1
|
Martin JC, Reeves KC, Carter KA, Davis M, Schneider A, Meade E, Lebonville CL, Nimitvilai S, Hoffman M, Woodward JJ, Mulholland PJ, Rinker JA. Genetic and functional adaptations and alcohol-biased signaling in the mediodorsal thalamus of alcohol dependent mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620696. [PMID: 39553931 PMCID: PMC11565778 DOI: 10.1101/2024.10.28.620696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Alcohol Use Disorder (AUD) is a significant health concern characterized by an individual's inability to control alcohol intake. With alcohol misuse increasing and abstinence rates declining, leading to severe social and health consequences, it is crucial to uncover effective treatment strategies for AUD by focusing on understanding neuroadaptations and cellular mechanisms. The mediodorsal thalamus (MD) is a brain region essential for cognitive functioning and reward-guided choices. However, the effects of alcohol (ethanol) dependence on MD neuroadaptations and how dependence alters MD activity during choice behaviors for alcohol and a natural reward (sucrose) are not well understood. Adult C57BL/6J mice treated with chronic intermittent ethanol (CIE) exposure were used to assess genetic and functional adaptations in the MD. Fiber photometry-based recordings of GCaMP6f expressed in the MD of C57BL/6J mice were acquired to investigate in vivo neural adaptations during choice drinking sessions for alcohol (15%) and either water or sucrose (3%). There were time-dependent changes in cFos and transcript expression during acute withdrawal and early abstinence. Differentially expressed genes were identified in control mice across different circadian time points and when comparing control and alcohol dependent mice. Gene Ontology enrichment analysis of the alcohol-sensitive genes revealed disruption of genes that control glial function, axonal myelination, and protein binding. CIE exposure also increased evoked firing in MD cells at 72 hours of withdrawal. In alcohol-dependent male and female mice that show increased alcohol drinking and preference for alcohol over water, we observed an increase in alcohol intake and preference for alcohol when mice were given a choice between alcohol and sucrose. Fiber photometry recordings demonstrated that MD activity is elevated during and after licking bouts for alcohol, water, and sucrose, and the signal for alcohol is significantly higher than that for water or sucrose during drinking. The elevated signal during alcohol bouts persisted in alcohol dependent mice. These findings demonstrate that CIE causes genetic and functional neuroadaptations in the MD and that alcohol dependence enhances alcohol-biased behaviors, with the MD uniquely responsive to alcohol, even in dependent mice.
Collapse
|
2
|
Lian YN, Cao XW, Wu C, Pei CY, Liu L, Zhang C, Li XY. Deconstruction the feedforward inhibition changes in the layer III of anterior cingulate cortex after peripheral nerve injury. Commun Biol 2024; 7:1237. [PMID: 39354145 PMCID: PMC11445484 DOI: 10.1038/s42003-024-06849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
The anterior cingulate cortex (ACC) is one of the critical brain areas for processing noxious information. Previous studies showed that peripheral nerve injury induced broad changes in the ACC, contributing to pain hypersensitivity. The neurons in layer 3 (L3) of the ACC receive the inputs from the mediodorsal thalamus (MD) and form the feedforward inhibition (FFI) microcircuits. The effects of peripheral nerve injury on the MD-driven FFI in L3 of ACC are unknown. In our study, we record the enhanced excitatory synaptic transmissions from the MD to L3 of the ACC in mice with common peroneal nerve ligation, affecting FFI. Chemogenetically activating the MD-to-ACC projections induces pain sensitivity and place aversion in naive mice. Furthermore, chemogenetically inactivating MD-to-ACC projections decreases pain sensitivity and promotes place preference in nerve-injured mice. Our results indicate that the peripheral nerve injury changes the MD-to-ACC projections, contributing to pain hypersensitivity and aversion.
Collapse
Affiliation(s)
- Yan-Na Lian
- Department of Psychiatry, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, 322000, China
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiao-Wen Cao
- Department of Psychiatry, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, 322000, China
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Cheng Wu
- Department of Psychiatry, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, 322000, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang, 314400, China
| | - Chen-Yu Pei
- Department of Psychiatry, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, 322000, China
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Li Liu
- Core Facilities of the School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chen Zhang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, Jiangsu, 210000, China.
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair & Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| | - Xiang-Yao Li
- Department of Psychiatry, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, 322000, China.
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang, 314400, China.
| |
Collapse
|
3
|
Nishioka M, Hata T. Cholinergic interneurons in the dorsal striatum play an important role in the acquisition of duration memory. Eur J Neurosci 2024; 59:3061-3073. [PMID: 38576223 DOI: 10.1111/ejn.16337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/15/2024] [Accepted: 03/09/2024] [Indexed: 04/06/2024]
Abstract
The present study aimed to examine the effect of cholinergic interneuron lesions in the dorsal striatum on duration-memory formation. Cholinergic interneurons in the dorsal striatum may be involved in the formation of duration memory since they are among the main inputs to the dorsal striatal muscarinic acetylcholine-1 receptors, which play a role in the consolidation of duration memory. Rats were sufficiently trained using a peak-interval 20 s procedure and then infused with anti-choline acetyltransferase-saporin into the dorsal striatum to cause selective ablation of cholinergic interneurons. To make the rats acquire new duration-memories, we trained them with a peak interval 40 s after lesion. Before lesion, the peak times (an index of duration memory) for sham-lesioned and lesioned groups were similar at approximately 20 s. In the peak interval 40 s session, the peak times for the sham-lesioned and lesioned groups were approximately 30 and 20 s, respectively. After additional peak interval 40 s sessions, the peak times of both groups were shifted to approximately 40 s. Those results suggest that the cholinergic interneuron lesion delayed new duration-memory acquisition. Subsequent experiments showed that cholinergic interneuron lesions did not retard the shift of peak time to the original target time (20 s). Following experiment without changing the target time after lesion showed that cholinergic interneuron lesions did not change their peak times. Our findings suggest that cholinergic interneurons in the dorsal striatum are involved in new duration-memory acquisition but not in the utilization of already acquired duration memory and interval timing.
Collapse
Affiliation(s)
- Masahiko Nishioka
- Graduate School of Psychology, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Toshimichi Hata
- Faculty of Psychology, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
| |
Collapse
|
4
|
Rodriguez-Sabate C, Gonzalez A, Perez-Darias JC, Morales I, Sole-Sabater M, Rodriguez M. Causality methods to study the functional connectivity in brain networks: the basal ganglia - thalamus causal interactions. Brain Imaging Behav 2024; 18:1-18. [PMID: 37823962 PMCID: PMC10844145 DOI: 10.1007/s11682-023-00803-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2023] [Indexed: 10/13/2023]
Abstract
This study uses methods recently developed to study the complex evolution of atmospheric phenomena which have some similarities with the dynamics of the human brain. In both cases, it is possible to record the activity of particular centers (geographic regions or brain nuclei) but not to make an experimental modification of their state. The study of "causality", which is necessary to understand the dynamics of these complex systems and to develop robust models that can predict their evolution, is hampered by the experimental restrictions imposed by the nature of both systems. The study was performed with data obtained in the thalamus and basal ganglia of awake humans executing different tasks. This work studies the linear, non-linear and more complex relationships of these thalamic centers with the cortex and main BG nuclei, using three complementary techniques: the partial correlation regression method, the Gaussian process regression/distance correlation and a model-free method based on nearest-neighbor that computes the conditional mutual information. These causality methods indicated that the basal ganglia present a different functional relationship with the anterior-ventral (motor), intralaminar and medio-dorsal thalamic centers, and that more than 60% of these thalamus-basal ganglia relationships present a non-linear dynamic (35 of the 57 relationships found). These functional interactions were observed for basal ganglia nuclei with direct structural connections with the thalamus (primary somatosensory and motor cortex, striatum, internal globus pallidum and substantia nigra pars reticulata), but also for basal ganglia without structural connections with the thalamus (external globus pallidum and subthalamic nucleus). The motor tasks induced rapid modifications of the thalamus-basal ganglia interactions. These findings provide new perspectives of the thalamus - BG interactions, many of which may be supported by indirect functional relationships and not by direct excitatory/inhibitory interactions.
Collapse
Affiliation(s)
- Clara Rodriguez-Sabate
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, Tenerife, Canary Islands, Spain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Albano Gonzalez
- Department of Physics, University of La Laguna, Tenerife, Canary Islands, Spain
| | | | - Ingrid Morales
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, Tenerife, Canary Islands, Spain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Miguel Sole-Sabater
- Department of Neurology, La Candelaria University Hospital, Tenerife, Canary Islands, Spain
| | - Manuel Rodriguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, Tenerife, Canary Islands, Spain.
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
5
|
Xie T, Huang C, Zhang Y, Liu J, Yao H. Influence of Recent Trial History on Interval Timing. Neurosci Bull 2023; 39:559-575. [PMID: 36209314 PMCID: PMC10073370 DOI: 10.1007/s12264-022-00954-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 07/10/2022] [Indexed: 11/30/2022] Open
Abstract
Interval timing is involved in a variety of cognitive behaviors such as associative learning and decision-making. While it has been shown that time estimation is adaptive to the temporal context, it remains unclear how interval timing behavior is influenced by recent trial history. Here we found that, in mice trained to perform a licking-based interval timing task, a decrease of inter-reinforcement interval in the previous trial rapidly shifted the time of anticipatory licking earlier. Optogenetic inactivation of the anterior lateral motor cortex (ALM), but not the medial prefrontal cortex, for a short time before reward delivery caused a decrease in the peak time of anticipatory licking in the next trial. Electrophysiological recordings from the ALM showed that the response profiles preceded by short and long inter-reinforcement intervals exhibited task-engagement-dependent temporal scaling. Thus, interval timing is adaptive to recent experience of the temporal interval, and ALM activity during time estimation reflects recent experience of interval.
Collapse
Affiliation(s)
- Taorong Xie
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Can Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yijie Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haishan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| |
Collapse
|
6
|
Lundqvist M, Brincat SL, Rose J, Warden MR, Buschman TJ, Miller EK, Herman P. Working memory control dynamics follow principles of spatial computing. Nat Commun 2023; 14:1429. [PMID: 36918567 PMCID: PMC10015009 DOI: 10.1038/s41467-023-36555-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 02/07/2023] [Indexed: 03/16/2023] Open
Abstract
Working memory (WM) allows us to remember and selectively control a limited set of items. Neural evidence suggests it is achieved by interactions between bursts of beta and gamma oscillations. However, it is not clear how oscillations, reflecting coherent activity of millions of neurons, can selectively control individual WM items. Here we propose the novel concept of spatial computing where beta and gamma interactions cause item-specific activity to flow spatially across the network during a task. This way, control-related information such as item order is stored in the spatial activity independent of the detailed recurrent connectivity supporting the item-specific activity itself. The spatial flow is in turn reflected in low-dimensional activity shared by many neurons. We verify these predictions by analyzing local field potentials and neuronal spiking. We hypothesize that spatial computing can facilitate generalization and zero-shot learning by utilizing spatial component as an additional information encoding dimension.
Collapse
Affiliation(s)
- Mikael Lundqvist
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA, 02139, USA.
| | - Scott L Brincat
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA, 02139, USA
| | - Jonas Rose
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA, 02139, USA
- Faculty of Psychology, Neural Basis of Learning, Ruhr University Bochum, 44801, Bochum, Germany
| | - Melissa R Warden
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA, 02139, USA
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Timothy J Buschman
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA, 02139, USA
- Princeton Neuroscience Institute, Princeton University, Washington Rd., Princeton, NJ, 08540, USA
| | - Earl K Miller
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA, 02139, USA
| | - Pawel Herman
- Division of Computational Science and Technology, School of Electrical Engineering and Computer Science & Digital Futures, KTH Royal Institute of Technology, Stockholm, 100 44, Sweden.
| |
Collapse
|
7
|
De Corte BJ, Akdoğan B, Balsam PD. Temporal scaling and computing time in neural circuits: Should we stop watching the clock and look for its gears? Front Behav Neurosci 2022; 16:1022713. [PMID: 36570701 PMCID: PMC9773401 DOI: 10.3389/fnbeh.2022.1022713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022] Open
Abstract
Timing underlies a variety of functions, from walking to perceiving causality. Neural timing models typically fall into one of two categories-"ramping" and "population-clock" theories. According to ramping models, individual neurons track time by gradually increasing or decreasing their activity as an event approaches. To time different intervals, ramping neurons adjust their slopes, ramping steeply for short intervals and vice versa. In contrast, according to "population-clock" models, multiple neurons track time as a group, and each neuron can fire nonlinearly. As each neuron changes its rate at each point in time, a distinct pattern of activity emerges across the population. To time different intervals, the brain learns the population patterns that coincide with key events. Both model categories have empirical support. However, they often differ in plausibility when applied to certain behavioral effects. Specifically, behavioral data indicate that the timing system has a rich computational capacity, allowing observers to spontaneously compute novel intervals from previously learned ones. In population-clock theories, population patterns map to time arbitrarily, making it difficult to explain how different patterns can be computationally combined. Ramping models are viewed as more plausible, assuming upstream circuits can set the slope of ramping neurons according to a given computation. Critically, recent studies suggest that neurons with nonlinear firing profiles often scale to time different intervals-compressing for shorter intervals and stretching for longer ones. This "temporal scaling" effect has led to a hybrid-theory where, like a population-clock model, population patterns encode time, yet like a ramping neuron adjusting its slope, the speed of each neuron's firing adapts to different intervals. Here, we argue that these "relative" population-clock models are as computationally plausible as ramping theories, viewing population-speed and ramp-slope adjustments as equivalent. Therefore, we view identifying these "speed-control" circuits as a key direction for evaluating how the timing system performs computations. Furthermore, temporal scaling highlights that a key distinction between different neural models is whether they propose an absolute or relative time-representation. However, we note that several behavioral studies suggest the brain processes both scales, cautioning against a dichotomy.
Collapse
Affiliation(s)
- Benjamin J. De Corte
- Department of Psychology, Columbia University, New York, NY, United States
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, United States
| | - Başak Akdoğan
- Department of Psychology, Columbia University, New York, NY, United States
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, United States
| | - Peter D. Balsam
- Department of Psychology, Columbia University, New York, NY, United States
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, United States
- Department of Neuroscience and Behavior, Barnard College, New York, NY, United States
| |
Collapse
|
8
|
Tunes GC, Fermino de Oliveira E, Vieira EUP, Caetano MS, Cravo AM, Bussotti Reyes M. Time encoding migrates from prefrontal cortex to dorsal striatum during learning of a self-timed response duration task. eLife 2022; 11:65495. [PMID: 36169996 PMCID: PMC9519146 DOI: 10.7554/elife.65495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Although time is a fundamental dimension of life, we do not know how brain areas cooperate to keep track and process time intervals. Notably, analyses of neural activity during learning are rare, mainly because timing tasks usually require training over many days. We investigated how the time encoding evolves when animals learn to time a 1.5 s interval. We designed a novel training protocol where rats go from naive- to proficient-level timing performance within a single session, allowing us to investigate neuronal activity from very early learning stages. We used pharmacological experiments and machine-learning algorithms to evaluate the level of time encoding in the medial prefrontal cortex and the dorsal striatum. Our results show a double dissociation between the medial prefrontal cortex and the dorsal striatum during temporal learning, where the former commits to early learning stages while the latter engages as animals become proficient in the task.
Collapse
Affiliation(s)
- Gabriela C Tunes
- Center for Mathematics, Computing, and Cognition, Universidade Federal do ABC, Sao Bernardo do Campo, Brazil
| | | | - Estevão U P Vieira
- Center for Mathematics, Computing, and Cognition, Universidade Federal do ABC, Sao Bernardo do Campo, Brazil
| | - Marcelo S Caetano
- Center for Mathematics, Computing, and Cognition, Universidade Federal do ABC, Sao Bernardo do Campo, Brazil.,Instituto Nacional de Ciência e Tecnologia sobre Comportamento, Cognição e Ensino, Brazil
| | - André M Cravo
- Center for Mathematics, Computing, and Cognition, Universidade Federal do ABC, Sao Bernardo do Campo, Brazil
| | - Marcelo Bussotti Reyes
- Center for Mathematics, Computing, and Cognition, Universidade Federal do ABC, Sao Bernardo do Campo, Brazil
| |
Collapse
|
9
|
Perry BAL, Lomi E, Mitchell AS. Thalamocortical interactions in cognition and disease: the mediodorsal and anterior thalamic nuclei. Neurosci Biobehav Rev 2021; 130:162-177. [PMID: 34216651 DOI: 10.1016/j.neubiorev.2021.05.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/12/2021] [Accepted: 05/17/2021] [Indexed: 01/15/2023]
Abstract
The mediodorsal thalamus (MD) and anterior thalamic nuclei (ATN) are two adjacent brain nodes that support our ability to make decisions, learn, update information, form and retrieve memories, and find our way around. The MD and PFC work in partnerships to support cognitive processes linked to successful learning and decision-making, while the ATN and extended hippocampal system together coordinate the encoding and retrieval of memories and successful spatial navigation. Yet, while these distinctions may appear to be segregated, both the MD and ATN together support our higher cognitive functions as they regulate and are influenced by interconnected fronto-temporal neural networks and subcortical inputs. Our review focuses on recent studies in animal models and in humans. This evidence is re-shaping our understanding of the importance of MD and ATN cortico-thalamocortical pathways in influencing complex cognitive functions. Given the evidence from clinical settings and neuroscience research labs, the MD and ATN should be considered targets for effective treatments in neuropsychiatric diseases and disorders and neurodegeneration.
Collapse
Affiliation(s)
- Brook A L Perry
- Department of Experimental Psychology, Oxford University, The Tinsley Building, Mansfield Road, OX1 3SR, United Kingdom
| | - Eleonora Lomi
- Department of Experimental Psychology, Oxford University, The Tinsley Building, Mansfield Road, OX1 3SR, United Kingdom
| | - Anna S Mitchell
- Department of Experimental Psychology, Oxford University, The Tinsley Building, Mansfield Road, OX1 3SR, United Kingdom.
| |
Collapse
|
10
|
Sieveritz B, Raghavan RT. The Central Thalamus: Gatekeeper or Processing Hub? J Neurosci 2021; 41:4954-4956. [PMID: 34108271 PMCID: PMC8197645 DOI: 10.1523/jneurosci.0573-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/21/2022] Open
Affiliation(s)
- Bianca Sieveritz
- Center for Neural Science, New York University, New York, New York 10003
| | | |
Collapse
|
11
|
Mansell W. The perceptual control model of psychopathology. Curr Opin Psychol 2021; 41:15-20. [PMID: 33662864 DOI: 10.1016/j.copsyc.2021.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/14/2020] [Accepted: 01/29/2021] [Indexed: 12/22/2022]
Abstract
Perceptual control theory states that behaviour controls perception; we act against disturbances in the environment to align hierarchically organised perceived aspects of the self and the world with neurally specified reference values. The diverse symptoms of psychopathology are each examples of loss of control, which are maintained by conflicting control systems, and effective interventions shift and sustain awareness to the source of the conflict to allow trial-and-error changes (reorganisation) in the parameters of the superordinate system to the conflict, until control is restored. Experimental, phenomenological, therapeutic and computational research has examined its mechanisms, and its mode of delivery has extended it from a client-led psychotherapy (method of levels) to brief training, group interventions and computerised modalities.
Collapse
Affiliation(s)
- Warren Mansell
- CeNTrUM (Centre for New Treatments and Understanding in Mental Health), Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 2nd Floor Zochonis Building, Brunswick Street, Manchester, M13 9PL, UK.
| |
Collapse
|
12
|
Lintas A, Sánchez-Campusano R, Villa AEP, Gruart A, Delgado-García JM. Operant conditioning deficits and modified local field potential activities in parvalbumin-deficient mice. Sci Rep 2021; 11:2970. [PMID: 33536607 PMCID: PMC7859233 DOI: 10.1038/s41598-021-82519-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Altered functioning of GABAergic interneurons expressing parvalbumin (PV) in the basal ganglia-thalamo-cortical circuit are likely to be involved in several human psychiatric disorders characterized by deficits in attention and sensory gating with dysfunctional decision-making behavior. However, the contribution of these interneurons in the ability to acquire demanding learning tasks remains unclear. Here, we combine an operant conditioning task with local field potentials simultaneously recorded in several nuclei involved in reward circuits of wild-type (WT) and PV-deficient (PVKO) mice, which are characterized by changes in firing activity of PV-expressing interneurons. In comparison with WT mice, PVKO animals presented significant deficits in the acquisition of the selected learning task. Recordings from prefrontal cortex, nucleus accumbens (NAc) and hippocampus showed significant decreases of the spectral power in beta and gamma bands in PVKO compared with WT mice particularly during the performance of the operant conditioning task. From the first to the last session, at all frequency bands the spectral power in NAc tended to increase in WT and to decrease in PVKO. Results indicate that PV deficiency impairs signaling necessary for instrumental learning and the recognition of natural rewards.
Collapse
Affiliation(s)
- Alessandra Lintas
- Neuroheuristic Research Group & LABEX, HEC Lausanne, University of Lausanne, Quartier UNIL-Chamberonne, 1015, Lausanne, Switzerland.
| | - Raudel Sánchez-Campusano
- Division of Neurosciences, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013, Sevilla, Spain
| | - Alessandro E P Villa
- Neuroheuristic Research Group & LABEX, HEC Lausanne, University of Lausanne, Quartier UNIL-Chamberonne, 1015, Lausanne, Switzerland
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013, Sevilla, Spain
| | - José M Delgado-García
- Division of Neurosciences, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013, Sevilla, Spain
| |
Collapse
|