1
|
Perrin F, Anderson LC, Mitchell SPC, Sinha P, Turchyna Y, Maesako M, Houser MCQ, Zhang C, Wagner SL, Tanzi RE, Berezovska O. PS1/gamma-secretase acts as rogue chaperone of glutamate transporter EAAT2/GLT-1 in Alzheimer's disease. Acta Neuropathol Commun 2024; 12:166. [PMID: 39434170 PMCID: PMC11492509 DOI: 10.1186/s40478-024-01876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024] Open
Abstract
The recently discovered interaction between presenilin 1 (PS1), a subunit of γ-secretase involved in amyloid-β (Aβ) peptide production, and GLT-1, the major brain glutamate transporter (EAAT2 in the human), may link two pathological aspects of Alzheimer's disease: abnormal Aβ occurrence and neuronal network hyperactivity. In the current study, we employed a FRET-based fluorescence lifetime imaging microscopy (FLIM) to characterize the PS1/GLT-1 interaction in brain tissue from sporadic AD (sAD) patients. sAD brains showed significantly less PS1/GLT-1 interaction than those with frontotemporal lobar degeneration or non-demented controls. Familial AD (fAD) PS1 mutations, inducing a "closed" PS1 conformation similar to that in sAD brain, and gamma-secretase modulators (GSMs), inducing a "relaxed" conformation, respectively reduced and increased the interaction. Furthermore, PS1 influences GLT-1 cell surface expression and homomultimer formation, acting as a chaperone but not affecting GLT-1 stability. The diminished PS1/GLT-1 interaction suggests that these functions may not work properly in AD.
Collapse
Affiliation(s)
- Florian Perrin
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Lauren C Anderson
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Shane P C Mitchell
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Priyanka Sinha
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yuliia Turchyna
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Masato Maesako
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Mei C Q Houser
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Can Zhang
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Steven L Wagner
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
- VA San Diego Healthcare System, La Jolla, CA, 92161, USA
| | - Rudolph E Tanzi
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Oksana Berezovska
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
2
|
Sinha P, Turchyna Y, Mitchell SPC, Sadek M, Armagan G, Perrin F, Maesako M, Berezovska O. Glutamate Transporter 1 as a Novel Negative Regulator of Amyloid β. Cells 2024; 13:1600. [PMID: 39404364 PMCID: PMC11475981 DOI: 10.3390/cells13191600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Glutamate transporter-1 (GLT-1) dynamics are implicated in excitotoxicity and Alzheimer's disease (AD) progression. Early stages of AD are often marked by hyperactivity and increased epileptiform activity preceding cognitive decline. Previously, we identified a direct interaction between GLT-1 and Presenilin 1 (PS1) in the brain, highlighting GLT-1 as a promising target in AD research. This study reports the significance of this interaction and uncovers a novel role of GLT-1 in modulating amyloid-beta (Aβ) production. Overexpression of GLT-1 in cells reduces the levels of Aβ40 and Aβ42 by decreasing γ-secretase activity pertinent to APP processing and induces a more "open" PS1 conformation, resulting in decreased Aβ42/40 ratio. Inhibition of the GLT-1/PS1 interaction using cell-permeable peptides produced an opposing effect on Aβ, highlighting the pivotal role of this interaction in regulating Aβ levels. These findings emphasize the potential of targeting the GLT-1/PS1 interaction as a novel therapeutic strategy for AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Oksana Berezovska
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114, 16th Street, Charlestown, MA 02129, USA
| |
Collapse
|
3
|
Jaye S, Sandau US, McFarland TJ, Woltjer RL, Saugstad JA. A clathrin mediated endocytosis scaffolding protein, Intersectin 1, changes in an isoform, brain region, and sex specific manner in Alzheimer's disease. Front Neurosci 2024; 18:1426180. [PMID: 38915309 PMCID: PMC11195150 DOI: 10.3389/fnins.2024.1426180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is characterized by the accumulation of amyloid-beta (Aβ) plaques and neurofibrillary Tau tangles in the brain. We previously identified a set of candidate AD microRNAs (miRNAs) in human cerebrospinal fluid (CSF) and used a target prediction pipeline to identify mRNAs and pathways that could potentially be regulated by the miRNAs. Of these pathways, clathrin mediated endocytosis (CME) was selected for further investigation. CME is altered in multiple brain cell types in AD and is implicated in early cellular phenotypes such as enlarged early endosomes and pathogenic processing of Aβ. However, a comprehensive evaluation of major CME hub proteins in humans with AD across multiple brain regions is lacking. Thus, we used immunoblots to evaluate human post-mortem AD and control (CTL) frontal cortex (FC; AD n = 22, CTL n = 23) and hippocampus (HP; AD n = 34, CTL n = 22) for changes in Intersectin 1 (ITSN1), Phosphatidylinositol Binding Clathrin Assembly Protein gene (PICALM), Clathrin Light Chain (CLT), FCH and Mu Domain Containing Endocytic Adaptor 1 (FCHO1), Adaptor Related Protein Complex 2 (AP2) Subunit Alpha 1 (AP2A1), and Dynamin 2 (DNM2). Of these, we found that in AD, ITSN1-long (ITSN1-L) was decreased in the FC of males and HP of females, while ITSN1-short was increased in the HP of both males and females. We further evaluated ITSN1-L levels in cortex (CTX) and HP of the 5xFAD mouse model of Aβ pathology at different timepoints during aging and disease progression by immunoblot (n = 5-8 per group). At 3 months, female 5xFAD exhibited an increase of ITSN1-L in CTX but a decrease at 6 and 9 months. Additionally, immunofluorescent staining of 5xFAD primary HP neurons showed an increase of ITSN1-L in matured 5xFAD neurons at 21 and 28 days in vitro. Together, our studies show that in AD, isoforms of ITSN1 change in a brain region-and sex-dependent manner. Further, changes in ITSN1-L are transient with levels increasing during early Aβ accumulation and decreasing during later progression. These findings suggest that ITSN1 expression, and consequently CME activity, may change depending on the stage of disease progression.
Collapse
Affiliation(s)
- Sierra Jaye
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Ursula S. Sandau
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Trevor J. McFarland
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Randy L. Woltjer
- Division of Neuropathology, Department of Pathology, Oregon Health and Science University, Portland, OR, United States
| | - Julie A. Saugstad
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
4
|
Targa Dias Anastacio H, Matosin N, Ooi L. Familial Alzheimer's Disease Neurons Bearing Mutations in PSEN1 Display Increased Calcium Responses to AMPA as an Early Calcium Dysregulation Phenotype. Life (Basel) 2024; 14:625. [PMID: 38792645 PMCID: PMC11123496 DOI: 10.3390/life14050625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Familial Alzheimer's disease (FAD) can be caused by mutations in PSEN1 that encode presenilin-1, a component of the gamma-secretase complex that cleaves amyloid precursor protein. Alterations in calcium (Ca2+) homeostasis and glutamate signaling are implicated in the pathogenesis of FAD; however, it has been difficult to assess in humans whether or not these phenotypes are the result of amyloid or tau pathology. This study aimed to assess the early calcium and glutamate phenotypes of FAD by measuring the Ca2+ response of induced pluripotent stem cell (iPSC)-derived neurons bearing PSEN1 mutations to glutamate and the ionotropic glutamate receptor agonists NMDA, AMPA, and kainate compared to isogenic control and healthy lines. The data show that in early neurons, even in the absence of amyloid and tau phenotypes, FAD neurons exhibit increased Ca2+ responses to glutamate and AMPA, but not NMDA or kainate. Together, this suggests that PSEN1 mutations alter Ca2+ and glutamate signaling as an early phenotype of FAD.
Collapse
Affiliation(s)
- Helena Targa Dias Anastacio
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia;
| | - Natalie Matosin
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia;
| | - Lezanne Ooi
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia;
| |
Collapse
|
5
|
Perrin F, Sinha P, Mitchell SPC, Sadek M, Maesako M, Berezovska O. Identification of PS1/gamma-secretase and glutamate transporter GLT-1 interaction sites. J Biol Chem 2024; 300:107172. [PMID: 38499151 PMCID: PMC11015137 DOI: 10.1016/j.jbc.2024.107172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/02/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
The recently discovered interaction between Presenilin 1 (PS1), a catalytic subunit of γ-secretase responsible for generating amyloid-β peptides, and GLT-1, a major glutamate transporter in the brain (EAAT2), provides a mechanistic link between these two key factors involved in Alzheimer's disease (AD) pathology. Modulating this interaction can be crucial to understand the consequence of such crosstalk in AD context and beyond. However, the interaction sites between these two proteins are unknown. Herein, we utilized an alanine scanning approach coupled with FRET-based fluorescence lifetime imaging microscopy to identify the interaction sites between PS1 and GLT-1 in their native environment within intact cells. We found that GLT-1 residues at position 276 to 279 (TM5) and PS1 residues at position 249 to 252 (TM6) are crucial for GLT-1-PS1 interaction. These results have been cross validated using AlphaFold Multimer prediction. To further investigate whether this interaction of endogenously expressed GLT-1 and PS1 can be prevented in primary neurons, we designed PS1/GLT-1 cell-permeable peptides (CPPs) targeting the PS1 or GLT-1 binding site. We used HIV TAT domain to allow for cell penetration which was assayed in neurons. First, we assessed the toxicity and penetration of CPPs by confocal microscopy. Next, to ensure the efficiency of CPPs, we monitored the modulation of GLT-1-PS1 interaction in intact neurons by fluorescence lifetime imaging microscopy. We saw significantly less interaction between PS1 and GLT-1 with both CPPs. Our study establishes a new tool to study the functional aspect of GLT-1-PS1 interaction and its relevance in normal physiology and AD models.
Collapse
Affiliation(s)
- Florian Perrin
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Priyanka Sinha
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Shane Patrick Clancy Mitchell
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Michael Sadek
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Masato Maesako
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Oksana Berezovska
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
| |
Collapse
|
6
|
Akhtar A, Singh S, Kaushik R, Awasthi R, Behl T. Types of memory, dementia, Alzheimer's disease, and their various pathological cascades as targets for potential pharmacological drugs. Ageing Res Rev 2024; 96:102289. [PMID: 38582379 DOI: 10.1016/j.arr.2024.102289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 03/30/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Alzheimer's disease (AD) is the most common type of dementia accounting for 90% of cases; however, frontotemporal dementia, vascular dementia, etc. prevails only in a minority of populations. The term dementia is defined as loss of memory which further takes several other categories of memories like working memory, spatial memory, fear memory, and long-term, and short-term memory into consideration. In this review, these memories have critically been elaborated based on context, duration, events, appearance, intensity, etc. The most important part and purpose of the review is the various pathological cascades as well as molecular levels of targets of AD, which have extracellular amyloid plaques and intracellular hyperphosphorylated tau protein as major disease hallmarks. There is another phenomenon that either leads to or arises from the above-mentioned hallmarks, such as oxidative stress, mitochondrial dysfunction, neuroinflammation, cholinergic dysfunction, and insulin resistance. Several potential drugs like antioxidants, anti-inflammatory drugs, acetylcholinesterase inhibitors, insulin mimetics or sensitizers, etc. studied in various previous preclinical or clinical reports were put as having the capacity to act on these pathological targets. Additionally, agents directly or indirectly targeting amyloid and tau were also discussed. This could be further investigated in future research.
Collapse
Affiliation(s)
- Ansab Akhtar
- Louisiana State University Health Sciences Center, Neuroscience Center of Excellence, School of Medicine, New Orleans, LA 70112, USA.
| | - Siddharth Singh
- School of Health Sciences & Technology, UPES University, Bidholi, Dehradun, Uttarakhand 248007, India
| | - Ravinder Kaushik
- School of Health Sciences & Technology, UPES University, Bidholi, Dehradun, Uttarakhand 248007, India
| | - Rajendra Awasthi
- School of Health Sciences & Technology, UPES University, Bidholi, Dehradun, Uttarakhand 248007, India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab 140306, India
| |
Collapse
|
7
|
Perrin F, Anderson LC, Mitchell SPC, Sinha P, Turchyna Y, Maesako M, Houser MCQ, Zhang C, Wagner SL, Tanzi RE, Berezovska O. PS1/gamma-secretase acts as rogue chaperone of glutamate transporter EAAT2/GLT-1 in Alzheimer's disease. RESEARCH SQUARE 2023:rs.3.rs-3495211. [PMID: 37986905 PMCID: PMC10659539 DOI: 10.21203/rs.3.rs-3495211/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The recently discovered interaction between presenilin 1 (PS1), a catalytic subunit of γ-secretase responsible for the generation of amyloid-β(Aβ) peptides, and GLT-1, the major glutamate transporter in the brain (EAAT2 in the human) may provide a mechanistic link between two important pathological aspects of Alzheimer's disease (AD): abnormal Aβoccurrence and neuronal network hyperactivity. In the current study, we employed a FRET-based approach, fluorescence lifetime imaging microscopy (FLIM), to characterize the PS1/GLT-1 interaction in its native environment in the brain tissue of sporadic AD (sAD) patients. There was significantly less interaction between PS1 and GLT-1 in sAD brains, compared to tissue from patients with frontotemporal lobar degeneration (FTLD), or non-demented age-matched controls. Since PS1 has been shown to adopt pathogenic "closed" conformation in sAD but not in FTLD, we assessed the impact of changes in PS1 conformation on the interaction. Familial AD (fAD) PS1 mutations which induce a "closed" PS1 conformation similar to that in sAD brain and gamma-secretase modulators (GSMs) which induce a "relaxed" conformation, reduced and increased the interaction, respectively. This indicates that PS1 conformation seems to have a direct effect on the interaction with GLT-1. Furthermore, using biotinylation/streptavidin pull-down, western blotting, and cycloheximide chase assays, we determined that the presence of PS1 increased GLT-1 cell surface expression and GLT-1 homomultimer formation, but did not impact GLT-1 protein stability. Together, the current findings suggest that the newly described PS1/GLT-1 interaction endows PS1 with chaperone activity, modulating GLT-1 transport to the cell surface and stabilizing the dimeric-trimeric states of the protein. The diminished PS1/GLT-1 interaction suggests that these functions of the interaction may not work properly in AD.
Collapse
|
8
|
Li M, Jiang H, Wang Y, Xu Z, Xu H, Chen Y, Zhu J, Lin Z, Zhang M. Effect of arctigenin on neurological diseases: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116642. [PMID: 37236381 DOI: 10.1016/j.jep.2023.116642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/25/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Arctium lappa L. is a common specie of Asteraceae. Its main active ingredient, Arctigenin (AG), in mature seeds exerts pharmacological effects on the Central Nervous System (CNS). AIM OF THE STUDY To review studies on the specific effects of the AG mechanism on various CNS diseases and elucidate signal transduction mechanisms and their pharmacological actions. MATERIALS AND METHODS This investigation reviewed the essential role of AG in treating neurological disorders. Basic information on Arctium lappa L. was retrieved from the Pharmacopoeia of the People's Republic of China. The related articles from 1981 to 2022 on the network database (including CNKI, PubMed, and Wan Fang and so on) were reviewed using AG and CNS diseases-related terms such as Arctigenin and Epilepsy. RESULTS It was confirmed that AG has a therapeutic effect on Alzheimer's disease, Glioma, infectious CNS diseases (such as Toxoplasma and Japanese Encephalitis Virus), Parkinson's disease, Epilepsy, etc. In these diseases, related experiments such as a Western blot analysis revealed that AG could alter the content of some key factors (such as the reduction of Aβ in Alzheimer's disease). However, in-vivo AG's metabolic process and possible metabolites are still undetermined. CONCLUSION Based on this review, the existing pharmacological research has indeed made objective progress to elucidate how AG prevents and treats CNS diseases, especially senile degenerative disease such as Alzheimer's diseases. It was revealed that AG could be used as a potential nervous system drug as it has a wide range of effects in theory with markedly high application value, especially in the elder group. However, the existing studies are limited to in-vitro experiments; therefore, little is known about how AG metabolizes and functions in-vivo, limiting its clinical application and requiring further research.
Collapse
Affiliation(s)
- Mopu Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haibin Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanan Wang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zidi Xu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hang Xu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuetong Chen
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianghu Zhu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China.
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China.
| | - Min Zhang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China.
| |
Collapse
|
9
|
Kumar V, Kim SH, Bishayee K. Dysfunctional Glucose Metabolism in Alzheimer’s Disease Onset and Potential Pharmacological Interventions. Int J Mol Sci 2022; 23:ijms23179540. [PMID: 36076944 PMCID: PMC9455726 DOI: 10.3390/ijms23179540] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/21/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common age-related dementia. The alteration in metabolic characteristics determines the prognosis. Patients at risk show reduced glucose uptake in the brain. Additionally, type 2 diabetes mellitus increases the risk of AD with increasing age. Therefore, changes in glucose uptake in the cerebral cortex may predict the histopathological diagnosis of AD. The shifts in glucose uptake and metabolism, insulin resistance, oxidative stress, and abnormal autophagy advance the pathogenesis of AD syndrome. Here, we summarize the role of altered glucose metabolism in type 2 diabetes for AD prognosis. Additionally, we discuss diagnosis and potential pharmacological interventions for glucose metabolism defects in AD to encourage the development of novel therapeutic methods.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - So-Hyeon Kim
- Biomedical Science Core-Facility, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Kausik Bishayee
- Biomedical Science Core-Facility, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Correspondence: or
| |
Collapse
|
10
|
Konstantinidis E, Molisak A, Perrin F, Streubel-Gallasch L, Fayad S, Kim DY, Petri K, Aryee MJ, Aguilar X, György B, Giedraitis V, Joung JK, Pattanayak V, Essand M, Erlandsson A, Berezovska O, Ingelsson M. CRISPR-Cas9 treatment partially restores amyloid-β 42/40 in human fibroblasts with the Alzheimer's disease PSEN 1 M146L mutation. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:450-461. [PMID: 35505961 PMCID: PMC9043867 DOI: 10.1016/j.omtn.2022.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/27/2022] [Indexed: 11/29/2022]
Abstract
Presenilin 1 (PS1) is a central component of γ-secretase, an enzymatic complex involved in the generation of the amyloid-β (Aβ) peptide that deposits as plaques in the Alzheimer's disease (AD) brain. The M146L mutation in the PS1 gene (PSEN1) leads to an autosomal dominant form of early-onset AD by promoting a relative increase in the generation of the more aggregation-prone Aβ42. This change is evident not only in the brain but also in peripheral cells of mutation carriers. In this study we used the CRISPR-Cas9 system from Streptococcus pyogenes to selectively disrupt the PSEN1 M146L allele in human fibroblasts. A disruption of more than 50% of mutant alleles was observed in all CRISPR-Cas9-treated samples, resulting in reduced extracellular Aβ42/40 ratios. Fluorescence resonance energy transfer-based conformation and western blot analyses indicated that CRISPR-Cas9 treatment also affects the overall PS1 conformation and reduces PS1 levels. Moreover, our guide RNA did not lead to any detectable editing at the highest-ranking candidate off-target sites identified by ONE-seq and CIRCLE-seq. Overall, our data support the effectiveness of CRISPR-Cas9 in selectively targeting the PSEN1 M146L allele and counteracting the AD-associated phenotype. We believe that this system could be developed into a therapeutic strategy for patients with this and other dominant mutations leading to early-onset AD.
Collapse
Affiliation(s)
- Evangelos Konstantinidis
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Agnieszka Molisak
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Florian Perrin
- Department of Neurology, Massachusetts General Hospital, Memory Disorders Unit, Harvard Medical School, Charlestown, MA, USA
| | - Linn Streubel-Gallasch
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Sarah Fayad
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Daniel Y. Kim
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Karl Petri
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Martin J. Aryee
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ximena Aguilar
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Bence György
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - J. Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Vikram Pattanayak
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anna Erlandsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Oksana Berezovska
- Department of Neurology, Massachusetts General Hospital, Memory Disorders Unit, Harvard Medical School, Charlestown, MA, USA
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine and Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Han J, Park H, Maharana C, Gwon AR, Park J, Baek SH, Bae HG, Cho Y, Kim HK, Sul JH, Lee J, Kim E, Kim J, Cho Y, Park S, Palomera LF, Arumugam TV, Mattson MP, Jo DG. Alzheimer's disease-causing presenilin-1 mutations have deleterious effects on mitochondrial function. Am J Cancer Res 2021; 11:8855-8873. [PMID: 34522215 PMCID: PMC8419044 DOI: 10.7150/thno.59776] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial dysfunction and oxidative stress are frequently observed in the early stages of Alzheimer's disease (AD). Studies have shown that presenilin-1 (PS1), the catalytic subunit of γ-secretase whose mutation is linked to familial AD (FAD), localizes to the mitochondrial membrane and regulates its homeostasis. Thus, we investigated how five PS1 mutations (A431E, E280A, H163R, M146V, and Δexon9) observed in FAD affect mitochondrial functions. Methods: We used H4 glioblastoma cell lines genetically engineered to inducibly express either the wild-type PS1 or one of the five PS1 mutants in order to examine mitochondrial morphology, dynamics, membrane potential, ATP production, mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), oxidative stress, and bioenergetics. Furthermore, we used brains of PS1M146V knock-in mice, 3xTg-AD mice, and human AD patients in order to investigate the role of PS1 in regulating MAMs formation. Results: Each PS1 mutant exhibited slightly different mitochondrial dysfunction. Δexon9 mutant induced mitochondrial fragmentation while A431E, E280A, H163R, and M146V mutants increased MAMs formation. A431E, E280A, M146V, and Δexon9 mutants also induced mitochondrial ROS production. A431E mutant impaired both complex I and peroxidase activity while M146V mutant only impaired peroxidase activity. All PS1 mutants compromised mitochondrial membrane potential and cellular ATP levels were reduced by A431E, M146V, and Δexon9 mutants. Through comparative profiling of hippocampal gene expression in PS1M146V knock-in mice, we found that PS1M146V upregulates Atlastin 2 (ATL2) expression level, which increases ER-mitochondria contacts. Down-regulation of ATL2 after PS1 mutant induction rescued abnormally elevated ER-mitochondria interactions back to the normal level. Moreover, ATL2 expression levels were significantly elevated in the brains of 3xTg-AD mice and AD patients. Conclusions: Overall, our findings suggest that each of the five FAD-linked PS1 mutations has a deleterious effect on mitochondrial functions in a variety of ways. The adverse effects of PS1 mutations on mitochondria may contribute to MAMs formation and oxidative stress resulting in an accelerated age of disease onset in people harboring mutant PS1.
Collapse
|
12
|
Prendecki M, Kowalska M, Toton E, Kozubski W. Genetic Editing and Pharmacogenetics in Current And Future Therapy Of Neurocognitive Disorders. Curr Alzheimer Res 2021; 17:238-258. [PMID: 32321403 DOI: 10.2174/1567205017666200422152440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 02/05/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022]
Abstract
Dementia is an important issue in western societies, and in the following years, this problem will also rise in the developing regions, such as Africa and Asia. The most common types of dementia in adults are Alzheimer's Disease (AD), Dementia with Lewy Bodies (DLB), Frontotemporal Dementia (FTD) and Vascular Dementia (VaD), of which, AD accounts for more than half of the cases. The most prominent symptom of AD is cognitive impairment, currently treated with four drugs: Donepezil, rivastigmine, and galantamine, enhancing cholinergic transmission; as well as memantine, protecting neurons against glutamate excitotoxicity. Despite ongoing efforts, no new drugs in the treatment of AD have been registered for the last ten years, thus multiple studies have been conducted on genetic factors affecting the efficacy of antidementia pharmacotherapy. The researchers investigate the effects of variants in multiple genes, such as ABCB1, ACE, CHAT, CHRNA7, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, CYP3A7, NR1I2, NR1I3, POR, PPAR, RXR, SLC22A1/2/5, SLC47A1, UGT1A6, UGT1A9 and UGT2B7, associated with numerous pathways: the development of pathological proteins, formation and metabolism of acetylcholine, transport, metabolism and excretion of antidementia drugs and transcription factors regulating the expression of genes responsible for metabolism and transport of drugs. The most promising results have been demonstrated for APOE E4, dementia risk variant, BCHE-K, reduced butyrylcholinesterase activity variant, and CYP2D6 UM, ultrarapid hepatic metabolism. Further studies investigate the possibilities of the development of emerging drugs or genetic editing by CRISPR/Cas9 for causative treatment. In conclusion, the pharmacogenetic studies on dementia diseases may improve the efficacy of pharmacotherapy in some patients with beneficial genetic variants, at the same time, identifying the carriers of unfavorable alleles, the potential group of novel approaches to the treatment and prevention of dementia.
Collapse
Affiliation(s)
- Michal Prendecki
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marta Kowalska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Ewa Toton
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
13
|
Cai T, Tomita T. Sequential conformational changes in transmembrane domains of presenilin 1 in Aβ42 downregulation. J Biochem 2021; 170:215-227. [PMID: 33739423 DOI: 10.1093/jb/mvab033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 03/18/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer disease (AD) is the most common neurodegenerative disease worldwide. AD is pathologically characterized by the deposition of senile plaques in the brain, which are composed of an amyloid-β peptide (Aβ) that is produced through the multistep cleavage of amyloid precursor protein (APP) by γ-secretase. γ-Secretase is a membrane protein complex, which includes its catalytic subunit presenilin 1 (PS1). However, much about the structural dynamics of this enzyme remain unclear. We have previously demonstrated that movements of the transmembrane domain (TMD) 1 and TMD3 of PS1 are strongly associated with decreased production of the Aβ peptide ending at the 42nd residue (i.e., Aβ42), which is the aggregation-prone, toxic species. However, the association between these movements as well as the sequence of these TMDs remains unclear. In this study, we raised the possibility that the vertical movement of TMD1 is a prerequisite for expansion of the catalytic cavity around TMD3 of PS1, resulting in reduced Aβ42 production. Our results shed light on the association between the conformational changes of TMDs and the regulation of γ-secretase activity.
Collapse
Affiliation(s)
- Tetsuo Cai
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
14
|
A computer-simulated mechanism of familial Alzheimer’s disease: Mutations enhance thermal dynamics and favor looser substrate-binding to γ-secretase. J Struct Biol 2020; 212:107648. [DOI: 10.1016/j.jsb.2020.107648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/22/2020] [Accepted: 10/09/2020] [Indexed: 11/22/2022]
|
15
|
Liput DJ, Nguyen TA, Augustin SM, Lee JO, Vogel SS. A Guide to Fluorescence Lifetime Microscopy and Förster's Resonance Energy Transfer in Neuroscience. CURRENT PROTOCOLS IN NEUROSCIENCE 2020; 94:e108. [PMID: 33232577 PMCID: PMC8274369 DOI: 10.1002/cpns.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fluorescence lifetime microscopy (FLIM) and Förster's resonance energy transfer (FRET) are advanced optical tools that neuroscientists can employ to interrogate the structure and function of complex biological systems in vitro and in vivo using light. In neurobiology they are primarily used to study protein-protein interactions, to study conformational changes in protein complexes, and to monitor genetically encoded FRET-based biosensors. These methods are ideally suited to optically monitor changes in neurons that are triggered optogenetically. Utilization of this technique by neuroscientists has been limited, since a broad understanding of FLIM and FRET requires familiarity with the interactions of light and matter on a quantum mechanical level, and because the ultra-fast instrumentation used to measure fluorescent lifetimes and resonance energy transfer are more at home in a physics lab than in a biology lab. In this overview, we aim to help neuroscientists overcome these obstacles and thus feel more comfortable with the FLIM-FRET method. Our goal is to aid researchers in the neuroscience community to achieve a better understanding of the fundamentals of FLIM-FRET and encourage them to fully leverage its powerful ability as a research tool. Published 2020. U.S. Government.
Collapse
Affiliation(s)
- Daniel J. Liput
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Tuan A. Nguyen
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Shana M. Augustin
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Jeong Oen Lee
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Steven S. Vogel
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
- Corresponding author:
| |
Collapse
|
16
|
Deal J, Pleshinger DJ, Johnson SC, Leavesley SJ, Rich TC. Milestones in the development and implementation of FRET-based sensors of intracellular signals: A biological perspective of the history of FRET. Cell Signal 2020; 75:109769. [PMID: 32898611 DOI: 10.1016/j.cellsig.2020.109769] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 01/24/2023]
Abstract
Fӧrster resonance energy transfer (FRET) has been described for more than a century. FRET has become a mainstay for the study of protein localization in living cells and tissues. It has also become widely used in the fields that comprise cellular signaling. FRET-based probes have been developed to monitor second messenger signals, the phosphorylation state of peptides and proteins, and subsequent cellular responses. Here, we discuss the milestones that led to FRET becoming a widely used tool for the study of biological systems: the theoretical description of FRET, the insight to use FRET as a molecular ruler, and the isolation and genetic modification of green fluorescent protein (GFP). Each of these milestones were critical to the development of a myriad of FRET-based probes and reporters in common use today. FRET-probes offer a unique opportunity to interrogate second messenger signals and subsequent protein phosphorylation - and perhaps the most effective approach for study of cAMP/PKA pathways. As such, FRET probes are widely used in the study of intracellular signaling pathways. Yet, somehow, the potential of FRET-based probes to provide windows through which we can visualize complex cellular signaling systems has not been fully reached. Hence we conclude by discussing the technical challenges to be overcome if FRET-based probes are to live up to their potential for the study of complex signaling networks.
Collapse
Affiliation(s)
- J Deal
- Basic Medical Sciences Graduate Program, University of South Alabama, Mobile, AL 36688, USA; Center for Lung Biology, Departments of Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - D J Pleshinger
- Center for Lung Biology, Departments of Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA; Pharmacology and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - S C Johnson
- Basic Medical Sciences Graduate Program, University of South Alabama, Mobile, AL 36688, USA; Pharmacology and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - S J Leavesley
- Basic Medical Sciences Graduate Program, University of South Alabama, Mobile, AL 36688, USA; Center for Lung Biology, Departments of Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA; Pharmacology and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA; Chemical and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - T C Rich
- Basic Medical Sciences Graduate Program, University of South Alabama, Mobile, AL 36688, USA; Center for Lung Biology, Departments of Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA; Pharmacology and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
17
|
Abstract
Mutations in the presenilin-1 gene (PSEN1) on chromosome 14 are the most common cause of autosomal dominant Alzheimer's disease (ADAD), which has a broad clinical phenotype, encompassing not only dementia but a variety of other neurological features. We report the case of a 32 years old man with a family history of early onset AD associated with a PSEN1 mutation in the exon 4 (I83T). The proband's, carrying the mutation, present a refractory epilepsy predating cognitive decline. We discuss the physiopathological mechanisms of epilepsy during AD associated with PSEN 1 mutation, the possibility of linking this epilepsy to the mutation?.
Collapse
Affiliation(s)
- Saloua Fray
- Neurology Department, Charles Nicolle Hospital , Tunis, Tunisia.,Faculty of Medicine, Tunis El Manar University , Tunis, Tunisia
| | - Afef Rassas
- Neurology Department, Charles Nicolle Hospital , Tunis, Tunisia.,Biochemistry and Molecular Biology Laboratory, Children's Hospital - Bab Saadoun , Tunis, Tunisia
| | - Taieb Messaoud
- Biochemistry and Molecular Biology Laboratory, Children's Hospital - Bab Saadoun , Tunis, Tunisia
| | - Samir Belal
- Faculty of Medicine, Tunis El Manar University , Tunis, Tunisia
| |
Collapse
|
18
|
Cai T, Tomita T. Structure-activity relationship of presenilin in γ-secretase-mediated intramembrane cleavage. Semin Cell Dev Biol 2020; 105:102-109. [PMID: 32171519 DOI: 10.1016/j.semcdb.2020.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/12/2023]
Abstract
Genetic research on familial cases of Alzheimer disease have identified presenilin (PS) as an important membrane protein in the pathomechanism of this disease. PS is the catalytic subunit of γ-secretase, which is responsible for the generation of amyloid-β peptide deposited in the brains of Alzheimer disease patients. γ-Secretase is an atypical protease composed of four membrane proteins (i.e., presenilin, nicastrin, anterior pharynx defective-1 (Aph-1), and presenilin enhancer-2 (Pen-2)) and mediates intramembrane proteolysis. Numerous investigations have been conducted toward understanding the structural features of γ-secretase components as well as the cleavage mechanism of γ-secretase. In this review, we summarize our current understanding of the structure and activity relationship of the γ-secretase complex.
Collapse
Affiliation(s)
- Tetsuo Cai
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
19
|
Maesako M, Zoltowska KM, Berezovska O. Synapsin 1 promotes Aβ generation via BACE1 modulation. PLoS One 2019; 14:e0226368. [PMID: 31830091 PMCID: PMC6907790 DOI: 10.1371/journal.pone.0226368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/25/2019] [Indexed: 12/26/2022] Open
Abstract
It has been revealed that β-amyloid (Aβ) is generated and released from the presynaptic terminals in activity-dependent manner. However, molecules modulating the presynaptic Aβ generation remain elusive. Here we test the hypothesis that Synapsin 1 (Syn1) may acts as a modulator of the Aβ production. Using biochemical and Förster resonance energy transfer (FRET)-based imaging approaches we have found that Syn1 knock down decreases, whereas (over)expression of Syn1 in cells increases the Aβ levels. Mechanistically, Syn1 does not seem to affect the activity of Presenilin 1 (PS1)/γ-secretase, PS1 conformation, or the proximity between PS1 and amyloid precursor protein (APP). However, we found that Syn1 is involved in up-regulation of the β-site APP cleaving enzyme 1 (BACE1)/β-secretase activity and increases the APP/BACE1 interaction. Therefore, we conclude that Syn1 may promote Aβ production via the modulation of BACE1.
Collapse
Affiliation(s)
- Masato Maesako
- MassGeneral Institute for Neurodegenerative Disease, Alzheimer’s Disease Research Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Katarzyna M. Zoltowska
- MassGeneral Institute for Neurodegenerative Disease, Alzheimer’s Disease Research Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Oksana Berezovska
- MassGeneral Institute for Neurodegenerative Disease, Alzheimer’s Disease Research Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
- * E-mail:
| |
Collapse
|
20
|
Cai T, Morishima K, Takagi-Niidome S, Tominaga A, Tomita T. Conformational Dynamics of Transmembrane Domain 3 of Presenilin 1 Is Associated with the Trimming Activity of γ-Secretase. J Neurosci 2019; 39:8600-8610. [PMID: 31527118 PMCID: PMC6807281 DOI: 10.1523/jneurosci.0838-19.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 08/16/2019] [Accepted: 08/30/2019] [Indexed: 12/26/2022] Open
Abstract
γ-Secretase is an intramembrane-cleaving protease that generates the toxic species of the amyloid-β peptide (Aβ) that is responsible for the pathology of Alzheimer disease. The catalytic subunit of γ-secretase is presenilin 1 (PS1), which is a polytopic membrane protein with a hydrophilic catalytic pore. The length of the C terminus of Aβ is proteolytically determined by its processive trimming by γ-secretase, although the precise mechanism still remains largely unknown. Here, we identified that transmembrane domain (TMD) 3 of human PS1 is involved in the formation of the intramembranous hydrophilic pore. Notably, the water accessibility of TMD3 was greatly altered by point mutations and compounds, which modify γ-secretase activity. The changes in the water accessibility of TMD3 was also correlated with Aβ42 production. Moreover, crosslinking between TMD3 and TMD7 resulted in a loss of sensitivity to a γ-secretase modulator that reduces Aβ42 production. Therefore, our findings indicate that the conformational dynamics of TMD3 is a prerequisite for regulation of the Aβ trimming activity of γ-secretase.SIGNIFICANCE STATEMENT Modulation of γ-secretase activity to reduce the level of toxic amyloid-β species is thought to be a therapeutic strategy for Alzheimer disease. However, the detailed mechanism of the regulation of amyloid-β production, as well as the structure-and-activity relationship of γ-secretase remains unclear. Here we identified that the water accessibility around transmembrane domain 3 in presenilin 1 was increased along with a reduction in toxic amyloid-β production. Our findings demonstrate how the structure of presenilin 1 dynamically changes during amyloid-β production, and provides insights toward the development of treatments against Alzheimer disease.
Collapse
Affiliation(s)
- Tetsuo Cai
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, and
| | - Kanan Morishima
- Laboratory of Neuropathology and Neuroscience, Faculty of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shizuka Takagi-Niidome
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, and
| | - Aya Tominaga
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, and
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, and
| |
Collapse
|
21
|
Frew JW, Navrazhina K. In silico Analysis of Gamma-Secretase-Complex Mutations in Hidradenitis Suppurativa Demonstrates Disease-Specific Substrate Recognition and Cleavage Alterations. Front Med (Lausanne) 2019; 6:206. [PMID: 31608281 PMCID: PMC6761225 DOI: 10.3389/fmed.2019.00206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/04/2019] [Indexed: 01/02/2023] Open
Abstract
Background: Familial Hidradenitis Suppurativa and Familial Alzheimer's Disease are both associated with Gamma-Secretase Complex mutations; however, the two diseases are not epidemiologically associated. Understanding the molecular differences between the two diseases may aid in the development of hypotheses for differing pathogenesis and ultimately, targets for detection. Aims: To characterize the in silico structural and functional alterations to the Gamma Secretase Complex in documented mutations in Familial Hidradenitis Suppurativa, along with comparison of downstream substrate recognition and cleavage. Methods: In silico analysis of publicly available genomic data, assessment of protein structure and binding affinity using Swiss-model and Dynamut was undertaken. Differential Expression was expressed using Log Fold Change using the general framework for linear models in R. Differentially expressed genes (DEGs) were defined by FCH ≥1.5 or ≤-1.5 and false discovery rate (FDR ≤ 0.05). Results: Twenty three of 39 mutations in HS are degraded via nonsense mediated decay with altered substrate and binding affinity of substrates identified in the remaining mutations. Significant differential expression of ErbB4, SCNB1, and Tie1 in lesional skin was specific to Hidradenitis Suppurativa and EphB2, EPHB4, KCNE1, LRP6, MUSK, SDC3, Sortilin1 in blood specific to Familial Alzheimer's Disease. Discussion and Conclusions: We present the first in silico evidence as to the impact of documented mutations in Familial Hidradenitis Suppurativa. We also demonstrate unique substrate recognition and cleavage between Hidradenitis Suppurativa and Familial Alzheimer's Disease, providing a potential explanation as to why the two diseases do not occur within the same pedigree. These proteomic signatures may be a first step in identifying reliable biomarkers for Familial Hidradenitis Suppurativa.
Collapse
Affiliation(s)
- John W Frew
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, United States
| | - Kristina Navrazhina
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, United States.,Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, Weill Cornell University, White Plains, NY, United States
| |
Collapse
|
22
|
Cortini F, Cantoni C, Villa C. Epileptic seizures in autosomal dominant forms of Alzheimer's disease. Seizure 2018; 61:4-7. [PMID: 30041064 DOI: 10.1016/j.seizure.2018.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) is a heterogeneous neurodegenerative disorder and represents the most common form of dementia in the elderly. Mutations in genes encoding presenilin 1 (PSEN1), presenilin 2 (PSEN2) and amyloid precursor protein (APP) are responsible for early-onset familial AD (EOFAD). Several pieces of evidence report that patients with rare autosomal dominant forms of AD carry a significant risk to develop seizures. However, the molecular mechanisms linking epilepsy and AD are needed to be clarified: the pathophysiology of seizures in AD may be related to an increased production of amyloid-β (Aβ) peptide or structural alterations in neurons probably due to cerebrovascular changes, neurotransmitter or cytoskeletal dysfunctions. Seizures have traditionally been related to neuronal loss in the late stages of AD as a consequence of neurodegeneration, however, recent studies indicated that seizures may contribute to the emergence of AD symptoms in early stages of the disease, mainly in familial AD. So, a better understanding of possible common neural mechanisms might help to improve the clinical management of both conditions. This review aims to give a comprehensive overview and to analyze the association between epilepsy and EOFAD, focusing on possible overlapping pathological mechanisms.
Collapse
Affiliation(s)
- Francesca Cortini
- Department of Clinical Sciences and Community Health, University of Milan, IRCCS Ca' Granda Foundation, Milano, Italy; Genetics Laboratory, IRCCS Ca' Granda Foundation, Milan, Italy
| | - Claudia Cantoni
- Department of Neurology, Washington University School of Medicine, St Louis, USA
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
23
|
Somavarapu AK, Kepp KP. Membrane Dynamics of γ-Secretase Provides a Molecular Basis for β-Amyloid Binding and Processing. ACS Chem Neurosci 2017; 8:2424-2436. [PMID: 28841371 DOI: 10.1021/acschemneuro.7b00208] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
γ-Secretase produces β-amyloid (Aβ) within its presenilin (PS1) subunit, mutations in which cause Alzheimer's disease, and current therapies thus seek to modulate its activity. While the general structure is known from recent electron microscopy studies, direct loop and membrane interactions and explicit dynamics relevant to substrate processing remain unknown. We report a modeled structure utilizing the optimal multitemplate information available, including loops and missing side chains, account of maturation cleavage, and explicit all-atom molecular dynamics in the membrane. We observe three distinct conformations of γ-secretase (open, semiopen, and closed) that remarkably differ by tilting of helices 2 and 3 of PS1, directly controlling active site availability. The large hydrophilic loop of PS1 where maturation occurs reveals a new helix segment that parallels the likely helix character of other substrates. The semiopen conformation consistently shows the best fit of Aβ peptides, that is, longer residence before release and by inference more trimming. In contrast, the closed, hydrophobic conformation is largely inactive and the open conformation is active but provides fewer optimal interactions and induces shorter residence time and by inference releases Aβ peptides of longer lengths. Our simulations thus provide a molecular basis for substrate processing and changes in the Aβ42/Aβ40 ratio. Accordingly, selective binding to protect the semiopen "innocent" conformation provides a molecular recipe for effective γ-secretase modulators; we provide the full atomic structures for these states that may play a key role in developing selective γ-secretase modulators for treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | - Kasper P. Kepp
- Technical University of Denmark, DTU Chemistry, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
24
|
Audagnotto M, Kengo Lorkowski A, Dal Peraro M. Recruitment of the amyloid precursor protein by γ-secretase at the synaptic plasma membrane. Biochem Biophys Res Commun 2017; 498:334-341. [PMID: 29097209 DOI: 10.1016/j.bbrc.2017.10.164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/04/2017] [Accepted: 10/29/2017] [Indexed: 10/18/2022]
Abstract
Γ-secretase is a membrane-embedded protease that cleaves single transmembrane helical domains of various integral membrane proteins. The amyloid precursor protein (APP) is an important substrate due to its pathological relevance to Alzheimer's disease. The mechanism of the cleavage of APP by γ-secretase that leads to accumulation of Alzheimer's disease causing amyloid-β (Aβ) is still unknown. Coarse-grained molecular dynamics simulations in this study reveal initial lipids raft formation near the catalytic site of γ-secretase as well as changes in dynamic behavior of γ-secretase once interacting with APP. The results suggest a precursor of the APP binding mode and hint at conformational changes of γ-secretase in the nicastrin (NCT) domain upon APP binding.
Collapse
Affiliation(s)
- Martina Audagnotto
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland; Swiss Institute of Bioinformatcs (SIB), Lausanne 1015, Switzerland
| | - Alexander Kengo Lorkowski
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland; Swiss Institute of Bioinformatcs (SIB), Lausanne 1015, Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland; Swiss Institute of Bioinformatcs (SIB), Lausanne 1015, Switzerland.
| |
Collapse
|
25
|
Abstract
Alzheimer's disease (AD) is characterized by accumulation of the β-amyloid peptide (Aβ), which is generated through sequential proteolysis of the amyloid precursor protein (APP), first by the action of β-secretase, generating the β-C-terminal fragment (βCTF), and then by the Presenilin 1 (PS1) enzyme in the γ-secretase complex, generating Aβ. γ-Secretase is an intramembranous protein complex composed of Aph1, Pen2, Nicastrin, and Presenilin 1. Although it has a central role in the pathogenesis of AD, knowledge of the mechanisms that regulate PS1 function is limited. Here, we show that phosphorylation of PS1 at Ser367 does not affect γ-secretase activity, but has a dramatic effect on Aβ levels in vivo. We identified CK1γ2 as the endogenous kinase responsible for the phosphorylation of PS1 at Ser367. Inhibition of CK1γ leads to a decrease in PS1 Ser367 phosphorylation and an increase in Aβ levels in cultured cells. Transgenic mice in which Ser367 of PS1 was mutated to Ala, show dramatic increases in Aβ peptide and in βCTF levels in vivo. Finally, we show that this mutation impairs the autophagic degradation of βCTF, resulting in its accumulation and increased levels of Aβ peptide and plaque load in the brain. Our results demonstrate that PS1 regulates Aβ levels by a unique bifunctional mechanism. In addition to its known role as the catalytic subunit of the γ-secretase complex, selective phosphorylation of PS1 on Ser367 also decreases Aβ levels by increasing βCTF degradation through autophagy. Elucidation of the mechanism by which PS1 regulates βCTF degradation may aid in the development of potential therapies for Alzheimer's disease.
Collapse
|
26
|
Dynamic Nature of presenilin1/γ-Secretase: Implication for Alzheimer's Disease Pathogenesis. Mol Neurobiol 2017; 55:2275-2284. [PMID: 28332150 DOI: 10.1007/s12035-017-0487-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/12/2017] [Indexed: 12/27/2022]
Abstract
Presenilin 1 (PS1) is a catalytic component of the γ-secretase complex, responsible for the intramembraneous cleavage of more than 90 type I transmembrane proteins, including Alzheimer's disease (AD)-related amyloid precursor protein (APP). The γ-secretase-mediated cleavage of the APP C-terminal membrane stub leads to the production of various amyloid β (Aβ) species. The assembly of Aβ into neurotoxic oligomers, which causes synaptic dysfunction and neurodegeneration, is influenced by the relative ratio of the longer (Aβ42/43) to shorter Aβ (Aβ40) peptides. The ratio of Aβ42 to Aβ40 depends on the conformation and activity of the PS1/γ-secretase enzymatic complex. The latter exists in a dynamic equilibrium of the so called "closed" and "open" conformational states, as determined by the Förster resonance energy transfer (FRET)-based PS1 conformation assay. Here we review several factors that can allosterically influence conformational status of the enzyme, and hence the production of Aβ peptides. These include genetic variations in PS1, APP and other γ-secretase components, environmental stressors implicated in AD pathogenesis and pharmacological agents. Since "closed" PS1 conformation is the common outcome of many AD-related insults, the novel assays monitoring PS1 conformation in live/intact cells in vivo and in vitro might be utilized for diagnostic purposes and for validation of the potential therapeutic approaches.
Collapse
|
27
|
Zoltowska KM, Maesako M, Lushnikova I, Takeda S, Keller LJ, Skibo G, Hyman BT, Berezovska O. Dynamic presenilin 1 and synaptotagmin 1 interaction modulates exocytosis and amyloid β production. Mol Neurodegener 2017; 12:15. [PMID: 28193235 PMCID: PMC5307796 DOI: 10.1186/s13024-017-0159-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/09/2017] [Indexed: 01/09/2023] Open
Abstract
Background Alzheimer’s disease (AD)-linked protein, presenilin 1 (PS1), is present at the synapse, and the knock-out of presenilin in mice leads to synaptic dysfunction. On the other hand, synaptic activity was shown to influence PS1-dependent generation of distinct amyloid β (Aβ) species. However, the precise nature of these regulations remains unclear. The current study reveals novel role of PS1 at the synapse, and deciphers how PS1 and synaptic vesicle-associated protein, synaptotagmin 1 (Syt1) modulate each other functions in neurons via direct activity-triggered interaction. Additionally, the therapeutic potential of fostering PS1-Syt1 binding is investigated as a synapse-specific strategy for AD prevention. Methods PS1-based cell-permeable peptide targeting PS1-Syt1 binding site was designed to inhibit PS1-Syt1 interaction in neurons. PS1 conformation, synaptic vesicle exocytosis and trafficking were assayed by fluorescence lifetime imaging microscopy (FLIM), glutamate release/synaptopHluorin assay, and fluorescence recovery after photobleaching, respectively. Syt1 level and interaction with PS1 in control and sporadic AD brains were determined by immunohistochemistry and FLIM. AAV-mediated delivery of Syt1 into mouse hippocampi was used to investigate the therapeutic potential of strengthening PS1-Syt1 binding in vivo. Statistical significance was determined using two-tailed unpaired Student’s t-test, Mann-Whitney’s U-test or two-way ANOVA followed by a Bonferroni’s post-test. Results We demonstrate that targeted inhibition of the PS1-Syt1 binding in neurons, without changing the proteins’ expression level, triggers “pathogenic” conformational shift of PS1, and consequent increase in the Aβ42/40 ratio. Moreover, our data indicate that PS1, by binding directly to Syt1, regulates synaptic vesicle trafficking and facilitates exocytosis and neurotransmitter release. Analysis of human brain tissue revealed that not only Syt1 levels but also interactions between remaining Syt1 and PS1 are diminished in sporadic AD. On the other hand, overexpression of Syt1 in mouse hippocampi was found to potentiate PS1-Syt1 binding and promote “protective” PS1 conformation. Conclusions The study reports novel functions of PS1 and Syt1 at the synapse, and demonstrates the importance of PS1-Syt1 binding for exocytosis and safeguarding PS1 conformation. It suggests that reduction in the Syt1 level and PS1-Syt1 interactions in AD brain may present molecular underpinning of the pathogenic PS1 conformation, increased Aβ42/40 ratio, and impaired exocytosis. Electronic supplementary material The online version of this article (doi:10.1186/s13024-017-0159-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katarzyna Marta Zoltowska
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Rm. 2006, 02129, Charlestown, MA, USA
| | - Masato Maesako
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Rm. 2006, 02129, Charlestown, MA, USA
| | - Iryna Lushnikova
- Department of Cytology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Street, 01024, Kyiv, Ukraine
| | - Shuko Takeda
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Rm. 2006, 02129, Charlestown, MA, USA
| | - Laura J Keller
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Rm. 2006, 02129, Charlestown, MA, USA
| | - Galina Skibo
- Department of Cytology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Street, 01024, Kyiv, Ukraine
| | - Bradley T Hyman
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Rm. 2006, 02129, Charlestown, MA, USA
| | - Oksana Berezovska
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Rm. 2006, 02129, Charlestown, MA, USA.
| |
Collapse
|
28
|
Maesako M, Horlacher J, Zoltowska KM, Kastanenka KV, Kara E, Svirsky S, Keller LJ, Li X, Hyman BT, Bacskai BJ, Berezovska O. Pathogenic PS1 phosphorylation at Ser367. eLife 2017; 6. [PMID: 28132667 PMCID: PMC5279945 DOI: 10.7554/elife.19720] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 01/05/2017] [Indexed: 11/13/2022] Open
Abstract
The high levels of serine (S) and threonine (T) residues within the Presenilin 1 (PS1) N-terminus and in the large hydrophilic loop region suggest that the enzymatic function of PS1/γ-secretase can be modulated by its ‘phosphorylated’ and ‘dephosphorylated’ states. However, the functional outcome of PS1 phosphorylation and its significance for Alzheimer’s disease (AD) pathogenesis is poorly understood. Here, comprehensive analysis using FRET-based imaging reveals that activity-driven and Protein Kinase A-mediated PS1 phosphorylation at three domains (domain 1: T74, domain 2: S310 and S313, domain 3: S365, S366, and S367), with S367 being critical, is responsible for the PS1 pathogenic ‘closed’ conformation, and resulting increase in the Aβ42/40 ratio. Moreover, we have established novel imaging assays for monitoring PS1 conformation in vivo, and report that PS1 phosphorylation induces the pathogenic conformational shift in the living mouse brain. These phosphorylation sites represent potential new targets for AD treatment. DOI:http://dx.doi.org/10.7554/eLife.19720.001 Alzheimer’s disease is a widely recognised disorder caused by the progressive deterioration and death of brain cells. A key feature of the disease is the formation of structures called plaques in the brain. Plaques occur when many copies of a molecule known as amyloid beta stick together outside of the brain cells. Healthy brains also produce amyloid beta but it is in a different form, which cannot form plaques. One in twenty people with Alzheimer’s disease have a family history of the disease. Of these, many are linked to changes in a gene that produces a protein called Presenilin 1 (or PS1 for short). Cells need PS1 to make amyloid beta and the altered versions of PS1 produce the type of amyloid beta that causes Alzheimer’s disease. Yet, in cases that do not run in families, the gene for PS1 is unchanged but the PS1 protein still produces the form of amyloid beta that is linked to Alzheimer’s disease. Maesako, Horlacher et al. wanted to find out how seemingly healthy PS1 proteins can be made to produce plaque-forming amyloid betas. Studies of PS1 from mice revealed that small chemical modifications, called phosphate groups, could be attached to PS1 in a process called phosphorylation. Modified PS1 proteins produce harmful amyloid betas and removing the modifications was enough to make PS1 behave normally again. Maesako, Horlacher et al. found three points in the PS1 protein where phosphorylation could change the behaviour of the protein, the most important one is a site called Ser367. Further investigation showed that an enzyme called Protein Kinase A (PKA) phosphorylates PS1; this enzyme is also able to attach phosphate groups to many different proteins. Maesako, Horlacher et al. went on to show that PS1 is phosphorylated in samples from people with Alzheimer’s disease, suggesting that this is a plausible cause for some cases of the disease. Finding a way to prevent phosphorylation or remove phosphate groups from PS1 could be the first step towards treating these cases of Alzheimer’s disease. DOI:http://dx.doi.org/10.7554/eLife.19720.002
Collapse
Affiliation(s)
- Masato Maesako
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Jana Horlacher
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States.,Department of Neurology, University of Ulm, Ulm, Germany
| | - Katarzyna M Zoltowska
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Ksenia V Kastanenka
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Eleanna Kara
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Sarah Svirsky
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Laura J Keller
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Xuejing Li
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Bradley T Hyman
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Brian J Bacskai
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Oksana Berezovska
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| |
Collapse
|
29
|
Abu-Omar N, Das J, Szeto V, Feng ZP. Neuronal Ryanodine Receptors in Development and Aging. Mol Neurobiol 2017; 55:1183-1192. [DOI: 10.1007/s12035-016-0375-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 12/28/2016] [Indexed: 01/09/2023]
|
30
|
Cabral-Miranda F, Hetz C. ER Stress and Neurodegenerative Disease: A Cause or Effect Relationship? Curr Top Microbiol Immunol 2017; 414:131-157. [PMID: 28864830 DOI: 10.1007/82_2017_52] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The accumulation of protein aggregates has a fundamental role in the patophysiology of distinct neurodegenerative diseases. This phenomenon may have a common origin, where disruption of intracellular mechanisms related to protein homeostasis (here termed proteostasis) control during aging may result in abnormal protein aggregation. The unfolded protein response (UPR) embodies a major element of the proteostasis network triggered by endoplasmic reticulum (ER) stress. Chronic ER stress may operate as possible mechanism of neurodegenerative and synaptic dysfunction, and in addition contribute to the abnormal aggregation of key disease-related proteins. In this article we overview the most recent findings suggesting a causal role of ER stress in neurodegenerative diseases.
Collapse
Affiliation(s)
- Felipe Cabral-Miranda
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Independencia 1027, P.O.BOX 70086, Santiago, Chile.,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudio Hetz
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile. .,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile. .,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Independencia 1027, P.O.BOX 70086, Santiago, Chile. .,Buck Institute for Research on Aging, Novato, CA, 94945, USA. .,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
31
|
Veugelen S, Dewilde M, De Strooper B, Chávez-Gutiérrez L. Screening and Characterization Strategies for Nanobodies Targeting Membrane Proteins. Methods Enzymol 2016; 584:59-97. [PMID: 28065273 DOI: 10.1016/bs.mie.2016.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The study of membrane protein function and structure requires their successful detection, expression, solubilization, and/or reconstitution, which poses a challenging task and relies on the availability of suitable tools. Several research groups have successfully applied Nanobodies in the purification, as well as the functional and structural characterization of membrane proteins. Nanobodies are small, single-chain antibody fragments originating from camelids presenting on average a longer CDR3 which enables them to bind in cavities and clefts (such as active and allosteric sites). Notably, Nanobodies generally bind conformational epitopes making them very interesting tools to stabilize, dissect, and characterize specific protein conformations. In the clinic, several Nanobodies are under evaluation either as potential drug candidates or as diagnostic tools. In recent years, we have successfully generated high-affinity, conformation-sensitive anti-γ-secretase Nanobodies. γ-Secretase is a multimeric membrane protease involved in processing of the amyloid precursor protein with high clinical relevance as mutations in its catalytic subunit (Presenilin) cause early-onset Alzheimer's disease. Advancing our knowledge on the mechanisms governing γ-secretase intramembrane proteolysis through various strategies may lead to novel therapeutic avenues for Alzheimer's disease. In this chapter, we present the strategies we have developed and applied for the screening and characterization of anti-γ-secretase Nanobodies. These protocols could be of help in the generation of Nanobodies targeting other membrane proteins.
Collapse
Affiliation(s)
- S Veugelen
- University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease, Leuven, Belgium
| | - M Dewilde
- University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease, Leuven, Belgium
| | - B De Strooper
- University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease, Leuven, Belgium; UCL Institute of Neurology, London, United Kingdom
| | - L Chávez-Gutiérrez
- University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease, Leuven, Belgium.
| |
Collapse
|
32
|
Affiliation(s)
- Rodrigo Aguayo-Ortiz
- Departamento de Fisicoquímica; Universidad Nacional Autónoma de México; Ciudad de México 04510 México
| | - Laura Dominguez
- Departamento de Fisicoquímica; Universidad Nacional Autónoma de México; Ciudad de México 04510 México
| |
Collapse
|
33
|
Abstract
A breakthrough in Alzheimer's disease (AD) research came with the discovery of the link between activity-dependent release of amyloid-β (Aβ) from neurons and formation of amyloid plaques. Along with elucidating the cellular basis of behavioral-dependent fluctuations in Aβ levels in the brain, insights have been gained toward understanding the mechanisms that warrant selective vulnerability of various forebrain circuits to amyloid pathology. The notion of elevated activity as a source of excessive Aβ production and plaque formation is, however, in conflict with ample electrophysiological data, which demonstrate exceedingly intense activity (both intrinsic and synaptic) of neurons in several brain regions that are spared or marginally affected by amyloid plaques of AD. Thus, the link between the functional load of brain circuits and their vulnerability to amyloidosis, while evident, is also complex and remains poorly understood. Here, we discuss emerging data suggestive of a major role for super-intense synchronous activity of cortical and limbic networks in excessive Aβ production and plaque formation. It is proposed that dense recurrent wiring of associative areas prone to epileptic seizures might be of critical relevance to their higher susceptibility to plaque pathology and related functional impairments.
Collapse
Affiliation(s)
- Saak V Ovsepian
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Republic of Ireland
| | - Valerie B O'Leary
- Institute of Radiation Biology, Helmholtz Zentrum Munich, Neuherberg, Germany
| |
Collapse
|
34
|
Yonemura Y, Futai E, Yagishita S, Kaether C, Ishiura S. Specific combinations of presenilins and Aph1s affect the substrate specificity and activity of γ-secretase. Biochem Biophys Res Commun 2016; 478:1751-7. [PMID: 27608597 DOI: 10.1016/j.bbrc.2016.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/03/2016] [Indexed: 11/18/2022]
Abstract
The γ-secretase complex comprises presenilin (PS), nicastrin (NCT), anterior pharynx-defective 1 (Aph1), and presenilin enhancer 2 (Pen2). PS has two homologues, PS1 and PS2. Aph1 has two isoforms, Aph1a and Aph1b, with the former existing as two splice variants Aph1aL and Aph1aS. Each complex consists of one subunit each, resulting in six different γ-secretases. To better understand the functional differences among the γ-secretases, we reconstituted them using a yeast system and compared Notch1-cleavage and amyloid precursor protein (APP)-cleavage activities. Intriguingly, PS2/Aph1b had a clear substrate specificity: APP-Gal4, but not Notch-Gal4, was cleaved. In HEK cell lines expressing defined γ-secretase subunits, we showed that PS1/Aph1b, PS2/Aph1aL, PS2/Aph1aS and PS2/Aph1b γ-secretase produced amyloid β peptide (Aβ) with a higher Aβ42+Aβ43-to-Aβ40 (Aβ42(43)/Aβ40) ratio than the other γ-secretases. In addition, PS2/Aph1aS γ-secretase produced less Notch intracellular domain (NICD) than did the other 5 γ-secretases. Considering that the Aβ42(43)/Aβ40 ratio is relevant in the pathogenesis of Alzheimer's disease (AD), and that inhibition of Notch cleavage causes severe side effect, these results suggest that the PS2/Aph1aS γ-secretase complex is a potential therapeutic target in AD.
Collapse
Affiliation(s)
- Yoji Yonemura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan; Leibniz Institute on Age Research, Fritz-Lipmann-Institute, Beutenbergstr. 11, Jena, 07745, Germany
| | - Eugene Futai
- Departmentof Molecular and Cell Biology, Graduate School of Agricultural Science Tohoku University, Miyagi 981-8555, Japan
| | - Sosuke Yagishita
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Iruma-gun, Saitama, 350-0495, Japan
| | - Christoph Kaether
- Leibniz Institute on Age Research, Fritz-Lipmann-Institute, Beutenbergstr. 11, Jena, 07745, Germany
| | - Shoichi Ishiura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
| |
Collapse
|
35
|
Zoltowska KM, Maesako M, Berezovska O. Interrelationship between Changes in the Amyloid β 42/40 Ratio and Presenilin 1 Conformation. Mol Med 2016; 22:329-337. [PMID: 27391800 DOI: 10.2119/molmed.2016.00127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/05/2016] [Indexed: 11/06/2022] Open
Abstract
The ratio of the longer (i.e., Aβ42/Aβ43) to shorter (i.e. Aβ40) species is a critical factor determining amyloid fibril formation, neurotoxicity and progression of the amyloid pathology in Alzheimer's disease. The relative levels of the different Aβ species are affected by activity and conformation of the γ-secretase complex catalytic component - presenilin 1 (PS1). The enzyme exists in a dynamic equilibrium of the conformational states, with so-called "close" conformation associated with the shift of the γ-secretase cleavage towards the production of longer, neurotoxic Aβ species. In the current study, fluorescence lifetime imaging microscopy, spectral Förster resonance energy transfer, calcium imaging and cytotoxicity assays were utilized to explore reciprocal link between the Aβ42 and Aβ40 peptides present at various ratios and PS1 conformation in primary neurons. We report that exposure to Aβ peptides at a relatively high ratio of Aβ42/40 causes conformational change within the PS1 subdomain architecture towards the pathogenic "closed" state. Mechanistically, the Aβ42/40 peptides present at the relatively high ratio increase intracellular calcium levels, which were shown to trigger pathogenic PS1 conformation. This indicates that there is a reciprocal crosstalk between the extracellular Aβ peptides and PS1 conformation within a neuron, with Aβ40 showing some protective effect. The pathogenic shift within the PS1 domain architecture may further shift the production of Aβ peptides towards the longer, neurotoxic Aβ species. These findings link elevated calcium, Aβ42 and PS1/γ-secretase conformation, and offer possible mechanistic explanation of the impending exacerbation of the amyloid pathology.
Collapse
Affiliation(s)
- Katarzyna Marta Zoltowska
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Department of Neurology, Charlestown, Massachusetts, United States of America
| | - Masato Maesako
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Department of Neurology, Charlestown, Massachusetts, United States of America
| | - Oksana Berezovska
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Department of Neurology, Charlestown, Massachusetts, United States of America
| |
Collapse
|
36
|
Kuzuya A, Zoltowska KM, Post KL, Arimon M, Li X, Svirsky S, Maesako M, Muzikansky A, Gautam V, Kovacs D, Hyman BT, Berezovska O. Identification of the novel activity-driven interaction between synaptotagmin 1 and presenilin 1 links calcium, synapse, and amyloid beta. BMC Biol 2016; 14:25. [PMID: 27036734 PMCID: PMC4818459 DOI: 10.1186/s12915-016-0248-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/18/2016] [Indexed: 12/20/2022] Open
Abstract
Background Synaptic loss strongly correlates with memory deterioration. Local accumulation of amyloid β (Aβ) peptide, and neurotoxic Aβ42 in particular, due to abnormal neuronal activity may underlie synaptic dysfunction, neurodegeneration, and memory impairments. To gain an insight into molecular events underlying neuronal activity-regulated Aβ production at the synapse, we explored functional outcomes of the newly discovered calcium-dependent interaction between Alzheimer’s disease-associated presenilin 1 (PS1)/γ-secretase and synaptic vesicle proteins. Results Mass spectrometry screen of mouse brain lysates identified synaptotagmin 1 (Syt1) as a novel synapse-specific PS1-binding partner that shows Ca2+-dependent PS1 binding profiles in vitro and in vivo. We found that Aβ level, and more critically, conformation of the PS1 and the Aβ42/40 ratio, are affected by Syt1 overexpression or knockdown, indicating that Syt1 and its interaction with PS1 might regulate Aβ production at the synapse. Moreover, β-secretase 1 (BACE1) stability, β- and γ-secretase activity, as well as intracellular compartmentalization of PS1 and BACE1, but not of amyloid precursor protein (APP), nicastrin (Nct), presenilin enhancer 2 (Pen-2), or synaptophysin (Syp) were altered in the absence of Syt1, suggesting a selective effect of Syt1 on PS1 and BACE1 trafficking. Conclusions Our findings identify Syt1 as a novel Ca2+-sensitive PS1 modulator that could regulate synaptic Aβ, opening avenues for novel and selective synapse targeting therapeutic strategies. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0248-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akira Kuzuya
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Katarzyna M Zoltowska
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Kathryn L Post
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Muriel Arimon
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Xuejing Li
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Sarah Svirsky
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Masato Maesako
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Alona Muzikansky
- MGH Biostatistics Center, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Vivek Gautam
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Dora Kovacs
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Bradley T Hyman
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Oksana Berezovska
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
37
|
Elad N, De Strooper B, Lismont S, Hagen W, Veugelen S, Arimon M, Horré K, Berezovska O, Sachse C, Chávez-Gutiérrez L. The dynamic conformational landscape of gamma-secretase. J Cell Sci 2016; 128:589-98. [PMID: 25501811 PMCID: PMC4311135 DOI: 10.1242/jcs.164384] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The structure and function of the gamma-secretase proteases are of great interest because of their crucial roles in cellular and disease processes. We established a novel purification protocol for the gamma-secretase complex that involves a conformation- and complex-specific nanobody, yielding highly pure and active enzyme. Using single particle electron microscopy, we analyzed the gamma-secretase structure and its conformational variability. Under steady-state conditions, the complex adopts three major conformations, which differ in overall compactness and relative position of the nicastrin ectodomain. Occupancy of the active or substrate-binding sites by inhibitors differentially stabilizes subpopulations of particles with compact conformations, whereas a mutation linked to familial Alzheimer disease results in enrichment of extended-conformation complexes with increased flexibility. Our study presents the csecretase complex as a dynamic population of interconverting conformations, involving rearrangements at the nanometer scale and a high level of structural interdependence between subunits. The fact that protease inhibition or clinical mutations, which affect amyloid beta (Abeta) generation, enrich for particular subpopulations of conformers indicates the functional relevance of the observed dynamic changes, which are likely to be instrumental for highly allosteric behavior of the enzyme.
Collapse
Affiliation(s)
- Nadav Elad
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center of Human Genetics, University Hospitals Leuven & Department of Human Genetics, KU Leuven, and Leuven Research Institute for Neuroscience and Disease (LIND), 3000 Leuven, Belgium
| | - Bart De Strooper
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center of Human Genetics, University Hospitals Leuven & Department of Human Genetics, KU Leuven, and Leuven Research Institute for Neuroscience and Disease (LIND), 3000 Leuven, Belgium
- UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Authors for correspondence (; ; )
| | - Sam Lismont
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center of Human Genetics, University Hospitals Leuven & Department of Human Genetics, KU Leuven, and Leuven Research Institute for Neuroscience and Disease (LIND), 3000 Leuven, Belgium
| | - Wim Hagen
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse1, 69117 Heidelberg, Germany
| | - Sarah Veugelen
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center of Human Genetics, University Hospitals Leuven & Department of Human Genetics, KU Leuven, and Leuven Research Institute for Neuroscience and Disease (LIND), 3000 Leuven, Belgium
| | - Muriel Arimon
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Katrien Horré
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center of Human Genetics, University Hospitals Leuven & Department of Human Genetics, KU Leuven, and Leuven Research Institute for Neuroscience and Disease (LIND), 3000 Leuven, Belgium
| | - Oksana Berezovska
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse1, 69117 Heidelberg, Germany
| | - Carsten Sachse
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse1, 69117 Heidelberg, Germany
- Authors for correspondence (; ; )
| | - Lucía Chávez-Gutiérrez
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium
- Center of Human Genetics, University Hospitals Leuven & Department of Human Genetics, KU Leuven, and Leuven Research Institute for Neuroscience and Disease (LIND), 3000 Leuven, Belgium
- Authors for correspondence (; ; )
| |
Collapse
|
38
|
Somavarapu AK, Kepp KP. The dynamic mechanism of presenilin-1 function: Sensitive gate dynamics and loop unplugging control protein access. Neurobiol Dis 2016; 89:147-56. [PMID: 26852951 DOI: 10.1016/j.nbd.2016.02.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 12/20/2022] Open
Abstract
There is no molecular explanation for the many presenilin 1 (PSEN1) mutations causing Alzheimer's disease, but both gain of function relating to amyloid production and loss of isolated PSEN1 function have been implied. We report here the first detailed dynamic all-atom model of mature PSEN1 from molecular dynamics in an explicit membrane with particular account of the as yet unexplored loop dynamics. We find that mature PSEN1 contains multiple distinct conformational states whereas non-mature PSEN1 is a typical one-state protein. We confirm a previously suggested gating mechanism, and find that the 106-131 loop acts as a "hinge" for the TM2 and TM6 "doors". More importantly, we identify an unplugging mechanism of the Exon 9 loop associated only with mature PSEN1. Proper opening of both the "gate" and "plug" in the membrane produces channel-like morphologies and access to the catalytic aspartates. Dynamically, these features seem linked. The long-range sensitivity of this gate-plug system to subtle conformational changes can explain why so many PSEN1 mutants cause disease. Reduced access and imprecise substrate cleavage associated with impaired gate-plug dynamics is directly illustrated by the effect of maturation in our work and could explain the overall reduction in Aβ levels upon PSEN1 mutation and the increase in the Aβ 42/40 ratio. Yet, our PSEN1-only dynamics are particularly insightful in revealing PSEN1-only dynamics relating to e.g. its role as membrane channel. Thus, our identified gate-plug mechanism is relevant for designing PSEN1 modulating therapies for treatment of Alzheimer's disease within both the amyloid/γ-secretase hypothesis and within the PSEN1 loss of function paradigm.
Collapse
Affiliation(s)
| | - Kasper P Kepp
- Technical University of Denmark, DTU Chemistry, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
39
|
Novel presenilin 1 mutation (p.I83T) in Tunisian family with early-onset Alzheimer's disease. Neurobiol Aging 2015; 36:2904.e9-11. [DOI: 10.1016/j.neurobiolaging.2015.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/04/2015] [Accepted: 06/04/2015] [Indexed: 11/20/2022]
|
40
|
Wang X, Cui J, Li W, Zeng X, Zhao J, Pei G. γ-Secretase Modulators and Inhibitors Induce Different Conformational Changes of Presenilin 1 Revealed by FLIM and FRET. J Alzheimers Dis 2015; 47:927-37. [DOI: 10.3233/jad-150313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xin Wang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Graduate School, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jin Cui
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Graduate School, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Li
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Graduate School, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xianglu Zeng
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jian Zhao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gang Pei
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, and the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| |
Collapse
|
41
|
Arimon M, Takeda S, Post KL, Svirsky S, Hyman BT, Berezovska O. Oxidative stress and lipid peroxidation are upstream of amyloid pathology. Neurobiol Dis 2015; 84:109-19. [PMID: 26102023 DOI: 10.1016/j.nbd.2015.06.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 06/11/2015] [Accepted: 06/17/2015] [Indexed: 10/25/2022] Open
Abstract
Oxidative stress is a common feature of the aging process and of many neurodegenerative disorders, including Alzheimer's disease. Understanding the direct causative relationship between oxidative stress and amyloid pathology, and determining the underlying molecular mechanisms is crucial for the development of more effective therapeutics for the disease. By employing microdialysis technique, we report local increase in the amyloid-β42 levels and elevated amyloid-β42/40 ratio in the interstitial fluid within 6h of direct infusion of oxidizing agents into the hippocampus of living and awake wild type mice. The increase in the amyloid-β42/40 ratio correlated with the pathogenic conformational change of the amyloid precursor protein-cleaving enzyme, presenilin1/γ-secretase. Furthermore, we found that the product of lipid peroxidation 4-hydroxynonenal, binds to both nicastrin and BACE, differentially affecting γ- and β-secretase activity, respectively. The present study demonstrates a direct cause-and-effect correlation between oxidative stress and altered amyloid-β production, and provides a molecular mechanism by which naturally occurring product of lipid peroxidation may trigger generation of toxic amyloid-β42 species.
Collapse
Affiliation(s)
- Muriel Arimon
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, CNY 114, 16th Street, Charlestown 02129, MA, USA
| | - Shuko Takeda
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, CNY 114, 16th Street, Charlestown 02129, MA, USA
| | - Kathryn L Post
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, CNY 114, 16th Street, Charlestown 02129, MA, USA
| | - Sarah Svirsky
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, CNY 114, 16th Street, Charlestown 02129, MA, USA
| | - Bradley T Hyman
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, CNY 114, 16th Street, Charlestown 02129, MA, USA
| | - Oksana Berezovska
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, CNY 114, 16th Street, Charlestown 02129, MA, USA.
| |
Collapse
|
42
|
Becker W. Fluorescence lifetime imaging by multi-dimensional time correlated single photon counting. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.medpho.2015.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Marinangeli C, Tasiaux B, Opsomer R, Hage S, Sodero AO, Dewachter I, Octave JN, Smith SO, Constantinescu SN, Kienlen-Campard P. Presenilin transmembrane domain 8 conserved AXXXAXXXG motifs are required for the activity of the γ-secretase complex. J Biol Chem 2015; 290:7169-84. [PMID: 25614624 DOI: 10.1074/jbc.m114.601286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Understanding the molecular mechanisms controlling the physiological and pathological activity of γ-secretase represents a challenging task in Alzheimer disease research. The assembly and proteolytic activity of this enzyme require the correct interaction of the 19 transmembrane domains (TMDs) present in its four subunits, including presenilin (PS1 or PS2), the γ-secretase catalytic core. GXXXG and GXXXG-like motifs are critical for TMDs interactions as well as for protein folding and assembly. The GXXXG motifs on γ-secretase subunits (e.g. APH-1) or on γ-secretase substrates (e.g. APP) are known to be involved in γ-secretase assembly and in Aβ peptide production, respectively. We identified on PS1 and PS2 TMD8 two highly conserved AXXXAXXXG motifs. The presence of a mutation causing an inherited form of Alzheimer disease (familial Alzheimer disease) in the PS1 motif suggested their involvement in the physiopathological configuration of the γ-secretase complex. In this study, we targeted the role of these motifs on TMD8 of PSs, focusing on their role in PS assembly and catalytic activity. Each motif was mutated, and the impact on complex assembly, activity, and substrate docking was monitored. Different amino acid substitutions on the same motif resulted in opposite effects on γ-secretase activity, without affecting the assembly or significantly impairing the maturation of the complex. Our data suggest that AXXXAXXXG motifs in PS TMD8 are key determinants for the conformation of the mature γ-secretase complex, participating in the switch between the physiological and pathological functional conformations of the γ-secretase.
Collapse
Affiliation(s)
| | | | | | - Salim Hage
- the Louvain Drug Research Institute, and
| | | | | | | | - Steven O Smith
- the Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215
| | - Stefan N Constantinescu
- the de Duve Institute and Ludwig Institute for Cancer Research, Université Catholique de Louvain, Brussels 1200, Belgium and
| | | |
Collapse
|
44
|
Ting SKS, Benzinger T, Kepe V, Fagan A, Coppola G, Porter V, Hecimovic S, Chakraverty S, Alvarez-Retuerto AI, Goate A, Ringman JM. A novel PSEN1 mutation (I238M) associated with early-onset Alzheimer's disease in an African-American woman. J Alzheimers Dis 2015; 40:271-5. [PMID: 24413619 DOI: 10.3233/jad-131844] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mutations in PSEN1 are the most common cause of autosomal dominant familial Alzheimer's disease (FAD). We describe an African-American woman with a family history consistent with FAD who began to experience cognitive decline at age 50. Her clinical presentation, MRI, FDG-PET, and PIB-PET scan findings were consistent with AD and she was found to have a novel I238M substitution in PSEN1. As this mutation caused increased production of Aβ42 in an in vitro assay, was not present in two population databases, and is conserved across species, it is likely to be pathogenic for FAD.
Collapse
Affiliation(s)
| | - Tammie Benzinger
- Departments of Radiology and Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Vladimir Kepe
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USA
| | - Anne Fagan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Giovanni Coppola
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA Easton Center for Alzheimer's Disease Research at UCLA, Los Angeles, CA, USA
| | - Verna Porter
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Silva Hecimovic
- Department of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Suma Chakraverty
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Ana Isabel Alvarez-Retuerto
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA Easton Center for Alzheimer's Disease Research at UCLA, Los Angeles, CA, USA
| | - Alison Goate
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - John M Ringman
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA Easton Center for Alzheimer's Disease Research at UCLA, Los Angeles, CA, USA
| |
Collapse
|
45
|
Sun Y, Periasamy A. Localizing protein-protein interactions in living cells using fluorescence lifetime imaging microscopy. Methods Mol Biol 2015; 1251:83-107. [PMID: 25391796 DOI: 10.1007/978-1-4939-2080-8_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In the past decade, advances in fluorescence lifetime imaging have extensively applied in the life sciences, from fundamental biological investigations to advanced clinical diagnosis. Fluorescence lifetime imaging microscopy (FLIM) is now routinely used in the biological sciences to monitor dynamic signaling events inside living cells, e.g., Protein-Protein interactions. In this chapter, we describe the calibration of both time-correlated single-photon counting (TCSPC) and frequency domain (FD) FLIM systems and the acquisition and analysis of FLIM-FRET data for investigating Protein-Protein interactions in living cells.
Collapse
Affiliation(s)
- Yuansheng Sun
- W.M. Keck Center for Cellular Imaging, Biology, University of Virginia, B005 Physical and Life Sciences Building, White Head Road, Charlottesville, VA, 22904, USA
| | | |
Collapse
|
46
|
Chen WT, Hsieh YF, Huang YJ, Lin CC, Lin YT, Liu YC, Lien CC, Cheng IHJ. G206D Mutation of Presenilin-1 Reduces Pen2 Interaction, Increases Aβ42/Aβ40 Ratio and Elevates ER Ca(2+) Accumulation. Mol Neurobiol 2014; 52:1835-1849. [PMID: 25394380 DOI: 10.1007/s12035-014-8969-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/28/2014] [Indexed: 12/23/2022]
Abstract
Early-onset familial Alzheimer's disease (AD) is most commonly associated with the mutations in presenilin-1 (PS1). PS1 is the catalytic component of the γ-secretase complex, which cleaves amyloid precursor protein to produce amyloid-β (Aβ), the major cause of AD. Presenilin enhancer 2 (Pen2) is critical for activating γ-secretase and exporting PS1 from endoplasmic reticulum (ER). Among all the familial AD-linked PS1 mutations, mutations at the G206 amino acid are the most adjacent position to the Pen2 binding site. Here, we characterized the effect of a familial AD-linked PS1 G206D mutation on the PS1-Pen2 interaction and the accompanied alteration in γ-secretase-dependent and -independent functions. We found that the G206D mutation reduced PS1-Pen2 interaction, but did not abolish γ-secretase formation and PS1 endoproteolysis. For γ-secretase-dependent function, the G206D mutation increased Aβ42 production but not Notch cleavage. For γ-secretase-independent function, this mutation disrupted the ER calcium homeostasis but not lysosomal calcium homeostasis and autophagosome maturation. Impaired ER calcium homeostasis may due to the reduced mutant PS1 level in the ER. Although this mutation did not alter the cell survival under stress, both increased Aβ42 ratio and disturbed ER calcium regulation could be the mechanisms underlying the pathogenesis of the familial AD-linked PS1 G206D mutation.
Collapse
Affiliation(s)
- Wei-Ting Chen
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Fang Hsieh
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Yan-Jing Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Che-Ching Lin
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Tung Lin
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Chao Liu
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Chang Lien
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Irene Han-Juo Cheng
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, Taiwan. .,Infection and Immunity Research Center, National Yang-Ming University, Taipei, Taiwan. .,Immunology Center, Taipei Veterans General Hospital, Taipei, Taiwan. .,Institute of Brain Science, School of Medicine, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan.
| |
Collapse
|
47
|
Winslow AR, Moussaud S, Zhu L, Post KL, Post KL, Dickson DW, Berezovska O, McLean PJ. Convergence of pathology in dementia with Lewy bodies and Alzheimer's disease: a role for the novel interaction of alpha-synuclein and presenilin 1 in disease. Brain 2014; 137:1958-70. [PMID: 24860142 PMCID: PMC4065023 DOI: 10.1093/brain/awu119] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 03/03/2014] [Accepted: 04/02/2014] [Indexed: 12/13/2022] Open
Abstract
A growing number of PSEN1 mutations have been associated with dementia with Lewy bodies and familial Alzheimer's disease with concomitant α-synuclein pathology. The objective of this study was to determine if PSEN1 plays a direct role in the development of α-synuclein pathology in these diseases. Using mass spectrometry, immunoelectron microscopy and fluorescence lifetime image microscopy based on Forster resonance energy transfer (FLIM-FRET) we identified α-synuclein as a novel interactor of PSEN1 in wild-type mouse brain tissue. The interaction of α-synuclein with PSEN1 was detected in post-mortem brain tissue from cognitively normal cases and was significantly increased in tissue from cases with dementia with Lewy bodies and familial Alzheimer's disease associated with known PSEN1 mutations. We confirmed an increased interaction of PSEN1 and α-synuclein in cell lines expressing well characterized familial Alzheimer's disease PSEN1 mutations, L166P and delta exon 9, and demonstrated that PSEN1 mutations associate with increased membrane association and accumulation of α-synuclein. Our data provides evidence of a molecular interaction of PSEN1 and α-synuclein that may explain the clinical and pathophysiological overlap seen in synucleinopathies, including Parkinson's disease, dementia with Lewy bodies, and some forms of Alzheimer's disease.
Collapse
Affiliation(s)
- Ashley R Winslow
- 1 MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Simon Moussaud
- 2 Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Liya Zhu
- 1 MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | | | - Katherine L Post
- 1 MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Dennis W Dickson
- 2 Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Oksana Berezovska
- 1 MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Pamela J McLean
- 2 Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| |
Collapse
|
48
|
Lee JH, Kahn A, Cheng R, Reitz C, Vardarajan B, Lantigua R, Medrano M, Jiménez-Velázquez IZ, Williamson J, Nagy P, Mayeux R. Disease-related mutations among Caribbean Hispanics with familial dementia. Mol Genet Genomic Med 2014; 2:430-7. [PMID: 25333068 PMCID: PMC4190878 DOI: 10.1002/mgg3.85] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 04/18/2014] [Accepted: 04/29/2014] [Indexed: 12/13/2022] Open
Abstract
Pathogenic mutations in the three known genes – the amyloid precursor protein (APP), presenilin 1 (PSEN1), presenilin 2 (PSEN2) – are known to cause familial Alzheimer's disease (AD) and tend to be associated with early-onset AD. However, the frequency and risk associated with these mutations vary widely. In addition, mutations in the frontotemporal lobar degeneration (FTLD) genes – the microtubule-associated protein tau (MAPT), granulin (GRN) – have also been found to be associated with clinical AD. Here, we conducted targeted resequencing of the exons in genes encoding APP, PSEN1, PSEN2, GRN, and MAPT in 183 individuals from families with four or more affected relatives, presumed to be AD, and living in the Dominican Republic and Puerto Rico. We then performed linkage and family-based association analyses in carrier families, and genotyped 498 similarly aged unrelated controls from the same ethnic background. Twelve potentially pathogenic mutations were found to be associated with disease in 53 individuals in the five genes. The most frequently observed mutation was the p.Gly206Ala variant in PSEN1 present in 30 (57%) of those sequenced. In the combined linkage and association analyses several rare variants were associated with dementia. In Caribbean Hispanics with familial AD, potentially pathogenic variants were present in 29.2%, four were novel mutations, while eight had been previously observed. In addition, some family members carried variants in the GRN and MAPT genes which are associated with FTLD.
Collapse
Affiliation(s)
- Joseph H Lee
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University New York, New York ; The Gertrude H. Sergievsky Center, Columbia University New York, New York ; The Department of Epidemiology, School of Public Health, Columbia University New York, New York
| | - Amanda Kahn
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University New York, New York
| | - Rong Cheng
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University New York, New York ; The Gertrude H. Sergievsky Center, Columbia University New York, New York
| | - Christiane Reitz
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University New York, New York ; The Gertrude H. Sergievsky Center, Columbia University New York, New York ; The Department of Neurology, Columbia University New York, New York
| | - Badri Vardarajan
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University New York, New York ; The Gertrude H. Sergievsky Center, Columbia University New York, New York
| | - Rafael Lantigua
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University New York, New York ; The Department of Medicine, College of Physicians and Surgeons, Columbia University New York, New York
| | - Martin Medrano
- School of Medicine, Pontificia Universidad Catolica Madre y Maestra Santiago, Dominican Republic
| | | | - Jennifer Williamson
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University New York, New York ; The Gertrude H. Sergievsky Center, Columbia University New York, New York ; The Department of Neurology, Columbia University New York, New York
| | - Peter Nagy
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University New York, New York ; The Department of Pathology, Columbia University New York, New York
| | - Richard Mayeux
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University New York, New York ; The Gertrude H. Sergievsky Center, Columbia University New York, New York ; The Department of Epidemiology, School of Public Health, Columbia University New York, New York ; The Department of Neurology, Columbia University New York, New York ; The Department of Psychiatry, Columbia University New York, New York
| |
Collapse
|
49
|
Wanngren J, Lara P, Ojemalm K, Maioli S, Moradi N, Chen L, Tjernberg LO, Lundkvist J, Nilsson I, Karlström H. Changed membrane integration and catalytic site conformation are two mechanisms behind the increased Aβ42/Aβ40 ratio by presenilin 1 familial Alzheimer-linked mutations. FEBS Open Bio 2014; 4:393-406. [PMID: 24918054 PMCID: PMC4050182 DOI: 10.1016/j.fob.2014.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 01/11/2023] Open
Abstract
Familial Alzheimer disease (FAD) mutations affect presenilin membrane integration. The transmembrane domains around the catalytic site are vulnerable to changes. All FAD mutations cause changes in the active site of the γ-secretase complex. The FAD mutants lead to a complex processing pattern of the amyloid precursor protein.
The enzyme complex γ-secretase generates amyloid β-peptide (Aβ), a 37–43-residue peptide associated with Alzheimer disease (AD). Mutations in presenilin 1 (PS1), the catalytical subunit of γ-secretase, result in familial AD (FAD). A unifying theme among FAD mutations is an alteration in the ratio Aβ species produced (the Aβ42/Aβ40 ratio), but the molecular mechanisms responsible remain elusive. In this report we have studied the impact of several different PS1 FAD mutations on the integration of selected PS1 transmembrane domains and on PS1 active site conformation, and whether any effects translate to a particular amyloid precursor protein (APP) processing phenotype. Most mutations studied caused an increase in the Aβ42/Aβ40 ratio, but via different mechanisms. The mutations that caused a particular large increase in the Aβ42/Aβ40 ratio did also display an impaired APP intracellular domain (AICD) formation and a lower total Aβ production. Interestingly, seven mutations close to the catalytic site caused a severely impaired integration of proximal transmembrane/hydrophobic sequences into the membrane. This structural defect did not correlate to a particular APP processing phenotype. Six selected FAD mutations, all of which exhibited different APP processing profiles and impact on PS1 transmembrane domain integration, were found to display an altered active site conformation. Combined, our data suggest that FAD mutations affect the PS1 structure and active site differently, resulting in several complex APP processing phenotypes, where the most aggressive mutations in terms of increased Aβ42/Aβ40 ratio are associated with a decrease in total γ-secretase activity.
Collapse
Key Words
- AD, Alzheimer disease
- AICD, amyloid precursor protein intracellular domain
- APP, amyloid precursor protein
- Alzheimer disease
- Amyloid β-peptide
- Aβ, amyloid-β peptide
- BD8, blastocyst-derived embryonic stem cells
- Bis-Tris, 2-(bis(2-hydroxyethyl)amino)-2-(hydroxymethyl)propane-1,3-diol
- CHAPSO, 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonic acid
- CRM, column-washed dog pancreas rough microsomes
- CTF, C-terminal fragment
- ER, endoplasmic reticulum
- Endo H, endoglycosidase H
- FAD, familial AD
- FLIM/FRET, Fluorescence Lifetime Imaging/ Fluorescence Resonance Energy Transfer
- GCB, γ-secretase inhibitor coupled to biotin
- GVP, Gal4VP16
- Lep, leader peptidase
- MGD, minimal glycosylation distance
- MSD, Meso Scale Discovery
- Membrane integration
- NTF, N-terminal fragment
- PS, presenilin
- Protein structure
- RM, rough microsomes
- TMD, transmembrane domains
- WT, wild type
- γ-Secretase
Collapse
Affiliation(s)
- Johanna Wanngren
- Department of NVS, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Patricia Lara
- Department of Biochemistry & Biophysics, Stockholm University, Stockholm, Sweden
| | - Karin Ojemalm
- Department of Biochemistry & Biophysics, Stockholm University, Stockholm, Sweden
| | - Silvia Maioli
- Department of NVS, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Nasim Moradi
- Department of Biochemistry & Biophysics, Stockholm University, Stockholm, Sweden
| | - Lu Chen
- Department of Biochemistry & Biophysics, Stockholm University, Stockholm, Sweden
| | - Lars O Tjernberg
- Department of NVS, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | | | - IngMarie Nilsson
- Department of Biochemistry & Biophysics, Stockholm University, Stockholm, Sweden
| | - Helena Karlström
- Department of NVS, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
50
|
Acx H, Chávez-Gutiérrez L, Serneels L, Lismont S, Benurwar M, Elad N, De Strooper B. Signature amyloid β profiles are produced by different γ-secretase complexes. J Biol Chem 2013; 289:4346-55. [PMID: 24338474 DOI: 10.1074/jbc.m113.530907] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
γ-Secretase complexes are involved in the generation of amyloid-β (Aβ) in the brain. Therefore, γ-secretase has been proposed as a potential therapeutic target in Alzheimer disease (AD). Targeting γ-secretase activity in AD requires the pharmacological dissociation of the processing of physiological relevant substrates and the generation of "toxic" Aβ. Previous reports suggest the differential targeting of γ-secretase complexes, based on their subunit composition, as a valid strategy. However, little is known about the biochemical properties of the different complexes, and key questions regarding their Aβ product profiles should be first addressed. Here, we expressed, purified, and analyzed, under the same conditions, the endopeptidase and carboxypeptidase-like activities of the four γ-secretase complexes present in humans. We find that the nature of the catalytic subunit in the complex affects both activities. Interestingly, PSEN2 complexes discriminate between the Aβ40 and Aβ38 production lines, indicating that Aβ generation in one or the other pathway can be dissociated. In contrast, the APH1 subunit mainly affects the carboxypeptidase-like activity, with APH1B complexes favoring the generation of longer Aβ peptides. In addition, we determined that expression of a single human γ-secretase complex in cell lines retains the intrinsic attributes of the protease while present in the membrane, providing validation for the in vitro studies. In conclusion, our data show that each γ-secretase complex produces a characteristic Aβ signature. The qualitative and quantitative differences between different γ-secretase complexes could be used to advance drug development in AD and other disorders.
Collapse
Affiliation(s)
- Hermien Acx
- From the Center for the Biology of Disease, Flemish Institute for Biology (VIB), 3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|