1
|
Sridhar S, Lowet E, Gritton HJ, Freire J, Zhou C, Liang F, Han X. Beta-frequency sensory stimulation enhances gait rhythmicity through strengthened coupling between striatal networks and stepping movement. Nat Commun 2024; 15:8336. [PMID: 39333151 PMCID: PMC11437063 DOI: 10.1038/s41467-024-52664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Stepping movement is delta (1-4 Hz) rhythmic and depends on sensory inputs. Stepping-related delta-rhythmic neural activity is coupled to beta (10-30 Hz) frequency dynamics that are also prominent in sensorimotor circuits. We explored how beta-frequency sensory stimulation influences stepping and dorsal striatal regulation of stepping. We delivered audiovisual stimulation at 10 or 145 Hz to mice voluntarily locomoting, while recording locomotion, cellular calcium dynamics and local field potentials (LFPs). We found that 10 Hz, but not 145 Hz stimulation prominently entrained striatal LFPs. Even though stimulation at both frequencies promoted locomotion and desynchronized striatal network, only 10 Hz stimulation enhanced the delta rhythmicity of stepping and strengthened the coupling between stepping and striatal LFP delta and beta oscillations. These results demonstrate that higher frequency sensory stimulation can modulate lower frequency striatal neural dynamics and improve stepping rhythmicity, highlighting the translational potential of non-invasive beta-frequency sensory stimulation for improving gait.
Collapse
Affiliation(s)
- Sudiksha Sridhar
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Eric Lowet
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
- - Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Howard J Gritton
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
- - Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jennifer Freire
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
- - Department of Pharmacology, Boston University, Boston, MA, USA
| | - Chengqian Zhou
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Florence Liang
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Xue Han
- - Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
2
|
Colins Rodriguez A, Loft MSE, Schiessl I, Maravall M, Petersen RS. Sensory adaptation in the barrel cortex during active sensation in the behaving mouse. Sci Rep 2024; 14:21588. [PMID: 39284900 PMCID: PMC11405846 DOI: 10.1038/s41598-024-70524-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/19/2024] [Indexed: 09/20/2024] Open
Abstract
Sensory Adaptation (SA) is a prominent aspect of how neurons respond to sensory signals, ubiquitous across species and modalities. However, SA depends on the activation state of the brain and the extent to which SA is expressed in awake, behaving animals during active sensation remains unclear. Here, we addressed this question by training head-fixed mice to detect an object using their whiskers and recording neuronal activity from barrel cortex whilst simultaneously imaging the whiskers in 3D. We found that neuronal responses decreased during the course of whisker-object touch sequences and that this was due to two factors. First, a motor effect, whereby, during a sequence of touches, later touches were mechanically weaker than early ones. Second, a sensory encoding effect, whereby neuronal tuning to touch became progressively less sensitive during the course of a touch sequence. The sensory encoding effect was whisker-specific. These results show that SA does occur during active whisker sensing and suggest that SA is fundamental to sensation during natural behaviour.
Collapse
Affiliation(s)
- Andrea Colins Rodriguez
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Michaela S E Loft
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Ingo Schiessl
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, M6 8HD, UK
| | - Miguel Maravall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9RH, UK
| | - Rasmus S Petersen
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
3
|
Nishiyama A, Tanaka S, Tuszynski JA. Quantum Brain Dynamics and Virtual Reality. Biosystems 2024; 242:105259. [PMID: 38936537 DOI: 10.1016/j.biosystems.2024.105259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
In this paper we propose a control theory of manipulating holograms in Quantum Brain Dynamics (QBD) involving our subjective experiences, i.e. qualia. We begin with the Lagrangian density in QBD and extend our theory to a hierarchical model involving multiple layers covering the neocortex. We adopt reservoir computing approach or morphological computation to manipulate waveforms of holograms involving our subjective experiences. Numerical simulations performed indicate that the convergence to target waveforms of holograms is realized by external electric fields in QBD in a hierarchy. Our theory can be applied to non-invasive neuronal stimulation of the neocortex and adopted to check whether or not our brain adopts the language of holography. In case the protocol in a brain is discovered and the brain adopts the language of holography, our control theory will be applied to develop virtual reality devices by which our subjective experiences provided by the five senses in the form of qualia are manipulated non-invasively. Then, the information content of qualia might be directly transmitted into our brain without passing through sensory organs.
Collapse
Affiliation(s)
- Akihiro Nishiyama
- Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan.
| | - Shigenori Tanaka
- Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Jack A Tuszynski
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, I-1029, Italy; Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, Alberta T6G 2M9, Canada; Department of Data Science and Engineering, The Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
4
|
Sridhar S, Lowet E, Gritton HJ, Freire J, Zhou C, Liang F, Han X. Beta-frequency sensory stimulation enhances gait rhythmicity through strengthened coupling between striatal networks and stepping movement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.07.602408. [PMID: 39026712 PMCID: PMC11257482 DOI: 10.1101/2024.07.07.602408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Stepping movement is delta (1-4 Hz) rhythmic and depends on sensory inputs. In addition to delta rhythms, beta (10-30 Hz) frequency dynamics are also prominent in the motor circuits and are coupled to neuronal delta rhythms both at the network and the cellular levels. Since beta rhythms are broadly supported by cortical and subcortical sensorimotor circuits, we explore how beta-frequency sensory stimulation influences delta-rhythmic stepping movement, and dorsal striatal circuit regulation of stepping. We delivered audiovisual stimulation at 10 Hz or 145 Hz to mice voluntarily locomoting, while simultaneously recording stepping movement, striatal cellular calcium dynamics and local field potentials (LFPs). We found that 10 Hz, but not 145 Hz stimulation prominently entrained striatal LFPs. Even though sensory stimulation at both frequencies promoted locomotion and desynchronized striatal network, only 10 Hz stimulation enhanced the delta rhythmicity of stepping movement and strengthened the coupling between stepping and striatal LFP delta and beta oscillations. These results demonstrate that higher frequency sensory stimulation can modulate lower frequency dorsal striatal neural dynamics and improve stepping rhythmicity, highlighting the translational potential of non-invasive beta-frequency sensory stimulation for improving gait.
Collapse
|
5
|
Haidarliu S, Nelinger G, Gantar L, Ahissar E, Saraf-Sinik I. Functional anatomy of mystacial active sensing in rats. Anat Rec (Hoboken) 2024; 307:442-456. [PMID: 37644754 DOI: 10.1002/ar.25305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
Rats' whisking motion and objects' palpation produce tactile signals sensed by mechanoreceptors at the vibrissal follicles. Rats adjust their whisking patterns to target information type, flow, and resolution, adapting to their behavioral needs and the changing environment. This coordination requires control over the activity of the mystacial pad's intrinsic and extrinsic muscles. Studies have relied on muscle recording and stimulation techniques to describe the roles of individual muscles. However, these methods lack the resolution to isolate the mystacial pad's small and compactly arranged muscles. Thus, we propose functional anatomy as a complementary approach for studying the individual and coordinated effects of the mystacial pad muscles on vibrissae movements. Our functional analysis addresses the kinematic measurements of whisking motion patterns recorded in freely exploring rats. Combined with anatomical descriptions of muscles and fascia elements of the mystacial pad in situ, we found: (1) the contributions of individual mystacial pad muscles to the different whisking motion patterns; (2) active touch by microvibrissae, and its underlying mechanism; and (3) dynamic position changes of the vibrissae pivot point, as determined by the movements of the corium and subcapsular fibrous mat. Finally, we hypothesize that each of the rat mystacial pad muscles is specialized for a particular function in a way that matches the architecture of the fascial structures. Consistent with biotensegrity principles, the muscles and fascia form a network of structural support and continuous tension that determine the arrangement and motion of the embedded individual follicles.
Collapse
Affiliation(s)
- Sebastian Haidarliu
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Guy Nelinger
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Luka Gantar
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot, Israel
- Division of Neuroscience, University of Manchester, Manchester, UK
| | - Ehud Ahissar
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Inbar Saraf-Sinik
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Crockett A, Fuhrmann M, Garaschuk O, Davalos D. Progress in Structural and Functional In Vivo Imaging of Microglia and Their Application in Health and Disease. ADVANCES IN NEUROBIOLOGY 2024; 37:65-80. [PMID: 39207687 DOI: 10.1007/978-3-031-55529-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The first line of defense for the central nervous system (CNS) against injury or disease is provided by microglia. Microglia were long believed to stay in a dormant/resting state, reacting only to injury or disease. This view changed dramatically with the development of modern imaging techniques that allowed the study of microglial behavior in the intact brain over time, to reveal the dynamic nature of their responses. Over the past two decades, in vivo imaging using multiphoton microscopy has revealed numerous new functions of microglia in the developing, adult, aged, injured, and diseased CNS. As the most dynamic cells in the brain, microglia continuously contact all structures and cell types, such as glial and vascular cells, neuronal cell bodies, axons, dendrites, and dendritic spines, and are believed to play a central role in sculpting neuronal networks throughout life. Following trauma, or in neurodegenerative or neuroinflammatory diseases, microglial responses range from protective to harmful, underscoring the need to better understand their diverse roles and states in different pathological conditions. In this chapter, we introduce multiphoton microscopy and discuss recent advances in structural and functional imaging technologies that have expanded our toolbox to study microglial states and behaviors in new ways and depths. We also discuss relevant mouse models available for in vivo imaging studies of microglia and review how such studies are constantly refining our understanding of the multifaceted role of microglia in the healthy and diseased CNS.
Collapse
Affiliation(s)
- Alexis Crockett
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Martin Fuhrmann
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Olga Garaschuk
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Dimitrios Davalos
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
7
|
Pinke D, Issa JB, Dara GA, Dobos G, Dombeck DA. Full field-of-view virtual reality goggles for mice. Neuron 2023; 111:3941-3952.e6. [PMID: 38070501 PMCID: PMC10841834 DOI: 10.1016/j.neuron.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/03/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
Visual virtual reality (VR) systems for head-fixed mice offer advantages over real-world studies for investigating the neural circuitry underlying behavior. However, current VR approaches do not fully cover the visual field of view of mice, do not stereoscopically illuminate the binocular zone, and leave the lab frame visible. To overcome these limitations, we developed iMRSIV (Miniature Rodent Stereo Illumination VR)-VR goggles for mice. Our system is compact, separately illuminates each eye for stereo vision, and provides each eye with an ∼180° field of view, thus excluding the lab frame while accommodating saccades. Mice using iMRSIV while navigating engaged in virtual behaviors more quickly than in a current monitor-based system and displayed freezing and fleeing reactions to overhead looming stimulation. Using iMRSIV with two-photon functional imaging, we found large populations of hippocampal place cells during virtual navigation, global remapping during environment changes, and unique responses of place cell ensembles to overhead looming stimulation.
Collapse
Affiliation(s)
- Domonkos Pinke
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - John B Issa
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Gabriel A Dara
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Gergely Dobos
- 360world Ltd, Sümegvár köz 9, 1118 Budapest, Hungary
| | - Daniel A Dombeck
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
8
|
Michelson NJ, Bolaños F, Bolaños LA, Balbi M, LeDue JM, Murphy TH. Meso-Py: Dual Brain Cortical Calcium Imaging in Mice during Head-Fixed Social Stimulus Presentation. eNeuro 2023; 10:ENEURO.0096-23.2023. [PMID: 38053472 PMCID: PMC10731520 DOI: 10.1523/eneuro.0096-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023] Open
Abstract
We present a cost-effective, compact foot-print, and open-source Raspberry Pi-based widefield imaging system. The compact nature allows the system to be used for close-proximity dual-brain cortical mesoscale functional-imaging to simultaneously observe activity in two head-fixed animals in a staged social touch-like interaction. We provide all schematics, code, and protocols for a rail system where head-fixed mice are brought together to a distance where the macrovibrissae of each mouse make contact. Cortical neuronal functional signals (GCaMP6s; genetically encoded Ca2+ sensor) were recorded from both mice simultaneously before, during, and after the social contact period. When the mice were together, we observed bouts of mutual whisking and cross-mouse correlated cortical activity across the cortex. Correlations were not observed in trial-shuffled mouse pairs, suggesting that correlated activity was specific to individual interactions. Whisking-related cortical signals were observed during the period where mice were together (closest contact). The effects of social stimulus presentation extend outside of regions associated with mutual touch and have global synchronizing effects on cortical activity.
Collapse
Affiliation(s)
- Nicholas J Michelson
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Federico Bolaños
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Luis A Bolaños
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Matilde Balbi
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jeffrey M LeDue
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Timothy H Murphy
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
9
|
Lande AS, Garvert AC, Ebbesen NC, Jordbræk SV, Vervaeke K. Representations of tactile object location in the retrosplenial cortex. Curr Biol 2023; 33:4599-4610.e7. [PMID: 37774708 DOI: 10.1016/j.cub.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/23/2023] [Accepted: 09/06/2023] [Indexed: 10/01/2023]
Abstract
How animals use tactile sensation to detect important objects and remember their location in a world-based coordinate system is unclear. Here, we hypothesized that the retrosplenial cortex (RSC), a key network for contextual memory and spatial navigation, represents the location of objects based on tactile sensation. We studied mice palpating objects with their whiskers while navigating in a tactile virtual reality in darkness. Using two-photon Ca2+ imaging, we discovered that a population of neurons in the agranular RSC signal the location of objects. Responses to objects do not simply reflect the sensory stimulus. Instead, they are highly position, task, and context dependent and often predict the upcoming object before it is within reach. In addition, a large fraction of neurons encoding object location maintain a memory trace of the object's location. These data show that the RSC encodes the location and arrangement of tactile objects in a spatial reference frame.
Collapse
Affiliation(s)
- Andreas Sigstad Lande
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Anna Christina Garvert
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Nora Cecilie Ebbesen
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Sondre Valentin Jordbræk
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Koen Vervaeke
- Institute of Basic Medical Sciences, Section of Physiology, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway.
| |
Collapse
|
10
|
Ding Y, Vlasov Y. Pre-neuronal processing of haptic sensory cues via dispersive high-frequency vibrational modes. Sci Rep 2023; 13:14370. [PMID: 37658126 PMCID: PMC10474056 DOI: 10.1038/s41598-023-40675-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Sense of touch is one of the major perception channels. Neural coding of object textures conveyed by rodents' whiskers has been a model to study early stages of haptic information uptake. While high-precision spike timing has been observed during whisker sweeping across textured surfaces, the exact nature of whisker micromotions that spikes encode remains elusive. Here, we discovered that a single micro-collision of a whisker with surface features generates vibrational eigenmodes spanning frequencies up to 10 kHz. While propagating along the whisker, these high-frequency modes can carry up to 80% of shockwave energy, exhibit 100× smaller damping ratio, and arrive at the follicle 10× faster than low frequency components. The mechano-transduction of these energy bursts into time-sequenced population spike trains may generate temporally unique "bar code" with ultra-high information capacity. This hypothesis of pre-neuronal processing of haptic signals based on dispersive temporal separation of the vibrational modal frequencies can shed light on neural coding of haptic signals in many whisker-like sensory organs across the animal world as well as in texture perception in primate's glabrous skin.
Collapse
Affiliation(s)
- Yu Ding
- Department of Physics, University of Illinois Urbana Champaign, 208 North Wright Street, Urbana, IL, 61801, USA
| | - Yurii Vlasov
- Department of Physics, University of Illinois Urbana Champaign, 208 North Wright Street, Urbana, IL, 61801, USA.
- Department of BioEngineering, University of Illinois Urbana Champaign, 208 North Wright Street, Urbana, IL, 61801, USA.
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, 208 North Wright Street, Urbana, IL, 61801, USA.
- Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, 208 North Wright Street, Urbana, IL, 61801, USA.
| |
Collapse
|
11
|
Jankowski MM, Polterovich A, Kazakov A, Niediek J, Nelken I. An automated, low-latency environment for studying the neural basis of behavior in freely moving rats. BMC Biol 2023; 21:172. [PMID: 37568111 PMCID: PMC10416379 DOI: 10.1186/s12915-023-01660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/10/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Behavior consists of the interaction between an organism and its environment, and is controlled by the brain. Brain activity varies at sub-second time scales, but behavioral measures are usually coarse (often consisting of only binary trial outcomes). RESULTS To overcome this mismatch, we developed the Rat Interactive Foraging Facility (RIFF): a programmable interactive arena for freely moving rats with multiple feeding areas, multiple sound sources, high-resolution behavioral tracking, and simultaneous electrophysiological recordings. The paper provides detailed information about the construction of the RIFF and the software used to control it. To illustrate the flexibility of the RIFF, we describe two complex tasks implemented in the RIFF, a foraging task and a sound localization task. Rats quickly learned to obtain rewards in both tasks. Neurons in the auditory cortex as well as neurons in the auditory field in the posterior insula had sound-driven activity during behavior. Remarkably, neurons in both structures also showed sensitivity to non-auditory parameters such as location in the arena and head-to-body angle. CONCLUSIONS The RIFF provides insights into the cognitive capabilities and learning mechanisms of rats and opens the way to a better understanding of how brains control behavior. The ability to do so depends crucially on the combination of wireless electrophysiology and detailed behavioral documentation available in the RIFF.
Collapse
Affiliation(s)
- Maciej M Jankowski
- The Edmond and Lily Safra Center for Brain Sciences and the Department of Neurobiology, Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel
- BioTechMed Center, Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland
| | - Ana Polterovich
- The Edmond and Lily Safra Center for Brain Sciences and the Department of Neurobiology, Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alex Kazakov
- The Edmond and Lily Safra Center for Brain Sciences and the Department of Neurobiology, Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Johannes Niediek
- The Edmond and Lily Safra Center for Brain Sciences and the Department of Neurobiology, Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Israel Nelken
- The Edmond and Lily Safra Center for Brain Sciences and the Department of Neurobiology, Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
12
|
Shroff SN, Lowet E, Sridhar S, Gritton HJ, Abumuaileq M, Tseng HA, Cheung C, Zhou SL, Kondabolu K, Han X. Striatal cholinergic interneuron membrane voltage tracks locomotor rhythms in mice. Nat Commun 2023; 14:3802. [PMID: 37365189 PMCID: PMC10293266 DOI: 10.1038/s41467-023-39497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Rhythmic neural network activity has been broadly linked to behavior. However, it is unclear how membrane potentials of individual neurons track behavioral rhythms, even though many neurons exhibit pace-making properties in isolated brain circuits. To examine whether single-cell voltage rhythmicity is coupled to behavioral rhythms, we focused on delta-frequencies (1-4 Hz) that are known to occur at both the neural network and behavioral levels. We performed membrane voltage imaging of individual striatal neurons simultaneously with network-level local field potential recordings in mice during voluntary movement. We report sustained delta oscillations in the membrane potentials of many striatal neurons, particularly cholinergic interneurons, which organize spikes and network oscillations at beta-frequencies (20-40 Hz) associated with locomotion. Furthermore, the delta-frequency patterned cellular dynamics are coupled to animals' stepping cycles. Thus, delta-rhythmic cellular dynamics in cholinergic interneurons, known for their autonomous pace-making capabilities, play an important role in regulating network rhythmicity and movement patterning.
Collapse
Affiliation(s)
- Sanaya N Shroff
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Eric Lowet
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| | - Sudiksha Sridhar
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Howard J Gritton
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Hua-An Tseng
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Cyrus Cheung
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Samuel L Zhou
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | | | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
13
|
Weiser SC, Mullen BR, Ascencio D, Ackman JB. Data-driven segmentation of cortical calcium dynamics. PLoS Comput Biol 2023; 19:e1011085. [PMID: 37126531 PMCID: PMC10174627 DOI: 10.1371/journal.pcbi.1011085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 05/11/2023] [Accepted: 04/09/2023] [Indexed: 05/02/2023] Open
Abstract
Demixing signals in transcranial videos of neuronal calcium flux across the cerebral hemispheres is a key step before mapping features of cortical organization. Here we demonstrate that independent component analysis can optimally recover neural signal content in widefield recordings of neuronal cortical calcium dynamics captured at a minimum sampling rate of 1.5×106 pixels per one-hundred millisecond frame for seventeen minutes with a magnification ratio of 1:1. We show that a set of spatial and temporal metrics obtained from the components can be used to build a random forest classifier, which separates neural activity and artifact components automatically at human performance. Using this data, we establish functional segmentation of the mouse cortex to provide a map of ~115 domains per hemisphere, in which extracted time courses maximally represent the underlying signal in each recording. Domain maps revealed substantial regional motifs, with higher order cortical regions presenting large, eccentric domains compared with smaller, more circular ones in primary sensory areas. This workflow of data-driven video decomposition and machine classification of signal sources can greatly enhance high quality mapping of complex cerebral dynamics.
Collapse
Affiliation(s)
- Sydney C. Weiser
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Brian R. Mullen
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Desiderio Ascencio
- Department of Psychology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - James B. Ackman
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
14
|
Sit KK, Goard MJ. Coregistration of heading to visual cues in retrosplenial cortex. Nat Commun 2023; 14:1992. [PMID: 37031198 PMCID: PMC10082791 DOI: 10.1038/s41467-023-37704-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Spatial cognition depends on an accurate representation of orientation within an environment. Head direction cells in distributed brain regions receive a range of sensory inputs, but visual input is particularly important for aligning their responses to environmental landmarks. To investigate how population-level heading responses are aligned to visual input, we recorded from retrosplenial cortex (RSC) of head-fixed mice in a moving environment using two-photon calcium imaging. We show that RSC neurons are tuned to the animal's relative orientation in the environment, even in the absence of head movement. Next, we found that RSC receives functionally distinct projections from visual and thalamic areas and contains several functional classes of neurons. While some functional classes mirror RSC inputs, a newly discovered class coregisters visual and thalamic signals. Finally, decoding analyses reveal unique contributions to heading from each class. Our results suggest an RSC circuit for anchoring heading representations to environmental visual landmarks.
Collapse
Affiliation(s)
- Kevin K Sit
- Department of Psychological and Brain Sciences University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Michael J Goard
- Department of Psychological and Brain Sciences University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
- Department of Molecular, Cellular, and Developmental Biology University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
- Neuroscience Research Institute University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
15
|
Weaver IA, Aryana Yousefzadeh S, Tadross MR. An open-source head-fixation and implant-protection system for mice. HARDWAREX 2023; 13:e00391. [PMID: 36632413 PMCID: PMC9826893 DOI: 10.1016/j.ohx.2022.e00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/21/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Mice are widely used in neuroscience experiments, which often require head-fixation and attachment of skull-mounted hardware. For many experiments, these components must remain intact over weeks to months, ideally with animals group housed. Many labs have designed ad-hoc head-fixation systems, which is an inefficient process. For example, when reinventing these solutions in our lab, we faced challenges with group housing, wherein mice would chew and damage implanted cannulas and electrodes of their cage mates. We performed several non-trivial design iterations to solve this problem, and present the most successful designs as an open-source collection. The designs include a standard mounting headbar compatible with most skull-mounted hardware, a snap-on protective mouse hat (headhat) to prevent mice from chewing the hardware, and a head-fixation station to facilitate common experimental procedures. We provide 3D-printing files, detail vendors and software used to make the components of the system, and provide editable design files for maximum flexibility to individual lab requirements.
Collapse
|
16
|
Sleep cycle-dependent vascular dynamics in male mice and the predicted effects on perivascular cerebrospinal fluid flow and solute transport. Nat Commun 2023; 14:953. [PMID: 36806170 PMCID: PMC9941497 DOI: 10.1038/s41467-023-36643-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Perivascular spaces are important highways for fluid and solute transport in the brain enabling efficient waste clearance during sleep. However, the underlying mechanisms augmenting perivascular flow in sleep are unknown. Using two-photon imaging of naturally sleeping male mice we demonstrate sleep cycle-dependent vascular dynamics of pial arteries and penetrating arterioles: slow, large-amplitude oscillations in NREM sleep, a vasodilation in REM sleep, and a vasoconstriction upon awakening at the end of a sleep cycle and microarousals in NREM and intermediate sleep. These vascular dynamics are mirrored by changes in the size of the perivascular spaces of the penetrating arterioles: slow fluctuations in NREM sleep, reduction in REM sleep and an enlargement upon awakening after REM sleep and during microarousals in NREM and intermediate sleep. By biomechanical modeling we demonstrate that these sleep cycle-dependent perivascular dynamics likely enhance fluid flow and solute transport in perivascular spaces to levels comparable to cardiac pulsation-driven oscillations.
Collapse
|
17
|
Sy SKH, Chan DCW, Chan RCH, Lyu J, Li Z, Wong KKY, Choi CHJ, Mok VCT, Lai HM, Randlett O, Hu Y, Ko H. An optofluidic platform for interrogating chemosensory behavior and brainwide neural representation in larval zebrafish. Nat Commun 2023; 14:227. [PMID: 36641479 PMCID: PMC9840631 DOI: 10.1038/s41467-023-35836-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Studying chemosensory processing desires precise chemical cue presentation, behavioral response monitoring, and large-scale neuronal activity recording. Here we present Fish-on-Chips, a set of optofluidic tools for highly-controlled chemical delivery while simultaneously imaging behavioral outputs and whole-brain neuronal activities at cellular resolution in larval zebrafish. These include a fluidics-based swimming arena and an integrated microfluidics-light sheet fluorescence microscopy (µfluidics-LSFM) system, both of which utilize laminar fluid flows to achieve spatiotemporally precise chemical cue presentation. To demonstrate the strengths of the platform, we used the navigation arena to reveal binasal input-dependent behavioral strategies that larval zebrafish adopt to evade cadaverine, a death-associated odor. The µfluidics-LSFM system enables sequential presentation of odor stimuli to individual or both nasal cavities separated by only ~100 µm. This allowed us to uncover brainwide neural representations of cadaverine sensing and binasal input summation in the vertebrate model. Fish-on-Chips is readily generalizable and will empower the investigation of neural coding in the chemical senses.
Collapse
Affiliation(s)
- Samuel K H Sy
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, Faculty of Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - Danny C W Chan
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Roy C H Chan
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jing Lyu
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Zhongqi Li
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Kenneth K Y Wong
- Department of Electrical and Electronic Engineering, Faculty of Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - Chung Hang Jonathan Choi
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Vincent C T Mok
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hei-Ming Lai
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Owen Randlett
- Institut national de la santé et de la recherche médicale, Université Claude Bernard Lyon 1, Lyon, France
| | - Yu Hu
- Department of Mathematics and Division of Life Science, Faculty of Science, Hong Kong University of Science and Technology, Clear Water Bay, New Territories, Hong Kong SAR, China
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
18
|
Jost-Mousseau T, Chalabi M, Shulz DE, Férézou I. Imaging the brain in action: a motorized optical rotary joint for wide field fibroscopy in freely moving animals. NEUROPHOTONICS 2023; 10:015009. [PMID: 36970016 PMCID: PMC10037343 DOI: 10.1117/1.nph.10.1.015009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
SIGNIFICANCE The study of neuronal processes governing behavior in awake behaving mice is constantly boosted by the development of technological strategies, such as miniaturized microscopes and closed-loop virtual reality systems. However, the former limits the quality of recorded signals due to constrains in size and weight and the latter suffers from the restriction of the movement repertoire of the animal, therefore, hardly reproducing the complexity of natural multisensory scenes. AIM Another strategy that takes advantage of both approaches consists of the use of a fiber-bundle interface to carry optical signals from a moving animal to a conventional imaging system. However, as the bundle is usually fixed below the optics, its torsion resulting from rotations of the animal inevitably constrains the behavior over long recordings. Our aim was to overcome this major limitation of fibroscopic imaging. APPROACH We developed a motorized optical rotary joint controlled by an inertial measurement unit at the animal's head. RESULTS We show its principle of operation, demonstrate its efficacy in a locomotion task, and propose several modes of operation for a wide range of experimental designs. CONCLUSIONS Combined with an optical rotary joint, fibroscopic approaches represent an outstanding tool to link neuronal activity with behavior in mice at the millisecond timescale.
Collapse
Affiliation(s)
- Timothé Jost-Mousseau
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Institut des Neurosciences Paris-Saclay (NeuroPSI), Saclay, France
| | - Max Chalabi
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Institut des Neurosciences Paris-Saclay (NeuroPSI), Saclay, France
| | - Daniel E. Shulz
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Institut des Neurosciences Paris-Saclay (NeuroPSI), Saclay, France
| | - Isabelle Férézou
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Institut des Neurosciences Paris-Saclay (NeuroPSI), Saclay, France
| |
Collapse
|
19
|
Thurley K. Naturalistic neuroscience and virtual reality. Front Syst Neurosci 2022; 16:896251. [PMID: 36467978 PMCID: PMC9712202 DOI: 10.3389/fnsys.2022.896251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/31/2022] [Indexed: 04/04/2024] Open
Abstract
Virtual reality (VR) is one of the techniques that became particularly popular in neuroscience over the past few decades. VR experiments feature a closed-loop between sensory stimulation and behavior. Participants interact with the stimuli and not just passively perceive them. Several senses can be stimulated at once, large-scale environments can be simulated as well as social interactions. All of this makes VR experiences more natural than those in traditional lab paradigms. Compared to the situation in field research, a VR simulation is highly controllable and reproducible, as required of a laboratory technique used in the search for neural correlates of perception and behavior. VR is therefore considered a middle ground between ecological validity and experimental control. In this review, I explore the potential of VR in eliciting naturalistic perception and behavior in humans and non-human animals. In this context, I give an overview of recent virtual reality approaches used in neuroscientific research.
Collapse
Affiliation(s)
- Kay Thurley
- Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
- Bernstein Center for Computational Neuroscience Munich, Munich, Germany
| |
Collapse
|
20
|
Yeganeh F, Knauer B, Guimarães Backhaus R, Yang JW, Stroh A, Luhmann HJ, Stüttgen MC. Effects of optogenetic inhibition of a small fraction of parvalbumin-positive interneurons on the representation of sensory stimuli in mouse barrel cortex. Sci Rep 2022; 12:19419. [PMID: 36371511 PMCID: PMC9653449 DOI: 10.1038/s41598-022-24156-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
Inhibitory interneurons play central roles in the modulation of spontaneous network activity and in processing of neuronal information. In sensory neocortical areas, parvalbumin-positive (PV+) GABAergic interneurons control the representation and processing of peripheral sensory inputs. We studied the functional role of PV+ interneurons in the barrel cortex of anesthetized adult PVCre mice by combining extracellular multi-electrode recordings with optogenetic silencing of a small fraction of PV+ interneurons. In all cortical layers, optogenetic inhibition caused an increase in spontaneous network activity from theta to gamma frequencies. The spatio-temporal representation of sensory inputs was studied by stimulating one or two whiskers at different intervals and analyzing the resulting local field potential (LFP) and single unit (SU) response. Silencing PV+ interneurons caused an increase in LFP response to sensory stimulation and a decrease in temporal discrimination of consecutive whisker deflections. The combined effect of whisker deflection and optogenetic inhibition was highly similar to the linear sum of the individual effects of these two manipulations. SU recordings revealed that optogenetic silencing reduced stimulus detectability by increasing stimulus-evoked firing rate by a constant offset, suggesting that PV+ interneurons improve signal-to-noise ratio by reducing ongoing spiking activity, thereby sharpening the spatio-temporal representation of sensory stimuli.
Collapse
Affiliation(s)
- Fahimeh Yeganeh
- grid.410607.4Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany ,grid.410607.4Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Beate Knauer
- grid.410607.4Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | | | - Jenq-Wei Yang
- grid.410607.4Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Albrecht Stroh
- grid.410607.4Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany ,grid.509458.50000 0004 8087 0005Leibniz Institute for Resilience Research, Mainz, Germany
| | - Heiko J. Luhmann
- grid.410607.4Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Maik C. Stüttgen
- grid.410607.4Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| |
Collapse
|
21
|
Barkus C, Bergmann C, Branco T, Carandini M, Chadderton PT, Galiñanes GL, Gilmour G, Huber D, Huxter JR, Khan AG, King AJ, Maravall M, O'Mahony T, Ragan CI, Robinson ESJ, Schaefer AT, Schultz SR, Sengpiel F, Prescott MJ. Refinements to rodent head fixation and fluid/food control for neuroscience. J Neurosci Methods 2022; 381:109705. [PMID: 36096238 DOI: 10.1016/j.jneumeth.2022.109705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 12/14/2022]
Abstract
The use of head fixation in mice is increasingly common in research, its use having initially been restricted to the field of sensory neuroscience. Head restraint has often been combined with fluid control, rather than food restriction, to motivate behaviour, but this too is now in use for both restrained and non-restrained animals. Despite this, there is little guidance on how best to employ these techniques to optimise both scientific outcomes and animal welfare. This article summarises current practices and provides recommendations to improve animal wellbeing and data quality, based on a survey of the community, literature reviews, and the expert opinion and practical experience of an international working group convened by the UK's National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs). Topics covered include head fixation surgery and post-operative care, habituation to restraint, and the use of fluid/food control to motivate performance. We also discuss some recent developments that may offer alternative ways to collect data from large numbers of behavioural trials without the need for restraint. The aim is to provide support for researchers at all levels, animal care staff, and ethics committees to refine procedures and practices in line with the refinement principle of the 3Rs.
Collapse
Affiliation(s)
- Chris Barkus
- National Centre for Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, UK.
| | | | - Tiago Branco
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Matteo Carandini
- Institute of Ophthalmology, University College London, London, UK
| | - Paul T Chadderton
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | | | | | - Daniel Huber
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | | | - Adil G Khan
- Centre for Developmental Neurobiology, King's College London, London, UK
| | - Andrew J King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Miguel Maravall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - Tina O'Mahony
- Sainsbury Wellcome Centre, University College London, London, UK
| | - C Ian Ragan
- National Centre for Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, UK
| | - Emma S J Robinson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Andreas T Schaefer
- Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, London, UK; Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Simon R Schultz
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London, London, UK
| | | | - Mark J Prescott
- National Centre for Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, UK
| |
Collapse
|
22
|
Dash S, Autio DM, Crandall SR. State-Dependent Modulation of Activity in Distinct Layer 6 Corticothalamic Neurons in Barrel Cortex of Awake Mice. J Neurosci 2022; 42:6551-6565. [PMID: 35863890 PMCID: PMC9410757 DOI: 10.1523/jneurosci.2219-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/17/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022] Open
Abstract
Layer 6 corticothalamic (L6 CT) neurons are in a strategic position to control sensory input to the neocortex, yet we understand very little about their functions. Apart from studying their anatomic, physiological, and synaptic properties, most recent efforts have focused on the activity-dependent influences CT cells can exert on thalamic and cortical neurons through causal optogenetic manipulations. However, few studies have attempted to study them during behavior. To address this gap, we performed juxtacellular recordings from optogenetically identified CT neurons in whisker-related primary somatosensory cortex (wS1) of awake, head-fixed mice (either sex) free to rest quietly or self-initiate bouts of whisking and locomotion. We found a rich diversity of response profiles exhibited by CT cells. Their spiking patterns were either modulated by whisking-related behavior (∼28%) or not (∼72%). Whisking-responsive neurons exhibited both increases (activated-type) and decreases in firing rates (suppressed-type) that aligned with whisking onset better than locomotion. We also encountered responsive neurons with preceding modulations in firing rate before whisking onset. Overall, whisking better explained these changes in rates than overall changes in arousal. Whisking-unresponsive CT cells were generally quiet, with many having low spontaneous firing rates (sparse-type) and others being completely silent (silent-type). Remarkably, the sparse firing CT population preferentially spiked at the state transition point when pupil diameter constricted, and the mouse entered quiet wakefulness. Thus, our results demonstrate that L6 CT cells in wS1 show diverse spiking patterns, perhaps subserving distinct functional roles related to precisely timed responses during complex behaviors and transitions between discrete waking states.SIGNIFICANCE STATEMENT Layer 6 corticothalamic neurons provide a massive input to the sensory thalamus and local connectivity within cortex, but their role in thalamocortical processing remains unclear because of difficulty accessing and isolating their activity. Although several recent optogenetic studies reveal that the net influence of corticothalamic actions, suppression versus enhancement, depends critically on the rate these neurons fire, the factors that influence their spiking are poorly understood, particularly during wakefulness. Using the well-established Ntsr1-Cre line to target this elusive population in the whisker somatosensory cortex of awake mice, we found that corticothalamic neurons show diverse state-related responses and modulations in firing rate. These results suggest separate corticothalamic populations can differentially influence thalamocortical excitability during rapid state transitions in awake, behaving animals.
Collapse
Affiliation(s)
- Suryadeep Dash
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| | - Dawn M Autio
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| | - Shane R Crandall
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
23
|
The effects of locomotion on sensory-evoked haemodynamic responses in the cortex of awake mice. Sci Rep 2022; 12:6236. [PMID: 35422473 PMCID: PMC9010417 DOI: 10.1038/s41598-022-10195-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/04/2022] [Indexed: 12/22/2022] Open
Abstract
Investigating neurovascular coupling in awake rodents is becoming ever more popular due, in part, to our increasing knowledge of the profound impacts that anaesthesia can have upon brain physiology. Although awake imaging brings with it many advantages, we still do not fully understand how voluntary locomotion during imaging affects sensory-evoked haemodynamic responses. In this study we investigated how evoked haemodynamic responses can be affected by the amount and timing of locomotion. Using an awake imaging set up, we used 2D-Optical Imaging Spectroscopy (2D-OIS) to measure changes in cerebral haemodynamics within the sensory cortex of the brain during either 2 s whisker stimulation or spontaneous (no whisker stimulation) experiments, whilst animals could walk on a spherical treadmill. We show that locomotion alters haemodynamic responses. The amount and timing of locomotion relative to whisker stimulation is important, and can significantly impact sensory-evoked haemodynamic responses. If locomotion occurred before or during whisker stimulation, the amplitude of the stimulus-evoked haemodynamic response was significantly altered. Therefore, monitoring of locomotion during awake imaging is necessary to ensure that conclusions based on comparisons of evoked haemodynamic responses (e.g., between control and disease groups) are not confounded by the effects of locomotion.
Collapse
|
24
|
Ito KN, Isobe K, Osakada F. Fast z-focus controlling and multiplexing strategies for multiplane two-photon imaging of neural dynamics. Neurosci Res 2022; 179:15-23. [DOI: 10.1016/j.neures.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
|
25
|
Chen CC, Brumberg JC. Sensory Experience as a Regulator of Structural Plasticity in the Developing Whisker-to-Barrel System. Front Cell Neurosci 2022; 15:770453. [PMID: 35002626 PMCID: PMC8739903 DOI: 10.3389/fncel.2021.770453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022] Open
Abstract
Cellular structures provide the physical foundation for the functionality of the nervous system, and their developmental trajectory can be influenced by the characteristics of the external environment that an organism interacts with. Historical and recent works have determined that sensory experiences, particularly during developmental critical periods, are crucial for information processing in the brain, which in turn profoundly influence neuronal and non-neuronal cortical structures that subsequently impact the animals' behavioral and cognitive outputs. In this review, we focus on how altering sensory experience influences normal/healthy development of the central nervous system, particularly focusing on the cerebral cortex using the rodent whisker-to-barrel system as an illustrative model. A better understanding of structural plasticity, encompassing multiple aspects such as neuronal, glial, and extra-cellular domains, provides a more integrative view allowing for a deeper appreciation of how all aspects of the brain work together as a whole.
Collapse
Affiliation(s)
- Chia-Chien Chen
- Department of Psychology, Queens College City University of New York, Flushing, NY, United States.,Department of Neuroscience, Duke Kunshan University, Suzhou, China
| | - Joshua C Brumberg
- Department of Psychology, Queens College City University of New York, Flushing, NY, United States.,The Biology (Neuroscience) and Psychology (Behavioral and Cognitive Neuroscience) PhD Programs, The Graduate Center, The City University of New York, New York, NY, United States
| |
Collapse
|
26
|
Lanore F, Cayco-Gajic NA, Gurnani H, Coyle D, Silver RA. Cerebellar granule cell axons support high-dimensional representations. Nat Neurosci 2021; 24:1142-1150. [PMID: 34168340 PMCID: PMC7611462 DOI: 10.1038/s41593-021-00873-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/13/2021] [Indexed: 02/05/2023]
Abstract
In classical theories of cerebellar cortex, high-dimensional sensorimotor representations are used to separate neuronal activity patterns, improving associative learning and motor performance. Recent experimental studies suggest that cerebellar granule cell (GrC) population activity is low-dimensional. To examine sensorimotor representations from the point of view of downstream Purkinje cell 'decoders', we used three-dimensional acousto-optic lens two-photon microscopy to record from hundreds of GrC axons. Here we show that GrC axon population activity is high dimensional and distributed with little fine-scale spatial structure during spontaneous behaviors. Moreover, distinct behavioral states are represented along orthogonal dimensions in neuronal activity space. These results suggest that the cerebellar cortex supports high-dimensional representations and segregates behavioral state-dependent computations into orthogonal subspaces, as reported in the neocortex. Our findings match the predictions of cerebellar pattern separation theories and suggest that the cerebellum and neocortex use population codes with common features, despite their vastly different circuit structures.
Collapse
Affiliation(s)
- Frederic Lanore
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - N Alex Cayco-Gajic
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
- Group for Neural Theory, Laboratoire de neurosciences cognitives et computationnelles, Département d'études cognitives, École normale supérieure, INSERM U960, Université Paris Sciences et Lettres, Paris, France
| | - Harsha Gurnani
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Diccon Coyle
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - R Angus Silver
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK.
| |
Collapse
|
27
|
O'Connor DH, Krubitzer L, Bensmaia S. Of mice and monkeys: Somatosensory processing in two prominent animal models. Prog Neurobiol 2021; 201:102008. [PMID: 33587956 PMCID: PMC8096687 DOI: 10.1016/j.pneurobio.2021.102008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/26/2020] [Accepted: 02/07/2021] [Indexed: 11/20/2022]
Abstract
Our understanding of the neural basis of somatosensation is based largely on studies of the whisker system of mice and rats and the hands of macaque monkeys. Results across these animal models are often interpreted as providing direct insight into human somatosensation. Work on these systems has proceeded in parallel, capitalizing on the strengths of each model, but has rarely been considered as a whole. This lack of integration promotes a piecemeal understanding of somatosensation. Here, we examine the functions and morphologies of whiskers of mice and rats, the hands of macaque monkeys, and the somatosensory neuraxes of these three species. We then discuss how somatosensory information is encoded in their respective nervous systems, highlighting similarities and differences. We reflect on the limitations of these models of human somatosensation and consider key gaps in our understanding of the neural basis of somatosensation.
Collapse
Affiliation(s)
- Daniel H O'Connor
- Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, United States; Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, United States
| | - Leah Krubitzer
- Department of Psychology and Center for Neuroscience, University of California at Davis, United States
| | - Sliman Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, United States; Committee on Computational Neuroscience, University of Chicago, United States; Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, United States.
| |
Collapse
|
28
|
Chockanathan U, Crosier EJW, Waddle S, Lyman E, Gerkin RC, Padmanabhan K. Changes in pairwise correlations during running reshape global network state in the main olfactory bulb. J Neurophysiol 2021; 125:1612-1623. [PMID: 33656931 DOI: 10.1152/jn.00464.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neural codes for sensory inputs have been hypothesized to reside in a broader space defined by ongoing patterns of spontaneous activity. To understand the structure of this spontaneous activity in the olfactory system, we performed high-density recordings of neural populations in the main olfactory bulb of awake mice. We observed changes in pairwise correlations of spontaneous activity between mitral and tufted (M/T) cells when animals were running, which resulted in an increase in the entropy of the population. Surprisingly, pairwise maximum entropy models that described the population activity using only assumptions about the firing rates and correlations of neurons were better at predicting the global structure of activity when animals were stationary as compared to when they were running, implying that higher order (3rd, 4th order) interactions governed population activity during locomotion. Taken together, we found that locomotion alters the functional interactions that shape spontaneous population activity at the earliest stages of olfactory processing, one synapse away from the sensory receptors in the nasal epithelium. These data suggest that the coding space available for sensory representations responds adaptively to the animal's behavioral state.NEW & NOTEWORTHY The organization and structure of spontaneous population activity in the olfactory system places constraints of how odor information is represented. Using high-density electrophysiological recordings of mitral and tufted cells, we found that running increases the dimensionality of spontaneous activity, implicating higher order interactions among neurons during locomotion. Behavior, thus, flexibly alters neuronal activity at the earliest stages of sensory processing.
Collapse
Affiliation(s)
- Udaysankar Chockanathan
- Medical Scientist Training Program (MSTP), University of Rochester School of Medicine, Rochester, New York.,Department of Neuroscience and Neuroscience Graduate Program (NGP), University of Rochester School of Medicine, Rochester, New York
| | - Emily J W Crosier
- Department of Neuroscience and Neuroscience Graduate Program (NGP), University of Rochester School of Medicine, Rochester, New York
| | - Spencer Waddle
- Department of Physics, University of Delaware, Newark, Delaware
| | - Edward Lyman
- Department of Physics, University of Delaware, Newark, Delaware
| | - Richard C Gerkin
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Krishnan Padmanabhan
- Medical Scientist Training Program (MSTP), University of Rochester School of Medicine, Rochester, New York.,Department of Neuroscience and Neuroscience Graduate Program (NGP), University of Rochester School of Medicine, Rochester, New York.,Center for Visual Sciences, University of Rochester School of Medicine, Rochester, New York
| |
Collapse
|
29
|
Wenzel M, Leunig A, Han S, Peterka DS, Yuste R. Prolonged anesthesia alters brain synaptic architecture. Proc Natl Acad Sci U S A 2021; 118:e2023676118. [PMID: 33568534 PMCID: PMC7924219 DOI: 10.1073/pnas.2023676118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Prolonged medically induced coma (pMIC) is carried out routinely in intensive care medicine. pMIC leads to cognitive impairment, yet the underlying neuromorphological correlates are still unknown, as no direct studies of MIC exceeding ∼6 h on neural circuits exist. Here, we establish pMIC (up to 24 h) in adolescent and mature mice, and combine longitudinal two-photon imaging of cortical synapses with repeated behavioral object recognition assessments. We find that pMIC affects object recognition, and that it is associated with enhanced synaptic turnover, generated by enhanced synapse formation during pMIC, while the postanesthetic period is dominated by synaptic loss. Our results demonstrate major side effects of prolonged anesthesia on neural circuit structure.
Collapse
Affiliation(s)
- Michael Wenzel
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Alexander Leunig
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Shuting Han
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Darcy S Peterka
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Rafael Yuste
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027
| |
Collapse
|
30
|
Schweihoff JF, Loshakov M, Pavlova I, Kück L, Ewell LA, Schwarz MK. DeepLabStream enables closed-loop behavioral experiments using deep learning-based markerless, real-time posture detection. Commun Biol 2021; 4:130. [PMID: 33514883 PMCID: PMC7846585 DOI: 10.1038/s42003-021-01654-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/31/2020] [Indexed: 12/30/2022] Open
Abstract
In general, animal behavior can be described as the neuronal-driven sequence of reoccurring postures through time. Most of the available current technologies focus on offline pose estimation with high spatiotemporal resolution. However, to correlate behavior with neuronal activity it is often necessary to detect and react online to behavioral expressions. Here we present DeepLabStream, a versatile closed-loop tool providing real-time pose estimation to deliver posture dependent stimulations. DeepLabStream has a temporal resolution in the millisecond range, can utilize different input, as well as output devices and can be tailored to multiple experimental designs. We employ DeepLabStream to semi-autonomously run a second-order olfactory conditioning task with freely moving mice and optogenetically label neuronal ensembles active during specific head directions.
Collapse
Affiliation(s)
- Jens F Schweihoff
- Functional Neuroconnectomics Group, Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Matvey Loshakov
- Functional Neuroconnectomics Group, Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Irina Pavlova
- Functional Neuroconnectomics Group, Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Laura Kück
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Laura A Ewell
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Martin K Schwarz
- Functional Neuroconnectomics Group, Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
31
|
Warren RA, Zhang Q, Hoffman JR, Li EY, Hong YK, Bruno RM, Sawtell NB. A rapid whisker-based decision underlying skilled locomotion in mice. eLife 2021; 10:63596. [PMID: 33428566 PMCID: PMC7800376 DOI: 10.7554/elife.63596] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022] Open
Abstract
Skilled motor behavior requires rapidly integrating external sensory input with information about internal state to decide which movements to make next. Using machine learning approaches for high-resolution kinematic analysis, we uncover the logic of a rapid decision underlying sensory-guided locomotion in mice. After detecting obstacles with their whiskers mice select distinct kinematic strategies depending on a whisker-derived estimate of obstacle location together with the position and velocity of their body. Although mice rely on whiskers for obstacle avoidance, lesions of primary whisker sensory cortex had minimal impact. While motor cortex manipulations affected the execution of the chosen strategy, the decision-making process remained largely intact. These results highlight the potential of machine learning for reductionist analysis of naturalistic behaviors and provide a case in which subcortical brain structures appear sufficient for mediating a relatively sophisticated sensorimotor decision.
Collapse
Affiliation(s)
- Richard A Warren
- Department of Neuroscience, Mortimer Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Qianyun Zhang
- Department of Neuroscience, Mortimer Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Judah R Hoffman
- Department of Neuroscience, Mortimer Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Edward Y Li
- Department of Neuroscience, Mortimer Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Y Kate Hong
- Department of Neuroscience, Mortimer Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Randy M Bruno
- Department of Neuroscience, Mortimer Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Nathaniel B Sawtell
- Department of Neuroscience, Mortimer Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| |
Collapse
|
32
|
Nourizonoz A, Zimmermann R, Ho CLA, Pellat S, Ormen Y, Prévost-Solié C, Reymond G, Pifferi F, Aujard F, Herrel A, Huber D. EthoLoop: automated closed-loop neuroethology in naturalistic environments. Nat Methods 2020; 17:1052-1059. [PMID: 32994566 DOI: 10.1038/s41592-020-0961-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 08/24/2020] [Indexed: 01/07/2023]
Abstract
Accurate tracking and analysis of animal behavior is crucial for modern systems neuroscience. However, following freely moving animals in naturalistic, three-dimensional (3D) or nocturnal environments remains a major challenge. Here, we present EthoLoop, a framework for studying the neuroethology of freely roaming animals. Combining real-time optical tracking and behavioral analysis with remote-controlled stimulus-reward boxes, this system allows direct interactions with animals in their habitat. EthoLoop continuously provides close-up views of the tracked individuals and thus allows high-resolution behavioral analysis using deep-learning methods. The behaviors detected on the fly can be automatically reinforced either by classical conditioning or by optogenetic stimulation via wirelessly controlled portable devices. Finally, by combining 3D tracking with wireless neurophysiology we demonstrate the existence of place-cell-like activity in the hippocampus of freely moving primates. Taken together, we show that the EthoLoop framework enables interactive, well-controlled and reproducible neuroethological studies in large-field naturalistic settings.
Collapse
Affiliation(s)
- Ali Nourizonoz
- University of Geneva, Department of Basic Neurosciences, Geneva, Switzerland
| | - Robert Zimmermann
- University of Geneva, Department of Basic Neurosciences, Geneva, Switzerland
| | - Chun Lum Andy Ho
- University of Geneva, Department of Basic Neurosciences, Geneva, Switzerland
| | - Sebastien Pellat
- University of Geneva, Department of Basic Neurosciences, Geneva, Switzerland
| | - Yannick Ormen
- University of Geneva, Department of Basic Neurosciences, Geneva, Switzerland
| | | | - Gilles Reymond
- University of Geneva, Department of Basic Neurosciences, Geneva, Switzerland
| | - Fabien Pifferi
- Musée National d'Histoire Naturelle, Adaptive Mechanisms and Evolution, UMR7179-CNRS, Paris, France
| | - Fabienne Aujard
- Musée National d'Histoire Naturelle, Adaptive Mechanisms and Evolution, UMR7179-CNRS, Paris, France
| | - Anthony Herrel
- Musée National d'Histoire Naturelle, Adaptive Mechanisms and Evolution, UMR7179-CNRS, Paris, France
| | - Daniel Huber
- University of Geneva, Department of Basic Neurosciences, Geneva, Switzerland.
| |
Collapse
|
33
|
Staiger JF, Petersen CCH. Neuronal Circuits in Barrel Cortex for Whisker Sensory Perception. Physiol Rev 2020; 101:353-415. [PMID: 32816652 DOI: 10.1152/physrev.00019.2019] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The array of whiskers on the snout provides rodents with tactile sensory information relating to the size, shape and texture of objects in their immediate environment. Rodents can use their whiskers to detect stimuli, distinguish textures, locate objects and navigate. Important aspects of whisker sensation are thought to result from neuronal computations in the whisker somatosensory cortex (wS1). Each whisker is individually represented in the somatotopic map of wS1 by an anatomical unit named a 'barrel' (hence also called barrel cortex). This allows precise investigation of sensory processing in the context of a well-defined map. Here, we first review the signaling pathways from the whiskers to wS1, and then discuss current understanding of the various types of excitatory and inhibitory neurons present within wS1. Different classes of cells can be defined according to anatomical, electrophysiological and molecular features. The synaptic connectivity of neurons within local wS1 microcircuits, as well as their long-range interactions and the impact of neuromodulators, are beginning to be understood. Recent technological progress has allowed cell-type-specific connectivity to be related to cell-type-specific activity during whisker-related behaviors. An important goal for future research is to obtain a causal and mechanistic understanding of how selected aspects of tactile sensory information are processed by specific types of neurons in the synaptically connected neuronal networks of wS1 and signaled to downstream brain areas, thus contributing to sensory-guided decision-making.
Collapse
Affiliation(s)
- Jochen F Staiger
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
34
|
Bojarskaite L, Bjørnstad DM, Pettersen KH, Cunen C, Hermansen GH, Åbjørsbråten KS, Chambers AR, Sprengel R, Vervaeke K, Tang W, Enger R, Nagelhus EA. Astrocytic Ca 2+ signaling is reduced during sleep and is involved in the regulation of slow wave sleep. Nat Commun 2020; 11:3240. [PMID: 32632168 PMCID: PMC7338360 DOI: 10.1038/s41467-020-17062-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 06/09/2020] [Indexed: 12/31/2022] Open
Abstract
Astrocytic Ca2+ signaling has been intensively studied in health and disease but has not been quantified during natural sleep. Here, we employ an activity-based algorithm to assess astrocytic Ca2+ signals in the neocortex of awake and naturally sleeping mice while monitoring neuronal Ca2+ activity, brain rhythms and behavior. We show that astrocytic Ca2+ signals exhibit distinct features across the sleep-wake cycle and are reduced during sleep compared to wakefulness. Moreover, an increase in astrocytic Ca2+ signaling precedes transitions from slow wave sleep to wakefulness, with a peak upon awakening exceeding the levels during whisking and locomotion. Finally, genetic ablation of an important astrocytic Ca2+ signaling pathway impairs slow wave sleep and results in an increased number of microarousals, abnormal brain rhythms, and an increased frequency of slow wave sleep state transitions and sleep spindles. Our findings demonstrate an essential role for astrocytic Ca2+ signaling in regulating slow wave sleep.
Collapse
Affiliation(s)
- Laura Bojarskaite
- Letten Centre and GliaLab, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| | - Daniel M Bjørnstad
- Letten Centre and GliaLab, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| | - Klas H Pettersen
- Letten Centre and GliaLab, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| | - Céline Cunen
- Statistics and Data Science group, Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316, Oslo, Norway
| | - Gudmund Horn Hermansen
- Statistics and Data Science group, Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316, Oslo, Norway
| | - Knut Sindre Åbjørsbråten
- Letten Centre and GliaLab, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| | - Anna R Chambers
- Lab for Neural Computation, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| | - Rolf Sprengel
- Research Group of the Max Planck Institute for Medical Research, Institute for Anatomy and Cell Biology, Heidelberg University, 69120, Heidelberg, Germany
| | - Koen Vervaeke
- Lab for Neural Computation, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| | - Wannan Tang
- Letten Centre and GliaLab, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rune Enger
- Letten Centre and GliaLab, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway.
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway.
- Department of Neurology, Oslo University Hospital, Rikshospitalet, 0027, Oslo, Norway.
| | - Erlend A Nagelhus
- Letten Centre and GliaLab, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Rikshospitalet, 0027, Oslo, Norway
| |
Collapse
|
35
|
Tadres D, Louis M. PiVR: An affordable and versatile closed-loop platform to study unrestrained sensorimotor behavior. PLoS Biol 2020; 18:e3000712. [PMID: 32663220 PMCID: PMC7360024 DOI: 10.1371/journal.pbio.3000712] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/09/2020] [Indexed: 12/19/2022] Open
Abstract
Tools enabling closed-loop experiments are crucial to delineate causal relationships between the activity of genetically labeled neurons and specific behaviors. We developed the Raspberry Pi Virtual Reality (PiVR) system to conduct closed-loop optogenetic stimulation of neural functions in unrestrained animals. PiVR is an experimental platform that operates at high temporal resolution (70 Hz) with low latencies (<30 milliseconds), while being affordable (
Collapse
Affiliation(s)
- David Tadres
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Matthieu Louis
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America
| |
Collapse
|
36
|
Real-Time Selective Markerless Tracking of Forepaws of Head Fixed Mice Using Deep Neural Networks. eNeuro 2020; 7:ENEURO.0096-20.2020. [PMID: 32409507 PMCID: PMC7307631 DOI: 10.1523/eneuro.0096-20.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/16/2020] [Accepted: 05/07/2020] [Indexed: 01/14/2023] Open
Abstract
Here, we describe a system capable of tracking specific mouse paw movements at high frame rates (70.17 Hz) with a high level of accuracy (mean = 0.95, SD < 0.01). Short-latency markerless tracking of specific body parts opens up the possibility of manipulating motor feedback. We present a software and hardware scheme built on DeepLabCut—a robust movement-tracking deep neural network framework—which enables real-time estimation of paw and digit movements of mice. Using this approach, we demonstrate movement-generated feedback by triggering a USB-GPIO (general-purpose input/output)-controlled LED when the movement of one paw, but not the other, selectively exceeds a preset threshold. The mean time delay between paw movement initiation and LED flash was 44.41 ms (SD = 36.39 ms), a latency sufficient for applying behaviorally triggered feedback. We adapt DeepLabCut for real-time tracking as an open-source package we term DeepCut2RealTime. The ability of the package to rapidly assess animal behavior was demonstrated by reinforcing specific movements within water-restricted, head-fixed mice. This system could inform future work on a behaviorally triggered “closed loop” brain–machine interface that could reinforce behaviors or deliver feedback to brain regions based on prespecified body movements.
Collapse
|
37
|
Lopatina OL, Morgun AV, Gorina YV, Salmin VV, Salmina AB. Current approaches to modeling the virtual reality in rodents for the assessment of brain plasticity and behavior. J Neurosci Methods 2020; 335:108616. [PMID: 32007483 DOI: 10.1016/j.jneumeth.2020.108616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 11/17/2022]
Abstract
Virtual reality (VR) and augmented reality (AR) have become valuable tools to study brains and behaviors resulting in development of new methods of diagnostics and treatment. Neurodegenerаtion is one of the best examples demonstrating efficacy of VR/АR technologies in modern neurology. Development of novel VR systems for rodents and combination of VR tools with up-to-date imaging techniques (i.e. MRI, imaging of neural networks etc.), brain electrophysiology (EEG, patch-clamp), precise analytics (microdialysis) allowed implementing of VR protocols into the animal neurobiology to study brain plasticity, sensorimotor integration, spatial navigation, memory, and decision-making. VR/AR for rodents is а young field of experimental neuroscience and has already provided more consistent testing conditions, less human-animal interaction, opportunities to use a wider variety of experimental parameters. Here we discuss present and future perspectives of using VR/AR to assess brain plasticity, neurogenesis and complex behavior in rodent and human study, and their advantages for translational neuroscience.
Collapse
Affiliation(s)
- Olga L Lopatina
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.
| | - Andrey V Morgun
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Yana V Gorina
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Vladimir V Salmin
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Alla B Salmina
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| |
Collapse
|
38
|
Nakajima M, Schmitt LI. Understanding the circuit basis of cognitive functions using mouse models. Neurosci Res 2019; 152:44-58. [PMID: 31857115 DOI: 10.1016/j.neures.2019.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/01/2019] [Accepted: 12/09/2019] [Indexed: 01/13/2023]
Abstract
Understanding how cognitive functions arise from computations occurring in the brain requires the ability to measure and perturb neural activity while the relevant circuits are engaged for specific cognitive processes. Rapid technical advances have led to the development of new approaches to transiently activate and suppress neuronal activity as well as to record simultaneously from hundreds to thousands of neurons across multiple brain regions during behavior. To realize the full potential of these approaches for understanding cognition, however, it is critical that behavioral conditions and stimuli are effectively designed to engage the relevant brain networks. Here, we highlight recent innovations that enable this combined approach. In particular, we focus on how to design behavioral experiments that leverage the ever-growing arsenal of technologies for controlling and measuring neural activity in order to understand cognitive functions.
Collapse
Affiliation(s)
- Miho Nakajima
- McGovern Institute for Brain Research and the Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - L Ian Schmitt
- McGovern Institute for Brain Research and the Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, United States; Center for Brain Science, RIKEN, Wako, Saitama, Japan.
| |
Collapse
|
39
|
Sloin H, Stark E. Response and sample bridging in a primate short-term memory task. Neurobiol Learn Mem 2019; 166:107106. [PMID: 31705981 DOI: 10.1016/j.nlm.2019.107106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 11/26/2022]
Abstract
Freely-moving rodents can solve short-term memory (STM) tasks using "response bridging" strategies, relying on motor patterns instead of mnemonic functions. This limits the interpretational power of results yielded by some STM tasks in rodents. To determine whether head-fixed monkeys can employ parallel non-mnemonic strategies, we measured eye position and velocity of two head-fixed monkeys performing a delayed response reaching and grasping task. We found that eye position during the delay period was correlated with reach direction. Moreover, reach direction as well as grasp object could be predicted from eye kinematics during the delay. Both eye velocity and eye position contributed to the prediction of reach direction. These results show that motor signals carry sufficient information to allow monkeys to solve STM tasks without using any mnemonic functions. Thus, the potential of animals to solve STM tasks using motor patterns is more diverse than previously recognized.
Collapse
Affiliation(s)
- Hadas Sloin
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eran Stark
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
40
|
Sehara K, Bahr V, Mitchinson B, Pearson MJ, Larkum ME, Sachdev RNS. Fast, Flexible Closed-Loop Feedback: Tracking Movement in "Real-Millisecond-Time". eNeuro 2019; 6:ENEURO.0147-19.2019. [PMID: 31611334 PMCID: PMC6825957 DOI: 10.1523/eneuro.0147-19.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022] Open
Abstract
One of the principal functions of the brain is to control movement and rapidly adapt behavior to a changing external environment. Over the last decades our ability to monitor activity in the brain, manipulate it while also manipulating the environment the animal moves through, has been tackled with increasing sophistication. However, our ability to track the movement of the animal in real time has not kept pace. Here, we use a dynamic vision sensor (DVS) based event-driven neuromorphic camera system to implement real-time, low-latency tracking of a single whisker that mice can move at ∼25 Hz. The customized DVS system described here converts whisker motion into a series of events that can be used to estimate the position of the whisker and to trigger a position-based output interactively within 2 ms. This neuromorphic chip-based closed-loop system provides feedback rapidly and flexibly. With this system, it becomes possible to use the movement of whiskers or in principal, movement of any part of the body to reward, punish, in a rapidly reconfigurable way. These methods can be used to manipulate behavior, and the neural circuits that help animals adapt to changing values of a sequence of motor actions.
Collapse
Affiliation(s)
- Keisuke Sehara
- Institute of Biology, Humboldt University of Berlin, D-10117 Berlin, Germany
| | | | - Ben Mitchinson
- Department of Computer Science, University of Sheffield, Sheffield, S10 2TP United Kingdom
| | - Martin J Pearson
- Bristol Robotics Laboratory, University of Bristol and University of the West of England, Bristol, BS16 1QY United Kingdom
| | - Matthew E Larkum
- Institute of Biology, Humboldt University of Berlin, D-10117 Berlin, Germany
| | - Robert N S Sachdev
- Institute of Biology, Humboldt University of Berlin, D-10117 Berlin, Germany
| |
Collapse
|
41
|
Whisking Asymmetry Signals Motor Preparation and the Behavioral State of Mice. J Neurosci 2019; 39:9818-9830. [PMID: 31666357 DOI: 10.1523/jneurosci.1809-19.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
A central function of the brain is to plan, predict, and imagine the effect of movement in a dynamically changing environment. Here we show that in mice head-fixed in a plus-maze, floating on air, and trained to pick lanes based on visual stimuli, the asymmetric movement, and position of whiskers on the two sides of the face signals whether the animal is moving, turning, expecting reward, or licking. We show that (1) whisking asymmetry is coordinated with behavioral state, and that behavioral state can be decoded and predicted based on asymmetry, (2) even in the absence of tactile input, whisker positioning and asymmetry nevertheless relate to behavioral state, and (3) movement of the nose correlates with asymmetry, indicating that facial expression of the mouse is itself correlated with behavioral state. These results indicate that the movement of whiskers, a behavior that is not instructed or necessary in the task, can inform an observer about what a mouse is doing in the maze. Thus, the position of these mobile tactile sensors reflects a behavioral and movement-preparation state of the mouse.SIGNIFICANCE STATEMENT Behavior is a sequence of movements, where each movement can be related to or can trigger a set of other actions. Here we show that, in mice, the movement of whiskers (tactile sensors used to extract information about texture and location of objects) is coordinated with and predicts the behavioral state of mice: that is, what mice are doing, where they are in space, and where they are in the sequence of behaviors.
Collapse
|
42
|
Gillespie D, Yap MH, Hewitt BM, Driscoll H, Simanaviciute U, Hodson-Tole EF, Grant RA. Description and validation of the LocoWhisk system: Quantifying rodent exploratory, sensory and motor behaviours. J Neurosci Methods 2019; 328:108440. [PMID: 31560929 DOI: 10.1016/j.jneumeth.2019.108440] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Previous studies have demonstrated that analysing whisker movements and locomotion allows us to quantify the behavioural consequences of sensory, motor and cognitive deficits in rodents. Independent whisker and feet trackers exist but there is no fully-automated, open-source software and hardware solution, that measures both whisker movements and gait. NEW METHOD We present the LocoWhisk arena and new accompanying software (ARTv2) that allows the automatic detection and measurement of both whisker and gait information from high-speed video footage. RESULTS We demonstrate the new whisker and foot detector algorithms on high-speed video footage of freely moving small mammals, and show that whisker movement and gait measurements collected in the LocoWhisk arena are similar to previously reported values in the literature. COMPARISON WITH EXISTING METHOD(S) We demonstrate that the whisker and foot detector algorithms, are comparable in accuracy, and in some cases significantly better, than readily available software and manual trackers. CONCLUSION The LocoWhisk system enables the collection of quantitative data from whisker movements and locomotion in freely behaving rodents. The software automatically records both whisker and gait information and provides added statistical tools to analyse the data. We hope the LocoWhisk system and software will serve as a solid foundation from which to support future research in whisker and gait analysis.
Collapse
Affiliation(s)
- David Gillespie
- School of Engineering, Manchester Metropolitan University, Manchester, UK
| | - Moi Hoon Yap
- School of Computing, Mathematics and Digital Technology, Manchester Metropolitan University, Manchester, UK
| | - Brett M Hewitt
- School of Computing, Mathematics and Digital Technology, Manchester Metropolitan University, Manchester, UK; School of Science and Environment, Manchester Metropolitan University, Manchester, UK; CSols Ltd, Runcorn, Cheshire, WA7 4QX, UK
| | - Heather Driscoll
- School of Engineering, Manchester Metropolitan University, Manchester, UK; Advanced Manufacturing Research Center, University of Sheffield, Sheffield, UK
| | - Ugne Simanaviciute
- School of Science and Environment, Manchester Metropolitan University, Manchester, UK; School of Biological Sciences, University of Manchester, Manchester, UK
| | - Emma F Hodson-Tole
- Musculoskeletal Science and Sports Medicine Research Centre, Dpt. Lifesciences, Manchester Metropolitan University, Manchester, UK
| | - Robyn A Grant
- School of Science and Environment, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
43
|
Adibi M. Whisker-Mediated Touch System in Rodents: From Neuron to Behavior. Front Syst Neurosci 2019; 13:40. [PMID: 31496942 PMCID: PMC6712080 DOI: 10.3389/fnsys.2019.00040] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 08/02/2019] [Indexed: 01/02/2023] Open
Abstract
A key question in systems neuroscience is to identify how sensory stimuli are represented in neuronal activity, and how the activity of sensory neurons in turn is “read out” by downstream neurons and give rise to behavior. The choice of a proper model system to address these questions, is therefore a crucial step. Over the past decade, the increasingly powerful array of experimental approaches that has become available in non-primate models (e.g., optogenetics and two-photon imaging) has spurred a renewed interest for the use of rodent models in systems neuroscience research. Here, I introduce the rodent whisker-mediated touch system as a structurally well-established and well-organized model system which, despite its simplicity, gives rise to complex behaviors. This system serves as a behaviorally efficient model system; known as nocturnal animals, along with their olfaction, rodents rely on their whisker-mediated touch system to collect information about their surrounding environment. Moreover, this system represents a well-studied circuitry with a somatotopic organization. At every stage of processing, one can identify anatomical and functional topographic maps of whiskers; “barrelettes” in the brainstem nuclei, “barreloids” in the sensory thalamus, and “barrels” in the cortex. This article provides a brief review on the basic anatomy and function of the whisker system in rodents.
Collapse
Affiliation(s)
- Mehdi Adibi
- School of Psychology, University of New South Wales, Sydney, NSW, Australia.,Tactile Perception and Learning Lab, International School for Advanced Studies (SISSA), Trieste, Italy.,Padua Neuroscience Center, University of Padua, Padua, Italy
| |
Collapse
|
44
|
Abstract
Tactile sensory information from facial whiskers provides nocturnal tunnel-dwelling rodents, including mice and rats, with important spatial and textural information about their immediate surroundings. Whiskers are moved back and forth to scan the environment (whisking), and touch signals from each whisker evoke sparse patterns of neuronal activity in whisker-related primary somatosensory cortex (wS1; barrel cortex). Whisking is accompanied by desynchronized brain states and cell-type-specific changes in spontaneous and evoked neuronal activity. Tactile information, including object texture and location, appears to be computed in wS1 through integration of motor and sensory signals. wS1 also directly controls whisker movements and contributes to learned, whisker-dependent, goal-directed behaviours. The cell-type-specific neuronal circuitry in wS1 that contributes to whisker sensory perception is beginning to be defined.
Collapse
|
45
|
Layer-specific integration of locomotion and sensory information in mouse barrel cortex. Nat Commun 2019; 10:2585. [PMID: 31197148 PMCID: PMC6565743 DOI: 10.1038/s41467-019-10564-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 05/17/2019] [Indexed: 11/23/2022] Open
Abstract
During navigation, rodents continually sample the environment with their whiskers. How locomotion modulates neuronal activity in somatosensory cortex, and how it is integrated with whisker-touch remains unclear. Here, we compared neuronal activity in layer 2/3 (L2/3) and L5 of barrel cortex using calcium imaging in mice running in a tactile virtual reality. Both layers increase their activity during running and concomitant whisking, in the absence of touch. Fewer neurons are modulated by whisking alone. Whereas L5 neurons respond transiently to wall-touch during running, L2/3 neurons show sustained activity. Consistently, neurons encoding running-with-touch are more abundant in L2/3 and they encode the run-speed better during touch. Few neurons across layers were also sensitive to abrupt perturbations of tactile flow during running. In summary, locomotion significantly enhances barrel cortex activity across layers with L5 neurons mainly reporting changes in touch conditions and L2/3 neurons continually integrating tactile stimuli with running. The influence of locomotion on somatosensory processing in barrel cortex is not well understood. Here the authors report distinct layer-specific responses, with L5 primarily reporting changes in touch condition while L2/3 neurons integrating touch and locomotion continuously.
Collapse
|
46
|
Wang X, Chou X, Peng B, Shen L, Huang JJ, Zhang LI, Tao HW. A cross-modality enhancement of defensive flight via parvalbumin neurons in zona incerta. eLife 2019; 8:42728. [PMID: 30985276 PMCID: PMC6486150 DOI: 10.7554/elife.42728] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/14/2019] [Indexed: 12/13/2022] Open
Abstract
The ability to adjust defensive behavior is critical for animal survival in dynamic environments. However, neural circuits underlying the modulation of innate defensive behavior remain not well-understood. In particular, environmental threats are commonly associated with cues of multiple sensory modalities. It remains to be investigated how these modalities interact to shape defensive behavior. In this study, we report that auditory-induced defensive flight behavior can be facilitated by somatosensory input in mice. This cross-modality modulation of defensive behavior is mediated by the projection from the primary somatosensory cortex (SSp) to the ventral sector of zona incerta (ZIv). Parvalbumin (PV)-positive neurons in ZIv, receiving direct input from SSp, mediate the enhancement of the flight behavior via their projections to the medial posterior complex of thalamus (POm). Thus, defensive flight can be enhanced in a somatosensory context-dependent manner via recruiting PV neurons in ZIv, which may be important for increasing survival of prey animals.
Collapse
Affiliation(s)
- Xiyue Wang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States.,Graduate Program in Neuroscience, University of Southern California, Los Angeles, United States
| | - Xiaolin Chou
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States.,Graduate Program in Neuroscience, University of Southern California, Los Angeles, United States
| | - Bo Peng
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States.,Graduate Program in Neuroscience, University of Southern California, Los Angeles, United States
| | - Li Shen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - Junxiang J Huang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States.,Graduate Program in Biomedical and Biological Sciences, University of Southern California, Los Angeles, United States
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, United States
| |
Collapse
|
47
|
|
48
|
Prediction of Choice from Competing Mechanosensory and Choice-Memory Cues during Active Tactile Decision Making. J Neurosci 2019; 39:3921-3933. [PMID: 30850514 PMCID: PMC6520515 DOI: 10.1523/jneurosci.2217-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 01/15/2023] Open
Abstract
Perceptual decision making is an active process where animals move their sense organs to extract task-relevant information. To investigate how the brain translates sensory input into decisions during active sensation, we developed a mouse active touch task where the mechanosensory input can be precisely measured and that challenges animals to use multiple mechanosensory cues. Male mice were trained to localize a pole using a single whisker and to report their decision by selecting one of three choices. Using high-speed imaging and machine vision, we estimated whisker-object mechanical forces at millisecond resolution. Mice solved the task by a sensory-motor strategy where both the strength and direction of whisker bending were informative cues to pole location. We found competing influences of immediate sensory input and choice memory on mouse choice. On correct trials, choice could be predicted from the direction and strength of whisker bending, but not from previous choice. In contrast, on error trials, choice could be predicted from previous choice but not from whisker bending. This study shows that animal choices during active tactile decision making can be predicted from mechanosensory and choice-memory signals, and provides a new task well suited for the future study of the neural basis of active perceptual decisions.SIGNIFICANCE STATEMENT Due to the difficulty of measuring the sensory input to moving sense organs, active perceptual decision making remains poorly understood. The whisker system provides a way forward since it is now possible to measure the mechanical forces due to whisker-object contact during behavior. Here we train mice in a novel behavioral task that challenges them to use rich mechanosensory cues but can be performed using one whisker and enables task-relevant mechanical forces to be precisely estimated. This approach enables rigorous study of how sensory cues translate into action during active, perceptual decision making. Our findings provide new insight into active touch and how sensory/internal signals interact to determine behavioral choices.
Collapse
|
49
|
Severson KS, Xu D, Yang H, O'Connor DH. Coding of whisker motion across the mouse face. eLife 2019; 8:41535. [PMID: 30816844 PMCID: PMC6395061 DOI: 10.7554/elife.41535] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/11/2019] [Indexed: 12/15/2022] Open
Abstract
Haptic perception synthesizes touch with proprioception, the sense of body position. Humans and mice alike experience rich active touch of the face. Because most facial muscles lack proprioceptor endings, the sensory basis of facial proprioception remains unsolved. Facial proprioception may instead rely on mechanoreceptors that encode both touch and self-motion. In rodents, whisker mechanoreceptors provide a signal that informs the brain about whisker position. Whisking involves coordinated orofacial movements, so mechanoreceptors innervating facial regions other than whiskers could also provide information about whisking. To define all sources of sensory information about whisking available to the brain, we recorded spikes from mechanoreceptors innervating diverse parts of the face. Whisker motion was encoded best by whisker mechanoreceptors, but also by those innervating whisker pad hairy skin and supraorbital vibrissae. Redundant self-motion responses may provide the brain with a stable proprioceptive signal despite mechanical perturbations during active touch.
Collapse
Affiliation(s)
- Kyle S Severson
- The Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Brain Science Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Duo Xu
- The Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Brain Science Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Hongdian Yang
- The Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Brain Science Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Daniel H O'Connor
- The Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Brain Science Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
50
|
Superficial Layers Suppress the Deep Layers to Fine-tune Cortical Coding. J Neurosci 2019; 39:2052-2064. [PMID: 30651326 DOI: 10.1523/jneurosci.1459-18.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 11/21/2022] Open
Abstract
The descending microcircuit from layer 2/3 (L2/3) to layer 5 (L5) is one of the strongest excitatory pathways in the cortex, presumably forming a core component of its feedforward hierarchy. To date, however, no experiments have selectively tested the impact of L2/3 activity on L5 during active sensation. We used optogenetic, cell-type-specific manipulation of L2/3 neurons in the barrel cortex of actively sensing mice (of either sex) to elucidate the significance of this pathway to sensory coding in L5. Contrary to standard models, activating L2/3 predominantly suppressed spontaneous activity in L5, whereas deactivating L2/3 mainly facilitated touch responses in L5. Somatostatin interneurons are likely important to this suppression because their optogenetic deactivation significantly altered the functional impact of L2/3 onto L5. The net effect of L2/3 was to enhance the stimulus selectivity and expand the range of L5 output. These data imply that the core cortical pathway increases the selectivity and expands the range of cortical output through feedforward inhibition.SIGNIFICANCE STATEMENT The primary sensory cortex contains six distinct layers that interact to form the basis of our perception. While rudimentary patterns of connectivity between the layers have been outlined quite extensively in vitro, functional relationships in vivo, particularly during active sensation, remain poorly understood. We used cell-type-specific optogenetics to test the functional relationship between layer 2/3 and layer 5. Surprisingly, we discovered that L2/3 primarily suppresses cortical output from L5. The recruitment of somatostatin-positive interneurons is likely fundamental to this relationship. The net effect of this translaminar suppression is to enhance the selectivity and expand the range of receptive fields, therefore potentially sharpening the perception of space.
Collapse
|