1
|
Kurhaluk N. Supplementation with l-arginine and nitrates vs age and individual physiological reactivity. Nutr Rev 2024; 82:1239-1259. [PMID: 37903373 DOI: 10.1093/nutrit/nuad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023] Open
Abstract
Ageing is a natural ontogenetic phenomenon that entails a decrease in the adaptive capacity of the organism, as a result of which the body becomes less adaptable to stressful conditions. Nitrate and nitrite enter the body from exogenous sources and from nitrification of ammonia nitrogen by intestinal microorganisms. This review considers the mechanisms of action of l-arginine, a known inducer of nitric oxide (NO) biosynthesis, and nitrates as supplements in the processes of ageing and aggravated stress states, in which mechanisms of individual physiological reactivity play an important role. This approach can be used as an element of individual therapy or prevention of premature ageing processes depending on the different levels of initial reactivity of the functional systems. A search was performed of the PubMed, Scopus, and Google Scholar databases (n = 181 articles) and the author's own research (n = 4) up to May 5, 2023. The review presents analyses of data on targeted treatment of NO generation by supplementation with l-arginine or nitrates, which is a promising means for prevention of hypoxic conditions frequently accompanying pathological processes in an ageing organism. The review clarifies the role of the individual state of physiological reactivity, using the example of individuals with a high predominance of cholinergic regulatory mechanisms who already have a significant reserve of adaptive capacity. In studies of the predominance of adrenergic influences, a poorly trained organism as well as an elderly organism correspond to low resistance, which is an additional factor of damage at increased energy expenditure. CONCLUSION It is suggested that the role of NO synthesis from supplementation of dietary nitrates and nitrites increases with age rather than from oxygen-dependent biosynthetic reactions from l-arginine supplementation.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Animal Physiology, Institute of Biology, Pomeranian University in Słupsk, Słupsk, Poland
| |
Collapse
|
2
|
Bagalkot T, Sorkin A. Amphetamine Induces Sex-Dependent Loss of the Striatal Dopamine Transporter in Sensitized Mice. eNeuro 2024; 11:ENEURO.0491-23.2023. [PMID: 38164591 PMCID: PMC10849026 DOI: 10.1523/eneuro.0491-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
Dopamine transporter (DAT) controls dopamine signaling in the brain through the reuptake of synaptically released dopamine. DAT is a target of abused psychostimulants such as amphetamine (Amph). Acute Amph administration induces transient DAT endocytosis, which, among other Amph effects on dopaminergic neurons, elevates extracellular dopamine. However, the effects of repeated Amph abuse, leading to behavioral sensitization and drug addiction, on DAT are unknown. Hence, we developed a 14 d Amph-sensitization protocol in knock-in mice expressing HA-epitope-tagged DAT (HA-DAT) and investigated the effects of Amph challenge on sensitized HA-DAT animals. The Amph challenge resulted in the highest locomotor activity on Day 14 in both sexes, which was sustained for 1 h in male but not female mice. Strikingly, significant (by 30-60%) loss of the HA-DAT protein in the striatum was caused by the Amph challenge of sensitized males but not females. Amph also reduced V max of dopamine transport in the striatal synaptosomes of males without changing K m values. Consistently, immunofluorescence microscopy revealed a significant increase of HA-DAT colocalization with the endosomal protein VPS35 only in Amph-challenged males. Amph-induced loss of striatal HA-DAT in sensitized mice was blocked by chloroquine, vacuolin-1, and inhibitor of Rho-associated kinases ROCK1/2, indicative of the involvement of endocytic trafficking in the DAT protein loss. Interestingly, an apparent degradation of HA-DAT protein was observed in the nucleus accumbens and not in the dorsal striatum. We propose that Amph challenge in sensitized mice triggers Rho-mediated endocytosis and post-endocytic trafficking of DAT in a brain-region-specific and sex-dependent manner.
Collapse
Affiliation(s)
- Tarique Bagalkot
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh 15261, Pennsylvania
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh 15261, Pennsylvania
| |
Collapse
|
3
|
Bu M, Follett J, Deng I, Tatarnikov I, Wall S, Guenther D, Maczis M, Wimsatt G, Milnerwood A, Moehle MS, Khoshbouei H, Farrer MJ. Inhibition of LRRK2 kinase activity rescues deficits in striatal dopamine physiology in VPS35 p.D620N knock-in mice. NPJ Parkinsons Dis 2023; 9:167. [PMID: 38110354 PMCID: PMC10728137 DOI: 10.1038/s41531-023-00609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023] Open
Abstract
Dysregulation of dopamine neurotransmission profoundly affects motor, motivation and learning behaviors, and can be observed during the prodromal phase of Parkinson's disease (PD). However, the mechanism underlying these pathophysiological changes remains to be elucidated. Mutations in vacuolar protein sorting 35 (VPS35) and leucine-rich repeat kinase 2 (LRRK2) both lead to autosomal dominant PD, and VPS35 and LRRK2 may physically interact to govern the trafficking of synaptic cargos within the endo-lysosomal network in a kinase-dependent manner. To better understand the functional role of VPS35 and LRRK2 on dopamine physiology, we examined Vps35 haploinsufficient (Haplo) and Vps35 p.D620N knock-in (VKI) mice and how their behavior, dopamine kinetics and biochemistry are influenced by LRRK2 kinase inhibitors. We found Vps35 p.D620N significantly elevates LRRK2-mediated phosphorylation of Rab10, Rab12 and Rab29. In contrast, Vps35 haploinsufficiency reduces phosphorylation of Rab12. While striatal dopamine transporter (DAT) expression and function is similarly impaired in both VKI and Haplo mice, that physiology is normalized in VKI by treatment with the LRRK2 kinase inhibitor, MLi-2. As a corollary, VKI animals show a significant increase in amphetamine induced hyperlocomotion, compared to Haplo mice, that is also abolished by MLi-2. Taken together, these data show Vps35 p.D620N confers a gain-of-function with respect to LRRK2 kinase activity, and that VPS35 and LRRK2 functionally interact to regulate DAT function and striatal dopamine transmission.
Collapse
Affiliation(s)
- Mengfei Bu
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Jordan Follett
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Isaac Deng
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Igor Tatarnikov
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Shannon Wall
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Dylan Guenther
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Melissa Maczis
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Genevieve Wimsatt
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Austen Milnerwood
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Mark S Moehle
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Habibeh Khoshbouei
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Matthew J Farrer
- Department of Neurology, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
4
|
Shetty M, Bolland DE, Morrell J, Grove BD, Foster JD, Vaughan RA. Dopamine transporter membrane mobility is bidirectionally regulated by phosphorylation and palmitoylation. Curr Res Physiol 2023; 6:100106. [PMID: 38107792 PMCID: PMC10724222 DOI: 10.1016/j.crphys.2023.100106] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023] Open
Abstract
The primary regulator of dopamine availability in the brain is the dopamine transporter (DAT), a plasma membrane protein that drives reuptake of released dopamine from the extracellular space into the presynaptic neuron. DAT activity is regulated by post-translational modifications that establish clearance capacity through impacts on transport kinetics, and dysregulation of these events may underlie dopaminergic imbalances in mood and psychiatric disorders. Here, using fluorescence recovery after photobleaching, we show that phosphorylation and palmitoylation induce opposing effects on DAT lateral membrane mobility, which may influence functional outcomes by regulating subcellular localization and binding partner interactions. Membrane mobility was also impacted by amphetamine and in polymorphic variant A559V in directions consistent with enhanced phosphorylation. These findings grow the list of DAT properties controlled by these post-translational modifications and highlight their role in establishment of dopaminergic tone in physiological and pathophysiological states.
Collapse
Affiliation(s)
- Madhur Shetty
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | | | - Joshua Morrell
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - Bryon D. Grove
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - James D. Foster
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - Roxanne A. Vaughan
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| |
Collapse
|
5
|
Bagalkot T, Sorkin A. Endocytic down-regulation of the striatal dopamine transporter by amphetamine in sensitized mice in sex-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541165. [PMID: 37293021 PMCID: PMC10245703 DOI: 10.1101/2023.05.17.541165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dopamine transporter (DAT) controls dopamine signaling in the brain through the reuptake of synaptically released dopamine. DAT is a target of abused psychostimulants such as amphetamine (Amph). Acute Amph is proposed to cause transient DAT endocytosis which among other Amph effects on dopaminergic neurons elevates extracellular dopamine. However, the effects of repeated Amph abuse, leading to behavioral sensitization and drug addiction, on DAT traffic are unknown. Hence, we developed a 14-day Amph-sensitization protocol in knock-in mice expressing HA-epitope tagged DAT (HA-DAT) and investigated effects of Amph challenge on HA-DAT in sensitized animals. Amph challenge resulted in the highest locomotor activity on day 14 in both sexes, which was however sustained for 1 hour in male but not female mice. Strikingly, significant (by 30-60%) reduction in the amount of the HA-DAT protein in striatum was observed in response to Amph challenge of sensitized males but not females. Amph reduced Vmax of dopamine transport in striatal synaptosomes of males without changing Km values. Consistently, immunofluorescence microscopy revealed a significant increase of HA-DAT co-localization with the endosomal protein VPS35 only in males. Amph-induced HA-DAT down-regulation in the striatum of sensitized mice was blocked by chloroquine, vacuolin-1 (inhibitor of PIKfive kinase), and inhibitor of Rho-associated kinases (ROCK1/2), indicative of the involvement of endocytic trafficking in DAT down-regulation. Interestingly, HA-DAT protein down-regulation was observed in nucleus accumbens and not in dorsal striatum. We propose that Amph challenge in sensitized mice leads to ROCK-dependent endocytosis and post-endocytic traffic of DAT in a brain-region-specific and sex-dependent manner.
Collapse
|
6
|
Saenz J, Yao O, Khezerlou E, Aggarwal M, Zhou X, Barker DJ, DiCicco-Bloom E, Pan PY. Cocaine-regulated trafficking of dopamine transporters in cultured neurons revealed by a pH sensitive reporter. iScience 2023; 26:105782. [PMID: 36594015 PMCID: PMC9804146 DOI: 10.1016/j.isci.2022.105782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Cocaine acts by inhibiting plasma membrane dopamine transporter (DAT) function and altering its surface expression. The precise manner and mechanism by which cocaine regulates DAT trafficking, especially at neuronal processes, are poorly understood. In this study, we engineered and validated the use of DAT-pHluorin for studying DAT localization and its dynamic trafficking at neuronal processes of cultured mouse midbrain neurons. We demonstrate that unlike neuronal soma and dendrites, which contain a majority of the DATs in weakly acidic intracellular compartments, axonal DATs at both shafts and boutons are primarily (75%) localized to the plasma membrane, whereas large varicosities contain abundant intracellular DAT within acidic intracellular structures. We also demonstrate that cocaine exposure leads to a Synaptojanin1-sensitive DAT internalization process followed by membrane reinsertion that lasts for days. Thus, our study reveals the previously unknown dynamics and molecular regulation for cocaine-regulated DAT trafficking in neuronal processes.
Collapse
Affiliation(s)
- Jacqueline Saenz
- Rutgers University Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 675 Hoes Lane West, Piscataway, NJ 08854, USA
- Rutgers Graduate School of Biomedical Sciences, Molecular Biosciences Graduate Program, Piscataway, NJ 08854, USA
| | - Oscar Yao
- Rutgers University Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Elnaz Khezerlou
- Rutgers University Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Meha Aggarwal
- Rutgers University Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Xiaofeng Zhou
- Rutgers University Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 683 Hoes Lane West, Piscataway, NJ 08854, USA
| | - David J. Barker
- Rutgers, The State University of New Jersey, Department of Psychology, 152 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Emanuel DiCicco-Bloom
- Rutgers University Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 683 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Ping-Yue Pan
- Rutgers University Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| |
Collapse
|
7
|
Kearney PJ, Bolden NC, Kahuno E, Conklin TL, Martin GE, Lubec G, Melikian HE. Presynaptic Gq-coupled receptors drive biphasic dopamine transporter trafficking that modulates dopamine clearance and motor function. J Biol Chem 2023; 299:102900. [PMID: 36640864 PMCID: PMC9943899 DOI: 10.1016/j.jbc.2023.102900] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Extracellular dopamine (DA) levels are constrained by the presynaptic DA transporter (DAT), a major psychostimulant target. Despite its necessity for DA neurotransmission, DAT regulation in situ is poorly understood, and it is unknown whether regulated DAT trafficking impacts dopaminergic signaling and/or behaviors. Leveraging chemogenetics and conditional gene silencing, we found that activating presynaptic Gq-coupled receptors, either hM3Dq or mGlu5, drove rapid biphasic DAT membrane trafficking in ex vivo striatal slices, with region-specific differences between ventral and dorsal striata. DAT insertion required D2 DA autoreceptors and intact retromer, whereas DAT retrieval required PKC activation and Rit2. Ex vivo voltammetric studies revealed that DAT trafficking impacts DA clearance. Furthermore, dopaminergic mGlu5 silencing elevated DAT surface expression and abolished motor learning, which was rescued by inhibiting DAT with a subthreshold CE-158 dose. We discovered that presynaptic DAT trafficking is complex, multimodal, and region specific, and for the first time, we identified cell autonomous mechanisms that govern presynaptic DAT tone. Importantly, the findings are consistent with a role for regulated DAT trafficking in DA clearance and motor function.
Collapse
Affiliation(s)
- Patrick J. Kearney
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA,Morningside Graduate School of Biomedical Sciences, UMASS Chan Medical School, Worcester, Massachusetts, USA
| | - Nicholas C. Bolden
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA,Morningside Graduate School of Biomedical Sciences, UMASS Chan Medical School, Worcester, Massachusetts, USA
| | - Elizabeth Kahuno
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA
| | - Tucker L. Conklin
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA
| | - Gilles E. Martin
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Private Medical University, Salzburg, Austria
| | - Haley E. Melikian
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Chan Medical School, Worcester, Massachusetts, USA,For correspondence: Haley E. Melikian
| |
Collapse
|
8
|
Cai Q, Ganesan D. Regulation of neuronal autophagy and the implications in neurodegenerative diseases. Neurobiol Dis 2022; 162:105582. [PMID: 34890791 PMCID: PMC8764935 DOI: 10.1016/j.nbd.2021.105582] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 01/03/2023] Open
Abstract
Neurons are highly polarized and post-mitotic cells with the specific requirements of neurotransmission accompanied by high metabolic demands that create a unique challenge for the maintenance of cellular homeostasis. Thus, neurons rely heavily on autophagy that constitutes a key quality control system by which dysfunctional cytoplasmic components, protein aggregates, and damaged organelles are sequestered within autophagosomes and then delivered to the lysosome for degradation. While mature lysosomes are predominantly located in the soma of neurons, the robust, constitutive biogenesis of autophagosomes occurs in the synaptic terminal via a conserved pathway that is required to maintain synaptic integrity and function. Following formation, autophagosomes fuse with late endosomes and then are rapidly and efficiently transported by the microtubule-based cytoplasmic dynein motor along the axon toward the soma for lysosomal clearance. In this review, we highlight the recent knowledge of the roles of autophagy in neuronal health and disease. We summarize the available evidence about the normal functions of autophagy as a protective factor against neurodegeneration and discuss the mechanism underlying neuronal autophagy regulation. Finally, we describe how autophagy function is affected in major neurodegenerative diseases with a special focus on Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis.
Collapse
|
9
|
Piniella D, Martínez-Blanco E, Bartolomé-Martín D, Sanz-Martos AB, Zafra F. Identification by proximity labeling of novel lipidic and proteinaceous potential partners of the dopamine transporter. Cell Mol Life Sci 2021; 78:7733-7756. [PMID: 34709416 PMCID: PMC8629785 DOI: 10.1007/s00018-021-03998-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/07/2021] [Accepted: 10/17/2021] [Indexed: 12/05/2022]
Abstract
Dopamine (DA) transporters (DATs) are regulated by trafficking and modulatory processes that probably rely on stable and transient interactions with neighboring proteins and lipids. Using proximity-dependent biotin identification (BioID), we found novel potential partners for DAT, including several membrane proteins, such as the transmembrane chaperone 4F2hc, the proteolipid M6a and a potential membrane receptor for progesterone (PGRMC2). We also detected two cytoplasmic proteins: a component of the Cullin1-dependent ubiquitination machinery termed F-box/LRR-repeat protein 2 (FBXL2), and the enzyme inositol 5-phosphatase 2 (SHIP2). Immunoprecipitation (IP) and immunofluorescence studies confirmed either a physical association or a close spatial proximity between these proteins and DAT. M6a, SHIP2 and the Cullin1 system were shown to increase DAT activity in coexpression experiments, suggesting a functional role for their association. Deeper analysis revealed that M6a, which is enriched in neuronal protrusions (filopodia or dendritic spines), colocalized with DAT in these structures. In addition, the product of SHIP2 enzymatic activity (phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2]) was tightly associated with DAT, as shown by co-IP and by colocalization of mCherry-DAT with a specific biosensor for this phospholipid. PI(3,4)P2 strongly stimulated transport activity in electrophysiological recordings, and conversely, inhibition of SHIP2 reduced DA uptake in several experimental systems including striatal synaptosomes and the dopaminergic cell line SH-SY5Y. In summary, here we report several potential new partners for DAT and a novel regulatory lipid, which may represent new pharmacological targets for DAT, a pivotal protein in dopaminergic function of the brain.
Collapse
Affiliation(s)
- Dolores Piniella
- Centro de Biología Molecular Severo Ochoa and Departamento de Biología Molecular, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, C / Nicolás Cabrera 1, 28049, Madrid, Spain
- IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Martínez-Blanco
- Centro de Biología Molecular Severo Ochoa and Departamento de Biología Molecular, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, C / Nicolás Cabrera 1, 28049, Madrid, Spain
- IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
| | - David Bartolomé-Martín
- Centro de Biología Molecular Severo Ochoa and Departamento de Biología Molecular, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, C / Nicolás Cabrera 1, 28049, Madrid, Spain
- IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, Tenerife, Spain
| | - Ana B Sanz-Martos
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, 28925, Madrid, Spain
| | - Francisco Zafra
- Centro de Biología Molecular Severo Ochoa and Departamento de Biología Molecular, Facultad de Ciencias, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, C / Nicolás Cabrera 1, 28049, Madrid, Spain.
- IdiPAZ, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
10
|
Dynamic control of the dopamine transporter in neurotransmission and homeostasis. NPJ Parkinsons Dis 2021; 7:22. [PMID: 33674612 PMCID: PMC7935902 DOI: 10.1038/s41531-021-00161-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/08/2021] [Indexed: 01/31/2023] Open
Abstract
The dopamine transporter (DAT) transports extracellular dopamine into the intracellular space contributing to the regulation of dopamine neurotransmission. A reduction of DAT density is implicated in Parkinson's disease (PD) by neuroimaging; dopamine turnover is dopamine turnover is elevated in early symptomatic PD and in presymptomatic individuals with monogenic mutations causal for parkinsonism. As an integral plasma membrane protein, DAT surface expression is dynamically regulated through endocytic trafficking, enabling flexible control of dopamine signaling in time and space, which in turn critically modulates movement, motivation and learning behavior. Yet the cellular machinery and functional implications of DAT trafficking remain enigmatic. In this review we summarize mechanisms governing DAT trafficking under normal physiological conditions and discuss how PD-linked mutations may disturb DAT homeostasis. We highlight the complexity of DAT trafficking and reveal DAT dysregulation as a common theme in genetic models of parkinsonism.
Collapse
|