoms that are common to many pathological conditions.
Collapse
Affiliation(s)
- Magdalena Miranda
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| | - Juan Facundo Morici
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| | - María Belén Zanoni
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| |
Collapse
|
13
|
Harrington MO, Klaus K, Vaht M, Harro J, Pennington K, Durrant SJ. Overnight retention of emotional memories is influenced by BDNF Val66Met but not 5-HTTLPR. Behav Brain Res 2019; 359:17-27. [DOI: 10.1016/j.bbr.2018.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/24/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023]
|
14
|
Fumo-dos-Santos C, Pradella-Hallinan M, Barbisan BN, Tufik S, Moreira GA. Sleep duration on a population of children referred to sleep study - cross-sectional data from 2003 to 2009. Sleep Sci 2019; 12:272-278. [PMID: 32318248 PMCID: PMC7159079 DOI: 10.5935/1984-0063.20190094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Sleep is essential for human beings, especially children. Insufficient sleep is linked to somatic and psychological problems. This study aims to describe nocturnal sleep patterns in children aged 7 to 13 years and investigate if sex or weekdays influence sleep habits. It also analyses factors associated with sleep length and the difference between sleep habits on weekends and weekdays. METHODS A retrospective cross-sectional study with questionnaires from children with sleep complaints referred to our service (December 2003 to June 2009) in Sao Paulo City, Brazil. Median of sleep hours, time going to bed, waking up, and the difference in amount of sleep during weekends and weekdays were calculated. A generalized linear model was used to find associations between covariates and a) sleep hours, and b) sleep weekend minus - weekdays. RESULTS We analyzed 577 children (median 9.5 y, 61% boys). Median bedtime was 22h. Median wake up time was 7h on weekdays and 9h on weekends. Median sleep duration was 9.5h during weekdays and 10h on weekends. The median difference in the amount of sleep during weekends and weekdays was 0.5h (IQR=1.5). Shorter sleep duration was associated with age and school schedule. Higher difference weekend - weekdays was associated with older children, girls, and school schedule. CONCLUSION Children 7 to 13 years usually sleep more on weekends. Age, morning and full-time classes are associated with shorter sleep duration on weekdays and higher weekend-weekdays; girls sleep more during weekends.
Collapse
Affiliation(s)
| | | | | | - Sergio Tufik
- Universade Federal de São Paulo, Departamento de Psicobiologia - São Paulo - São Paulo - Brazil
| | - Gustavo Antonio Moreira
- Universade Federal de São Paulo, Departamento de Psicobiologia - São Paulo - São Paulo - Brazil., Universade Federal de São Paulo, Departamento de Pediatria - São Paulo - São Paulo - Brazil
| |
Collapse
|
15
|
Maier JG, Kuhn M, Mainberger F, Nachtsheim K, Guo S, Bucsenez U, Feige B, Mikutta C, Spiegelhalder K, Klöppel S, Normann C, Riemann D, Nissen C. Sleep orchestrates indices of local plasticity and global network stability in the human cortex. Sleep 2018; 42:5257994. [DOI: 10.1093/sleep/zsy263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/16/2018] [Indexed: 01/08/2023] Open
Affiliation(s)
- Jonathan G Maier
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| | - Marion Kuhn
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Florian Mainberger
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Katharina Nachtsheim
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Stephanie Guo
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Ulrike Bucsenez
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Bernd Feige
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Christian Mikutta
- University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| | - Kai Spiegelhalder
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, Bern, Switzerland
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Christoph Nissen
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| |
Collapse
|
16
|
Adult Gross Motor Learning and Sleep: Is There a Mutual Benefit? Neural Plast 2018; 2018:3076986. [PMID: 30186317 PMCID: PMC6110005 DOI: 10.1155/2018/3076986] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/11/2018] [Accepted: 07/28/2018] [Indexed: 12/26/2022] Open
Abstract
Posttraining consolidation, also known as offline learning, refers to neuroplastic processes and systemic reorganization by which newly acquired skills are converted from an initially transient state into a more permanent state. An extensive amount of research on cognitive and fine motor tasks has shown that sleep is able to enhance these processes, resulting in more stable declarative and procedural memory traces. On the other hand, limited evidence exists concerning the relationship between sleep and learning of gross motor skills. We are particularly interested in this relationship with the learning of gross motor skills in adulthood, such as in the case of sports, performing arts, devised experimental tasks, and rehabilitation practice. Thus, the present review focuses on sleep and gross motor learning (GML) in adults. The literature on the impact of sleep on GML, the consequences of sleep deprivation, and the influence of GML on sleep architecture were evaluated for this review. While sleep has proven to be beneficial for most gross motor tasks, sleep deprivation in turn has not always resulted in performance decay. Furthermore, correlations between motor performance and sleep parameters have been found. These results are of potential importance for integrating sleep in physiotherapeutic interventions, especially for patients with impaired gross motor functions.
Collapse
|
17
|
Cross ZR, Kohler MJ, Schlesewsky M, Gaskell MG, Bornkessel-Schlesewsky I. Sleep-Dependent Memory Consolidation and Incremental Sentence Comprehension: Computational Dependencies during Language Learning as Revealed by Neuronal Oscillations. Front Hum Neurosci 2018; 12:18. [PMID: 29445333 PMCID: PMC5797781 DOI: 10.3389/fnhum.2018.00018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 01/15/2018] [Indexed: 12/19/2022] Open
Abstract
We hypothesize a beneficial influence of sleep on the consolidation of the combinatorial mechanisms underlying incremental sentence comprehension. These predictions are grounded in recent work examining the effect of sleep on the consolidation of linguistic information, which demonstrate that sleep-dependent neurophysiological activity consolidates the meaning of novel words and simple grammatical rules. However, the sleep-dependent consolidation of sentence-level combinatorics has not been studied to date. Here, we propose that dissociable aspects of sleep neurophysiology consolidate two different types of combinatory mechanisms in human language: sequence-based (order-sensitive) and dependency-based (order-insensitive) combinatorics. The distinction between the two types of combinatorics is motivated both by cross-linguistic considerations and the neurobiological underpinnings of human language. Unifying this perspective with principles of sleep-dependent memory consolidation, we posit that a function of sleep is to optimize the consolidation of sequence-based knowledge (the when) and the establishment of semantic schemas of unordered items (the what) that underpin cross-linguistic variations in sentence comprehension. This hypothesis builds on the proposal that sleep is involved in the construction of predictive codes, a unified principle of brain function that supports incremental sentence comprehension. Finally, we discuss neurophysiological measures (EEG/MEG) that could be used to test these claims, such as the quantification of neuronal oscillations, which reflect basic mechanisms of information processing in the brain.
Collapse
Affiliation(s)
- Zachariah R Cross
- Centre for Cognitive and Systems Neuroscience, School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, SA, Australia
| | - Mark J Kohler
- Centre for Cognitive and Systems Neuroscience, School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, SA, Australia.,Sleep and Chronobiology Laboratory, School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, SA, Australia
| | - Matthias Schlesewsky
- Centre for Cognitive and Systems Neuroscience, School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, SA, Australia
| | - M G Gaskell
- Department of Psychology, University of York, York, United Kingdom
| | - Ina Bornkessel-Schlesewsky
- Centre for Cognitive and Systems Neuroscience, School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
18
|
BDNF Val66Met Polymorphism Interacts with Sleep Consolidation to Predict Ability to Create New Declarative Memories. J Neurosci 2017; 36:8390-8. [PMID: 27511011 DOI: 10.1523/jneurosci.4432-15.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/23/2016] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED It is hypothesized that a fundamental function of sleep is to restore an individual's day-to-day ability to learn and to constantly adapt to a changing environment through brain plasticity. Brain-derived neurotrophic factor (BDNF) is among the key regulators that shape brain plasticity. However, advancing age and carrying the BDNF Met allele were both identified as factors that potentially reduce BDNF secretion, brain plasticity, and memory. Here, we investigated the moderating role of BDNF polymorphism on sleep and next-morning learning ability in 107 nondemented individuals who were between 55 and 84 years of age. All subjects were tested with 1 night of in-laboratory polysomnography followed by a cognitive evaluation the next morning. We found that in subjects carrying the BDNF Val66Val polymorphism, consolidated sleep was associated with significantly better performance on hippocampus-dependent episodic memory tasks the next morning (β-values from 0.290 to 0.434, p ≤ 0.01). In subjects carrying at least one copy of the BDNF Met allele, a more consolidated sleep was not associated with better memory performance in most memory tests (β-values from -0.309 to -0.392, p values from 0.06 to 0.15). Strikingly, increased sleep consolidation was associated with poorer performance in learning a short story presented verbally in Met allele carriers (β = -0.585, p = 0.005). This study provides new evidence regarding the interacting roles of consolidated sleep and BDNF polymorphism in the ability to learn and stresses the importance of considering BDNF polymorphism when studying how sleep affects cognition. SIGNIFICANCE STATEMENT Individuals with the BDNF Val/Val (valine allele) polymorphism showed better memory performance after a night of consolidated sleep. However, we observed that middle-aged and older individuals who are carriers of the BDNF Met allele displayed no positive association between sleep quality and their ability to learn the next morning. This interaction between sleep and BDNF polymorphism was more salient for hippocampus-dependent tasks than for other cognitive tasks. Our results support the hypothesis that reduced activity-dependent secretion of BDNF impairs the benefits of sleep on synaptic plasticity and next-day memory. Our work advances the field by revealing new evidence of a clear genetic heterogeneity in how sleep consolidation contributes to the ability to learn.
Collapse
|
19
|
Hill JL, Hardy NF, Jimenez DV, Maynard KR, Kardian AS, Pollock CJ, Schloesser RJ, Martinowich K. Loss of promoter IV-driven BDNF expression impacts oscillatory activity during sleep, sensory information processing and fear regulation. Transl Psychiatry 2016; 6:e873. [PMID: 27552586 PMCID: PMC5022093 DOI: 10.1038/tp.2016.153] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 11/09/2022] Open
Abstract
Posttraumatic stress disorder is characterized by hyperarousal, sensory processing impairments, sleep disturbances and altered fear regulation; phenotypes associated with changes in brain oscillatory activity. Molecules associated with activity-dependent plasticity, including brain-derived neurotrophic factor (BDNF), may regulate neural oscillations by controlling synaptic activity. BDNF synthesis includes production of multiple Bdnf transcripts, which contain distinct 5' noncoding exons. We assessed arousal, sensory processing, fear regulation and sleep in animals where BDNF expression from activity-dependent promoter IV is disrupted (Bdnf-e4 mice). Bdnf-e4 mice display sensory hyper-reactivity and impaired electrophysiological correlates of sensory information processing as measured by event-related potentials (ERP). Utilizing electroencephalogram, we identified a decrease in slow-wave activity during non-rapid eye movement sleep, suggesting impaired sleep homeostasis. Fear extinction is controlled by hippocampal-prefrontal cortical BDNF signaling, and neurophysiological communication patterns between the hippocampus (HPC) and medial prefrontal cortex (mPFC) correlate with behavioral performance during extinction. Impaired fear extinction in Bdnf-e4 mice is accompanied by increased HPC activation and decreased HPC-mPFC theta phase synchrony during early extinction, as well as increased mPFC activation during extinction recall. These results suggest that activity-dependent BDNF signaling is critical for regulating oscillatory activity, which may contribute to altered behavior.
Collapse
Affiliation(s)
- J L Hill
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - N F Hardy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - D V Jimenez
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - K R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - A S Kardian
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - C J Pollock
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - R J Schloesser
- Sheppard Pratt-Lieber Research Institute, Inc., Baltimore, MD, USA
| | - K Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Lieber Institute for Brain Development, 855 North Wolfe Street, 347B, Suite 300, Baltimore, MD 21205, USA. E-mail:
| |
Collapse
|
20
|
Malle C, Eustache F, Rauchs G. [The role of sleep in memory consolidation: effects of age and Alzheimer's disease]. Biol Aujourdhui 2016; 209:261-272. [PMID: 26820832 DOI: 10.1051/jbio/2015024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 06/05/2023]
Abstract
Sleep favors memory consolidation. Studies conducted in recent years allowed to reveal the neurobiological underpinnings underlying the beneficial effect of sleep on memory. They also have led to the proposal of two theoretical models: the "hippocampo-neocortical dialogue" and the "synaptic downscaling hypothesis". Normal ageing and, even more markedly Alzheimer's disease, are associated with sleep changes that may alter sleep-dependent memory consolidation. This paper presents a review of studies investigating the relationships between sleep and memory and how these links are affected by ageing and Alzheimer's disease.
Collapse
Affiliation(s)
- Carine Malle
- Inserm U1077, GIP Cyceron, Bd Becquerel, BP 5229, 14074 Caen Cedex 5, France - Université de Caen Normandie, UMR-S1077, Caen, France - École Pratique des Hautes Études, UMR-S1077, Caen, France - CHU de Caen, U1077, Caen, France
| | - Francis Eustache
- Inserm U1077, GIP Cyceron, Bd Becquerel, BP 5229, 14074 Caen Cedex 5, France - Université de Caen Normandie, UMR-S1077, Caen, France - École Pratique des Hautes Études, UMR-S1077, Caen, France - CHU de Caen, U1077, Caen, France
| | - Géraldine Rauchs
- Inserm U1077, GIP Cyceron, Bd Becquerel, BP 5229, 14074 Caen Cedex 5, France - Université de Caen Normandie, UMR-S1077, Caen, France - École Pratique des Hautes Études, UMR-S1077, Caen, France - CHU de Caen, U1077, Caen, France
| |
Collapse
|
21
|
Durkin J, Aton SJ. Sleep-Dependent Potentiation in the Visual System Is at Odds with the Synaptic Homeostasis Hypothesis. Sleep 2016; 39:155-9. [PMID: 26285006 DOI: 10.5665/sleep.5338] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/18/2015] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Two commentaries recently published in SLEEP came to very different conclusions regarding how data from a mouse model of sleep-dependent neural plasticity (orientation-specific response potentiation; OSRP) fit with the synaptic homeostasis hypothesis (SHY). To assess whether SHY offers an explanatory mechanism for OSRP, we present new data on how cortical neuron firing rates are modulated as a function of novel sensory experience and subsequent sleep in this model system. METHODS We carried out longitudinal extracellular recordings of single-neuron activity in the primary visual cortex across a period of novel visual experience and subsequent sleep or sleep deprivation. Spontaneous neuronal firing rates and visual responses were recorded from the same population of visual cortex neurons before control (blank screen) or novel (oriented grating) stimulus presentation, immediately after stimulus presentation, and after a period of subsequent ad lib sleep or sleep deprivation. RESULTS Firing rate responses to visual stimuli were unchanged across waking experience, regardless of whether a blank screen or an oriented grating stimulus was presented. Firing rate responses to stimuli of the presented stimulus orientation were selectively enhanced across post-stimulus sleep, but these changes were blocked by sleep deprivation. Neuronal firing increased significantly across bouts of post-stimulus rapid eye movement (REM) sleep and slow wave sleep (SWS), but not across bouts of wake. CONCLUSIONS The current data suggest that following novel visual experience, potentiation of a subset of V1 synapses occurs across periods of sleep. This finding cannot be explained parsimoniously by SHY.
Collapse
Affiliation(s)
- Jaclyn Durkin
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
22
|
Schönauer M, Grätsch M, Gais S. Evidence for two distinct sleep-related long-term memory consolidation processes. Cortex 2015; 63:68-78. [DOI: 10.1016/j.cortex.2014.08.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 05/19/2014] [Accepted: 08/05/2014] [Indexed: 11/25/2022]
|
23
|
Kennedy KM, Reese ED, Horn MM, Sizemore AN, Unni AK, Meerbrey ME, Kalich AG, Rodrigue KM. BDNF val66met polymorphism affects aging of multiple types of memory. Brain Res 2014; 1612:104-17. [PMID: 25264352 DOI: 10.1016/j.brainres.2014.09.044] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/15/2014] [Accepted: 09/19/2014] [Indexed: 11/18/2022]
Abstract
The BDNF val66met polymorphism (rs6265) influences activity-dependent secretion of brain-derived neurotrophic factor in the synapse, which is crucial for learning and memory. Individuals homozygous or heterozygous for the met allele have lower BDNF secretion than val homozygotes and may be at risk for reduced declarative memory performance, but it remains unclear which types of declarative memory may be affected and how aging of memory across the lifespan is impacted by the BDNF val66met polymorphism. This cross-sectional study investigated the effects of BDNF polymorphism on multiple indices of memory (item, associative, prospective, subjective complaints) in a lifespan sample of 116 healthy adults aged 20-93 years. Advancing age showed a negative effect on item, associative and prospective memory, but not on subjective memory complaints. For item and prospective memory, there were significant age×BDNF group interactions, indicating the adverse effect of age on memory performance across the lifespan was much stronger in the BDNF met carriers than for the val homozygotes. BDNF met carriers also endorsed significantly greater subjective memory complaints, regardless of age, and showed a trend (p<.07) toward poorer associative memory performance compared to val homozygotes. These results suggest that genetic predisposition to the availability of brain-derived neurotrophic factor, by way of the BDNF val66met polymorphism, exerts an influence on multiple indices of episodic memory - in some cases in all individuals regardless of age (subjective memory and perhaps associative memory), in others as an exacerbation of age-related differences in memory across the lifespan (item and prospective memory). This article is part of a Special Issue entitled Memory & Aging.
Collapse
Affiliation(s)
- Kristen M Kennedy
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 1600 Viceroy Dr., Ste 800, Dallas, TX 75235, United States.
| | - Elizabeth D Reese
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 1600 Viceroy Dr., Ste 800, Dallas, TX 75235, United States
| | - Marci M Horn
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 1600 Viceroy Dr., Ste 800, Dallas, TX 75235, United States
| | - April N Sizemore
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 1600 Viceroy Dr., Ste 800, Dallas, TX 75235, United States
| | - Asha K Unni
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 1600 Viceroy Dr., Ste 800, Dallas, TX 75235, United States
| | - Michael E Meerbrey
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 1600 Viceroy Dr., Ste 800, Dallas, TX 75235, United States
| | - Allan G Kalich
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 1600 Viceroy Dr., Ste 800, Dallas, TX 75235, United States
| | - Karen M Rodrigue
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 1600 Viceroy Dr., Ste 800, Dallas, TX 75235, United States
| |
Collapse
|
24
|
Tononi G, Cirelli C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 2014; 81:12-34. [PMID: 24411729 PMCID: PMC3921176 DOI: 10.1016/j.neuron.2013.12.025] [Citation(s) in RCA: 1269] [Impact Index Per Article: 126.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sleep is universal, tightly regulated, and its loss impairs cognition. But why does the brain need to disconnect from the environment for hours every day? The synaptic homeostasis hypothesis (SHY) proposes that sleep is the price the brain pays for plasticity. During a waking episode, learning statistical regularities about the current environment requires strengthening connections throughout the brain. This increases cellular needs for energy and supplies, decreases signal-to-noise ratios, and saturates learning. During sleep, spontaneous activity renormalizes net synaptic strength and restores cellular homeostasis. Activity-dependent down-selection of synapses can also explain the benefits of sleep on memory acquisition, consolidation, and integration. This happens through the offline, comprehensive sampling of statistical regularities incorporated in neuronal circuits over a lifetime. This Perspective considers the rationale and evidence for SHY and points to open issues related to sleep and plasticity.
Collapse
Affiliation(s)
- Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA.
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA.
| |
Collapse
|