1
|
Vitry S, Mendia C, Maudoux A, El-Amraoui A. Advancing precision ear medicine: leveraging animal models for disease insights and therapeutic innovations. Mamm Genome 2025:10.1007/s00335-025-10126-y. [PMID: 40263131 DOI: 10.1007/s00335-025-10126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/28/2025] [Indexed: 04/24/2025]
Abstract
Gene therapy offers significant promise for treating inner ear disorders, but its clinical translation requires robust preclinical validation, often reliant on animal models. This review examines the role of these models in advancing gene therapeutics for inherited inner ear disorders, focusing on successes, challenges, and treatment solutions. By providing a precise understanding of disease mechanisms, these models offer a versatile preclinical platform that is essential for assessing and validating therapies. Successful gene supplementation and editing have shown potential in restoring hearing and balance functions and preventing their decline. However, challenges such as limitations in gene delivery methods, surgical access, immune responses, and discrepancies in disease manifestation between animal models and humans hinder clinical translation. Current efforts are dedicated to developing innovative strategies aimed at enhancing the efficiency of gene delivery, overcoming physical barriers such as the blood-labyrinth barrier, improving target specificity, and maximizing therapeutic efficacy while minimizing adverse immune responses. Diverse gene supplementation and editing strategies, along with evolving technologies, hold promise for maximizing therapeutic outcomes using disease relevant models. The future of inner ear gene therapeutics will hinge on personalized therapies and team science fueling interdisciplinary collaborations among researchers, clinicians, companies, and regulatory agencies to expedite the translation from bench to bedside and unlock the immense potential of precision medicine in the inner ear.
Collapse
Affiliation(s)
- Sandrine Vitry
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, F-75012, Paris, France.
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Paris, France.
| | - Clara Mendia
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, F-75012, Paris, France
- Collège Doctoral, Sorbonne Université, 75005, Paris, France
| | - Audrey Maudoux
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, F-75012, Paris, France
- Otolaryngology Department, Assistance Publique des Hôpitaux de Paris, Robert Debré University Hospital-APHP, Paris, France
| | - Aziz El-Amraoui
- Université Paris Cité, Institut Pasteur, AP-HP, INSERM, CNRS, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Progressive Sensory Disorders, Pathophysiology and Therapy, F-75012, Paris, France.
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Paris, France.
| |
Collapse
|
2
|
Luo Y, Wu H, Min X, Chen Y, Deng W, Chen M, Yang C, Xiong H. SIRT1 prevents noise-induced hearing loss by enhancing cochlear mitochondrial function. Cell Commun Signal 2025; 23:160. [PMID: 40176044 PMCID: PMC11963675 DOI: 10.1186/s12964-025-02152-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/11/2025] [Indexed: 04/04/2025] Open
Abstract
Exposure to traumatic noise triggers cochlear damage and consequently causes permanent sensorineural hearing loss. However, effective treatment strategies for noise-induced hearing loss (NIHL) are lacking. Sirtuin 1 (SIRT1) is a NAD+-dependent deacetylase that plays a critical role in multiple physiological and pathological events. However, its role in NIHL pathogenesis remains elusive. This study revealed that SIRT1 expression in the cochlea progressively decreases in a mouse model of NIHL. Hair cell-specific knockout of SIRT1 exacerbates the noise-induced loss of outer and inner hair cell synaptic ribbons, retraction of cochlear nerve terminals, and oxidative stress, leading to more severe NIHL. Conversely, adeno-associated virus (AAV)-mediated SIRT1 overexpression effectively attenuated most noise-induced cochlear damage and alleviated NIHL. Transcriptomic analysis revealed that SIRT1 deficiency impairs glucose metabolism and inhibits antioxidant pathways in the cochlea following exposure to noise. Further investigation revealed that SIRT1 exerts an antioxidant effect, at least in part, through AMPK activation in cultured auditory HEI-OC1 cells exposed to oxidative stress. Collectively, these findings indicate that SIRT1 is essential for the maintenance of redox balance and mitochondrial function in the cochlea after traumatic noise exposure, thus providing a promising therapeutic target for NIHL treatment.
Collapse
Affiliation(s)
- Yuelian Luo
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Haoyang Wu
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xin Min
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yi Chen
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenting Deng
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Minjun Chen
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chuxuan Yang
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hao Xiong
- Department of Otolaryngology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Kumar NA, Marouf A, Alagramam KN, Stepanyan R. The potential of mitochondrially-targeted tetrapeptide in protecting against noise-induced hearing impairment. Neuroreport 2025; 36:93-98. [PMID: 39661536 DOI: 10.1097/wnr.0000000000002124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Noise-induced hearing loss (NIHL) constitutes a significant global health issue for which there is no effective treatment. The loss of cochlear hair cells and associated synaptopathy are common causes of hearing impairment. One primary mechanism implicated in NIHL is the accumulation of reactive oxygen species (ROS), which ultimately overwhelms cochlear cells. ROS are detected in the cochlea immediately after noise exposure and persist for at least a week. Within cells, ROS are primarily generated in mitochondria as byproducts of cellular metabolism. Elamipretide is a synthetic tetrapeptide known to concentrate in mitochondria, improving mitochondrial function and reducing ROS production. To test the hypothesis that elamipretide treatment mitigates NIHL, 16-week-old male and female CBA/J mice were exposed to 8-16 kHz octave-band noise (OBN) at 98 dB SPL for 2 hours. Elamipretide was administered intraperitoneally immediately after noise exposure and continued for 2 weeks. Efficacy was evaluated based on auditory brainstem response (ABR) thresholds, wave amplitudes, and wave latencies in treated and control groups. Results showed that OBN-exposed mice exhibited an elevation in ABR thresholds at 16 and 32 kHz and a reduction in ABR wave-I amplitude at 32 kHz, although wave-I latencies were not affected at 16 or 32 kHz. Elamipretide treatment prevented the OBN-induced elevation of ABR thresholds and the attenuation of wave-I amplitude. These findings provide proof of concept that mitochondrial-targeted elamipretide can prevent NIHL in a mammalian model and highlight its potential to protect against NIHL in humans.
Collapse
Affiliation(s)
- Niranj A Kumar
- Department of Otolaryngology, Case Western Reserve University, University Hospitals Cleveland Medical Center
| | - Azmi Marouf
- Department of Otolaryngology, Case Western Reserve University, University Hospitals Cleveland Medical Center
| | - Kumar N Alagramam
- Department of Otolaryngology, Case Western Reserve University, University Hospitals Cleveland Medical Center
- Department of Neurosciences
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ruben Stepanyan
- Department of Otolaryngology, Case Western Reserve University, University Hospitals Cleveland Medical Center
- Department of Neurosciences
| |
Collapse
|
4
|
Meuser M, Schwitzer S, Faraji P, Ernst A, Basta D. Peri-Traumatic Near-Infrared Light Treatment Attenuates the Severity of Noise-Induced Hearing Loss by Rescuing (Type I) Spiral Ganglion Neurons in Mice. Brain Sci 2025; 15:62. [PMID: 39851430 PMCID: PMC11763776 DOI: 10.3390/brainsci15010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Previous studies have shown that multiple post-traumatic irradiations of the cochlea with near-infrared light (NIR) can significantly reduce noise-induced hearing loss. However, a single NIR pre-treatment was shown to have the same effect. Extending the pre-treatment time did not result in any further reduction in hearing loss. The present study investigated whether a combined NIR pre- and post-treatment had an increased effect on hearing preservation. METHODS Frequency-specific auditory brainstem potential thresholds (ABR) were determined in young adult mice. One group (n = 8) underwent NIR irradiation (808 nm, 120 mW, 15 min) of the cochlea, followed by a 30 min noise exposure (5-20 kHz, 115 dB SPL). A post-NIR treatment was administered for 30 min immediately following the noise trauma. After 14 days, hearing loss was determined by ABR measurements. The results were compared with a trauma-only group (n = 8) and an untreated control group (n = 5). Subsequently, the spiral ganglion neuron density was investigated. RESULTS A peri-traumatic NIR treatment resulted in a significantly lower hearing loss compared to the trauma-only group. Hearing protection in these animals significantly exceeded the effect of an exclusive pre- or post-treatment across all frequencies. A loss of spiral ganglion neurons in the trauma-only group was observed, which was significantly rescued by the peri-traumatic NIR treatment. CONCLUSIONS A single peri-traumatic NIR treatment seems to be the more effective approach for the preservation of hearing thresholds after noise trauma compared to an isolated pre- or post-treatment. One target of the protective effect seems to be the spiral ganglion.
Collapse
Affiliation(s)
| | | | | | | | - Dietmar Basta
- Department of Otolaryngology at Unfallkrankenhaus Berlin, Charité Medical School, University of Berlin, 12683 Berlin, Germany
| |
Collapse
|
5
|
Di Stadio A, Hamiter MJ, Roccamatisi D, Lalwani AK. Hearing Loss and Alzheimer Disease. Curr Top Behav Neurosci 2025; 69:129-147. [PMID: 39436630 DOI: 10.1007/7854_2024_526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Several studies have been done to investigate the role of hearing loss (HL) in cognitive decline. A co-existence of these two conditions has been identified. Recently, thanks to the use of functional MRI and EEG it has been shown that untreated HL can expose patients with cognitive decline to a higher risk of developing Alzheimer Disease (AD). This chapter will discuss the difference between central and peripheral HL, the link between HL and cognition and the relationship between HL and AD. At the end of the chapter the available technologies to treat HL will be discussed as well as their impact on memory and cognition.
Collapse
Affiliation(s)
- Arianna Di Stadio
- GF Ingrassia Department, Otolaryngology, University of Catania, Catania, Italy
| | - Mickie J Hamiter
- Department of Otolaryngology - Head and Neck Surgery, Columbia University, New York, NY, USA
| | | | - Anil K Lalwani
- GF Ingrassia Department, Otolaryngology, University of Catania, Catania, Italy
| |
Collapse
|
6
|
Zhou Z, Lang L, Xie J. Effects of Occupational Noise Exposure on Hearing Loss: Regulatory Effect of Mediterranean Diet. J Occup Environ Med 2024; 66:e266-e271. [PMID: 38595272 DOI: 10.1097/jom.0000000000003110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
OBJECTIVE To assess regulatory effect of Mediterranean diet for occupational noise exposure and hearing loss. Methods: This cross-sectional study included 4757 individuals. Weighted logistic regression model was adopted to explore the association of occupational noise exposure and Mediterranean diet with hearing loss, and regulatory effects of the Mediterranean diet for the relationship of occupational noise exposure and hearing loss. Results: Occupational noise exposure was associated with an increased odds of hearing loss. Under low adherence to the Mediterranean diet, the occupational noise exposure group was related to increased odds of hearing loss. Under high adherence to the Mediterranean diet, no significant difference was observed between occupational noise exposure and hearing loss, and adjusted effect size was reduced accordingly. Conclusion: Mediterranean diet may moderate this relationship of occupational noise exposure and hearing loss to some degree.
Collapse
Affiliation(s)
- Zhi Zhou
- From the Occupational Disease Department, Guiyang Public Health Clinical Center, Guiyang, PR China
| | | | | |
Collapse
|
7
|
Kou L, Wang Y, Li J, Zou W, Jin Z, Yin S, Chi X, Sun Y, Wu J, Wang T, Xia Y. Mitochondria-lysosome-extracellular vesicles axis and nanotheranostics in neurodegenerative diseases. Exp Neurol 2024; 376:114757. [PMID: 38508481 DOI: 10.1016/j.expneurol.2024.114757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
The intricate functional interactions between mitochondria and lysosomes play a pivotal role in maintaining cellular homeostasis and proper cellular functions. This dynamic interplay involves the exchange of molecules and signaling, impacting cellular metabolism, mitophagy, organellar dynamics, and cellular responses to stress. Dysregulation of these processes has been implicated in various neurodegenerative diseases. Additionally, mitochondrial-lysosomal crosstalk regulates the exosome release in neurons and glial cells. Under stress conditions, neurons and glial cells exhibit mitochondrial dysfunction and a fragmented network, which further leads to lysosomal dysfunction, thereby inhibiting autophagic flux and enhancing exosome release. This comprehensive review synthesizes current knowledge on mitochondrial regulation of cell death, organelle dynamics, and vesicle trafficking, emphasizing their significant contributions to neurodegenerative diseases. Furthermore, we explore the emerging field of nanomedicine in the management of neurodegenerative diseases. The review provides readers with an insightful overview of nano strategies that are currently advancing the mitochondrial-lysosome-extracellular vesicle axis as a therapeutic approach for mitigating neurodegenerative diseases.
Collapse
Affiliation(s)
- Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yiming Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingwen Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenkai Zou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zongjie Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaosa Chi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiawei Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
8
|
Feng B, Dong T, Song X, Zheng X, Jin C, Cheng Z, Liu Y, Zhang W, Wang X, Tao Y, Wu H. Personalized Porous Gelatin Methacryloyl Sustained-Release Nicotinamide Protects Against Noise-Induced Hearing Loss. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305682. [PMID: 38225752 DOI: 10.1002/advs.202305682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/11/2023] [Indexed: 01/17/2024]
Abstract
There are no Food and Drug Administration-approved drugs for treating noise-induced hearing loss (NIHL), reflecting the absence of clear specific therapeutic targets and effective delivery strategies. Noise trauma is demonstrated results in nicotinamide adenine dinucleotide (NAD+) downregulation and mitochondrial dysfunction in cochlear hair cells (HCs) and spiral ganglion neurons (SGNs) in mice, and NAD+ boosted by nicotinamide (NAM) supplementation maintains cochlear mitochondrial homeostasis and prevents neuroexcitatory toxic injury in vitro and ex vivo, also significantly ameliorated NIHL in vivo. To tackle the limited drug delivery efficiency due to sophisticated anatomical barriers and unique clearance pathway in ear, personalized NAM-encapsulated porous gelatin methacryloyl (PGMA@NAM) are developed based on anatomy topography of murine temporal bone by micro-computed tomography and reconstruction of round window (RW) niche, realizing hydrogel in situ implantation completely, NAM sustained-release and long-term auditory preservation in mice. This study strongly supports personalized PGMA@NAM as NIHL protection drug with effective inner ear delivery, providing new inspiration for drug-based treatment of NIHL.
Collapse
Affiliation(s)
- Baoyi Feng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Tingting Dong
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Xinyu Song
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xiaofei Zheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Chenxi Jin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Zhenzhe Cheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Yiqing Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xueling Wang
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Yong Tao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| |
Collapse
|
9
|
Wu Y, Zhang J, Liu Q, Miao Z, Chai R, Chen W. Development of Chinese herbal medicine for sensorineural hearing loss. Acta Pharm Sin B 2024; 14:455-467. [PMID: 38322328 PMCID: PMC10840432 DOI: 10.1016/j.apsb.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/16/2023] [Accepted: 10/24/2023] [Indexed: 02/08/2024] Open
Abstract
According to the World Health Organization's world report on hearing, nearly 2.5 billion people worldwide will suffer from hearing loss by 2050, which may contribute to a severe impact on individual life quality and national economies. Sensorineural hearing loss (SNHL) occurs commonly as a result of noise exposure, aging, and ototoxic drugs, and is pathologically characterized by the impairment of mechanosensory hair cells of the inner ear, which is mainly triggered by reactive oxygen species accumulation, inflammation, and mitochondrial dysfunction. Though recent advances have been made in understanding the ability of cochlear repair and regeneration, there are still no effective therapeutic drugs for SNHL. Chinese herbal medicine which is widely distributed and easily accessible in China has demonstrated a unique curative effect against SNHL with higher safety and lower cost compared with Western medicine. Herein we present trends in research for Chinese herbal medicine for the treatment of SNHL, and elucidate their molecular mechanisms of action, to pave the way for further research and development of novel effective drugs in this field.
Collapse
Affiliation(s)
- Yunhao Wu
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Jingwen Zhang
- Department of Otolaryngology-Head and Neck, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Qiuping Liu
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Zhuang Miao
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610000, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing 100085, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China
| | - Wenyong Chen
- Department of Otolaryngology-Head and Neck, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| |
Collapse
|
10
|
Yang L, Gutierrez DE, Guthrie OW. Systemic health effects of noise exposure. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:21-54. [PMID: 37957800 DOI: 10.1080/10937404.2023.2280837] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Noise, any unwanted sound, is pervasive and impacts large populations worldwide. Investigators suggested that noise exposure not only induces auditory damage but also produces various organ system dysfunctions. Although previous reviews primarily focused on noise-induced cardiovascular and cerebral dysfunctions, this narrow focus has unintentionally led the research community to disregard the importance of other vital organs. Indeed, limited studies revealed that noise exposure impacts other organs including the liver, kidneys, pancreas, lung, and gastrointestinal tract. Therefore, the aim of this review was to examine the effects of noise on both the extensively studied organs, the brain and heart, but also determine noise impact on other vital organs. The goal was to illustrate a comprehensive understanding of the systemic effects of noise. These systemic effects may guide future clinical research and epidemiological endpoints, emphasizing the importance of considering noise exposure history in diagnosing various systemic diseases.
Collapse
Affiliation(s)
- Li Yang
- Cell & Molecular Pathology Laboratory, Communication Sciences and Disorders, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Daniel E Gutierrez
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - O'neil W Guthrie
- Cell & Molecular Pathology Laboratory, Communication Sciences and Disorders, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
11
|
Wu F, Hu R, Huang X, Lou J, Cai Z, Chen G, Zhao W, Xiong H, Sha SH, Zheng Y. CFTR potentiator ivacaftor protects against noise-induced hair cell loss by increasing Nrf2 and reducing oxidative stress. Biomed Pharmacother 2023; 166:115399. [PMID: 37657258 PMCID: PMC10528730 DOI: 10.1016/j.biopha.2023.115399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023] Open
Abstract
Over-production of reactive oxygen species (ROS) in the inner ear can be triggered by a variety of pathological events identified in animal models after traumatic noise exposure. Our previous research found that inhibition of the AMP-activated protein kinase alpha subunit (AMPKα) protects against noise-induced cochlear hair cell loss and hearing loss by reducing ROS accumulation. However, the molecular pathway through which AMPKα exerts its antioxidative effect is still unclear. In this study, we have investigated a potential target of AMPKα and ROS, cystic fibrosis transmembrane conductance regulator (CFTR), and the protective effect against noise-induced hair cell loss of an FDA-approved CFTR potentiator, ivacaftor, in FVB/NJ mice, mouse explant cultures, and HEI-OC1 cells. We found that noise exposure increases phosphorylation of CFTR at serine 737 (p-CFTR, S737), which reduces wildtype CFTR function, resulting in oxidative stress in cochlear sensory hair cells. Pretreatment with a single dose of ivacaftor maintains CFTR function by preventing noise-increased p-CFTR (S737). Furthermore, ivacaftor treatment increases nuclear factor E2-related factor 2 (Nrf2) expression, diminishes ROS formation, and attenuates noise-induced hair cell loss and hearing loss. Additionally, inhibition of noise-induced AMPKα activation by compound C also diminishes p-CFTR (S737) expression. In line with these in-vivo results, administration of hydrogen peroxide to cochlear explants or HEI-OC1 cells increases p-CFTR (S737) expression and induces sensory hair cell or HEI-OC1 cell damage, while application of ivacaftor halts these effects. Although ivacaftor increases Nrf2 expression and reduces ROS accumulation, cotreatment with ML385, an Nrf2 inhibitor, abolishes the protective effects of ivacaftor against hydrogen-peroxide-induced HEI-OC1 cell death. Our results indicate that noise-induced sensory hair cell damage is associated with p-CFTR. Ivacaftor has potential for treatment of noise-induced hearing loss by maintaining CFTR function and increasing Nrf2 expression for support of redox homeostasis in sensory hair cells.
Collapse
Affiliation(s)
- Fan Wu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, China; Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Charleston, SC, USA
| | - Rui Hu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Shenshan Medical Center, Memorial Hospital of Sun Yat-sen University, Shanwei, Guangdong, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, China
| | - Xueping Huang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, China
| | - Jintao Lou
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, China
| | - Ziyi Cai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, China
| | - Guisheng Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, China
| | - Wenji Zhao
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, China
| | - Hao Xiong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, China
| | - Su-Hua Sha
- Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Charleston, SC, USA.
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Shenshan Medical Center, Memorial Hospital of Sun Yat-sen University, Shanwei, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
12
|
Kurasawa S, Mohri H, Tabuchi K, Ueyama T. Loss of synaptic ribbons is an early cause in ROS-induced acquired sensorineural hearing loss. Neurobiol Dis 2023; 186:106280. [PMID: 37666363 DOI: 10.1016/j.nbd.2023.106280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023] Open
Abstract
Considerable evidence of reactive oxygen species (ROS) involvement in cochlear hair cell (HC) loss, leading to acquired sensorineural hearing loss (SNHL), were reported. Cochlear synaptopathy between HCs and spiral ganglion neurons has been gathering attention as a cochlear HC loss precursor not detectable by normal auditory evaluation. However, the molecular mechanisms linking ROS with HC loss, as well as the relationship between ROS and cochlear synaptopathy have not been elucidated. Here, we examined these linkages using NOX4-TG mice, which constitutively produce ROS without stimulation. mRNA levels of Piccolo 1, a major component of the synaptic ribbon (a specialized structure surrounded by synaptic vesicles in HCs), were decreased in postnatal day 6 NOX4-TG mice cochleae compared to those in WT mice; they were also decreased by noise exposure in 2-week-old WT cochleae. As noise exposure induces ROS production, this suggests that the synaptic ribbon is a target of ROS. The level of CtBP2, another synaptic ribbon component, was significantly lower in NOX4-TG cochleae of 1-month-old and 4-month-old mice compared to that in WT mice, although no significant differences were noted at 1.5- and 2-months. The decrease in CtBP2 plateaued in 4-month-old NOX4-TG, while it gradually decreased from 1 to 6 months in WT mice. Furthermore, CtBP2 level in 2-month-old NOX4-TG mice decreased significantly after exposure to cisplatin and noise compared to that in WT mice. These findings suggest that ROS lead to developmental delays and early degeneration of synaptic ribbons, which could be potential targets for novel therapeutics for ROS-induced SNHL.
Collapse
Affiliation(s)
- Shunkou Kurasawa
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan; Department of Otolaryngology-Head and Neck Surgery, University of Tsukuba, Tsukuba 300-8575, Japan
| | - Hiroaki Mohri
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Keiji Tabuchi
- Department of Otolaryngology-Head and Neck Surgery, University of Tsukuba, Tsukuba 300-8575, Japan
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
13
|
Lun Y, Chen J, Lu P, Yuan H, Ma P, Wang W, Liang R, Li S, Gao W, Ding X, Wang Z, Guo J, Lu L. Predictive value of serum proteomic biomarkers for noise-induced hearing loss. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96827-96839. [PMID: 37582891 DOI: 10.1007/s11356-023-29294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
Early detection of noise-induced hearing loss (NIHL) in patients with long-term noise exposure is vital for improving public health and reducing social burden. However, at present, the diagnosis of NIHL mainly depends on audiometric testing, and the primary test is pure-tone audiometry. Moreover, testing requires professional operators and complex equipment; thus, NIHL is often diagnosed at a later disease stage. Using a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic approach, we identified 9 differentially expressed proteins (DEPs), namely, 6 upregulated serum proteins and 3 downregulated serum proteins, in samples from 50 ground crew personnel working at an air force station. Then, according to the results, we predicted that caldesmon (CALD1), myocilin (MYOC), zyxin (ZYX), creatine kinase M-type (CKM), insulin-like growth factor-binding protein 2 (IGFBP2), complement factor H-related protein 4 (CFHR4), prenylcysteine oxidase 1 (PCYOX1), heat shock cognate 71 kDa protein (HSPA8), and immunoglobulin lambda variable 3-21 (IGLV3-21) were associated with NIHL. We selected these DEPs as variables to perform logistic regression. Finally, a logistic regression model was constructed based on IGFBP2, ZYX, CKM, and CFHR4. The area under the curve was 0.894 (95% CI = 0.812 to 0.977). These findings suggested that IGFBP2, ZYX, CKM, and CFHR4 in serum are differentially expressed in NIHL patients and have the potential to be biomarkers for predicting the risk for NIHL. Further experiments in mice showed that ZYX and IGFBP2 in the cochlear were increased after noise exposure. ZYX and IGFBP2 may be involved in the occurrence and development of NIHL.
Collapse
Affiliation(s)
- Yuqiang Lun
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiawei Chen
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Peiheng Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hao Yuan
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Pengwei Ma
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Weilong Wang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Rui Liang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Siyu Li
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Gao
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xuerui Ding
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zi Wang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianing Guo
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lianjun Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
14
|
Lai R, Fang Q, Wu F, Pan S, Haque K, Sha SH. Prevention of noise-induced hearing loss by calpain inhibitor MDL-28170 is associated with upregulation of PI3K/Akt survival signaling pathway. Front Cell Neurosci 2023; 17:1199656. [PMID: 37484825 PMCID: PMC10359991 DOI: 10.3389/fncel.2023.1199656] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Noise-induced calcium overload in sensory hair cells has been well documented as an early step in the pathogenesis of noise-induced hearing loss (NIHL). Alterations in cellular calcium homeostasis mediate a series of cellular events, including activation of calcium-dependent protein kinases and phosphatases. Using cell-membrane- and blood-brain-barrier-permeable calpain-1 (μ-calpain) and calpain-2 (m-calpain) inhibitor MDL-28170, we tested the involvement of calpains, a family of calcium-dependent cysteine proteases, and the potential of MDL-28170 in preventing NIHL. Methods CBA/J mice at the age of 12 weeks were exposed to broadband noise with a frequency spectrum from 2-20 kHz for 2 h at 101 dB sound pressure level to induce permanent hearing loss as measured by auditory brainstem response and distortion product otoacoustic emissions. Morphological damage was assessed by quantification of remaining sensory hair cells and inner hair cell synapses 2 weeks after the exposure. Results MDL-28170 treatment by intraperitoneal injection significantly attenuated noise-induced functional deficits and cochlear pathologies. MDL-28170 treatment also prevented noise-induced cleavage of alpha-fodrin, a substrate for calpain-1. Furthermore, MDL-28170 treatment prevented reduction of PI3K/Akt signaling after exposure to noise and upregulated p85α and p-Akt (S473) in outer hair cells. Discussion These results indicate that noise-induced calpain activation negatively regulates PI3K/Akt downstream signaling, and that prevention of NIHL by treatment with MDL-28170 is associated with upregulation of PI3K/Akt survival signaling pathways.
Collapse
Affiliation(s)
- Ruosha Lai
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
- Department of Otolaryngology, Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qiaojun Fang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Fan Wu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Song Pan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Khujista Haque
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Su-Hua Sha
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
15
|
Xu K, Xu B, Gu J, Wang X, Yu D, Chen Y. Intrinsic mechanism and pharmacologic treatments of noise-induced hearing loss. Theranostics 2023; 13:3524-3549. [PMID: 37441605 PMCID: PMC10334830 DOI: 10.7150/thno.83383] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Noise accounts for one-third of hearing loss worldwide. Regretfully, noise-induced hearing loss (NIHL) is deemed to be irreversible due to the elusive pathogenic mechanisms that have not been fully elucidated. The complex interaction between genetic and environmental factors, which influences numerous downstream molecular and cellular events, contributes to the NIHL. In clinical settings, there are no effective therapeutic drugs other than steroids, which are the only treatment option for patients with NIHL. Therefore, the need for treatment of NIHL that is currently unmet, along with recent progress in our understanding of the underlying regulatory mechanisms, has led to a lot of new literatures focusing on this therapeutic field. The emergence of novel technologies that modify local drug delivery to the inner ear has led to the development of promising therapeutic approaches, which are currently under clinical investigation. In this comprehensive review, we focus on outlining and analyzing the basics and potential therapeutics of NIHL, as well as the application of biomaterials and nanomedicines in inner ear drug delivery. The objective of this review is to provide an incentive for NIHL's fundamental research and future clinical translation.
Collapse
Affiliation(s)
- Ke Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiayi Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
16
|
Tan WJT, Song L. Role of mitochondrial dysfunction and oxidative stress in sensorineural hearing loss. Hear Res 2023; 434:108783. [PMID: 37167889 DOI: 10.1016/j.heares.2023.108783] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Sensorineural hearing loss (SNHL) can either be genetically inherited or acquired as a result of aging, noise exposure, or ototoxic drugs. Although the precise pathophysiological mechanisms underlying SNHL remain unclear, an overwhelming body of evidence implicates mitochondrial dysfunction and oxidative stress playing a central etiological role. With its high metabolic demands, the cochlea, particularly the sensory hair cells, stria vascularis, and spiral ganglion neurons, is vulnerable to the damaging effects of mitochondrial reactive oxygen species (ROS). Mitochondrial dysfunction and consequent oxidative stress in cochlear cells can be caused by inherited mitochondrial DNA (mtDNA) mutations (hereditary hearing loss and aminoglycoside-induced ototoxicity), accumulation of acquired mtDNA mutations with age (age-related hearing loss), mitochondrial overdrive and calcium dysregulation (noise-induced hearing loss and cisplatin-induced ototoxicity), or accumulation of ototoxic drugs within hair cell mitochondria (drug-induced hearing loss). In this review, we provide an overview of our current knowledge on the role of mitochondrial dysfunction and oxidative stress in the development of SNHL caused by genetic mutations, aging, exposure to excessive noise, and ototoxic drugs. We also explore the advancements in antioxidant therapies for the different forms of acquired SNHL that are being evaluated in preclinical and clinical studies.
Collapse
Affiliation(s)
- Winston J T Tan
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 1023, New Zealand.
| | - Lei Song
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Otolaryngology - Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
| |
Collapse
|
17
|
Buswinka CJ, Osgood RT, Simikyan RG, Rosenberg DB, Indzhykulian AA. The hair cell analysis toolbox is a precise and fully automated pipeline for whole cochlea hair cell quantification. PLoS Biol 2023; 21:e3002041. [PMID: 36947567 PMCID: PMC10069775 DOI: 10.1371/journal.pbio.3002041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/03/2023] [Accepted: 02/17/2023] [Indexed: 03/23/2023] Open
Abstract
Our sense of hearing is mediated by sensory hair cells, precisely arranged and highly specialized cells subdivided into outer hair cells (OHCs) and inner hair cells (IHCs). Light microscopy tools allow for imaging of auditory hair cells along the full length of the cochlea, often yielding more data than feasible to manually analyze. Currently, there are no widely applicable tools for fast, unsupervised, unbiased, and comprehensive image analysis of auditory hair cells that work well either with imaging datasets containing an entire cochlea or smaller sampled regions. Here, we present a highly accurate machine learning-based hair cell analysis toolbox (HCAT) for the comprehensive analysis of whole cochleae (or smaller regions of interest) across light microscopy imaging modalities and species. The HCAT is a software that automates common image analysis tasks such as counting hair cells, classifying them by subtype (IHCs versus OHCs), determining their best frequency based on their location along the cochlea, and generating cochleograms. These automated tools remove a considerable barrier in cochlear image analysis, allowing for faster, unbiased, and more comprehensive data analysis practices. Furthermore, HCAT can serve as a template for deep learning-based detection tasks in other types of biological tissue: With some training data, HCAT's core codebase can be trained to develop a custom deep learning detection model for any object on an image.
Collapse
Affiliation(s)
- Christopher J Buswinka
- Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- Speech and Hearing Bioscience and Technology Program, Harvard University, Cambridge, Massachusetts, United States of America
| | - Richard T Osgood
- Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rubina G Simikyan
- Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David B Rosenberg
- Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Artur A Indzhykulian
- Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- Speech and Hearing Bioscience and Technology Program, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
18
|
Finding the balance: The elusive mechanisms underlying auditory hair cell mitochondrial biogenesis and mitophagy. Hear Res 2023; 428:108664. [PMID: 36566644 DOI: 10.1016/j.heares.2022.108664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
In all cell types, mitochondrial biogenesis is balanced with mitophagy to maintain a healthy mitochondrial pool that sustains specific energetic demands. Cell types that have a higher energetic burden, such as skeletal muscle cells and cardiomyocytes, will subsequently develop high mitochondrial volumes. In these cells, calcium influx during activity triggers cascades leading to activation of the co-transcriptional regulation factor PGC-1α, a master regulator of mitochondrial biogenesis, in a well-defined pathway. Despite the advantages in ATP production, high mitochondrial volumes might prove to be perilous, as it increases exposure to reactive oxygen species produced during oxidative phosphorylation. Mechanosensory hair cells are highly metabolically active cells, with high total mitochondrial volumes to meet that demand. However, the mechanisms leading to expansion and maintenance of the hair cell mitochondrial pool are not well defined. Calcium influx during mechanotransduction and synaptic transmission regulate hair cell mitochondria, leading to a possibility that similar to skeletal muscle and cardiomyocytes, intracellular calcium underlies the expansion of the hair cell mitochondrial volume. This review briefly summarizes the potential mechanisms underlying mitochondrial biogenesis in other cell types and in hair cells. We propose that hair cell mitochondrial biogenesis is primarily product of cellular differentiation rather than calcium influx, and that the hair cell high mitochondrial volume renders them more susceptible to reactive oxygen species increased by calcium flux than other cell types.
Collapse
|
19
|
Silva H, Martins FG. Cardiovascular Activity of Ginkgo biloba-An Insight from Healthy Subjects. BIOLOGY 2022; 12:15. [PMID: 36671707 PMCID: PMC9855530 DOI: 10.3390/biology12010015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Ginkgo biloba is the oldest living tree species in the world. Despite less than encouraging clinical results, extracts from its leaves are among the most used herbal preparations in the prevention and treatment of cardiovascular diseases. Most data on the efficacy of Ginkgo biloba on cardiovascular disease is from clinical studies, with few results from healthy subjects. This paper aims to provide a comprehensive review of the mechanisms underlying the known beneficial cardiovascular activities of Ginkgo biloba. It displays myocardial suppressant and vasorelaxant activities ex vivo, potentiating endothelial-dependent and -independent pathways. It improves perfusion in different vascular beds, namely ocular, cochlear, cutaneous, cerebral, and coronary. Although scarce, evidence suggests that Ginkgo biloba displays a heterogeneous effect on tissue perfusion which is dependent on the individual elimination pathways. It displays an acceptable safety profile, with most reported adverse reactions constituting rare occurrences. Collectively, Ginkgo biloba positively impacts cardiovascular physiology, improving hemodynamics and organ perfusion. In the future, better controlled clinical studies should be performed in order to identify the target populations who may benefit the most from pharmacotherapeutic interventions involving Ginkgo biloba.
Collapse
Affiliation(s)
- Henrique Silva
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Biophysics and Biomedical Engineering Institute (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Filipe Gazalho Martins
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
20
|
Sun Y, Zou S, He Z, Chen X. The role of autophagy and ferroptosis in sensorineural hearing loss. Front Neurosci 2022; 16:1068611. [PMID: 36578828 PMCID: PMC9791179 DOI: 10.3389/fnins.2022.1068611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
Hearing loss has become a common sensory defect in humans. Because of the limited regenerative ability of mammalian cochlear hair cells (HCs), HC damage (caused by ototoxic drugs, aging, and noise) is the main risk factor of hearing loss. However, how HCs can be protected from these risk factors remains to be investigated. Autophagy is a process by which damaged cytoplasmic components are sequestered into lysosomes for degradation. Ferroptosis is a novel form of non-apoptotic regulated cell death involving intracellular iron overloading and iron-dependent lipid peroxide accumulation. Recent studies have confirmed that autophagy is associated with ferroptosis, and their crosstalk may be the potential therapeutic target for hearing loss. In this review, we provide an overview of the mechanisms of ferroptosis and autophagy as well as their relationship with HC damage, which may provide insights for a new future in the protection of HCs.
Collapse
|
21
|
Ishitsuka Y, Irie T, Matsuo M. Cyclodextrins applied to the treatment of lysosomal storage disorders. Adv Drug Deliv Rev 2022; 191:114617. [PMID: 36356931 DOI: 10.1016/j.addr.2022.114617] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/14/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Cyclodextrin (CD), a cyclic oligosaccharide, is a pharmaceutical additive that improves the solubility of hydrophobic compounds. Recent research has focused on the potential active pharmaceutical abilities of CD. Lysosomal storage diseases are inherited metabolic diseases characterized by lysosomal dysfunction and abnormal lipid storage. Niemann-Pick disease type C (NPC) is caused by mutations in cholesterol transporter genes (NPC1, NPC2) and is characterized by cholesterol accumulation in lysosomes. A biocompatible cholesterol solubilizer 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was recently used in NPC patients for compassionate use and in clinical trials. HP-β-CD is an attractive drug candidate for NPC; however, its adverse effects, such as ototoxicity, should be solved. In this review, we discuss the current use of HP-β-CD in basic and clinical research and discuss alternative CD derivatives that may outperform HP-β-CD, which should be considered for clinical use. The potential of CD therapy for the treatment of other lysosomal storage diseases is also discussed.
Collapse
Affiliation(s)
- Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Tetsumi Irie
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Packaging Technology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
22
|
Paik CB, Pei M, Oghalai JS. Review of blast noise and the auditory system. Hear Res 2022; 425:108459. [PMID: 35181171 PMCID: PMC9357863 DOI: 10.1016/j.heares.2022.108459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 11/22/2022]
Abstract
The auditory system is particularly vulnerable to blast injury due to the ear's role as a highly sensitive pressure transducer. Over the past several decades, studies have used a variety of animal models and experimental procedures to recreate blast-induced acoustic trauma. Given the developing nature of this field and our incomplete understanding of molecular mechanisms underlying blast-related auditory disturbances, an updated discussion about these studies is warranted. Here, we comprehensively review well-established blast-related auditory pathology including tympanic membrane perforation and hair cell loss. In addition, we discuss important mechanistic studies that aim to bridge gaps in our current understanding of the molecular and microstructural events underlying blast-induced cochlear, auditory nerve, brainstem, and central auditory system damage. Key findings from the recent literature include the association between endolymphatic hydrops and cochlear synaptic loss, blast-induced neuroinflammatory markers in the peripheral and central auditory system, and therapeutic approaches targeting biochemical markers of blast injury. We conclude that blast is an extreme form of noise exposure. Blast waves produce cochlear damage that appears similar to, but more extreme than, the standard noise exposure protocols used in auditory research. However, experimental variations in studies of blast-induced acoustic trauma make it challenging to compare and interpret data across studies.
Collapse
Affiliation(s)
- Connie B Paik
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA
| | - Michelle Pei
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA
| | - John S Oghalai
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA.
| |
Collapse
|
23
|
Zhao C, Yang Z, Chen Z, Liang W, Gong S, Du Z. AAV-ie-mediated UCP2 overexpression accelerates inner hair cell loss during aging in vivo. Mol Med 2022; 28:124. [PMID: 36266633 PMCID: PMC9583487 DOI: 10.1186/s10020-022-00552-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Uncoupling protein 2 (UCP2), activated by excessive reactive oxygen species (ROS) in vivo, has the dual effect of reducing ROS to protect against oxidative stress and reducing ATP production to regulate cellular metabolism. Both the UCP2 and ROS are increased in cochleae in age-related hearing loss (ARHL). However, the role of UCP2 in sensory hair cells in ARHL remains unclear. METHODS Male C57BL/6 J mice were randomly assigned to an 8-week-old group (Group 1), a 16-week-old group (Group 2), a 16-week-old + adeno-associated virus-inner ear (AAV-ie) group (Group 3), and a 16-week-old + AAV-ie-UCP2 group (Group 4). Mice aged 8 weeks were administrated with AAV-ie-GFP or AAV-ie-UCP2 via posterior semicircular canal injection. Eight weeks after this viral intervention, hearing thresholds and wave-I amplitudes were tested by auditory brainstem response (ABR). Subsequently, the cochlear basilar membrane was dissected for investigation. The number of hair cells and inner hair cell (IHC) synapses, the level of ROS, and the expression of AMP-activated protein kinase α (AMPKα), were assessed by immunofluorescence staining. In addition, mitochondrial function was determined, and the expression of AMPKα and UCP2 proteins was further evaluated using western blotting. RESULTS Mice with early-onset ARHL exhibited enhanced oxidative stress and loss of outer hair cells and IHC synapses, while UCP2 overexpression aggravated hearing loss and cochlear pathophysiological changes in mice. UCP2 overexpression resulted in a notable decrease in the number of IHCs and IHC synapses, caused ATP depletion and excessive ROS generation, increased AMPKα protein levels, and promoted IHC apoptosis, especially in the apical and middle turns of the cochlea. CONCLUSION Collectively, our data suggest that UCP2 overexpression may cause mitochondrial dysfunction via energy metabolism, which activates mitochondrion-dependent cellular apoptosis and leads to IHC loss, ultimately exacerbating ARHL.
Collapse
Affiliation(s)
- Chunli Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng, Beijing, 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Zijing Yang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng, Beijing, 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Zhongrui Chen
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng, Beijing, 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Wenqi Liang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng, Beijing, 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng, Beijing, 100050, China.
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China.
| | - Zhengde Du
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng, Beijing, 100050, China.
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
24
|
Wu F, Sambamurti K, Sha S. Current Advances in Adeno-Associated Virus-Mediated Gene Therapy to Prevent Acquired Hearing Loss. J Assoc Res Otolaryngol 2022; 23:569-578. [PMID: 36002664 PMCID: PMC9613825 DOI: 10.1007/s10162-022-00866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/13/2022] [Indexed: 11/25/2022] Open
Abstract
Adeno-associated viruses (AAVs) are viral vectors that offer an excellent platform for gene therapy due to their safety profile, persistent gene expression in non-dividing cells, target cell specificity, lack of pathogenicity, and low immunogenicity. Recently, gene therapy for genetic hearing loss with AAV transduction has shown promise in animal models. However, AAV transduction for gene silencing or expression to prevent or manage acquired hearing loss is limited. This review provides an overview of AAV as a leading gene delivery vector for treating genetic hearing loss in animal models. We highlight the advantages and shortcomings of AAV for investigating the mechanisms and preventing acquired hearing loss. We predict that AAV-mediated gene manipulation will be able to prevent acquired hearing loss.
Collapse
Affiliation(s)
- Fan Wu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kumar Sambamurti
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Suhua Sha
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA.
| |
Collapse
|
25
|
Huang E, Li S. Liver Kinase B1 Functions as a Regulator for Neural Development and a Therapeutic Target for Neural Repair. Cells 2022; 11:cells11182861. [PMID: 36139438 PMCID: PMC9496952 DOI: 10.3390/cells11182861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
The liver kinase B1 (LKB1), also known as serine/threonine kinase 11 (STK11) and Par-4 in C. elegans, has been identified as a master kinase of AMPKs and AMPK-related kinases. LKB1 plays a crucial role in cell growth, metabolism, polarity, and tumor suppression. By interacting with the downstream signals of SAD, NUAK, MARK, and other kinases, LKB1 is critical to regulating neuronal polarization and axon branching during development. It also regulates Schwann cell function and the myelination of peripheral axons. Regulating LKB1 activity has become an attractive strategy for repairing an injured nervous system. LKB1 upregulation enhances the regenerative capacity of adult CNS neurons and the recovery of locomotor function in adult rodents with CNS axon injury. Here, we update the major cellular and molecular mechanisms of LKB1 in regulating neuronal polarization and neural development, and the implications thereof for promoting neural repair, axon regeneration, and functional recovery in adult mammals.
Collapse
|
26
|
Zhao R, Ma C, Wang M, Li X, Liu W, Shi L, Yu N. Killer or helper? The mechanism underlying the role of adenylate activated kinase in sound conditioning. Front Synaptic Neurosci 2022; 14:940788. [PMID: 36160917 PMCID: PMC9490174 DOI: 10.3389/fnsyn.2022.940788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo investigate whether sound conditioning influences auditory system protection by activating adenylate activated kinase (AMPK), and if such adaption protects ribbon synapses from high-intensity noise exposure.Materials and methodsCBA mice (12 weeks old) were randomly divided into four groups (n = 24 mice per group): control, sound conditioning (SC), sound conditioning plus noise exposure (SC+NE), and noise exposure (NE). Hearing thresholds were assessed before testing, after sound conditioning, and 0, 3, 7, and 14 days after 110 dB noise exposure. Amplitudes and latencies of wave I at 90 dB intensity were assessed before test, after conditioning, and at 0 and 14 days after 110 dB noise exposure. One cochlea from each mouse was subjected to immunofluorescence staining to assess synapse numbers and AMPK activation, while the other cochlea was analyzed for phosphorylated adenylate activated kinase (p-AMPK) protein expression by western blot.ResultsThere was no significant difference in auditory brainstem response (ABR) threshold between SC and control mice. The degree of hearing loss of animals in the two SC groups was significantly reduced compared to the NE group after 110 dB noise exposure. Animals in the SC group showed faster recovery to normal thresholds, and 65 dB SPL sound conditioning had a stronger auditory protection effect. After sound conditioning, the amplitude of ABR I wave in the SC group was higher than that in the control group. Immediately after noise exposure (D0), the amplitudes of ABR I wave decreased significantly in all groups; the most significant decrease was in the NE group, with amplitude in 65SC+NE group significantly higher than that in the 85SC+NE group. Wave I latency in the SC group was significantly shorter than that in the control group. At D0, latency was prolonged in the NE group compared with the control group. In contrast, there was no significant difference in latency between the 65SC+NE and 85SC+NE groups. Further, at D14, there was no significant difference between the NE and control groups, while latency remained significantly shorter in the 65SC+NE and 85SC+NE groups compared with controls. Number of ribbon synapses in SC mice did not differ significantly from that in controls. After 110 dB noise exposure, there were significantly more ribbon synapses in the SC+NE group than the NE group. Ribbon synapses of all groups were recovered 14 days after the noise exposure, while the SC group had a shorter recovery time than the non-SC groups (p < 0.05). AMPK was highly activated in the SC group, and p-AMPK expression was detected; however, after 110 dB noise exposure, the strongest protein expression was detected in the NE group, followed by the SC+NE groups, and the lowest protein expression was detected in the control group.ConclusionSound conditioning animals were more noise resistant and recovered hearing faster than non-SC animals. Further, 65 dB SPL SC offered better hearing protection than 85 dB SPL SC. Early AMPK activation may protect hearing by increasing ATP storage and reducing the release of large quantities of p-AMPK, which could help to inhibit synapse damage.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Otorhinolaryngology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Changhong Ma
- Department of Otorhinolaryngology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Minjun Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xinxin Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lin Shi
- Department of Otorhinolaryngology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Lin Shi,
| | - Ning Yu
- Department of Otolaryngology-Head and Neck Surgery, Ministry of Education, National Clinical Research Center for Otolaryngologic Diseases, The Sixth Medical Center of People’s Liberation Army (PLA) General Hospital, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
- Ning Yu,
| |
Collapse
|
27
|
Lee CH, Jeon J, Lee SM, Kim SY. Differential Expression of miRNAs and Their Predicted Target Pathways in Cochlear Nucleus Following Chronic Noise Exposure in Rats. Cells 2022; 11:cells11152266. [PMID: 35892563 PMCID: PMC9332242 DOI: 10.3390/cells11152266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Several recent preclinical studies have reported that dynamic changes in miRNA expression contribute to hearing function. This study aims to investigate miRNA expression changes in the cochlear nuclei (CN) of rats following chronic noise exposure. Eight-week-old rats (n = 14) were exposed to noise for 4 weeks. The control rats (n = 14) were raised under identical conditions without noise. Two months after noise exposure, the auditory brainstem response (ABR) was examined, and the cochlea and CN were harvested. In the CN, the expression levels of arc, neurocan, and brevican were measured (n = 6 per group). Furthermore, the expression levels of miRNAs and their predicted target genes were measured in the CN (n = 8 per group). ABR thresholds were elevated after 4 weeks of noise exposure, which were maintained for 3 months. In CN, the protein expression of arc and brevican was higher in the noise-exposed group than in the control group (0.95 [standard deviation (SD) = 0.53] vs. 3.19 [SD = 1.00], p < 0.001 for arc and 1.02 [SD = 0.10] vs. 1.66 [SD = 0.24], p < 0.001 for brevican). The noise-exposed rats exhibited lower expression levels of miR-758-5p, miR-15b-5p, miR-212-3p, miR-199a-5p, and miR-134-3p than the control rats (all p < 0.001). The AMPK signaling pathway was predicted to be regulated by these miRNAs. The predicted target genes AKT3, SIRT1, and PRKAA1 were highly expressed in noise-exposed rats. In CN of noise-exposed rats, the miRNAs of miR-758-5p, miR-15b-5p, miR-212-3p, miR-199a-5p, and miR-134-3p were reduced and related to AMPK signaling including AKT3 and SIRT1 expression. These modulation of signaling pathways could mediate the increased expression of brevican in the CN of noise-exposed rats.
Collapse
|
28
|
Zhang J, Fan W, Neng L, Chen B, Wang Y, Zuo B, Lu W. Adenosine improves LPS-induced ROS expression and increasing in monolayer permeability of endothelial cell via acting on A2AR. Microvasc Res 2022; 143:104403. [PMID: 35753505 DOI: 10.1016/j.mvr.2022.104403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022]
Abstract
Blood-labyrinth barrier (BLB) disruption plays a crucial role in the development of otitis media. The aims of our study was to explore the role and action mechanism of adenosine in LPS-induced endothelial cells (ECs) damage, which are one of the major principal cell type for blood-labyrinth barrier (BLB), and so as to assess the potential of adenosine to be used in the treatment of BLB disruption in animal experiment. In our study, ECs were treated with LPS to mimic BLB damage in vitro. Our data showed that adenosine at dosage of 1, 10, and 20 μM had no influence on the cell viability of ECs. LPS treatment obviously suppressed the expression of Occludin and Zonula occludens-1 (ZO-1) in ECs, which was partly recused by adenosine treatment. Meantime, LPS-induced increasing in reactive oxygen species (ROS) production and ECs permeability also was rescued by adenosine treatment. However, inhibition the A2A receptor (A2AR) could attenuate the influence of adenosine on LPS-treated ECs, indicating that adenosine alleviated LPS-induced BLB damage by activating A2AR. Moreover, the inhibition of adenosine to LPS-induced inactivation of AMPK/AKT signaling pathway was partly recused by A2AR suppression. In addition, Compound C (an AMPK inhibitor) decreased the expression of Occludin and ZO-1 in ECs following LPS combined with adenosine treatment. In conclusion, adenosine alleviates LPS-induced BLB damage via AMPK/AKT pathway through activation of A2AR. This work suggests that adenosine may be a candidate drug for the treatment of BLB dysfunction-related diseases.
Collapse
Affiliation(s)
- Jinhui Zhang
- Department of otorhinolaryngology, Head and Neck surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Jianshe Road, Zhengzhou 450052, Henan, China.
| | - Wenya Fan
- Department of otorhinolaryngology, Head and Neck surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Jianshe Road, Zhengzhou 450052, Henan, China
| | - Lingling Neng
- Department of otorhinolaryngology, Head and Neck surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Jianshe Road, Zhengzhou 450052, Henan, China
| | - Bei Chen
- Department of otorhinolaryngology, Head and Neck surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Jianshe Road, Zhengzhou 450052, Henan, China
| | - Yanting Wang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, No 16, Jiangsu Road, Qingdao, Shandong, China
| | - Bin Zuo
- Department of otorhinolaryngology, Head and Neck surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Jianshe Road, Zhengzhou 450052, Henan, China
| | - Wei Lu
- Department of otorhinolaryngology, Head and Neck surgery, The First Affiliated Hospital of Zhengzhou University, No 1 Jianshe Road, Zhengzhou 450052, Henan, China.
| |
Collapse
|
29
|
Wu F, Hill K, Fang Q, He Z, Zheng H, Wang X, Xiong H, Sha SH. Traumatic-noise-induced hair cell death and hearing loss is mediated by activation of CaMKKβ. Cell Mol Life Sci 2022; 79:249. [PMID: 35438341 PMCID: PMC9844253 DOI: 10.1007/s00018-022-04268-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND The Ca2+/calmodulin-dependent protein kinase kinases (CaMKKs) are serine/threonine-directed protein kinases that are activated following increases in intracellular calcium, playing a critical role in neuronal signaling. Inner-ear-trauma-induced calcium overload in sensory hair cells has been well documented in the pathogenesis of traumatic noise-induced hair cell death and hearing loss, but there are no established pharmaceutical therapies available due to a lack of specific therapeutic targets. In this study, we investigated the activation of CaMKKβ in the inner ear after traumatic noise exposure and assessed the prevention of noise-induced hearing loss (NIHL) with RNA silencing. RESULTS Treatment with short hairpin RNA of CaMKKβ (shCaMKKβ) via adeno-associated virus transduction significantly knocked down CaMKKβ expression in the inner ear. Knockdown of CaMKKβ significantly attenuated noise-induced hair cell loss and hearing loss (NIHL). Additionally, pretreatment with naked CaMKKβ small interfering RNA (siCaMKKβ) attenuated noise-induced losses of inner hair cell synapses and OHCs and NIHL. Furthermore, traumatic noise exposure activates CaMKKβ in OHCs as demonstrated by immunolabeling for p-CaMKI. CaMKKβ mRNA assessed by fluorescence in-situ hybridization and immunolabeling for CaMKKβ in OHCs also increased after the exposure. Finally, pretreatment with siCaMKKβ diminished noise-induced activation of AMPKα in OHCs. CONCLUSIONS These findings demonstrate that traumatic-noise-induced OHC loss and hearing loss occur primarily via activation of CaMKKβ. Targeting CaMKKβ is a key strategy for prevention of noise-induced hearing loss. Furthermore, our data suggest that noise-induced activation of AMPKα in OHCs occurs via the CaMKKβ pathway.
Collapse
Affiliation(s)
- Fan Wu
- Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kayla Hill
- Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
| | - Qiaojun Fang
- Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
- School of Life Sciences and Technology, Southeast University, Nanjing, 210096, China
| | - Zuhong He
- Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
| | - Hongwei Zheng
- Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
| | - Xianren Wang
- Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
| | - Hao Xiong
- Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
| | - Su-Hua Sha
- Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA.
| |
Collapse
|
30
|
Early S, Du E, Boussaty E, Friedman R. Genetics of noise-induced hearing loss in the mouse model. Hear Res 2022; 425:108505. [DOI: 10.1016/j.heares.2022.108505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/28/2022] [Accepted: 04/07/2022] [Indexed: 12/01/2022]
|
31
|
Bhatt IS, Washnik N, Torkamani A. Suprathreshold Auditory Measures for Detecting Early-Stage Noise-Induced Hearing Loss in Young Adults. J Am Acad Audiol 2022; 33:185-195. [PMID: 36195294 PMCID: PMC10858682 DOI: 10.1055/s-0041-1740362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
BACKGROUND Over 1 billion young adults are at risk for developing noise-induced hearing loss (NIHL) due to their habit of listening to music at loud levels. The gold standard for detecting NIHL is the audiometric notch around 3,000 to 6,000 Hz observed in pure tone audiogram. However, recent studies suggested that suprathreshold auditory measures might be more sensitive to detect early-stage NIHL in young adults. PURPOSE The present study compared suprathreshold measures in individuals with high and low noise exposure backgrounds (NEBs). We hypothesized that individuals with high NEB would exhibit reduced performance on suprathreshold measures than those with low NEB. STUDY SAMPLE An initial sample of 100 English-speaking healthy adults (18-35 years; females = 70) was obtained from five university classes. We identified 15 participants with the lowest NEB scores (10 females) and 15 participants with the highest NEB scores (10 females). We selected a sample of healthy young adults with no history of middle ear infection, and those in the low NEB group were selected with no history of impulse noise exposure. DATA COLLECTION AND ANALYSIS The study included conventional audiometry, extended high-frequency audiometry, middle ear muscle reflex (MEMR) thresholds, distortion-product otoacoustic emissions (DPOAEs), QuickSIN, and suprathreshold auditory brainstem response (ABR) measures. We used independent sample t-tests, correlation coefficients, and linear mixed model analysis to compare the audiometric measures between the NEB groups. RESULTS The prevalence of audiometric notch was low in the study sample, even for individuals with high NEB. We found that: (1) individuals with high NEB revealed significantly reduced QuickSIN performance than those with low NEB; (2) music exposure via earphone revealed a significant association with QuickSIN; (3) individuals with high NEB revealed significantly reduced DPOAEs and ABR wave I amplitude compared with individuals with low NEB; (4) MEMR and ABR latency measures showed a modest association with NEB; and (5) audiometric thresholds across the frequency range did not show statistically significant association with NEB. CONCLUSION Our results suggest that young adults with high NEB might exhibit impaired peripheral neural coding deficits leading to reduced speech-in-noise (SIN) performance despite clinically normal hearing thresholds. SIN measures might be more sensitive than audiometric notch for detecting early-stage NIHL in young adults.
Collapse
Affiliation(s)
- Ishan S Bhatt
- Department of Communication Sciences and Disorders, The University of Iowa, Iowa City, Iowa
| | - Nilesh Washnik
- Department of Communication Sciences & Disorders, Ohio University, Athens, Ohio
| | - Ali Torkamani
- Department of Integrative Structural and Computational Biology, Scripps Translational Science Institute, La Jolla, California
| |
Collapse
|
32
|
Zhao J, Liu H, Huang Z, Yang R, Gong L. The Ameliorative Effect of JNK Inhibitor D-JNKI-1 on Neomycin-Induced Apoptosis in HEI-OC1 Cells. Front Mol Neurosci 2022; 15:824762. [PMID: 35359571 PMCID: PMC8963355 DOI: 10.3389/fnmol.2022.824762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Aminoglycosides can cause ototoxicity and lead to hair cell damage. Neomycin-induced ototoxicity is related to increased production of reactive oxygen species (ROS) and triggering hair cell apoptosis. The c-Jun-N-terminal kinase (JNK) pathway plays an essential role during hair cell damage. This study was designed to investigate an inhibitor of JNK, D-JNKI-1 (AM-111/brimapitide) in neomycin-induced HEI-OC1 cell apoptosis. The results demonstrate that neomycin increased intracellular ROS accumulation, which induces apoptosis. D-JNKI-1 decreased neomycin-induced ROS generation, reduced caspase-8 and cleavage of caspase-3 expression, sustained JNK activation and AMPK and p38 phosphorylation, downregulated Bax, and upregulated Bcl-2. Together, D-JNKI-1 plays an essential role in protecting against neomycin-induced HEI-OC1 cell apoptosis by suppressing ROS generation, which inhibited JNK activation and AMPK and p38 phosphorylation to ameliorate JNK-mediated HEI-OC1 cell apoptosis.
Collapse
|
33
|
Chen JW, Ma PW, Yuan H, Wang WL, Lu PH, Ding XR, Lun YQ, Yang Q, Lu LJ. mito-TEMPO Attenuates Oxidative Stress and Mitochondrial Dysfunction in Noise-Induced Hearing Loss via Maintaining TFAM-mtDNA Interaction and Mitochondrial Biogenesis. Front Cell Neurosci 2022; 16:803718. [PMID: 35210991 PMCID: PMC8861273 DOI: 10.3389/fncel.2022.803718] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
The excessive generation of reactive oxygen species (ROS) and mitochondrial damage have been widely reported in noise-induced hearing loss (NIHL). However, the specific mechanism of noise-induced mitochondrial damage remains largely unclear. In this study, we showed that acoustic trauma caused oxidative damage to mitochondrial DNA (mtDNA), leading to the reduction of mtDNA content, mitochondrial gene expression and ATP level in rat cochleae. The expression level and mtDNA-binding function of mitochondrial transcription factor A (TFAM) were impaired following acoustic trauma without affecting the upstream PGC-1α and NRF-1. The mitochondria-target antioxidant mito-TEMPO (MT) was demonstrated to enter the inner ear after the systemic administration. MT treatment significantly alleviated noise-induced auditory threshold shifts 3d and 14d after noise exposure. Furthermore, MT significantly reduced outer hair cell (OHC) loss, cochlear ribbon synapse loss, and auditory nerve fiber (ANF) degeneration after the noise exposure. In addition, we found that MT treatment effectively attenuated noise-induced cochlear oxidative stress and mtDNA damage, as indicated by DHE, 4-HNE, and 8-OHdG. MT treatment also improved mitochondrial biogenesis, ATP generation, and TFAM-mtDNA interaction in the cochlea. These findings suggest that MT has protective effects against NIHL via maintaining TFAM-mtDNA interaction and mitochondrial biogenesis based on its ROS scavenging capacity.
Collapse
Affiliation(s)
- Jia-Wei Chen
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Peng-Wei Ma
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hao Yuan
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei-Long Wang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Pei-Heng Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xue-Rui Ding
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu-Qiang Lun
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lian-Jun Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
34
|
ROS-Induced Oxidative Damage and Mitochondrial Dysfunction Mediated by Inhibition of SIRT3 in Cultured Cochlear Cells. Neural Plast 2022; 2022:5567174. [PMID: 35096052 PMCID: PMC8791755 DOI: 10.1155/2022/5567174] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/23/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is one of the most common causes of disability worldwide. Previous evidence suggests that reactive oxygen species (ROS) may play an important role in the occurrence and development of SNHL, while its mechanism remains unclear. We cultured dissected organs of Corti in medium containing different concentrations (0, 0.25, 0.5, 0.75, 1, and 1.25 mM) of hydrogen peroxide (H2O2) and established a four-concentration model of 0, 0.5, 0.75, and 1 mM to study different degrees of damage. We examined ROS-induced mitochondrial damage and the role of sirtuin 3 (SIRT3). Our results revealed that the number of ribbon synapses and hair cells appeared significantly concentration-dependent decrease with exposure to H2O2. Outer hair cells (OHCs) and inner hair cells (IHCs) began to be lost, and activation of apoptosis of hair cells (HCs) was observed at 0.75 mM and 1 mM H2O2, respectively. In contrast with the control group, the accumulation of ROS was significantly higher, and the mitochondrial membrane potential (MMP) was lower in the H2O2-treated groups. Furthermore, the expression of SIRT3, FOXO3A, and SOD2 proteins declined, except for an initial elevation of SIRT3 between 0 and 0.75 mM H2O2. Administration of the selective SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine resulted in increased damage to the cochlea, including loss of ribbon synapses and hair cells, apoptosis of hair cells, more production of ROS, and reduced mitochondrial membrane potential. Thoroughly, our results highlight that ROS-induced mitochondrial oxidative damage drives hair cell degeneration and apoptosis. Furthermore, SIRT3 is crucial for preserving mitochondrial function and protecting the cochlea from oxidative damage and may represent a possible therapeutic target for SNHL.
Collapse
|
35
|
Xu P, Wang L, Peng H, Liu H, Liu H, Yuan Q, Lin Y, Xu J, Pang X, Wu H, Yang T. Disruption of Hars2 in Cochlear Hair Cells Causes Progressive Mitochondrial Dysfunction and Hearing Loss in Mice. Front Cell Neurosci 2022; 15:804345. [PMID: 34975414 PMCID: PMC8715924 DOI: 10.3389/fncel.2021.804345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Mutations in a number of genes encoding mitochondrial aminoacyl-tRNA synthetases lead to non-syndromic and/or syndromic sensorineural hearing loss in humans, while their cellular and physiological pathology in cochlea has rarely been investigated in vivo. In this study, we showed that histidyl-tRNA synthetase HARS2, whose deficiency is associated with Perrault syndrome 2 (PRLTS2), is robustly expressed in postnatal mouse cochlea including the outer and inner hair cells. Targeted knockout of Hars2 in mouse hair cells resulted in delayed onset (P30), rapidly progressive hearing loss similar to the PRLTS2 hearing phenotype. Significant hair cell loss was observed starting from P45 following elevated reactive oxygen species (ROS) level and activated mitochondrial apoptotic pathway. Despite of normal ribbon synapse formation, whole-cell patch clamp of the inner hair cells revealed reduced calcium influx and compromised sustained synaptic exocytosis prior to the hair cell loss at P30, consistent with the decreased supra-threshold wave I amplitudes of the auditory brainstem response. Starting from P14, increasing proportion of morphologically abnormal mitochondria was observed by transmission electron microscope, exhibiting swelling, deformation, loss of cristae and emergence of large intrinsic vacuoles that are associated with mitochondrial dysfunction. Though the mitochondrial abnormalities are more prominent in inner hair cells, it is the outer hair cells suffering more severe cell loss. Taken together, our results suggest that conditional knockout of Hars2 in mouse cochlear hair cells leads to accumulating mitochondrial dysfunction and ROS stress, triggers progressive hearing loss highlighted by hair cell synaptopathy and apoptosis, and is differentially perceived by inner and outer hair cells.
Collapse
Affiliation(s)
- Pengcheng Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Longhao Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Hu Peng
- Department of Otolaryngology-Head and Neck Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Huihui Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Hongchao Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Qingyue Yuan
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yun Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jun Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xiuhong Pang
- Department of Otolaryngology-Head and Neck Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Tao Yang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
36
|
Badash I, Quiñones PM, Oghalai KJ, Wang J, Lui CG, Macias-Escriva F, Applegate BE, Oghalai JS. Endolymphatic Hydrops is a Marker of Synaptopathy Following Traumatic Noise Exposure. Front Cell Dev Biol 2021; 9:747870. [PMID: 34805158 PMCID: PMC8602199 DOI: 10.3389/fcell.2021.747870] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/20/2021] [Indexed: 12/28/2022] Open
Abstract
After acoustic trauma, there can be loss of synaptic connections between inner hair cells and auditory neurons in the cochlea, which may lead to hearing abnormalities including speech-in-noise difficulties, tinnitus, and hyperacusis. We have previously studied mice with blast-induced cochlear synaptopathy and found that they also developed a build-up of endolymph, termed endolymphatic hydrops. In this study, we used optical coherence tomography to measure endolymph volume in live CBA/CaJ mice exposed to various noise intensities. We quantified the number of synaptic ribbons and postsynaptic densities under the inner hair cells 1 week after noise exposure to determine if they correlated with acute changes in endolymph volume measured in the hours after the noise exposure. After 2 h of noise at an intensity of 95 dB SPL or below, both endolymph volume and synaptic counts remained normal. After exposure to 2 h of 100 dB SPL noise, mice developed endolymphatic hydrops and had reduced synaptic counts in the basal and middle regions of the cochlea. Furthermore, round-window application of hypertonic saline reduced the degree of endolymphatic hydrops that developed after 100 dB SPL noise exposure and partially prevented the reduction in synaptic counts in the cochlear base. Taken together, these results indicate that endolymphatic hydrops correlates with noise-induced cochlear synaptopathy, suggesting that these two pathologic findings have a common mechanistic basis.
Collapse
Affiliation(s)
- Ido Badash
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Patricia M Quiñones
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Kevin J Oghalai
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Juemei Wang
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Christopher G Lui
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Frank Macias-Escriva
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Brian E Applegate
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States.,Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - John S Oghalai
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States.,Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
37
|
AudioChip: A Deep Phenotyping Approach for Deconstructing and Quantifying Audiological Phenotypes of Self-Reported Speech Perception Difficulties. Ear Hear 2021; 43:1023-1036. [PMID: 34860719 PMCID: PMC9010350 DOI: 10.1097/aud.0000000000001158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES About 15% of U.S. adults report speech perception difficulties despite showing normal audiograms. Recent research suggests that genetic factors might influence the phenotypic spectrum of speech perception difficulties. The primary objective of the present study was to describe a conceptual framework of a deep phenotyping method, referred to as AudioChipping, for deconstructing and quantifying complex audiometric phenotypes. DESIGN In a sample of 70 females 18 to 35 years of age with normal audiograms (from 250 to 8000 Hz), the study measured behavioral hearing thresholds (250 to 16,000 Hz), distortion product otoacoustic emissions (1000 to 16,000 Hz), click-evoked auditory brainstem responses (ABR), complex ABR (cABR), QuickSIN, dichotic digit test score, loudness discomfort level, and noise exposure background. The speech perception difficulties were evaluated using the Speech, Spatial, and Quality of Hearing Scale-12-item version (SSQ). A multiple linear regression model was used to determine the relationship between SSQ scores and audiometric measures. Participants were categorized into three groups (i.e., high, mid, and low) using the SSQ scores before performing the clustering analysis. Audiometric measures were normalized and standardized before performing unsupervised k-means clustering to generate AudioChip. RESULTS The results showed that SSQ and noise exposure background exhibited a significant negative correlation. ABR wave I amplitude, cABR offset latency, cABR response morphology, and loudness discomfort level were significant predictors for SSQ scores. These predictors explained about 18% of the variance in the SSQ score. The k-means clustering was used to split the participants into three major groups; one of these clusters revealed 53% of participants with low SSQ. CONCLUSIONS Our study highlighted the relationship between SSQ and auditory coding precision in the auditory brainstem in normal-hearing young females. AudioChip was useful in delineating and quantifying internal homogeneity and heterogeneity in audiometric measures among individuals with a range of SSQ scores. AudioChip could help identify the genotype-phenotype relationship, document longitudinal changes in auditory phenotypes, and pair individuals in case-control groups for the genetic association analysis.
Collapse
|
38
|
Mao H, Chen Y. Noise-Induced Hearing Loss: Updates on Molecular Targets and Potential Interventions. Neural Plast 2021; 2021:4784385. [PMID: 34306060 PMCID: PMC8279877 DOI: 10.1155/2021/4784385] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/12/2021] [Indexed: 12/18/2022] Open
Abstract
Noise overexposure leads to hair cell loss, synaptic ribbon reduction, and auditory nerve deterioration, resulting in transient or permanent hearing loss depending on the exposure severity. Oxidative stress, inflammation, calcium overload, glutamate excitotoxicity, and energy metabolism disturbance are the main contributors to noise-induced hearing loss (NIHL) up to now. Gene variations are also identified as NIHL related. Glucocorticoid is the only approved medication for NIHL treatment. New pharmaceuticals targeting oxidative stress, inflammation, or noise-induced neuropathy are emerging, highlighted by the nanoparticle-based drug delivery system. Given the complexity of the pathogenesis behind NIHL, deeper and more comprehensive studies still need to be fulfilled.
Collapse
Affiliation(s)
- Huanyu Mao
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| | - Yan Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| |
Collapse
|
39
|
Cortada M, Levano S, Bodmer D. mTOR Signaling in the Inner Ear as Potential Target to Treat Hearing Loss. Int J Mol Sci 2021; 22:ijms22126368. [PMID: 34198685 PMCID: PMC8232255 DOI: 10.3390/ijms22126368] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022] Open
Abstract
Hearing loss affects many people worldwide and occurs often as a result of age, ototoxic drugs and/or excessive noise exposure. With a growing number of elderly people, the number of people suffering from hearing loss will also increase in the future. Despite the high number of affected people, for most patients there is no curative therapy for hearing loss and hearing aids or cochlea implants remain the only option. Important treatment approaches for hearing loss include the development of regenerative therapies or the inhibition of cell death/promotion of cell survival pathways. The mammalian target of rapamycin (mTOR) pathway is a central regulator of cell growth, is involved in cell survival, and has been shown to be implicated in many age-related diseases. In the inner ear, mTOR signaling has also started to gain attention recently. In this review, we will emphasize recent discoveries of mTOR signaling in the inner ear and discuss implications for possible treatments for hearing restoration.
Collapse
Affiliation(s)
- Maurizio Cortada
- Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (M.C.); (S.L.)
| | - Soledad Levano
- Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (M.C.); (S.L.)
| | - Daniel Bodmer
- Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (M.C.); (S.L.)
- Clinic for Otorhinolaryngology, Head and Neck Surgery, University of Basel Hospital, Petersgraben 4, 4031 Basel, Switzerland
- Correspondence: ; Tel.: +41-61-328-76-03
| |
Collapse
|
40
|
Dose-Dependent Pattern of Cochlear Synaptic Degeneration in C57BL/6J Mice Induced by Repeated Noise Exposure. Neural Plast 2021; 2021:9919977. [PMID: 34221004 PMCID: PMC8211526 DOI: 10.1155/2021/9919977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/01/2021] [Accepted: 05/25/2021] [Indexed: 12/26/2022] Open
Abstract
It is widely accepted that even a single acute noise exposure at moderate intensity that induces temporary threshold shift (TTS) can result in permanent loss of ribbon synapses between inner hair cells and afferents. However, effects of repeated or chronic noise exposures on the cochlear synapses especially medial olivocochlear (MOC) efferent synapses remain elusive. Based on a weeklong repeated exposure model of bandwidth noise over 2-20 kHz for 2 hours at seven intensities (88 to 106 dB SPL with 3 dB increment per gradient) on C57BL/6J mice, we attempted to explore the dose-response mechanism of prolonged noise-induced audiological dysfunction and cochlear synaptic degeneration. In our results, mice repeatedly exposed to relatively low-intensity noise (88, 91, and 94 dB SPL) showed few changes on auditory brainstem response (ABR), ribbon synapses, or MOC efferent synapses. Notably, repeated moderate-intensity noise exposures (97 and 100 dB SPL) not only caused hearing threshold shifts and the inner hair cell ribbon synaptopathy but also impaired MOC efferent synapses, which might contribute to complex patterns of damages on cochlear function and morphology. However, repeated high-intensity (103 and 106 dB SPL) noise exposures induced PTSs mainly accompanied by damages on cochlear amplifier function of outer hair cells and the inner hair cell ribbon synaptopathy, rather than the MOC efferent synaptic degeneration. Moreover, we observed a frequency-dependent vulnerability of the repeated acoustic trauma-induced cochlear synaptic degeneration. This study provides a sight into the hypothesis that noise-induced cochlear synaptic degeneration involves both afferent (ribbon synapses) and efferent (MOC terminals) pathology. The pattern of dose-dependent pathological changes induced by repeated noise exposure at various intensities provides a possible explanation for the complicated cochlear synaptic degeneration in humans. The underlying mechanisms remain to be studied in the future.
Collapse
|
41
|
Zheng Z, Zeng S, Liu C, Li W, Zhao L, Cai C, Nie G, He Y. The DNA methylation inhibitor RG108 protects against noise-induced hearing loss. Cell Biol Toxicol 2021; 37:751-771. [PMID: 33723744 PMCID: PMC8490244 DOI: 10.1007/s10565-021-09596-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/22/2021] [Indexed: 11/29/2022]
Abstract
Background Noise-induced hearing loss represents a commonly diagnosed type of hearing disability, severely impacting the quality of life of individuals. The current work is aimed at assessing the effects of DNA methylation on noise-induced hearing loss. Methods Blocking DNA methyltransferase 1 (DNMT1) activity with a selective inhibitor RG108 or silencing DNMT1 with siRNA was used in this study. Auditory brainstem responses were measured at baseline and 2 days after trauma in mice to assess auditory functions. Whole-mount immunofluorescent staining and confocal microcopy of mouse inner ear specimens were performed to analyze noise-induced damage in cochleae and the auditory nerve at 2 days after noise exposure. Results The results showed that noise exposure caused threshold elevation of auditory brainstem responses and cochlear hair cell loss. Whole-mount cochlea staining revealed a reduction in the density of auditory ribbon synapses between inner hair cells and spiral ganglion neurons. Inhibition of DNA methyltransferase activity via a non-nucleoside specific pharmacological inhibitor, RG108, or silencing of DNA methyltransferase-1 with siRNA significantly attenuated ABR threshold elevation, hair cell damage, and the loss of auditory synapses. Conclusions This study suggests that inhibition of DNMT1 ameliorates noise-induced hearing loss and indicates that DNMT1 may be a promising therapeutic target. Graphical abstract Graphical Headlights • RG108 protected against noise-induced hearing loss • RG108 administration protected against noise-induced hair cell loss and auditory neural damage. • RG108 administration attenuated oxidative stress-induced DNA damage and subsequent apoptosis-mediated cell loss in the cochlea after noise exposure. ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s10565-021-09596-y.
Collapse
Affiliation(s)
- Zhiwei Zheng
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Shan Zeng
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Chang Liu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Wen Li
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Liping Zhao
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Chengfu Cai
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China
| | - Guohui Nie
- Department of Otolaryngology and Institute of Translational Medicine, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China.
| | - Yingzi He
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China.
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China.
| |
Collapse
|
42
|
He ZH, Pan S, Zheng HW, Fang QJ, Hill K, Sha SH. Treatment With Calcineurin Inhibitor FK506 Attenuates Noise-Induced Hearing Loss. Front Cell Dev Biol 2021; 9:648461. [PMID: 33777956 PMCID: PMC7994600 DOI: 10.3389/fcell.2021.648461] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022] Open
Abstract
Attenuation of noise-induced hair cell loss and noise-induced hearing loss (NIHL) by treatment with FK506 (tacrolimus), a calcineurin (CaN/PP2B) inhibitor used clinically as an immunosuppressant, has been previously reported, but the downstream mechanisms of FK506-attenuated NIHL remain unknown. Here we showed that CaN immunolabeling in outer hair cells (OHCs) and nuclear factor of activated T-cells isoform c4 (NFATc4/NFAT3) in OHC nuclei are significantly increased after moderate noise exposure in adult CBA/J mice. Consequently, treatment with FK506 significantly reduces moderate-noise-induced loss of OHCs and NIHL. Furthermore, induction of reactive oxygen species (ROS) by moderate noise was significantly diminished by treatment with FK506. In agreement with our previous finding that autophagy marker microtubule-associated protein light chain 3B (LC3B) does not change in OHCs under conditions of moderate-noise-induced permanent threshold shifts, treatment with FK506 increases LC3B immunolabeling in OHCs after exposure to moderate noise. Additionally, prevention of NIHL by treatment with FK506 was partially abolished by pretreatment with LC3B small interfering RNA. Taken together, these results indicate that attenuation of moderate-noise-induced OHC loss and hearing loss by FK506 treatment occurs not only via inhibition of CaN activity but also through inhibition of ROS and activation of autophagy.
Collapse
Affiliation(s)
| | | | | | | | | | - Su-Hua Sha
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
43
|
Zhao HB, Zhu Y, Liu LM. Excess extracellular K + causes inner hair cell ribbon synapse degeneration. Commun Biol 2021; 4:24. [PMID: 33398038 PMCID: PMC7782724 DOI: 10.1038/s42003-020-01532-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/30/2020] [Indexed: 11/16/2022] Open
Abstract
Inner hair cell (IHC) ribbon synapses are the first synapse in the auditory system and can be degenerated by noise and aging, thereby leading to hidden hearing loss (HHL) and other hearing disorders. However, the mechanism underlying this cochlear synaptopathy remains unclear. Here, we report that elevation of extracellular K+, which is a consequence of noise exposure, could cause IHC ribbon synapse degeneration and swelling. Like intensity dependence in noise-induced cochlear synaptopathy, the K+-induced degeneration was dose-dependent, and could be attenuated by BK channel blockers. However, application of glutamate receptor (GluR) agonists caused ribbon swelling but not degeneration. In addition, consistent with synaptopathy in HHL, both K+ and noise exposure only caused IHC but not outer hair cell ribbon synapse degeneration. These data reveal that K+ excitotoxicity can degenerate IHC ribbon synapses in HHL, and suggest that BK channel may be a potential target for prevention and treatment of HHL.
Collapse
Affiliation(s)
- Hong-Bo Zhao
- Dept. of Otolaryngology, University of Kentucky Medical School, 800 Rose Street, Lexington, KY, 40536, USA.
| | - Yan Zhu
- Dept. of Otolaryngology, University of Kentucky Medical School, 800 Rose Street, Lexington, KY, 40536, USA
| | - Li-Man Liu
- Dept. of Otolaryngology, University of Kentucky Medical School, 800 Rose Street, Lexington, KY, 40536, USA
| |
Collapse
|
44
|
Jongkamonwiwat N, Ramirez MA, Edassery S, Wong ACY, Yu J, Abbott T, Pak K, Ryan AF, Savas JN. Noise Exposures Causing Hearing Loss Generate Proteotoxic Stress and Activate the Proteostasis Network. Cell Rep 2020; 33:108431. [PMID: 33238128 PMCID: PMC7722268 DOI: 10.1016/j.celrep.2020.108431] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 09/24/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022] Open
Abstract
Exposure to excessive sound causes noise-induced hearing loss through complex mechanisms and represents a common and unmet neurological condition. We investigate how noise insults affect the cochlea with proteomics and functional assays. Quantitative proteomics reveals that exposure to loud noise causes proteotoxicity. We identify and confirm hundreds of proteins that accumulate, including cytoskeletal proteins, and several nodes of the proteostasis network. Transcriptomic analysis reveals that a subset of the genes encoding these proteins also increases acutely after noise exposure, including numerous proteasome subunits. Global cochlear protein ubiquitylation levels build up after exposure to excess noise, and we map numerous posttranslationally modified lysines residues. Several collagen proteins decrease in abundance, and Col9a1 specifically localizes to pillar cell heads. After two weeks of recovery, the cochlea selectively elevates the abundance of the protein synthesis machinery. We report that overstimulation of the auditory system drives a robust cochlear proteotoxic stress response.
Collapse
Affiliation(s)
- Nopporn Jongkamonwiwat
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Miguel A Ramirez
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Seby Edassery
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ann C Y Wong
- Departments of Surgery and Neuroscience, University of California San Diego and Veterans Administration Medical Center, La Jolla, CA 92093, USA; Translational Neuroscience Facility, Department of Physiology, NSW Australia, Sydney, NSW 2052, Australia
| | - Jintao Yu
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tirzah Abbott
- Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, IL 60208, USA
| | - Kwang Pak
- Departments of Surgery and Neuroscience, University of California San Diego and Veterans Administration Medical Center, La Jolla, CA 92093, USA
| | - Allen F Ryan
- Departments of Surgery and Neuroscience, University of California San Diego and Veterans Administration Medical Center, La Jolla, CA 92093, USA
| | - Jeffrey N Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
45
|
Protection of Cochlear Ribbon Synapses and Prevention of Hidden Hearing Loss. Neural Plast 2020; 2020:8815990. [PMID: 33204247 PMCID: PMC7652619 DOI: 10.1155/2020/8815990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 10/08/2020] [Accepted: 10/21/2020] [Indexed: 01/21/2023] Open
Abstract
In the auditory system, ribbon synapses are vesicle-associated structures located between inner hair cells (IHCs) and spiral ganglion neurons that are implicated in the modulation of trafficking and fusion of synaptic vesicles at the presynaptic terminals. Synapse loss may result in hearing loss and difficulties with understanding speech in a noisy environment. This phenomenon happens without permanent hearing loss; that is, the cochlear synaptopathy is "hidden." Recent studies have reported that synapse loss might be critical in the pathogenesis of hidden hearing loss. A better understanding of the molecular mechanisms of the formation, structure, regeneration, and protection of ribbon synapses will assist in the design of potential therapeutic strategies. In this review, we describe and summarize the following aspects of ribbon synapses: (1) functional and structural features, (2) potential mechanisms of damage, (3) therapeutic research on protecting the synapses, and (4) the role of synaptic regeneration in auditory neuropathy and the current options for synapse rehabilitation.
Collapse
|
46
|
Chen KH, Su SB, Chen KT. An overview of occupational noise-induced hearing loss among workers: epidemiology, pathogenesis, and preventive measures. Environ Health Prev Med 2020; 25:65. [PMID: 33129267 PMCID: PMC7603754 DOI: 10.1186/s12199-020-00906-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/25/2020] [Indexed: 12/20/2022] Open
Abstract
Occupational noise-induced hearing loss (ONIHL) is the most prevalent occupational disease in the world. The goal of this study was to review the epidemiology, pathogenesis, and preventive measures of ONIHL among workers and provide evidence for the implementation of control measures. Literature studies were identified from the MEDLINE, PubMed, Embase, Web of Science, and Google Scholar using the search terms “noise-induced hearing loss” “prevalence”, “pathogenesis”, and “preventive measures”. The articles reviewed in this report were limited from 2000 to 2020. Articles that were not published in the English language, manuscripts without an abstract, and opinion articles were excluded. After a preliminary screening, all of the articles were reviewed and synthesized to provide an overview of the current status of ONIHL among workers. The mechanism of ONIHL among workers is a complex interaction between environmental and host factors (both genetic and acquired factors). The outcomes of noise exposure are different among individual subjects. Clinical trials are currently underway to evaluate the treatment effect of antioxidants on ONIHL. Noise exposure may contribute to temporary or permanent threshold shifts; however, even temporary threshold shifts may predispose an individual to eventual permanent hearing loss. Noise prevention programs are an important preventive measure in reducing the morbidity of ONIHL among workers.
Collapse
Affiliation(s)
- Kou-Huang Chen
- School of Mechanical and Electronic Engineering, Sanming University, Sanming, 365, Fujian Province, China
| | - Shih-Bin Su
- Department of Occupational Medicine, Chi-Mei Medical Center, Tainan, 710, Taiwan
| | - Kow-Tong Chen
- Department of Occupational Medicine, Tainan Municipal Hospital (managed by Show Chwan Medical Care Corporation), No. 670, Chongde Road, East District, Tainan, 701, Taiwan. .,Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
47
|
Yang CH, Hwang CF, Chuang JH, Lian WS, Wang FS, Huang EI, Yang MY. Constant Light Dysregulates Cochlear Circadian Clock and Exacerbates Noise-Induced Hearing Loss. Int J Mol Sci 2020; 21:E7535. [PMID: 33066038 PMCID: PMC7589695 DOI: 10.3390/ijms21207535] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 02/08/2023] Open
Abstract
Noise-induced hearing loss is one of the major causes of acquired sensorineural hearing loss in modern society. While people with excessive exposure to noise are frequently the population with a lifestyle of irregular circadian rhythms, the effects of circadian dysregulation on the auditory system are still little known. Here, we disturbed the circadian clock in the cochlea of male CBA/CaJ mice by constant light (LL) or constant dark. LL significantly repressed circadian rhythmicity of circadian clock genes Per1, Per2, Rev-erbα, Bmal1, and Clock in the cochlea, whereas the auditory brainstem response thresholds were unaffected. After exposure to low-intensity (92 dB) noise, mice under LL condition initially showed similar temporary threshold shifts to mice under normal light-dark cycle, and mice under both conditions returned to normal thresholds after 3 weeks. However, LL augmented high-intensity (106 dB) noise-induced permanent threshold shifts, particularly at 32 kHz. The loss of outer hair cells (OHCs) and the reduction of synaptic ribbons were also higher in mice under LL after noise exposure. Additionally, LL enhanced high-intensity noise-induced 4-hydroxynonenal in the OHCs. Our findings convey new insight into the deleterious effect of an irregular biological clock on the auditory system.
Collapse
Affiliation(s)
- Chao-Hui Yang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan; (J.-H.C.); (F.-S.W.)
| | - Chung-Feng Hwang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Jiin-Haur Chuang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan; (J.-H.C.); (F.-S.W.)
- Division of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Wei-Shiung Lian
- Core Laboratory for Phenomics & Diagnostics, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Feng-Sheng Wang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan; (J.-H.C.); (F.-S.W.)
- Core Laboratory for Phenomics & Diagnostics, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Ethan I. Huang
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
| | - Ming-Yu Yang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan; (J.-H.C.); (F.-S.W.)
| |
Collapse
|
48
|
Zhao J, Li G, Zhao X, Lin X, Gao Y, Raimundo N, Li GL, Shang W, Wu H, Song L. Down-regulation of AMPK signaling pathway rescues hearing loss in TFB1 transgenic mice and delays age-related hearing loss. Aging (Albany NY) 2020; 12:5590-5611. [PMID: 32240104 PMCID: PMC7185105 DOI: 10.18632/aging.102977] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/03/2020] [Indexed: 04/08/2023]
Abstract
AMP-activated protein kinase (AMPK) integrates the regulation of cell growth and metabolism. AMPK activation occurs in response to cellular energy decline and mitochondrial dysfunction triggered by reactive oxygen species (ROS). In aged Tg-mtTFB1 mice, a mitochondrial deafness mouse model, hearing loss is accompanied with cochlear pathology including reduced endocochlear potential (EP) and loss of spiral ganglion neurons (SGN), inner hair cell (IHC) synapses and outer hair cells (OHC). Accumulated ROS and increased apoptosis signaling were also detected in cochlear tissues, accompanied by activation of AMPK. To further explore the role of AMPK signaling in the auditory phenotype, we used genetically knocked out AMPKα1 as a rescue to Tg-mtTFB1 mice and observed: improved ABR wave I, EP and IHC function, normal SGNs, IHC synapses morphology and OHC survivals, with decreased ROS, reduced pro-apoptotic signaling (Bax) and increased anti-apoptotic signaling (Bcl-2) in the cochlear tissues, indicating that reduced AMPK attenuated apoptosis via ROS-AMPK-Bcl2 pathway in the cochlea. To conclude, AMPK hyperactivation causes accelerated presbycusis in Tg-mtTFB1 mice by redox imbalance and dysregulation of the apoptosis pathway. The effects of AMPK downregulation on pro-survival function and reduction of oxidative stress indicate AMPK serves as a target to rescue or relieve mitochondrial hearing loss.
Collapse
Affiliation(s)
- Jingjing Zhao
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Gen Li
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xuan Zhao
- Navy Clinical Medical School, Anhui Medical University, Hefei, China
| | - Xin Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunge Gao
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Nuno Raimundo
- Institute of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Geng-Lin Li
- Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Wei Shang
- Navy Clinical Medical School, Anhui Medical University, Hefei, China
- In Vitro Fertility (IVF) Center Department of Obstetrics and Gynecology, the Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Hao Wu
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Lei Song
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
49
|
Fan B, Wang J, Zha D, Qiu J, Chen F. ATP depletion induced cochlear hair cells death through histone deacetylation in vitro. Neurosci Lett 2020; 727:134918. [PMID: 32200029 DOI: 10.1016/j.neulet.2020.134918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/19/2020] [Accepted: 03/17/2020] [Indexed: 01/01/2023]
Abstract
Previous studies have shown histone modifications being present in cochlear hair cells in animal models of hearing loss. Our past studies have shown that ATP depletion, histone deacetylase (HDAC) upregulation, and histone deacetylation occur in cochlea after noise exposure, and these are linked to hair cell death. Whether ATP depletion correlates with the expression level of HDACs and acetylation of histones is still unknown. In this study, we investigated the changes in the expression of HDACs and the level of histone acetylation in cochlear hair cells using an ATP-depleted explant culture of mouse organ of Corti. We found that the expression of HDAC3 and HDAC6 increased and hair cells were lost after oligomycin A (OA) treatment. Meanwhile, the acetylation level of histone H2B reduced. However, when oligomycin was combined with an HDAC inhibitor, trichostatin A (TSA), the acetylation level of histone H3 was restored. Moreover, combined treatment of oligomycin and TSA or sodium butyrate (NaB) attenuated oligomycin-induced cochlear hair cell loss. In conclusion, our results indicated that ATP depletion led to histone deacetylation and eventually resulted in hair cell death.
Collapse
Affiliation(s)
- Bei Fan
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Wang
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dingjun Zha
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianhua Qiu
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fuquan Chen
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
50
|
Pålbrink AK, Kopietz F, Morén B, In 't Zandt R, Kalinec F, Stenkula K, Göransson O, Holm C, Magnusson M, Degerman E. Inner ear is a target for insulin signaling and insulin resistance: evidence from mice and auditory HEI-OC1 cells. BMJ Open Diabetes Res Care 2020; 8:8/1/e000820. [PMID: 32238362 PMCID: PMC7170413 DOI: 10.1136/bmjdrc-2019-000820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/14/2020] [Accepted: 03/03/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE The mechanisms underlying the association between diabetes and inner ear dysfunction are not known yet. The aim of the present study is to evaluate the impact of obesity/insulin resistance on inner ear fluid homeostasis in vivo, and to investigate whether the organ of Corti could be a target tissue for insulin signaling using auditory House Ear Institute-Organ of Corti 1 (HEI-OC1) cells as an in vitro model. METHODS High fat diet (HFD) fed C57BL/6J mice were used as a model to study the impact of insulin resistance on the inner ear. In one study, 12 C57BL/6J mice were fed either control diet or HFD and the size of the inner ear endolymphatic fluid compartment (EFC) was measured after 30 days using MRI and gadolinium contrast as a read-out. In another study, the size of the inner ear EFC was evaluated in eight C57BL/6J mice both before and after HFD feeding, with the same techniques. HEI-OC1 auditory cells were used as a model to investigate insulin signaling in organ of Corti cells. RESULTS HFD feeding induced an expansion of the EFC in C57BL/6J mice, a hallmark of inner ear dysfunction. Insulin also induced phosphorylation of protein kinase B (PKB/Akt) at Ser473, in a PI3-kinase-dependent manner. The phosphorylation of PKB was inhibited by isoproterenol and IBMX, a general phosphodiesterase (PDE) inhibitor. PDE1B, PDE4D and the insulin-sensitive PDE3B were found expressed and catalytically active in HEI-OC1 cells. Insulin decreased and AICAR, an activator of AMP-activated protein kinase, increased the phosphorylation at the inhibitory Ser79 of acetyl-CoA carboxylase, the rate-limiting enzyme in de novo lipogenesis. Furthermore, the activity of hormone-sensitive lipase, the rate-limiting enzyme in lipolysis, was detected in HEI-OC1 cells. CONCLUSIONS The organ of Corti could be a target tissue for insulin action, and inner ear insulin resistance might contribute to the association between diabetes and inner ear dysfunction.
Collapse
Affiliation(s)
- Ann-Ki Pålbrink
- Experimental Medical Science, Section for Diabetes, Metabolism and Endocrinology, Lund University Diabetes Centre, Lund University, Lund, Sweden
| | - Franziska Kopietz
- Experimental Medical Science, Section for Diabetes, Metabolism and Endocrinology, Lund University Diabetes Centre, Lund University, Lund, Sweden
| | - Björn Morén
- Experimental Medical Science, Section for Diabetes, Metabolism and Endocrinology, Lund University Diabetes Centre, Lund University, Lund, Sweden
| | - René In 't Zandt
- Lund University Bioimaging Center, Lund University, Lund, Sweden
| | - Federico Kalinec
- Department of Head and Neck Surgery, Laboratory of Auditory Cell Biology, David Geffen Schoolof Medicin, UCLA, Los Angeles, California, USA
| | - Karin Stenkula
- Experimental Medical Science, Section for Diabetes, Metabolism and Endocrinology, Lund University Diabetes Centre, Lund University, Lund, Sweden
| | - Olga Göransson
- Experimental Medical Science, Section for Diabetes, Metabolism and Endocrinology, Lund University Diabetes Centre, Lund University, Lund, Sweden
| | - Cecilia Holm
- Experimental Medical Science, Section for Diabetes, Metabolism and Endocrinology, Lund University Diabetes Centre, Lund University, Lund, Sweden
| | - Måns Magnusson
- Department of Clinical Science, Section for Otorhinolaryngology, Lund University & Skåne University Hospital, Lund, Sweden
| | - Eva Degerman
- Experimental Medical Science, Section for Diabetes, Metabolism and Endocrinology, Lund University Diabetes Centre, Lund University, Lund, Sweden
| |
Collapse
|