1
|
Yu L, Wen Y, Yang J, Wang G, Zhang N, Gao X, Guo J, Wang Z. Autoimmune receptor encephalitis in ApoE ‑/‑ mice induced by active immunization with NMDA1. Mol Med Rep 2023; 28:233. [PMID: 37921064 PMCID: PMC10636767 DOI: 10.3892/mmr.2023.13120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023] Open
Abstract
Subacute progressive neuropsychiatric symptoms with cognitive and motor impairment and autoimmune seizures are some of the typical symptoms of anti‑N‑methyl‑D‑aspartate receptor (anti‑NMDAR) encephalitis. The mechanisms underlying this disease are yet to be elucidated, which could be partly attributed to the lack of appropriate animal models. The present study aimed to establish an active immune mouse model of anti‑NMDAR encephalitis. Mice were immunized with the extracellular segment of the NMDA1 protein, then subjected to open‑field and novel object recognition experiments. Plasma was collected after euthanasia on day 30 after immunization and anti‑NMDA1 antibodies were detected using ELISA. Furthermore, brain slices were analyzed to measure postsynaptic density protein 95 (PSD‑95) and NMDA1 expression. Western blot analysis of NMDA1 and PSD‑95 protein expression levels in the hippocampus was also performed. In addition, protein expression levels of PSD‑95 and NMDA1 in mouse neuronal HT‑22 cells were evaluated. Compared with controls, mice immunized with NMDA1 exhibited anxiety, depression and memory impairment. Moreover, high anti‑NMDA1 antibody titers were detected with ELISA and the levels of anti‑NMDA1 antibody reduced postsynaptic NMDA1 protein density in the mouse hippocampus. These findings demonstrated the successful construction of a novel mouse model of anti‑NMDAR encephalitis by actively immunizing the mice with the extracellular segment of the NMDA1 protein. This model may be useful for studying the pathogenesis and drug treatment of anti‑NMDAR encephalitis in the future.
Collapse
Affiliation(s)
- Liming Yu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750001, P.R. China
- Department of Neurology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Wuhan 435000, P.R. China
| | - Yujun Wen
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia 750001, P.R. China
| | - Juan Yang
- Neurology Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Guowei Wang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750001, P.R. China
| | - Na Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750001, P.R. China
| | - Xinlei Gao
- Department of Neurology, Shenmu Hospital, Yulin, Shanxi 719000, P.R. China
| | - Jiayu Guo
- Department of Neurology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia 750004, P.R. China
| | - Zhenhai Wang
- Neurology Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
- Diagnosis and Treatment Engineering Technology Research Center of Nervous System Diseases of Ningxia Hui Autonomous Region, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
2
|
Diazepam induces retrograde facilitation of object recognition and object location memory in male mice. Neuroreport 2023; 34:137-143. [PMID: 36574287 DOI: 10.1097/wnr.0000000000001869] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Benzodiazepines are widely prescribed for patients suffering from anxiety and insomnia. Although amnesic effects of benzodiazepines are commonly known as side effects, it has also been reported that these drugs improve memory for information learned before drug intake, a phenomenon called retrograde facilitation. However, the retrograde effects of benzodiazepines on cognitive performances in rodents remain controversial. It should be considered that studies on diazepam-induced retrograde facilitation in humans have been conducted using a recall paradigm focused on short-term memory, whereas these studies in rodents have been conducted using memory tasks that mainly target long-term memory and/or require negative or positive reinforcers. In the current study, we investigated whether diazepam, a benzodiazepine, induces retrograde facilitation for object recognition memory and spatial memory in mice, using a novel object recognition test and an object location test, respectively. These tests are available for short-term memory and do not require any reinforcer. The mice treated with diazepam retained object recognition memory for at least 180 min and spatial memory for at least 150 min. In contrast, vehicle-treated control mice retained object recognition memory for 120 min but not 150 min or longer, and spatial memory for 90 min but not 120 min or longer. These data clearly demonstrated diazepam-induced retrograde facilitation for both object recognition and spatial memories in mice. The present study is expected to contribute to the elucidation of the neural basis of retrograde facilitation.
Collapse
|
3
|
Hámor PU, Knackstedt LA, Schwendt M. The role of metabotropic glutamate receptors in neurobehavioral effects associated with methamphetamine use. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:177-219. [PMID: 36868629 DOI: 10.1016/bs.irn.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are expressed throughout the central nervous system and act as important regulators of drug-induced neuroplasticity and behavior. Preclinical research suggests that mGlu receptors play a critical role in a spectrum of neural and behavioral consequences arising from methamphetamine (meth) exposure. However, an overview of mGlu-dependent mechanisms linked to neurochemical, synaptic, and behavioral changes produced by meth has been lacking. This chapter provides a comprehensive review of the role of mGlu receptor subtypes (mGlu1-8) in meth-induced neural effects, such as neurotoxicity, as well as meth-associated behaviors, such as psychomotor activation, reward, reinforcement, and meth-seeking. Additionally, evidence linking altered mGlu receptor function to post-meth learning and cognitive deficits is critically evaluated. The chapter also considers the role of receptor-receptor interactions involving mGlu receptors and other neurotransmitter receptors in meth-induced neural and behavioral changes. Taken together, the literature indicates that mGlu5 regulates the neurotoxic effects of meth by attenuating hyperthermia and possibly through altering meth-induced phosphorylation of the dopamine transporter. A cohesive body of work also shows that mGlu5 antagonism (and mGlu2/3 agonism) reduce meth-seeking, though some mGlu5-blocking drugs also attenuate food-seeking. Further, evidence suggests that mGlu5 plays an important role in extinction of meth-seeking behavior. In the context of a history of meth intake, mGlu5 also co-regulates aspects of episodic memory, with mGlu5 stimulation restoring impaired memory. Based on these findings, we propose several avenues for the development of novel pharmacotherapies for Methamphetamine Use Disorder based on the selective modulation mGlu receptor subtype activity.
Collapse
Affiliation(s)
- Peter U Hámor
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States; Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Lori A Knackstedt
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
| | - Marek Schwendt
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
4
|
Piromalli Girado D, Miranda M, Giachero M, Weisstaub N, Bekinschtein P. Endocytosis is required for consolidation of pattern-separated memories in the perirhinal cortex. Front Syst Neurosci 2023; 17:1043664. [PMID: 36911226 PMCID: PMC9995888 DOI: 10.3389/fnsys.2023.1043664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction The ability to separate similar experiences into differentiated representations is proposed to be based on a computational process called pattern separation, and it is one of the key characteristics of episodic memory. Although pattern separation has been mainly studied in the dentate gyrus of the hippocampus, this cognitive function if thought to take place also in other regions of the brain. The perirhinal cortex is important for the acquisition and storage of object memories, and in particular for object memory differentiation. The present study was devoted to investigating the importance of the cellular mechanism of endocytosis for object memory differentiation in the perirhinal cortex and its association with brain-derived neurotrophic factor, which was previously shown to be critical for the pattern separation mechanism in this structure. Methods We used a modified version of the object recognition memory task and intracerebral delivery of a peptide (Tat-P4) into the perirhinal cortex to block endocytosis. Results We found that endocytosis is necessary for pattern separation in the perirhinal cortex. We also provide evidence from a molecular disconnection experiment that BDNF and endocytosis-related mechanisms interact for memory discrimination in both male and female rats. Discussion Our experiments suggest that BDNF and endocytosis are essential for consolidation of separate object memories and a part of a time-restricted, protein synthesis-dependent mechanism of memory stabilization in Prh during storage of object representations.
Collapse
Affiliation(s)
- Dinka Piromalli Girado
- Laboratory of Memory and Molecular Cognition, Instituto de Neurociencia Cognitiva y Traslacional (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación INECO-Universidad Favaloro), Buenos Aires, Argentina
| | - Magdalena Miranda
- Laboratory of Memory and Molecular Cognition, Instituto de Neurociencia Cognitiva y Traslacional (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación INECO-Universidad Favaloro), Buenos Aires, Argentina
| | - Marcelo Giachero
- Laboratory of Memory and Molecular Cognition, Instituto de Neurociencia Cognitiva y Traslacional (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación INECO-Universidad Favaloro), Buenos Aires, Argentina
| | - Noelia Weisstaub
- Laboratory of Memory and Molecular Cognition, Instituto de Neurociencia Cognitiva y Traslacional (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación INECO-Universidad Favaloro), Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Laboratory of Memory and Molecular Cognition, Instituto de Neurociencia Cognitiva y Traslacional (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación INECO-Universidad Favaloro), Buenos Aires, Argentina
| |
Collapse
|
5
|
Dissociating the involvement of muscarinic and nicotinic cholinergic receptors in object memory destabilization and reconsolidation. Neurobiol Learn Mem 2022; 195:107686. [PMID: 36174889 DOI: 10.1016/j.nlm.2022.107686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/10/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022]
Abstract
The content of long-term memory is neither fixed nor permanent. Reminder cues can destabilize consolidated memories, rendering them amenable to change before being reconsolidated. However, not all memories destabilize following reactivation. Characteristics of a memory, such as its age or strength, impose boundaries on destabilization. Previously, we demonstrated that presentation of salient novel information at the time of reactivation can readily destabilize resistant object memories in rats and this form of novelty-induced destabilization is dependent upon acetylcholine (ACh) activity at muscarinic receptors (mAChRs). In the present study, we sought to determine if this same mechanism for initiating destabilization of resistant object memories is present in mice and further expand our understanding of the mechanisms through which ACh modulates object memory destabilization by investigating the role of nicotinic receptors (nAChRs). We provide evidence that in mice mAChRs are necessary for destabilizing object memories that are readily destabilized and those that are resistant to destabilization. Conversely, nAChRs were found to be necessary only when memories are readily destabilized. We then investigated the role of both receptors in the reconsolidation of destabilized object memory traces and determined that nAChRs, but not mAChRs, are necessary for object memory reconsolidation. Together, these results suggest that nAChRs may play a more selective role in the re-storage of object memories following destabilization and that ACh acts through mAChRs to act as an override signal to initiate destabilization of resistant object memories following reactivation with novelty. These findings expand our current understanding of the role of ACh in the dynamic storage of long-term memory.
Collapse
|
6
|
The role of a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type receptor modulators in object recognition memory reconsolidation. Neuroreport 2022; 33:199-203. [DOI: 10.1097/wnr.0000000000001769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Sethumadhavan N, Strauch C, Hoang TH, Manahan-Vaughan D. The Perirhinal Cortex Engages in Area and Layer-Specific Encoding of Item Dimensions. Front Behav Neurosci 2022; 15:744669. [PMID: 35058755 PMCID: PMC8763964 DOI: 10.3389/fnbeh.2021.744669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
The perirhinal cortex (PRC), subdivided into areas 35 and 36, belongs to the parahippocampal regions that provide polysensory input to the hippocampus. Efferent and afferent connections along its rostro-caudal axis, and of areas 35 and 36, are extremely diverse. Correspondingly functional tasks in which the PRC participates are manifold. The PRC engages, for example, in sensory information processing, object recognition, and attentional processes. It was previously reported that layer II of the caudal area 35 may be critically involved in the encoding of large-scale objects. In the present study we aimed to disambiguate the roles of the different PRC layers, along with areas 35 and 36, and the rostro-caudal compartments of the PRC, in processing information about objects of different dimensions. Here, we compared effects on information encoding triggered by learning about subtle and discretely visible (microscale) object information and overt, highly visible landmark (macroscale) information. To this end, nuclear expression of the immediate early gene Arc was evaluated using fluorescence in situ hybridization. Increased nuclear Arc expression occurred in layers III and V-VI of the middle and caudal parts of area 35 in response to both novel microscale and macroscale object exposure. By contrast, a significant increase in Arc expression occurred in area 36 only in response to microscale objects. These results indicate that area 36 is specifically involved in the encoding of small and less prominently visible items. In contrast, area 35 engages globally (layer III to VI) in the encoding of object information independent of item dimensions.
Collapse
Affiliation(s)
- Nithya Sethumadhavan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Christina Strauch
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany
| | - Thu-Huong Hoang
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Denise Manahan-Vaughan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Denise Manahan-Vaughan
| |
Collapse
|
8
|
Pereyra M, Medina JH. AMPA Receptors: A Key Piece in the Puzzle of Memory Retrieval. Front Hum Neurosci 2021; 15:729051. [PMID: 34621161 PMCID: PMC8490764 DOI: 10.3389/fnhum.2021.729051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/20/2021] [Indexed: 11/20/2022] Open
Abstract
Retrieval constitutes a highly regulated and dynamic phase in memory processing. Its rapid temporal scales require a coordinated molecular chain of events at the synaptic level that support transient memory trace reactivation. AMPA receptors (AMPAR) drive the majority of excitatory transmission in the brain and its dynamic features match the singular fast timescales of memory retrieval. Here we provide a review on AMPAR contribution to memory retrieval regarding its dynamic movements along the synaptic compartments, its changes in receptor number and subunit composition that take place in activity dependent processes associated with retrieval. We highlight on the differential regulations exerted by AMPAR subunits in plasticity processes and its impact on memory recall.
Collapse
Affiliation(s)
- Magdalena Pereyra
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge H Medina
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biología Celular y Neurociencia "Dr. Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| |
Collapse
|
9
|
Wolter M, Lapointe T, Melanson B, Baidoo N, Francis T, Winters BD, Leri F. Memory enhancing effects of nicotine, cocaine, and their conditioned stimuli; effects of beta-adrenergic and dopamine D2 receptor antagonists. Psychopharmacology (Berl) 2021; 238:2617-2628. [PMID: 34175982 DOI: 10.1007/s00213-021-05884-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/27/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND There is evidence that post-training exposure to nicotine, cocaine, and their conditioned stimuli (CS), enhance memory consolidation in rats. The present study assessed the effects of blocking noradrenergic and dopaminergic receptors on nicotine and cocaine unconditioned and conditioned memory modulation. METHODS Males Sprague-Dawley rats tested on the spontaneous object recognition task received post-sample exposure to 0.4 mg/kg nicotine, 20 mg/kg cocaine, or their CSs, in combination with 5-10 mg/kg propranolol (PRO; beta-adrenergic antagonist) or 0.2-0.6 mg/kg pimozide (PIM; dopamine D2 receptor antagonist). The CSs were established by confining rats in a chamber (the CS +) after injections of 0.4 mg/kg nicotine, or 20 mg/kg cocaine, for 2 h and in another chamber (the CS -) after injections of vehicle, repeated over 10 days (5 drug/CS + and 5 vehicle/CS - pairings in total). Object memory was tested 72 h post sample in drug-free animals. RESULTS Co-administration of PRO or PIM blocked the memory-enhancing effects of post-training injections of nicotine, cocaine, and, importantly, exposure to their CSs. CONCLUSIONS These data suggest that nicotine, cocaine as well as their conditioned stimuli share actions on overlapping noradrenergic and dopaminergic systems to modulate memory consolidation.
Collapse
Affiliation(s)
- Michael Wolter
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Thomas Lapointe
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Brett Melanson
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Nana Baidoo
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Travis Francis
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Boyer D Winters
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Francesco Leri
- Department of Psychology, Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
10
|
Garcia-Lopez R, Pombero A, Estirado A, Geijo-Barrientos E, Martinez S. Interneuron Heterotopia in the Lis1 Mutant Mouse Cortex Underlies a Structural and Functional Schizophrenia-Like Phenotype. Front Cell Dev Biol 2021; 9:693919. [PMID: 34327202 PMCID: PMC8313859 DOI: 10.3389/fcell.2021.693919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/16/2021] [Indexed: 11/24/2022] Open
Abstract
LIS1 is one of the principal genes related to Type I lissencephaly, a severe human brain malformation characterized by an abnormal neuronal migration in the cortex during embryonic development. This is clinically associated with epilepsy and cerebral palsy in severe cases, as well as a predisposition to developing mental disorders, in cases with a mild phenotype. Although genetic variations in the LIS1 gene have been associated with the development of schizophrenia, little is known about the underlying neurobiological mechanisms. We have studied how the Lis1 gene might cause deficits associated with the pathophysiology of schizophrenia using the Lis1/sLis1 murine model, which involves the deletion of the first coding exon of the Lis1 gene. Homozygous mice are not viable, but heterozygous animals present abnormal neuronal morphology, cortical dysplasia, and enhanced cortical excitability. We have observed reduced number of cells expressing GABA-synthesizing enzyme glutamic acid decarboxylase 67 (GAD67) in the hippocampus and the anterior cingulate area, as well as fewer parvalbumin-expressing cells in the anterior cingulate cortex in Lis1/sLis1 mutants compared to control mice. The cFOS protein expression (indicative of neuronal activity) in Lis1/sLis1 mice was higher in the medial prefrontal (mPFC), perirhinal (PERI), entorhinal (ENT), ectorhinal (ECT) cortices, and hippocampus compared to control mice. Our results suggest that deleting the first coding exon of the Lis1 gene might cause cortical anomalies associated with the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
| | - Ana Pombero
- Instituto de Neurociencias, UMH-CSIC, Alicante, Spain
| | | | | | - Salvador Martinez
- Instituto de Neurociencias, UMH-CSIC, Alicante, Spain.,Centro de Investigación Biomédica En Red en Salud Mental-CIBERSAM-ISCIII, Valencia, Spain
| |
Collapse
|
11
|
Yegla B, Boles J, Kumar A, Foster TC. Partial microglial depletion is associated with impaired hippocampal synaptic and cognitive function in young and aged rats. Glia 2021; 69:1494-1514. [PMID: 33586813 DOI: 10.1002/glia.23975] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
The role of microglia in mediating age-related changes in cognition and hippocampal synaptic function was examined by microglial depletion and replenishment using PLX3397. We observed age-related differences in microglial number and morphology, as well as increased Iba-1 expression, indicating microglial activation. PLX3397 treatment decreased microglial number, with aged rats exhibiting the lowest density. Young rats exhibited increased expression of pro-inflammatory cytokines during depletion and repopulation and maintenance of Iba-1 levels despite reduced microglial number. For aged rats, several cytokines increased with depletion and recovered during repopulation; however, aged rats did not fully recover microglial cell number or Iba-1 expression during repopulation, with a recovery comparable to young control levels rather than aged controls. Hippocampal CA3-CA1 synaptic transmission was impaired with age, and microglial depletion was associated with decreased total synaptic transmission in young and aged rats. A robust decline in N-methyl-d-aspartate-receptor-mediated synaptic transmission arose in young depleted rats specifically. Microglial replenishment normalized depletion-induced synaptic function to control levels; however, recovery of aged animals did not mirror young. Microglial depletion was associated with decreased context-object discrimination memory in both age groups, which recovered with microglial repopulation. Aged rats displayed impaired contextual and cued fear memory, and microglial replenishment did not recover their memory to the level of young. The current study indicates that cognitive function and synaptic transmission benefit from the support of aged microglia and are hindered by removal of these cells. Replenishment of microglia in aging did not ameliorate age-related cognitive impairments or senescent synaptic function.
Collapse
Affiliation(s)
- Brittney Yegla
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Jake Boles
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA.,Genetics and Genomics Program, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
12
|
Hatzipantelis C, Langiu M, Vandekolk TH, Pierce TL, Nithianantharajah J, Stewart GD, Langmead CJ. Translation-Focused Approaches to GPCR Drug Discovery for Cognitive Impairments Associated with Schizophrenia. ACS Pharmacol Transl Sci 2020; 3:1042-1062. [PMID: 33344888 PMCID: PMC7737210 DOI: 10.1021/acsptsci.0c00117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Indexed: 01/07/2023]
Abstract
There are no effective therapeutics for cognitive impairments associated with schizophrenia (CIAS), which includes deficits in executive functions (working memory and cognitive flexibility) and episodic memory. Compounds that have entered clinical trials are inadequate in terms of efficacy and/or tolerability, highlighting a clear translational bottleneck and a need for a cohesive preclinical drug development strategy. In this review we propose hippocampal-prefrontal-cortical (HPC-PFC) circuitry underlying CIAS-relevant cognitive processes across mammalian species as a target source to guide the translation-focused discovery and development of novel, procognitive agents. We highlight several G protein-coupled receptors (GPCRs) enriched within HPC-PFC circuitry as therapeutic targets of interest, including noncanonical approaches (biased agonism and allosteric modulation) to conventional clinical targets, such as dopamine and muscarinic acetylcholine receptors, along with prospective novel targets, including the orphan receptors GPR52 and GPR139. We also describe the translational limitations of popular preclinical cognition tests and suggest touchscreen-based assays that probe cognitive functions reliant on HPC-PFC circuitry and reflect tests used in the clinic, as tests of greater translational relevance. Combining pharmacological and behavioral testing strategies based in HPC-PFC circuit function creates a cohesive, translation-focused approach to preclinical drug development that may improve the translational bottleneck currently hindering the development of treatments for CIAS.
Collapse
Affiliation(s)
- Cassandra
J. Hatzipantelis
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Monica Langiu
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Teresa H. Vandekolk
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Tracie L. Pierce
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jess Nithianantharajah
- Florey
Institute of Neuroscience
and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Gregory D. Stewart
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Christopher J. Langmead
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
13
|
Papp M, Gruca P, Lason M, Litwa E, Solecki W, Willner P. AMPA receptors mediate the pro-cognitive effects of electrical and optogenetic stimulation of the medial prefrontal cortex in antidepressant non-responsive Wistar-Kyoto rats. J Psychopharmacol 2020; 34:1418-1430. [PMID: 33200659 PMCID: PMC7708672 DOI: 10.1177/0269881120967857] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The chronic mild stress (CMS) procedure is a widely used animal model of depression, and its application in Wistar-Kyoto (WKY) rats has been validated as a model of antidepressant-refractory depression. While not responding to chronic treatment with antidepressant drugs, WKY rats do respond to acute deep brain stimulation (DBS) of the medial prefrontal cortex (mPFC). In antidepressant-responsive strains there is evidence suggesting a role for AMPA subtype of glutamate receptor in the action mechanism of both antidepressants and DBS. METHODS Animals were subjected to CMS for 6 to 8 weeks; sucrose intake was monitored weekly and novel object recognition (NOR) test was conducted following recovery from CMS. Wistars were treated chronically with venlafaxine (VEN), while WKY were treated acutely with either DBS, optogenetic stimulation (OGS) of virally-transduced (AAV5-hSyn-ChR2-EYFP) mPFC or ventral hippocampus, or acute intra-mPFC injection of the AMPA receptor positive allosteric modulator CX-516. The AMPA receptor antagonist NBQX was administered, at identical sites in mPFC, immediately following the exposure trial in the NOR. RESULTS Sucrose intake and NOR were suppressed by CMS, and restored by VEN in Wistars and by DBS, OGS, or CX-516 in WKY. However, OGS of the ventral hippocampal afferents to mPFC was ineffective. A low dose of NBQX selectively blocked the procognitive effect of VEN, DBS and OGS. CONCLUSIONS These results suggest that activation of AMPA receptors in the mPFC represents a common pathway for the antidepressant effects of both conventional (VEN) and novel (DBS, OGS) antidepressant modalities, in both antidepressant responsive (Wistar) and antidepressant-resistant (WKY) rats.
Collapse
Affiliation(s)
- Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland,Mariusz Papp, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Street, Krakow, 31-343, Poland.
| | - Piotr Gruca
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Lason
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewa Litwa
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wojciech Solecki
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Paul Willner
- Department of Psychology, Swansea University, Swansea, UK
| |
Collapse
|
14
|
Hartsock MJ, Spencer RL. Memory and the circadian system: Identifying candidate mechanisms by which local clocks in the brain may regulate synaptic plasticity. Neurosci Biobehav Rev 2020; 118:134-162. [PMID: 32712278 DOI: 10.1016/j.neubiorev.2020.07.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022]
Abstract
The circadian system is an endogenous biological network responsible for coordinating near-24-h cycles in behavior and physiology with daily timing cues from the external environment. In this review, we explore how the circadian system regulates memory formation, retention, and recall. Circadian rhythms in these memory processes may arise through several endogenous pathways, and recent work highlights the importance of genetic timekeepers found locally within tissues, called local clocks. We evaluate the circadian memory literature for evidence of local clock involvement in memory, identifying potential nodes for direct interactions between local clock components and mechanisms of synaptic plasticity. Our discussion illustrates how local clocks may pervasively modulate neuronal plastic capacity, a phenomenon that we designate here as circadian metaplasticity. We suggest that this function of local clocks supports the temporal optimization of memory processes, illuminating the potential for circadian therapeutic strategies in the prevention and treatment of memory impairment.
Collapse
Affiliation(s)
- Matthew J Hartsock
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States.
| | - Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States.
| |
Collapse
|
15
|
Molecular Mechanisms in Hippocampus Involved on Object Recognition Memory Consolidation and Reconsolidation. Neuroscience 2020; 435:112-123. [PMID: 32272151 DOI: 10.1016/j.neuroscience.2020.03.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/01/2020] [Accepted: 03/31/2020] [Indexed: 11/20/2022]
Abstract
Acquired information is stabilized into long-term memory through a process known as consolidation. Though, after consolidation, when stored information is retrieved they can be again susceptible, allowing modification, updating and strengthening and to be re-stabilized they need a new process referred to as memory reconsolidation. However, the molecular mechanisms of recognition memory consolidation and reconsolidation are not fully understood. Also, considering that the study of the link between synaptic proteins is key to understanding of memory processes, we investigated, in male Wistar rats, molecular mechanisms in the hippocampus involved on object recognition memory (ORM) consolidation and reconsolidation. We verified that the blockade of AMPA receptors (AMPAr) and L-VDCCs calcium channels impaired ORM consolidation and reconsolidation when administered into CA1 immediately after sample phase or reactivation phase and that these impairments were blocked by the administration of AMPAr agonist and of neurotrophin BDNF. Also, the blockade of CaMKII impaired ORM consolidation when administered 3 h after sample phase but had no effect on ORM reconsolidation and its effect was blocked by the administration of BDNF, but not of AMPAr agonist. So, this study provides new evidence of the molecular mechanisms involved on the consolidation and reconsolidation of ORM, demonstrating that AMPAr and L-VDCCs are necessary for the consolidation and reconsolidation of ORM while CaMKII is necessary only for the consolidation and also that there is a link between BDNF and AMPAr, L-VDCCs and CaMKII as well as a link between AMPAr and L-VDCCs on ORM consolidation and reconsolidation.
Collapse
|
16
|
Marcondes LA, Nachtigall EG, Zanluchi A, de Carvalho Myskiw J, Izquierdo I, Furini CRG. Involvement of medial prefrontal cortex NMDA and AMPA/kainate glutamate receptors in social recognition memory consolidation. Neurobiol Learn Mem 2020; 168:107153. [DOI: 10.1016/j.nlm.2019.107153] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/12/2019] [Accepted: 12/23/2019] [Indexed: 11/28/2022]
|
17
|
Zhao X, Rondón-Ortiz AN, Lima EP, Puracchio M, Roderick RC, Kentner AC. Therapeutic efficacy of environmental enrichment on behavioral, endocrine, and synaptic alterations in an animal model of maternal immune activation. Brain Behav Immun Health 2020; 3. [PMID: 32368757 PMCID: PMC7197879 DOI: 10.1016/j.bbih.2020.100043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Maternal immune activation (MIA) has been identified as a significant risk factor for several neurodevelopmental disorders. We have previously demonstrated that postpubertal environmental enrichment (EE) rescues and promotes resiliency against MIA in male rats. Importantly, EE protocols have demonstrated clinical relevancy in human rehabilitation settings. Applying some of the elements of these EE protocols (e.g. social, physical, cognitive stimulation) to animal models of health and disease allows for the exploration of the mechanisms that underlie their success. Here, using a MIA model, we further investigate the rehabilitative potential of complex environments with a focus on female animals. Additionally, we expand upon some of our previous work by exploring genetic markers of synaptic plasticity and stress throughout several brain regions of both sexes. In the current study, standard housed female Sprague-Dawley rats were challenged with either the inflammatory endotoxin lipopolysaccharide (LPS; 100 μg/kg) or saline (equivolume) on gestational day 15. On postnatal day 50, male and female offspring were randomized into one of three conditions that differed in terms of cage size, number of cage mates (social stimulation) and enrichment materials. Spatial discrimination ability and social behavior were assessed six weeks later. Similar to our previously published work in males, our results revealed that a single LPS injection during mid gestation disrupted spatial discrimination ability in female rats. Postpubertal EE rescued this disruption. On the endocrine level, EE dampened elevations in plasma corticosterone that followed MIA, which may mediate EE's rehabilitative effects in female offspring. Within the prefrontal cortex, hippocampus, amygdala, and hypothalamus, MIA and EE altered the mRNA expression of several genes associated with resiliency and synaptic plasticity in both sexes. Overall, our findings provide further evidence that EE may serve as a therapeutic intervention for MIA-induced behavioral and cognitive deficits. Moreover, we identify some sexually dimorphic molecular mechanisms that may underlie these impairments and their rescue.
Collapse
Affiliation(s)
- Xin Zhao
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States 02115
| | - Alejandro N Rondón-Ortiz
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States 02115
| | - Erika P Lima
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States 02115
| | - Madeline Puracchio
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States 02115
| | - Ryland C Roderick
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States 02115
| | - Amanda C Kentner
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States 02115
| |
Collapse
|
18
|
Kersten M, Rabbe T, Blome R, Porath K, Sellmann T, Bien CG, Köhling R, Kirschstein T. Novel Object Recognition in Rats With NMDAR Dysfunction in CA1 After Stereotactic Injection of Anti-NMDAR Encephalitis Cerebrospinal Fluid. Front Neurol 2019; 10:586. [PMID: 31231304 PMCID: PMC6560222 DOI: 10.3389/fneur.2019.00586] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 05/17/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose: Limbic encephalitis associated with autoantibodies against N-methyl D-aspartate receptors (NMDARs) often presents with memory impairment. NMDARs are key targets for memory acquisition and retrieval, and have been mechanistically linked to its underlying process, synaptic plasticity. Clinically, memory deficits are largely compatible with a pre-dominantly hippocampus-dependent phenotype, which, in rodents, is principally involved in spatial memory. Previous studies confirmed the impaired spatial memory in the rat model of anti-NMDAR encephalitis. Here, we hypothesized that non-spatial memory functions, such as object recognition might also be affected in this model. Methods: We performed stereotactic intrahippocampal bolus injection of human cerebrospinal fluid (CSF) from anti-NMDAR encephalitis and control patients into the hippocampus of the anesthetized rat. After recovery for 1–8 days, hippocampal slices were prepared from these animals and NMDAR-dependent long-term potentiation was assessed at the Schaffer collateral-CA1 synapse. In addition, we performed behavioral analyses using the open field and novel object recognition tasks. Results: NMDAR-dependent long-term potentiation in the hippocampal CA1 area was significantly suppressed, indicating successful NMDAR dysfunction in this subfield. Spontaneous locomotor activity as well as anxiety-related behavior in the open field did not differ between NMDAR-CSF-treated and control animals. In the novel object recognition task, there were no differences in the motivation to approach objects. In contrast, we observed a significantly preferred exploration of the novel object only in control, but not in NMDAR-CSF-treated rats. Conclusion: These results indicate that NMDAR dysfunction obtained by intrahippocampal stereotactic injection does not alter locomotor or anxiety-related behavior. In addition, approach to an object or exploratory behavior in general are not affected either, but intact initial NMDAR-dependent processes might be involved in novel object recognition.
Collapse
Affiliation(s)
- Maxi Kersten
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Theresa Rabbe
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Roman Blome
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Katrin Porath
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Tina Sellmann
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | | | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany.,Center of Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| | - Timo Kirschstein
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany.,Center of Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| |
Collapse
|
19
|
Ide S, Ikekubo Y, Mishina M, Hashimoto K, Ikeda K. Cognitive Impairment That Is Induced by (R)-Ketamine Is Abolished in NMDA GluN2D Receptor Subunit Knockout Mice. Int J Neuropsychopharmacol 2019; 22:449-452. [PMID: 31135879 PMCID: PMC6600477 DOI: 10.1093/ijnp/pyz025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/28/2019] [Accepted: 05/24/2019] [Indexed: 12/19/2022] Open
Abstract
Although the N-methyl-D-aspartate receptor antagonist ketamine has attracted attention because of its rapid and sustained antidepressant effects in depressed patients, its side effects have raised some concerns. Ketamine is a racemic mixture of equal amounts of the enantiomers (R)-ketamine and (S)-ketamine. The neural mechanisms that underlie the differential effects of these enantiomers remain unclear. We investigated cognitive impairment that was induced by ketamine and its enantiomers in N-methyl-D-aspartate GluN2D receptor subunit knockout (GluN2D-KO) mice. In the novel object recognition test, (RS)-ketamine and (S)-ketamine caused cognitive impairment in both wild-type and GluN2D-KO mice, whereas (R)-ketamine induced such cognitive impairment only in wild-type mice. The present results suggest that the GluN2D subunit plays an important role in cognitive impairment that is induced by (R)-ketamine, whereas this subunit does not appear to be involved in cognitive impairment that is induced by (RS)-ketamine or (S)-ketamine.
Collapse
Affiliation(s)
- Soichiro Ide
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Yuiko Ikekubo
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Masayoshi Mishina
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan,Brain Science Laboratory, The Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Kenji Hashimoto
- Center for Forensic Mental Health, Chiba University, Chuo-ku, Chiba, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan,Correspondence: Kazutaka Ikeda, PhD, Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan ()
| |
Collapse
|
20
|
Kajiwara R, Tominaga Y, Tominaga T. Network Plasticity Involved in the Spread of Neural Activity Within the Rhinal Cortices as Revealed by Voltage-Sensitive Dye Imaging in Mouse Brain Slices. Front Cell Neurosci 2019; 13:20. [PMID: 30804757 PMCID: PMC6378919 DOI: 10.3389/fncel.2019.00020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/16/2019] [Indexed: 11/13/2022] Open
Abstract
The rhinal cortices, such as the perirhinal cortex (PC) and the entorhinal cortex (EC), are located within the bidirectional pathway between the neocortex and the hippocampus. Physiological studies indicate that the perirhinal transmission of neocortical inputs to the EC occurs at an extremely low probability, though many anatomical studies indicated strong connections exist in the pathway. Our previous study in rat brain slices indicated that an increase in excitability in deep layers of the PC/EC border initiated the neural activity transfer from the PC to the EC. In the present study, we hypothesized that such changes in network dynamics are not incidental observations but rather due to the plastic features of the perirhinal network, which links with the EC. To confirm this idea, we analyzed the network properties of neural transmission throughout the rhinal cortices and the plastic behavior of the network by performing a single-photon wide-field optical recording technique with a voltage-sensitive dye (VSD) in mouse brain slices of the PC, the EC, and the hippocampus. The low concentration of 4-aminopyridine (4-AP; 40 μM) enhanced neural activity in the PC, which eventually propagated to the EC via the deep layers of the PC/EC border. Interestingly, washout of 4-AP was unable to reverse entorhinal activation to the previous state. This change in the network property persisted for more than 1 h. This observation was not limited to the application of 4-AP. Burst stimulation to neurons in the perirhinal deep layers also induced the same change of network property. These results indicate the long-lasting modification of physiological connection between the PC and the EC, suggesting the existence of plasticity in the perirhinal-entorhinal network.
Collapse
Affiliation(s)
- Riichi Kajiwara
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Japan
| | - Yoko Tominaga
- Laboratory for Neural Circuit Systems, Institute of Neuroscience, Tokushima Bunri University, Sanuki, Japan
| | - Takashi Tominaga
- Laboratory for Neural Circuit Systems, Institute of Neuroscience, Tokushima Bunri University, Sanuki, Japan
| |
Collapse
|
21
|
Rhythmic Pruning of Perceptual Noise for Object Representation in the Hippocampus and Perirhinal Cortex in Rats. Cell Rep 2019; 26:2362-2376.e4. [DOI: 10.1016/j.celrep.2019.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 09/06/2018] [Accepted: 02/02/2019] [Indexed: 11/23/2022] Open
|
22
|
Osorio-Gómez D, Saldivar-Mares KS, Perera-López A, McGaugh JL, Bermúdez-Rattoni F. Early memory consolidation window enables drug induced state-dependent memory. Neuropharmacology 2018; 146:84-94. [PMID: 30485798 DOI: 10.1016/j.neuropharm.2018.11.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022]
Abstract
It is well established that newly acquired information is stabilized over time by processes underlying memory consolidation, these events can be impaired by many drug treatments administered shortly after learning. The consolidation hypothesis has been challenged by a memory integration hypothesis, which suggests that the processes underlying new memories are vulnerable to incorporation of the neurobiological alterations induced by amnesic drugs generating a state-dependent memory. The present experiments investigated the effects of amnesic drugs infused into the insular cortex of male Wistar rats on memory for object recognition training. The findings provide evidence that infusions of several amnesic agents including a protein synthesis inhibitor, an RNA synthesis inhibitor, or an NMDA receptor antagonist administered both after a specific period of time and before retrieval induce state-dependent recognition memory. Additionally, when amnesic drugs were infused outside the early consolidation window, there was amnesia, but the amnesia was not state-dependent. Data suggest that amnesic agents can induce state-dependent memory when administered during the early consolidation window and only if the duration of the drug effect is long enough to become integrated to the memory trace. In consequence, there are boundary conditions in order to induce state-dependent memory.
Collapse
Affiliation(s)
- Daniel Osorio-Gómez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Mexico City, Mexico.
| | - Karina S Saldivar-Mares
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Aldo Perera-López
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - James L McGaugh
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Mexico City, Mexico
| |
Collapse
|
23
|
Collins JA, Dickerson BC. Functional connectivity in category-selective brain networks after encoding predicts subsequent memory. Hippocampus 2018; 29:440-450. [PMID: 30009477 DOI: 10.1002/hipo.23003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/13/2018] [Accepted: 06/16/2018] [Indexed: 12/12/2022]
Abstract
Activity in category selective regions of the temporal and parietal lobes during encoding has been associated with subsequent memory for face and scene stimuli. Reactivation theories of memory consolidation predict that after encoding connectivity between these category-selective regions and the hippocampus should be modulated and predict recognition memory. However, support for this proposal has been limited in humans. Here, participants completed a resting-state functional MRI (fMRI) scan, followed by face- and place-encoding tasks, followed by another resting-state fMRI scan during which they were asked to think about the stimuli they had previously encountered. Individual differences in face recognition memory were predicted by the degree to which connectivity between face-responsive regions of the fusiform gyrus and perirhinal cortex increased following the face-encoding task. In contrast, individual differences in scene recognition were predicted by connectivity between the hippocampus and a scene-selective region of the retrosplenial cortex before and after the place-encoding task. Our results provide novel evidence for category specificity in the neural mechanisms supporting memory consolidation.
Collapse
Affiliation(s)
- Jessica A Collins
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
24
|
Ahn JR, Lee I. Neural Correlates of Both Perception and Memory for Objects in the Rodent Perirhinal Cortex. Cereb Cortex 2018; 27:3856-3868. [PMID: 28444371 DOI: 10.1093/cercor/bhx093] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Indexed: 01/11/2023] Open
Abstract
Despite its anatomical positioning as an interface between the perceptual and memory systems, the perirhinal cortex (PER) has long been considered dedicated for object recognition memory. Whether the PER is also involved in object perception has been intensely debated in recent studies, but physiological evidence has been lacking. We recorded single units from the PER while the rat made categorical responses immediately after sampling a visual object as the originally learned objects were ambiguously morphed to varying degrees. Some neurons in the PER changed their firing rates monotonically following the gradual changes across the morphed objects as if they coded perceptual changes of the object stimuli. However, other neurons abruptly changed their firing rates according to the response categories associated with the morphed objects, seemingly responding to the learned relationships between the stimulus and its associated choice response. The gradual and abrupt changes in object-tuning properties were also found at the neural population level. Furthermore, the object-associated tuning characteristics of neurons in the PER were more readily observable in correct trials than in error trials. Our findings suggest that neurons in the PER represent perceptual details of an object in addition to its mnemonic identity.
Collapse
Affiliation(s)
- Jae-Rong Ahn
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 08826, Korea
| | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
25
|
Scullion SE, Barker GRI, Warburton EC, Randall AD, Brown JT. Muscarinic Receptor-Dependent Long Term Depression in the Perirhinal Cortex and Recognition Memory are Impaired in the rTg4510 Mouse Model of Tauopathy. Neurochem Res 2018; 44:617-626. [PMID: 29484523 PMCID: PMC6420433 DOI: 10.1007/s11064-018-2487-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/20/2018] [Accepted: 01/29/2018] [Indexed: 11/02/2022]
Abstract
Neurodegenerative diseases affecting cognitive dysfunction, such as Alzheimer's disease and fronto-temporal dementia, are often associated impairments in the visual recognition memory system. Recent evidence suggests that synaptic plasticity, in particular long term depression (LTD), in the perirhinal cortex (PRh) is a critical cellular mechanism underlying recognition memory. In this study, we have examined novel object recognition and PRh LTD in rTg4510 mice, which transgenically overexpress tauP301L. We found that 8-9 month old rTg4510 mice had significant deficits in long- but not short-term novel object recognition memory. Furthermore, we also established that PRh slices prepared from rTg4510 mice, unlike those prepared from wildtype littermates, could not support a muscarinic acetylcholine receptor-dependent form of LTD, induced by a 5 Hz stimulation protocol. In contrast, bath application of the muscarinic agonist carbachol induced a form of chemical LTD in both WT and rTg4510 slices. Finally, when rTg4510 slices were preincubated with the acetylcholinesterase inhibitor donepezil, the 5 Hz stimulation protocol was capable of inducing significant levels of LTD. These data suggest that dysfunctional cholinergic innervation of the PRh of rTg4510 mice, results in deficits in synaptic LTD which may contribute to aberrant recognition memory in this rodent model of tauopathy.
Collapse
Affiliation(s)
- Sarah E Scullion
- School of Physiology and Pharmacology and Neuroscience, Medical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Gareth R I Barker
- School of Physiology and Pharmacology and Neuroscience, Medical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - E Clea Warburton
- School of Physiology and Pharmacology and Neuroscience, Medical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Andrew D Randall
- School of Physiology and Pharmacology and Neuroscience, Medical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK. .,Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter, EX4 4PS, UK.
| | - Jonathan T Brown
- School of Physiology and Pharmacology and Neuroscience, Medical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.,Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter, EX4 4PS, UK
| |
Collapse
|
26
|
Miranda M, Bekinschtein P. Plasticity Mechanisms of Memory Consolidation and Reconsolidation in the Perirhinal Cortex. Neuroscience 2018; 370:46-61. [DOI: 10.1016/j.neuroscience.2017.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 12/17/2022]
|
27
|
Molecular Mechanisms in Perirhinal Cortex Selectively Necessary for Discrimination of Overlapping Memories, but Independent of Memory Persistence. eNeuro 2017; 4:eN-NWR-0293-17. [PMID: 29085903 PMCID: PMC5659266 DOI: 10.1523/eneuro.0293-17.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 12/02/2022] Open
Abstract
Successful memory involves not only remembering over time but also keeping memories distinct. The ability to separate similar experiences into distinct memories is a main feature of episodic memory. Discrimination of overlapping representations has been investigated in the dentate gyrus of the hippocampus (DG), but little is known about this process in other regions such as the perirhinal cortex (Prh). We found in male rats that perirhinal brain-derived neurotrophic factor (BDNF) is required for separable storage of overlapping, but not distinct, object representations, which is identical to its role in the DG for spatial representations. Also, activity-regulated cytoskeletal-associated protein (Arc) is required for disambiguation of object memories, as measured by infusion of antisense oligonucleotides. This is the first time Arc has been implicated in the discrimination of objects with overlapping features. Although molecular mechanisms for object memory have been shown previously in Prh, these have been dependent on delay, suggesting a role specifically in memory duration. BDNF and Arc involvement were independent of delay-the same demand for memory persistence was present in all conditions-but only when discrimination of similar objects was required were these mechanisms recruited and necessary. Finally, we show that BDNF and Arc participate in the same pathway during consolidation of overlapping object memories. We provide novel evidence regarding the proteins involved in disambiguation of object memories outside the DG and suggest that, despite the anatomical differences, similar mechanisms underlie this process in the DG and Prh that are engaged depending on the similarity of the stimuli.
Collapse
|
28
|
Dong L, Wang Y, Lv J, Zhang H, Jiang N, Lu C, Xu P, Liu X. Memory enhancement of fresh ginseng on deficits induced by chronic restraint stress in mice. Nutr Neurosci 2017; 22:235-242. [DOI: 10.1080/1028415x.2017.1373928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Liming Dong
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Wang
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingwei Lv
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongxia Zhang
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, China
| | - Ning Jiang
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cong Lu
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pan Xu
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinmin Liu
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Attenuated Activity across Multiple Cell Types and Reduced Monosynaptic Connectivity in the Aged Perirhinal Cortex. J Neurosci 2017; 37:8965-8974. [PMID: 28821661 DOI: 10.1523/jneurosci.0531-17.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/25/2017] [Accepted: 08/04/2017] [Indexed: 01/25/2023] Open
Abstract
The perirhinal cortex (PER), which is critical for associative memory and stimulus discrimination, has been described as a wall of inhibition between the neocortex and hippocampus. With advanced age, rats show deficits on PER-dependent behavioral tasks and fewer PER principal neurons are activated by stimuli, but the role of PER interneurons in these altered circuit properties in old age has not been characterized. In the present study, PER neurons were recorded while rats traversed a circular track bidirectionally in which the track was either empty or contained eight novel objects evenly spaced around the track. Putative interneurons were discriminated from principal cells based on the autocorrelogram, waveform parameters, and firing rate. While object modulation of interneuron firing was observed in both young and aged rats, PER interneurons recorded from old animals had lower firing rates compared with those from young animals. This difference could not be accounted for by differences in running speed, as the firing rates of PER interneurons did not show significant velocity modulation. Finally, in the aged rats, relative to young rats, there was a significant reduction in detected excitatory and inhibitory monosynaptic connections. Together these data suggest that with advanced age there may be reduced afferent drive from excitatory cells onto interneurons that may compromise the wall of inhibition between the hippocampus and cortex. This circuit dysfunction could erode the function of temporal lobe networks and ultimately contribute to cognitive aging.SIGNIFICANCE STATEMENT We report that lower firing rates observed in aged perirhinal cortical principal cells are associated with weaker interneuron activity and reduced monosynaptic coupling between excitatory and inhibitory cells. This is likely to affect feedforward inhibition from the perirhinal to the entorhinal cortex that gates the flow of information to the hippocampus. This is significant because cognitive dysfunction in normative and pathological aging has been linked to hyperexcitability in the aged CA3 subregion of the hippocampus in rats, monkeys, and humans. The reduced inhibition in the perirhinal cortex reported here could contribute to this circuit imbalance, and may be a key point to consider for therapeutic interventions aimed at restoring network function to optimize cognition.
Collapse
|
30
|
de Melo MFFT, Pereira DE, Sousa MM, Medeiros DMF, Lemos LTM, Madruga MS, Santos NM, de Oliveira MEG, de Menezes CC, Soares JKB. Maternal intake of cashew nuts accelerates reflex maturation and facilitates memory in the offspring. Int J Dev Neurosci 2017; 61:58-67. [PMID: 28663041 DOI: 10.1016/j.ijdevneu.2017.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/24/2017] [Indexed: 12/19/2022] Open
Abstract
Essential fatty acids, being indispensable during the stages of pregnancy, lactation and infancy influence the transmission of nerve impulses and brain function, and cashew nuts are a good source of these fatty acids. The objective of this study was to evaluate the effects of cashew nut consumption on reflex development, memory and profile of fatty acids of rat offspring treated during pregnancy and lactation. The animals were divided into three groups: Control (CONT), treated with 7% lipid derived from soybean oil; Normolipidic (NL) treated with 7% lipids derived from cashew nuts; and Hyperlipidic (HL) treated with 20% lipids derived from cashew nuts. Reflex ontogeny, Open-field habituation test and the Object Recognition Test (ORT) were assessed. The profile of fatty acids in the brain was carried out when the animals were zero, 21 and 60days old. Accelerated reflex maturation was observed in animals treated with cashew nuts (p<0.05). NL presented better memory in the Open-field habituation test; the NL and HL showed improvement of short-term memory in the ORT, but long term damage in HL (p<0.05). The results of the lipid profile of the brain at the end of the experiment showed an increase in levels of saturated fatty acids and less Docosahexaenoic acid (DHA) in animals of the HL. The data showed that maternal consumption of cashew nuts can accelerate reflex maturation and facilitate memory in offspring when offered in adequate quantities.
Collapse
Affiliation(s)
| | - Diego Elias Pereira
- Laboratory of Experimental Nutrition, Federal University of Campina Grande, Paraíba, Brazil.
| | - Morgana Moura Sousa
- Laboratory of Experimental Nutrition, Federal University of Campina Grande, Paraíba, Brazil.
| | | | | | - Marta Suely Madruga
- Department of Food Engineering, Federal University of Paraíba, Paraíba, Brazil.
| | - Nayane Medeiros Santos
- Laboratory of Experimental Nutrition, Federal University of Campina Grande, Paraíba, Brazil.
| | | | | | | |
Collapse
|
31
|
Pezze MA, Marshall HJ, Fone KC, Cassaday HJ. Role of the anterior cingulate cortex in the retrieval of novel object recognition memory after a long delay. ACTA ACUST UNITED AC 2017; 24:310-317. [PMID: 28620078 PMCID: PMC5473111 DOI: 10.1101/lm.044784.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022]
Abstract
Previous in vivo electrophysiological studies suggest that the anterior cingulate cortex (ACgx) is an important substrate of novel object recognition (NOR) memory. However, intervention studies are needed to confirm this conclusion and permanent lesion studies cannot distinguish effects on encoding and retrieval. The interval between encoding and retrieval tests may also be a critical determinant of the role of the ACgx. The current series of experiments used micro-infusion of the GABAA receptor agonist, muscimol, into ACgx to reversibly inactivate the area and distinguish its role in encoding and retrieval. ACgx infusions of muscimol, before encoding did not alter NOR assessed after a delay of 20 min or 24 h. However, when infused into the ACgx before retrieval muscimol impaired NOR assessed after a delay of 24 h, but not after a 20-min retention test. Together these findings suggest that the ACgx plays a time-dependent role in the retrieval, but not the encoding, of NOR memory, neuronal activation being required for the retrieval of remote (24 h old), but not recent (20 min old) visual memory.
Collapse
Affiliation(s)
- Marie A Pezze
- School of Psychology, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Hayley J Marshall
- School of Life Sciences, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Kevin Cf Fone
- School of Life Sciences, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Helen J Cassaday
- School of Psychology, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
32
|
Gallant S, Welch L, Martone P, Shalev U. Effects of chronic prenatal MK-801 treatment on object recognition, cognitive flexibility, and drug-induced locomotor activity in juvenile and adult rat offspring. Behav Brain Res 2017; 328:62-69. [DOI: 10.1016/j.bbr.2017.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 03/31/2017] [Accepted: 04/01/2017] [Indexed: 12/29/2022]
|
33
|
Bannazadeh M, Fatehi F, Fatemi I, Roohbakhsh A, Allahtavakoli M, Nasiri M, Azin M, Shamsizadeh A. The role of transient receptor potential vanilloid type 1 in unimodal and multimodal object recognition task in rats. Pharmacol Rep 2017; 69:526-531. [PMID: 28359919 DOI: 10.1016/j.pharep.2017.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/24/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND The role of transient receptor potential vanilloid type 1 (TRPV1) channels in learning and memory processes has recently been recognized. In the present study, the role of this receptor in the multisensory integration process was investigated. METHODS This study was done using 96 male Wistar rats, which were kept in a reverse 12-12h dark/light cycle. Unimodal and multimodal object recognition task was performed by four variations of the spontaneous object recognition (SOR) test including standard SOR, tactile SOR, visual SOR, and cross-modal visual-tactile SOR (CMOR). AMG9810 (selective TRPV1 antagonist) was injected into the right lateral cerebral ventricle prior to sample and choice phases of SOR. A discrimination ratio was calculated to assess the preference of the animal for the novel object. RESULTS Results demonstrated that administration of AMG9810 prior to the sample phase, as encoding phase, and prior to the choice phase, as retrieval phase, impaired discrimination between the novel and the familiar objects in all standard SOR, tactile SOR, visual SOR, and CMOR tasks (all p<0.05). CONCLUSION The results of this study showed that TRPV1 receptors might be implicated in both unimodal and cross-modal encoding of information in rats.
Collapse
Affiliation(s)
- Mahboobeh Bannazadeh
- Physiology-pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Farangis Fatehi
- Physiology-pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Iman Fatemi
- Physiology-pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Allahtavakoli
- Physiology-pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahin Nasiri
- Physiology-pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahdieh Azin
- Physiology-pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Shamsizadeh
- Physiology-pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
34
|
Memory consolidation and expression of object recognition are susceptible to retroactive interference. Neurobiol Learn Mem 2017; 138:198-205. [DOI: 10.1016/j.nlm.2016.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/19/2016] [Accepted: 04/24/2016] [Indexed: 12/20/2022]
|
35
|
Morán J, Stokowska A, Walker FR, Mallard C, Hagberg H, Pekna M. Intranasal C3a treatment ameliorates cognitive impairment in a mouse model of neonatal hypoxic-ischemic brain injury. Exp Neurol 2017; 290:74-84. [PMID: 28062175 DOI: 10.1016/j.expneurol.2017.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/12/2016] [Accepted: 01/02/2017] [Indexed: 10/20/2022]
Abstract
Perinatal asphyxia-induced brain injury is often associated with irreversible neurological complications such as intellectual disability and cerebral palsy but available therapies are limited. Novel neuroprotective therapies as well as approaches stimulating neural plasticity mechanism that can compensate for cell death after hypoxia-ischemia (HI) are urgently needed. We previously reported that single i.c.v. injection of complement-derived peptide C3a 1h after HI induction prevented HI-induced cognitive impairment when mice were tested as adults. Here, we tested the effects of intranasal treatment with C3a on HI-induced cognitive deficit. Using the object recognition test, we found that intranasal C3a treated mice were protected from HI-induced impairment of memory function assessed 6weeks after HI induction. C3a treatment ameliorated HI-induced reactive gliosis in the hippocampus, while it did not affect the extent of hippocampal tissue loss, neuronal cell density, expression of the pan-synaptic marker synapsin I or the expression of growth associated protein 43. In conclusion, our results reveal that brief pharmacological treatment with C3a using a clinically feasible non-invasive mode of administration ameliorates HI-induced cognitive impairment. Intranasal administration is a plausible route to deliver C3a into the brain of asphyxiated infants at high risk of developing hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Javier Morán
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anna Stokowska
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Frederik R Walker
- School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia
| | - Carina Mallard
- Perinatal Center, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Hagberg
- Perinatal Center, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for the Developing Brain, King's College, London, UK; Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcela Pekna
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Hunter Medical Research Institute, University of Newcastle, New South Wales, Australia.
| |
Collapse
|
36
|
Rodriguez-Ortiz CJ, Bermúdez-Rattoni F. Determinants to trigger memory reconsolidation: The role of retrieval and updating information. Neurobiol Learn Mem 2016; 142:4-12. [PMID: 28011191 DOI: 10.1016/j.nlm.2016.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/07/2016] [Accepted: 12/10/2016] [Indexed: 12/13/2022]
Abstract
Long-term memories can undergo destabilization/restabilization processes, collectively called reconsolidation. However, the parameters that trigger memory reconsolidation are poorly understood and are a matter of intense investigation. Particularly, memory retrieval is widely held as requisite to initiate reconsolidation. This assumption makes sense since only relevant cues will induce reconsolidation of a specific memory. However, recent studies show that pharmacological inhibition of retrieval does not avoid memory from undergoing reconsolidation, indicating that memory reconsolidation occurs through a process that can be dissociated from retrieval. We propose that retrieval is not a unitary process but has two dissociable components; one leading to the expression of memory and the other to reconsolidation, referred herein as executer and integrator respectively. The executer would lead to the behavioral expression of the memory. This component would be the one disrupted on the studies that show reconsolidation independence from retrieval. The integrator would deal with reconsolidation. This component of retrieval would lead to long-term memory destabilization when specific conditions are met. We think that an important number of reports are consistent with the hypothesis that reconsolidation is only initiated when updating information is acquired. We suggest that the integrator would initiate reconsolidation to integrate updating information into long-term memory.
Collapse
Affiliation(s)
- Carlos J Rodriguez-Ortiz
- Department of Medicine, University of California, Irvine, 2216 Gillespie Neuroscience Research Facility, 837 Health Sciences Rd., Irvine, CA 92697-4545, USA.
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510 México City, Mexico.
| |
Collapse
|
37
|
Ramsaran AI, Sanders HR, Stanton ME. Determinants of object-in-context and object-place-context recognition in the developing rat. Dev Psychobiol 2016; 58:883-895. [DOI: 10.1002/dev.21432] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/10/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Adam I. Ramsaran
- Department of Psychological and Brain Sciences; University of Delaware; Newark Delaware
| | - Hollie R. Sanders
- Department of Psychological and Brain Sciences; University of Delaware; Newark Delaware
| | - Mark E. Stanton
- Department of Psychological and Brain Sciences; University of Delaware; Newark Delaware
| |
Collapse
|
38
|
Gulec Suyen G, Isbil-Buyukcoskun N, Kahveci N, Sengun E, Ozluk K. Immediate and delayed treatment with gabapentin, carbamazepine and CNQX have almost similar impact on cognitive functions and behavior in the lithium-pilocarpine model in rats. Pharmacol Biochem Behav 2016; 148:128-35. [DOI: 10.1016/j.pbb.2016.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 06/15/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023]
|
39
|
Marks WN, Cain SM, Snutch TP, Howland JG. The T-type calcium channel antagonist Z944 rescues impairments in crossmodal and visual recognition memory in Genetic Absence Epilepsy Rats from Strasbourg. Neurobiol Dis 2016; 94:106-15. [PMID: 27282256 DOI: 10.1016/j.nbd.2016.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/27/2016] [Accepted: 06/04/2016] [Indexed: 12/11/2022] Open
Abstract
Childhood absence epilepsy (CAE) is often comorbid with behavioral and cognitive symptoms, including impaired visual memory. Genetic Absence Epilepsy Rats from Strasbourg (GAERS) is an animal model closely resembling CAE; however, cognition in GAERS is poorly understood. Crossmodal object recognition (CMOR) is a recently developed memory task that examines not only purely visual and tactile memory, but also requires rodents to integrate sensory information about objects gained from tactile exploration to enable visual recognition. Both the visual and crossmodal variations of the CMOR task rely on the perirhinal cortex, an area with dense expression of T-type calcium channels. GAERS express a gain-in-function missense mutation in the Cav3.2 T-type calcium channel gene. Therefore, we tested whether the T-type calcium channel blocker Z944 dose dependently (1, 3, 10mg/kg; i.p.) altered CMOR memory in GAERS compared to the non-epileptic control (NEC) strain. GAERS demonstrated recognition memory deficits in the visual and crossmodal variations of the CMOR task that were reversed by the highest dose of Z944. Electroencephalogram recordings determined that deficits in CMOR memory in GAERS were not the result of seizures during task performance. In contrast, NEC showed a decrease in CMOR memory following Z944 treatment. These findings suggest that T-type calcium channels mediate CMOR in both the GAERS and NEC strains. Future research into the therapeutic potential of T-type calcium channel regulation may be particularly fruitful for the treatment of CAE and other disorders characterized by visual memory deficits.
Collapse
Affiliation(s)
- Wendie N Marks
- Department of Physiology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Stuart M Cain
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - John G Howland
- Department of Physiology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
40
|
Ortiz-Pérez A, Espinosa-Raya J, Picazo O. An enriched environment and 17-beta estradiol produce similar pro-cognitive effects on ovariectomized rats. Cogn Process 2016; 17:15-25. [DOI: 10.1007/s10339-015-0746-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 12/11/2015] [Indexed: 02/01/2023]
|
41
|
Heisler JM, O'Connor JC. Indoleamine 2,3-dioxygenase-dependent neurotoxic kynurenine metabolism mediates inflammation-induced deficit in recognition memory. Brain Behav Immun 2015; 50:115-124. [PMID: 26130057 PMCID: PMC4631688 DOI: 10.1016/j.bbi.2015.06.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 06/10/2015] [Accepted: 06/26/2015] [Indexed: 12/18/2022] Open
Abstract
Cognitive dysfunction in depression is a prevalent and debilitating symptom that is poorly treated by the currently available pharmacotherapies. Research over the past decade has provided evidence for proinflammatory involvement in the neurobiology of depressive disorders and symptoms associated with these disorders, including aspects of memory dysfunction. Recent clinical studies implicate inflammation-related changes in kynurenine metabolism as a potential pathogenic factor in the development of a range of depressive symptoms, including deficits in cognition and memory. Additionally, preclinical work has demonstrated a number of mood-related depressive-like behaviors to be dependent on indoleamine 2,3-dioxygenase-1 (IDO1), the inflammation-induced rate-limiting enzyme of the kynurenine pathway. Here, we demonstrate in a mouse model, that peripheral administration of endotoxin induced a deficit in recognition memory. Mice deficient in IDO were protected from cognitive impairment. Furthermore, endotoxin-induced inflammation increased kynurenine metabolism within the perirhinal/entorhinal cortices, brain regions which have been implicated in recognition memory. A single peripheral injection of kynurenine, the metabolic product of IDO1, was sufficient to induce a deficit in recognition memory in both control and IDO null mice. Finally, kynurenine monooxygenase (KMO) deficient mice were also protected from inflammation-induced deficits on novel object recognition. These data implicate IDO-dependent neurotoxic kynurenine metabolism as a pathogenic factor for cognitive dysfunction in inflammation-induced depressive disorders and a potential novel target for the treatment of these disorders.
Collapse
Affiliation(s)
- Jillian M Heisler
- Department of Pharmacology and the Center for Biomedical Neuroscience in the School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States.
| | - Jason C O'Connor
- Department of Pharmacology and the Center for Biomedical Neuroscience in the School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States; Audie L. Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio, TX 78229, United States.
| |
Collapse
|
42
|
Medial prefrontal cortex role in recognition memory in rodents. Behav Brain Res 2015; 292:241-51. [DOI: 10.1016/j.bbr.2015.06.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 11/18/2022]
|
43
|
Gervais NJ, Mumby DG, Brake WG. Attenuation of dendritic spine density in the perirhinal cortex following 17β-Estradiol replacement in the rat. Hippocampus 2015; 25:1212-6. [PMID: 26104963 DOI: 10.1002/hipo.22479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2015] [Indexed: 11/12/2022]
Abstract
Intraperirhinal cortex infusion of 17-β estradiol (E2) impairs object-recognition memory. However, it is not currently known whether this hormone modulates synaptic plasticity in this structure. Most excitatory synapses in the central nervous system are located on dendritic spines, and elevated E2 levels influence the density of these spines in several brain areas. The goal of the present study was to determine whether differences in dendritic spine density in the perirhinal cortex are observed following high E2 replacement in ovariectomized rats. The density of total spines, and mushroom-shaped (i.e. mature) spines were compared between a high E2 replacement (10 µg/kg/day, s.c.) and a no replacement condition. The perirhinal cortex is subdivided into Broadmann's area 35 and 36 and so group comparisons were made within each sub-region separately. High E2 replacement resulted in lower density of mushroom-shaped spines in area 35 relative to no replacement. There was no effect of high E2 replacement on dendritic spine density in area 36. These findings are consistent with the idea that higher E2 levels reduce dendritic spine density in area 35, which may result from spine shrinkage, or reduced synapse formation. This study provides preliminary evidence for a mechanism through which E2 may impair object-recognition memory.
Collapse
Affiliation(s)
- Nicole J Gervais
- Department of Psychology, Center for Studies in Behavioral Neurobiology (CSBN), Concordia University, Montreal, Quebec, Canada
| | - Dave G Mumby
- Department of Psychology, Center for Studies in Behavioral Neurobiology (CSBN), Concordia University, Montreal, Quebec, Canada
| | - Wayne G Brake
- Department of Psychology, Center for Studies in Behavioral Neurobiology (CSBN), Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
44
|
Walf AA, Koonce CJ, Frye CA. Progestogens' effects and mechanisms for object recognition memory across the lifespan. Behav Brain Res 2015; 294:50-61. [PMID: 26235328 DOI: 10.1016/j.bbr.2015.07.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/16/2015] [Accepted: 07/28/2015] [Indexed: 12/11/2022]
Abstract
This review explores the effects of female reproductive hormones, estrogens and progestogens, with a focus on progesterone and allopregnanolone, on object memory. Progesterone and its metabolites, in particular allopregnanolone, exert various effects on both cognitive and non-mnemonic functions in females. The well-known object recognition task is a valuable experimental paradigm that can be used to determine the effects and mechanisms of progestogens for mnemonic effects across the lifespan, which will be discussed herein. In this task there is little test-decay when different objects are used as targets and baseline valance for objects is controlled. This allows repeated testing, within-subjects designs, and longitudinal assessments, which aid understanding of changes in hormonal milieu. Objects are not aversive or food-based, which are hormone-sensitive factors. This review focuses on published data from our laboratory, and others, using the object recognition task in rodents to assess the role and mechanisms of progestogens throughout the lifespan. Improvements in object recognition performance of rodents are often associated with higher hormone levels in the hippocampus and prefrontal cortex during natural cycles, with hormone replacement following ovariectomy in young animals, or with aging. The capacity for reversal of age- and reproductive senescence-related decline in cognitive performance, and changes in neural plasticity that may be dissociated from peripheral effects with such decline, are discussed. The focus here will be on the effects of brain-derived factors, such as the neurosteroid, allopregnanolone, and other hormones, for enhancing object recognition across the lifespan.
Collapse
Affiliation(s)
- Alicia A Walf
- Dept. of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA; The Center for Life Sciences Research, The University at Albany-SUNY, Albany, NY 12222, USA; Institute of Arctic Biology, The University of Alaska-Fairbanks, Fairbanks, Alaska 99775, USA; The University of Alaska-Fairbanks, IDeA Network of Biomedical Excellence (INBRE), Fairbanks, Alaska 99775, USA; Cognitive Science Department, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Carolyn J Koonce
- Dept. of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA; Institute of Arctic Biology, The University of Alaska-Fairbanks, Fairbanks, Alaska 99775, USA; The University of Alaska-Fairbanks, IDeA Network of Biomedical Excellence (INBRE), Fairbanks, Alaska 99775, USA
| | - Cheryl A Frye
- Dept. of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA; Dept. of Biological Sciences, The University at Albany-SUNY, Albany, NY 12222, USA; The Center for Neuroscience, The University at Albany-SUNY, Albany, NY 12222, USA; The Center for Life Sciences Research, The University at Albany-SUNY, Albany, NY 12222, USA; Department of Chemistry and Biochemistry, The University of Alaska-Fairbanks, Fairbanks, Alaska 99775, USA; Institute of Arctic Biology, The University of Alaska-Fairbanks, Fairbanks, Alaska 99775, USA; The University of Alaska-Fairbanks, IDeA Network of Biomedical Excellence (INBRE), Fairbanks, Alaska 99775, USA.
| |
Collapse
|
45
|
Cooke SF, Bear MF. Visual recognition memory: a view from V1. Curr Opin Neurobiol 2015; 35:57-65. [PMID: 26151761 DOI: 10.1016/j.conb.2015.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/15/2015] [Indexed: 12/25/2022]
Abstract
Although work in primates on higher-order visual areas has revealed how the individual and concerted activity of neurons correlates with behavioral reports of object recognition, very little is known about the underlying mechanisms for visual recognition memory. Low-level vision, even as early as primary visual cortex (V1) and even in subjects as unsophisticated as rodents, promises to fill this void. Although this latter approach sacrifices interrogation of many of the most astounding features of visual recognition, it does provide experimental constraint, proximity to sensory input, and a wide range of interventional approaches. The tractability of rodent visual cortex promises to reveal the molecular mechanisms and circuits that are essential for a fundamental form of memory.
Collapse
Affiliation(s)
- Sam F Cooke
- The Howard Hughes Medical Institute and The Picower Institute for Learning and Memory, The Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77, Massachusetts Avenue, Cambridge 02139, MA, USA
| | - Mark F Bear
- The Howard Hughes Medical Institute and The Picower Institute for Learning and Memory, The Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77, Massachusetts Avenue, Cambridge 02139, MA, USA.
| |
Collapse
|
46
|
Blockade of glutamatergic transmission in perirhinal cortex impairs object recognition memory in macaques. J Neurosci 2015; 35:5043-50. [PMID: 25810533 DOI: 10.1523/jneurosci.4307-14.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The perirhinal cortex (PRc) is essential for visual recognition memory, as shown by electrophysiological recordings and lesion studies in a variety of species. However, relatively little is known about the functional contributions of perirhinal subregions. Here we used a systematic mapping approach to identify the critical subregions of PRc through transient, focal blockade of glutamate receptors by intracerebral infusion of kynurenic acid. Nine macaques were tested for visual recognition memory using the delayed nonmatch-to-sample task. We found that inactivation of medial PRc (consisting of Area 35 together with the medial portion of Area 36), but not lateral PRc (the lateral portion of Area 36), resulted in a significant delay-dependent impairment. Significant impairment was observed with 30 and 60 s delays but not with 10 s delays. The magnitude of impairment fell within the range previously reported after PRc lesions. Furthermore, we identified a restricted area located within the most anterior part of medial PRc as critical for this effect. Moreover, we found that focal blockade of either NMDA receptors by the receptor-specific antagonist AP-7 or AMPA receptors by the receptor-specific antagonist NBQX was sufficient to disrupt object recognition memory. The present study expands the knowledge of the role of PRc in recognition memory by identifying a subregion within this area that is critical for this function. Our results also indicate that, like in the rodent, both NMDA and AMPA-mediated transmission contributes to object recognition memory.
Collapse
|
47
|
Arias N, Méndez M, Arias JL. The recognition of a novel-object in a novel context leads to hippocampal and parahippocampal c-Fos involvement. Behav Brain Res 2015; 292:44-9. [PMID: 26072392 DOI: 10.1016/j.bbr.2015.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/04/2015] [Accepted: 06/06/2015] [Indexed: 10/23/2022]
Abstract
Contextual memory implies recognition based on the association between past and present events experienced. It is important for daily functioning and dysfunctional in many neuropsychological disturbances. The network related to this memory is still open for debate, even though it has been associated with medial temporal lobe regions, including the perirhinal, entorhinal and temporal association cortices, as well as the hippocampus and prefrontal cortex. Our work tries to elucidate whether a change in the context, such as differences in the amount of stimuli presented on the walls and floor of an open field during object exploration, affects the recognition of an object that has been experienced before, and whether this context manipulation could be linked to changes in c-Fos expression. For this purpose, we used a one-trial novel-object recognition task. The animals were divided into two different experimental conditions; in the OR-NORMAL group, the sample and probe test were performed in the same context. However, in the OR-CONTEXT group, the probe test was performed in a different context. Our results showed that the OR-NORMAL group presented a greater exploration of objects than the OR-CONTEXT group. However, both groups presented significant exploration of the novel object. To label the brain regions involved in novel-object recognition under these conditions, we marked the expression of c-Fos protein. Results suggest that a neural circuit that includes the hippocampus, entorhinal and temporal association cortices is involved in the recognition of the novel-object in a novel context.
Collapse
Affiliation(s)
- N Arias
- Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK; INEUROPA, Instituto de Neurociencias del Principado de Asturias, Spain.
| | - M Méndez
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad de Oviedo, Plaza Feijoo s/n, 33003 Oviedo, Spain; INEUROPA, Instituto de Neurociencias del Principado de Asturias, Spain
| | - J L Arias
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad de Oviedo, Plaza Feijoo s/n, 33003 Oviedo, Spain; INEUROPA, Instituto de Neurociencias del Principado de Asturias, Spain
| |
Collapse
|
48
|
Balderas I, Rodriguez-Ortiz CJ, Bermudez-Rattoni F. Consolidation and reconsolidation of object recognition memory. Behav Brain Res 2015; 285:213-22. [DOI: 10.1016/j.bbr.2014.08.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 01/06/2023]
|
49
|
Abstract
The perirhinal cortex (PRC) is reportedly important for object recognition memory, with supporting physiological evidence obtained largely from primate studies. Whether neurons in the rodent PRC also exhibit similar physiological correlates of object recognition, however, remains to be determined. We recorded single units from the PRC in a PRC-dependent, object-cued spatial choice task in which, when cued by an object image, the rat chose the associated spatial target from two identical discs appearing on a touchscreen monitor. The firing rates of PRC neurons were significantly modulated by critical events in the task, such as object sampling and choice response. Neuronal firing in the PRC was correlated primarily with the conjunctive relationships between an object and its associated choice response, although some neurons also responded to the choice response alone. However, we rarely observed a PRC neuron that represented a specific object exclusively regardless of spatial response in rats, although the neurons were influenced by the perceptual ambiguity of the object at the population level. Some PRC neurons fired maximally after a choice response, and this post-choice feedback signal significantly enhanced the neuronal specificity for the choice response in the subsequent trial. Our findings suggest that neurons in the rat PRC may not participate exclusively in object recognition memory but that their activity may be more dynamically modulated in conjunction with other variables, such as choice response and its outcomes.
Collapse
|
50
|
Bétry C, Etiévant A, Pehrson A, Sánchez C, Haddjeri N. Effect of the multimodal acting antidepressant vortioxetine on rat hippocampal plasticity and recognition memory. Prog Neuropsychopharmacol Biol Psychiatry 2015; 58:38-46. [PMID: 25524057 DOI: 10.1016/j.pnpbp.2014.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/01/2014] [Accepted: 12/08/2014] [Indexed: 01/06/2023]
Abstract
Depression is frequently associated with cognitive disturbances. Vortioxetine is a multimodal acting antidepressant that functions as a 5-HT3 and 5-HT7 and 5-HT1D receptor antagonist, 5-HT1B receptor partial agonist, 5-HT1A receptor agonist and inhibitor of the 5-HT transporter. Given its pharmacological profile, the present study was undertaken to determine whether vortioxetine could modulate several preclinical parameters known to be involved in cognitive processing. In the dorsal hippocampus of anaesthetized rats, the high-frequency stimulation of the Schaffer collaterals provoked a stable long-term potentiation (LTP) of ~25%. Interestingly, vortioxetine (10mg/kg, i.p.) counteracted the suppressant effect of elevated platform stress on hippocampal LTP induction. In the novel object recognition test, vortioxetine (10mg/kg, i.p.) increased the time spent exploring the novel object during the retention test and this pro-cognitive effect was prevented by the partial 5-HT3 receptor agonist SR57227 (1mg/kg, i.p.). Finally, compared to fluoxetine, sustained administration of vortioxetine (5mg/kg/day, s.c.) induced a rapid increase of cell proliferation in the hippocampal dentate gyrus. In summary, vortioxetine prevented the effect of stress on hippocampal LTP, increased rapidly hippocampal cell proliferation and enhanced short-term episodic memory, via, at least in part, its 5-HT3 receptor antagonism. Taken together, these preclinical data suggest that the antidepressant vortioxetine may have a beneficial effect on human cognitive processes.
Collapse
Affiliation(s)
- Cécile Bétry
- INSERM U846, Stem Cell and Brain Research Institute, Université Lyon 1, Lyon, F-69008, France
| | - Adeline Etiévant
- INSERM U846, Stem Cell and Brain Research Institute, Université Lyon 1, Lyon, F-69008, France
| | - Alan Pehrson
- Neuropharmacological Research, Lundbeck Research USA, 215 College Road, Paramus, NJ 07652, USA
| | - Connie Sánchez
- Neuropharmacological Research, Lundbeck Research USA, 215 College Road, Paramus, NJ 07652, USA
| | - Nasser Haddjeri
- INSERM U846, Stem Cell and Brain Research Institute, Université Lyon 1, Lyon, F-69008, France.
| |
Collapse
|