1
|
Meyers AM, Gnazzo FG, Barrera ED, Nabatian T, Chan L, Beeler JA. DIETARY REGULATION OF SILENT SYNAPSES IN THE DORSOLATERAL STRIATUM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.24.586457. [PMID: 38585967 PMCID: PMC10996560 DOI: 10.1101/2024.03.24.586457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Obesity and drugs of abuse share overlapping neural circuits and behaviors. Silent synapses are transient synapses that are important for remodeling brain circuits. They are prevalent during early development but largely disappear by adulthood. Drugs of abuse increase silent synapses during adulthood and may facilitate reorganizing brain circuits around drug-related experience, facilitating addiction and contributing to relapse during treatment and abstinence. Whether obesity causes alterations in the expression of silent synapses in a manner similar to drugs of abuse has not been examined. Using a dietary-induced obesity paradigm, mice that chronically consumed high fat diet (HFD) exhibited increased silent synapses in both direct and indirect pathway medium spiny neurons in the dorsolateral striatum. Both the time of onset of increased silent synapses and their normalization upon discontinuation of HFD occurs on an extended time scale compared to drugs of abuse. These data demonstrate that chronic consumption of HFD, like drugs of abuse, can alter mechanisms of circuit plasticity likely facilitating neural reorganization analogous to drugs of abuse.
Collapse
Affiliation(s)
- Allison M Meyers
- Psychology Program, The Graduate Center, City University of New York, New York, NY, USA
| | - Federico G Gnazzo
- Department of Psychology, Queens College, City University of New York, Flushing, NY, USA
| | - Eddy D Barrera
- Biology Program, The Graduate Center, City University of New York, New York, NY, USA
| | - Tikva Nabatian
- Cognitive Neuroscience MS program, Graduate Center, City University of New York, New York, NY, USA
| | - Larry Chan
- Department of Psychology, Queens College, City University of New York, Flushing, NY, USA
| | - Jeff A Beeler
- Department of Psychology, Queens College, City University of New York, Flushing, NY, USA
- Psychology Program, The Graduate Center, City University of New York, New York, NY, USA
- Biology Program, The Graduate Center, City University of New York, New York, NY, USA
- Cognitive Neuroscience MS program, Graduate Center, City University of New York, New York, NY, USA
| |
Collapse
|
2
|
Schamiloglu S, Lewis E, Keeshen CM, Hergarden AC, Bender KJ, Whistler JL. Arrestin-3 Agonism at Dopamine D 3 Receptors Defines a Subclass of Second-Generation Antipsychotics That Promotes Drug Tolerance. Biol Psychiatry 2023; 94:531-542. [PMID: 36931452 PMCID: PMC10914650 DOI: 10.1016/j.biopsych.2023.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/09/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND Second-generation antipsychotics (SGAs) are frontline treatments for serious mental illness. Often, individual patients benefit only from some SGAs and not others. The mechanisms underlying this unpredictability in treatment efficacy remain unclear. All SGAs bind the dopamine D3 receptor (D3R) and are traditionally considered antagonists for dopamine receptor signaling. METHODS Here, we used a combination of two-photon calcium imaging, in vitro signaling assays, and mouse behavior to assess signaling by SGAs at D3R. RESULTS We report that some clinically important SGAs function as arrestin-3 agonists at D3R, resulting in modulation of calcium channels localized to the site of action potential initiation in prefrontal cortex pyramidal neurons. We further show that chronic treatment with an arrestin-3 agonist SGA, but not an antagonist SGA, abolishes D3R function through postendocytic receptor degradation by GASP1 (G protein-coupled receptor-associated sorting protein-1). CONCLUSIONS These results implicate D3R-arrestin-3 signaling as a source of SGA variability, highlighting the importance of including arrestin-3 signaling in characterizations of drug action. Furthermore, they suggest that postendocytic receptor trafficking that occurs during chronic SGA treatment may contribute to treatment efficacy.
Collapse
Affiliation(s)
- Selin Schamiloglu
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, California
| | - Elinor Lewis
- Neuroscience Graduate Group, University of California Davis, Davis, California; Center for Neuroscience, University of California Davis, Davis, California
| | - Caroline M Keeshen
- Neuroscience Graduate Group, University of California Davis, Davis, California; Center for Neuroscience, University of California Davis, Davis, California
| | - Anne C Hergarden
- Center for Neuroscience, University of California Davis, Davis, California
| | - Kevin J Bender
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, California; Department of Neurology, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California.
| | - Jennifer L Whistler
- Center for Neuroscience, University of California Davis, Davis, California; Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, California.
| |
Collapse
|
3
|
Farrokhi R, Babapour V, Zendehdel M, Asghari A, Gilanpour H. Role of Dopaminergic and Cannabinoidergic Receptors on Ghrelin-Induced Hypophagia in 5-Day-Old Broiler Chicken. ARCHIVES OF RAZI INSTITUTE 2021; 76:935-948. [PMID: 35096329 PMCID: PMC8790998 DOI: 10.22092/ari.2020.351261.1514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/24/2020] [Indexed: 01/24/2023]
Abstract
The present study aimed to identify the role of dopaminergic and cannabinoidergic systems in the ghrelin-induced hypophagia among meat-type chickens. In the first experiment, intracerebroventricular (ICV) injection was applied to birds with control solution, D1 receptor antagonist (5 nmol), ghrelin (6 nmol), and D1 receptor antagonist plus ghrelin. The second to sixth experiments were similar to the first one, with the difference that D2 receptor antagonist (5 nmol), D3 receptor antagonist (6.4 nmol), D4 receptor antagonist (6 nmol), the precursor of dopamine (125 nmol), and 6-hydroxy dopamine (150 nmol) instead of D1 antagonist were injected into the broiler chickens. In experiment 7, control solution and different levels of ghrelin antagonists (5, 10, and 20 nmol) were injected. In experiment 8, the chickens were ICV injected with control solution, ghrelin antagonist (10 nmol), dopamine (40 nmol), and ghrelin antagonist plus dopamine. In experiments 9 and 10, CB1 and CB2 receptors antagonist (6.25µg and 5µg) were co-injected with ghrelin (6 nmol), respectively, measuring the food intake for 120 min after the injection. It was observed that ghrelin ICV injection considerably reduced food intake, whereas ghrelin antagonist increased food intake, depending on the dose (P<0.05). In addition, ghrelin-induced hypophagia was significantly attenuated by D1 receptor antagonist and 6-hydroxy dopamine (P<0.05), while the dopamine precursor considerably elevated the ghrelin-induced food intake (P<0.05). The dopamine-induced feeding behavior was diminished by the co-administration of [D-Lys-3]-GHRP-6 (10 nmol)+dopamine (40 nmol) (P<0.05). In addition, CB1 receptor antagonists enhanced the ghrelin influence on food intake (P<0.05). The results implied that the hypophagic impact of ghrelin was probably mediated by D1 and CB1 receptors within neonatal broilers.
Collapse
Affiliation(s)
- R Farrokhi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - V Babapour
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - M Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - A Asghari
- Department of Clinical Science, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - H Gilanpour
- Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Dopamine Evokes a Trace Amine Receptor-dependent Inward Current that is Regulated by AMP Kinase in Substantia Nigra Dopamine Neurons. Neuroscience 2019; 427:77-91. [PMID: 31883822 DOI: 10.1016/j.neuroscience.2019.11.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/27/2022]
Abstract
We reported recently that activators of AMP-activated protein kinase (AMPK) slow the rundown of current evoked by the D2 autoreceptor agonist quinpirole in rat substantia nigra compacta (SNC) dopamine neurons. The present study examined the effect of AMPK on current generated by dopamine, which unlike quinpirole, is a substrate for the dopamine transporter (DAT). Using whole-cell patch-clamp, we constructed current-voltage (I-V) plots while superfusing brain slices with dopamine (100 μM) for 25 min. Two minutes after starting superfusion, dopamine evoked a peak current with an average slope conductance of 0.97 nS and an estimated reversal potential (Erev) of -113 mV, which is near that expected for K+. But after 10 min of superfusion, dopamine-evoked currents had shifted to more depolarized values with a slope conductance of 0.64 nS and an Erev of -83 mV. This inward shift in current was completely blocked by the DAT inhibitor GBR12935. However, an AMPK blocking agent (dorsomorphin) permitted the emergence of inward current despite the continued presence of the DAT inhibitor. When D2 autoreceptors were blocked by sulpiride, I-V plots showed that dopamine evoked an inward current with an estimated slope conductance of 0.45 nS with an Erev of -57 mV. Moreover, this inward current was completely blocked by the trace amine-associated receptor 1 (TAAR1) antagonist EPPTB. These results suggest that dopamine activates a TAAR1-dependent non-selective cation current that is regulated by AMPK.
Collapse
|
5
|
AMP-activated protein kinase slows D2 dopamine autoreceptor desensitization in substantia nigra neurons. Neuropharmacology 2019; 158:107705. [PMID: 31301335 DOI: 10.1016/j.neuropharm.2019.107705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
Abstract
Dopamine neurons in the substantia nigra zona compacta (SNC) are well known to express D2 receptors. When dopamine is released from somatodendritic sites, activation of D2 autoreceptors suppresses dopamine neuronal activity through activation of G protein-coupled K+ channels. AMP-activated protein kinase (AMPK) is a master enzyme that acts in somatic tissues to suppress energy expenditure and encourage energy production. We hypothesize that AMPK may also conserve energy in central neurons by reducing desensitization of D2 autoreceptors. We used whole-cell patch-clamp recordings to study the effects of AMPK activators and inhibitors on D2 autoreceptor-mediated current in SNC neurons in midbrain slices from rat pups (11-23 days post-natal). Slices were superfused with 100 μM dopamine or 30 μM quinpirole for 25 min, which evoked outward currents that decayed slowly over time. Although the AMPK activators A769662 and ZLN024 significantly slowed rundown of dopamine-evoked current, slowing of quinpirole-evoked current required the presence of a D1-like agonist (SKF38393). Moreover, the D1-like agonist also slowed the rundown of quinpirole-induced current even in the absence of an AMPK activator. Pharmacological antagonist experiments showed that the D1-like agonist effect required activation of either protein kinase A (PKA) or exchange protein directly activated by cAMP 2 (Epac2) pathways. In contrast, the effect of AMPK on rundown of current evoked by quinpirole plus SKF38393 required PKA but not Epac2. We conclude that AMPK slows D2 autoreceptor desensitization by augmenting the effect of D1-like receptors.
Collapse
|
6
|
Zendehdel M, Ebrahimi-Yeganeh A, Hassanpour S, Koohi MK. Interaction of the dopaminergic and Nociceptin/Orphanin FQ on central feed intake regulation in chicken. Br Poult Sci 2019; 60:317-322. [PMID: 30892928 DOI: 10.1080/00071668.2019.1596225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 02/17/2019] [Indexed: 10/27/2022]
Abstract
1. The aim of the current study was to determine the effects of the central dopaminergic system on N/OFQ-induced feed intake in 3-h feed-deprived neonatal broilers. 2. In experiment 1, chicken received intracerebroventricular (ICV) injections of a control solution, SCH 23 390 (D1 receptors antagonist, 5 nmol), N/OFQ (16 nmol) or their combination (SCH23 390 + N/OFQ). In experiment 2, a control solution, AMI-193 (D2 receptors antagonist, 5 nmol), N/OFQ (16 nmol) or their combination (AMI-193 + N/OFQ) were ICV injected into chickens. In experiment 3, birds received ICV injections of a control solution, NGB2904 (D3 receptors antagonist, 6.4 nmol), N/OFQ (16 nmol) and co-injection of NGB2904 + N/OFQ. In experiment 4, ICV injections of the control solution, L-741,742 (D4 receptors antagonist, 6 nmol), N/OFQ (16 nmol) or their combination (L-741,742 + N/OFQ) were applied to broilers. In experiment 5, birds were ICV injected with control solution, L-DOPA (dopamine precursor, 125 nmol), N/OFQ (16 nmol) and L-DOPA + N/OFQ. Cumulative feed intake was recorded until 120 min after injection. 3. According to the results, ICV injection of N/OFQ significantly increased feed intake (P < 0.05). Co-injection of N/OFQ and D1 receptor antagonist (SCH 23390) amplified hyperphagic effect of N/OFQ (P < 0.05). The N/OFQ-induced feed intake was increased by the D2 receptor antagonist (P < 0.05). The hyperphagic effect of N/PFQ was weakened by co-injection of L-DOPA + N/OFQ (P < 0.05). 4. These results suggested that an interaction exists between dopamine and N/OFQ via D1 and D2 receptors on central feed intake in neonatal broiler chickens.
Collapse
Affiliation(s)
- M Zendehdel
- a Department of Basic Sciences, Faculty of Veterinary Medicine , University of Tehran , Tehran , Iran
| | - A Ebrahimi-Yeganeh
- a Department of Basic Sciences, Faculty of Veterinary Medicine , University of Tehran , Tehran , Iran
| | - S Hassanpour
- b Section of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch , Islamic Azad University , Tehran , Iran
| | - M K Koohi
- c Department of comparative Bioscience, Faculty of Veterinary Medicine , University of Tehran , Tehran , Iran
| |
Collapse
|
7
|
Sadat-Shirazi MS, Zarrindast MR, Daneshparvar H, Ziaie A, Fekri M, Abbasnezhad E, Ashabi G, Khalifeh S, Vousooghi N. Alteration of dopamine receptors subtypes in the brain of opioid abusers: A postmortem study in Iran. Neurosci Lett 2018; 687:169-176. [DOI: 10.1016/j.neulet.2018.09.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/30/2018] [Accepted: 09/21/2018] [Indexed: 01/11/2023]
|
8
|
Cuomo I, Kotzalidis GD, de Persis S, Piacentino D, Perrini F, Amici E, De Filippis S. Head-to-head comparison of 1-year aripiprazole long-acting injectable (LAI) versus paliperidone LAI in comorbid psychosis and substance use disorder: impact on clinical status, substance craving, and quality of life. Neuropsychiatr Dis Treat 2018; 14:1645-1656. [PMID: 29950846 PMCID: PMC6016599 DOI: 10.2147/ndt.s171002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND To overcome nonadherence in patients with psychosis switch to long-acting injectable (LAI) antipsychotic formulations is adopted. Most oral versus LAI comparisons showed similar antipsychotic responses. Psychoses often overlap with substance use disorder (SUD). Head-to-head LAI comparisons have hitherto focused only on non-comorbid populations. OBJECTIVE The objective of this study was to compare two LAIs, administered for 12 months, in initially hospitalized patients with psychosis comorbid with SUD in their clinical and quality of life (QoL) outcomes. PATIENTS AND METHODS Inpatients were recruited during 2016 and switched randomly to 400 mg intramuscular aripiprazole monohydrate (AM) (N=50) or to 100 mg intramuscular paliperidone palmitate (PP) once-monthly (N=51); patients were discharged and followed up for 12 months. Patients were rated at baseline and after 1 year through the Clinical Global Impression scale - severity (CGIs), substance craving intensity was rated through a visual analog scale for substance craving, and QoL through the World Health Organization (WHOQOL-BREF) scale. We addressed confounders with backward stepwise logistic regression and three-way analysis of variance. RESULTS PP were older and had more cases of schizophrenia spectrum and less bipolar disorders than AM, but AM had a stronger craving for substances at baseline. Both LAIs were associated with significant improvements in all outcomes, with AM displaying stronger effect sizes than PP. The two groups did not differ on baseline WHOQOL-BREF scores in any domain, but at the 1-year follow-up, AM fared better on all domains. The two groups did not differ in final severity, but PP scored higher than AM in craving at the 1-year endpoint.Limitation: The CGIs is not a refined tool for severity and the substance craving may be subject to recall bias. CONCLUSION 1-year AM and PP was followed by improved clinical status and QoL and reduced substance craving in a population with psychosis and SUD comorbidity. AM, compared to PP, improved craving and QoL at the 1-year follow-up.
Collapse
Affiliation(s)
- Ilaria Cuomo
- Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS), Sapienza School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
- Department of Neuropsychiatry, Villa von Siebenthal Neuropsychiatric Hospital and Clinic, Genzano di Roma, Rome, Italy
| | - Georgios D Kotzalidis
- Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS), Sapienza School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Simone de Persis
- Department of Neuropsychiatry, Villa von Siebenthal Neuropsychiatric Hospital and Clinic, Genzano di Roma, Rome, Italy
| | - Daria Piacentino
- Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS), Sapienza School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Filippo Perrini
- Department of Neuropsychiatry, Villa von Siebenthal Neuropsychiatric Hospital and Clinic, Genzano di Roma, Rome, Italy
| | - Emanuela Amici
- Department of Neuropsychiatry, Villa von Siebenthal Neuropsychiatric Hospital and Clinic, Genzano di Roma, Rome, Italy
| | - Sergio De Filippis
- Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS), Sapienza School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
- Department of Neuropsychiatry, Villa von Siebenthal Neuropsychiatric Hospital and Clinic, Genzano di Roma, Rome, Italy
| |
Collapse
|
9
|
Camacho MB, Anastasio TJ. Computational Model of Antidepressant Response Heterogeneity as Multi-pathway Neuroadaptation. Front Pharmacol 2018; 8:925. [PMID: 29375372 PMCID: PMC5770730 DOI: 10.3389/fphar.2017.00925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/06/2017] [Indexed: 12/28/2022] Open
Abstract
Current hypotheses cannot fully explain the clinically observed heterogeneity in antidepressant response. The therapeutic latency of antidepressants suggests that therapeutic outcomes are achieved not by the acute effects of the drugs, but rather by the homeostatic changes that occur as the brain adapts to their chronic administration. We present a computational model that represents the known interactions between the monoaminergic neurotransmitter-producing brain regions and associated non-monoaminergic neurotransmitter systems, and use the model to explore the possible ways in which the brain can homeostatically adjust to chronic antidepressant administration. The model also represents the neuron-specific neurotransmitter receptors that are known to adjust their strengths (expressions or sensitivities) in response to chronic antidepressant administration, and neuroadaptation in the model occurs through sequential adjustments in these receptor strengths. The main result is that the model can reach similar levels of adaptation to chronic administration of the same antidepressant drug or combination along many different pathways, arriving correspondingly at many different receptor strength configurations, but not all of those adapted configurations are also associated with therapeutic elevations in monoamine levels. When expressed as the percentage of adapted configurations that are also associated with elevations in one or more of the monoamines, our modeling results largely agree with the percentage efficacy rates of antidepressants and antidepressant combinations observed in clinical trials. Our neuroadaptation model provides an explanation for the clinical reports of heterogeneous outcomes among patients chronically administered the same antidepressant drug regimen.
Collapse
Affiliation(s)
- Mariam B Camacho
- Computational Neurobiology Laboratory, Beckman Institute for Advanced Science and Technology, Neuroscience Program, Medical Scholars Program, University of Illinois College of Medicine at Urbana-Champaign, Urbana, IL, United States
| | - Thomas J Anastasio
- Computational Neurobiology Laboratory, Department of Molecular and Integrative Physiology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
10
|
Late Reduction of Cocaine Cravings in a Randomized, Double-Blind Trial of Aripiprazole vs Perphenazine in Schizophrenia and Comorbid Cocaine Dependence. J Clin Psychopharmacol 2017; 37:657-663. [PMID: 28984746 DOI: 10.1097/jcp.0000000000000789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Co-occurring schizophrenia spectrum disorder and International Statistical Classification of Diseases, 10th Revision cocaine dependence present a particularly destructive constellation that is often difficult to treat. Both conditions raise dopamine transmission effects in the brain. Traditional neuroleptics block dopamine receptors, whereas aripiprazole modulates dopamine activity as an agonist/antagonist. We tested whether dopamine modulation is superior to dopamine blocking in dual-diagnosis patients. METHODS In a randomized, double-blind, comparison design, cocaine-dependent schizophrenic subjects actively using cocaine received either aripiprazole or perphenazine in an 8-week trial. Primary outcome targeted cocaine-free urine sample proportions, whereas cocaine craving scores were a secondary variable. RESULTS Subjects (N = 44) randomized (n = 22 per group) did not differ at baseline. The proportion of cocaine-free urine samples did not differ by medication group. Contrasting weeks 3 to 5 vs 6 to 8 revealed significant late reductions in craving with aripiprazole. On the respective 5-point subscales, craving intensity decreased by 1.53 ± 0.43 (P < 0.0005) points, craving frequency by 1.4 ± 0.40 (P > 0.0004) points, and craving duration by 1.76 ± 0.44 (P > 0.0001) points. CONCLUSIONS A drug effect of aripiprazole on craving items appeared at week 6 of treatment, on average, and was not seen before that length of drug exposure. The data suggest that dopamine modulation reduces cocaine cravings but requires an acclimation period. To understand the mechanism of action better, a trial of depot aripiprazole may be useful. Clinically, a reduction in craving potentially offers a clearer focus for ongoing behavioral treatment. It may also offer a longer-term treatment effect with respect to the severity of relapse.
Collapse
|
11
|
|
12
|
Costa MDC, Ashraf NS, Fischer S, Yang Y, Schapka E, Joshi G, McQuade TJ, Dharia RM, Dulchavsky M, Ouyang M, Cook D, Sun D, Larsen MJ, Gestwicki JE, Todi SV, Ivanova MI, Paulson HL. Unbiased screen identifies aripiprazole as a modulator of abundance of the polyglutamine disease protein, ataxin-3. Brain 2017; 139:2891-2908. [PMID: 27645800 DOI: 10.1093/brain/aww228] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/24/2016] [Indexed: 11/14/2022] Open
Abstract
No disease-modifying treatment exists for the fatal neurodegenerative polyglutamine disease known both as Machado-Joseph disease and spinocerebellar ataxia type 3. As a potential route to therapy, we identified small molecules that reduce levels of the mutant disease protein, ATXN3. Screens of a small molecule collection, including 1250 Food and Drug Administration-approved drugs, in a novel cell-based assay, followed by secondary screens in brain slice cultures from transgenic mice expressing the human disease gene, identified the atypical antipsychotic aripiprazole as one of the hits. Aripiprazole increased longevity in a Drosophila model of Machado-Joseph disease and effectively reduced aggregated ATXN3 species in flies and in brains of transgenic mice treated for 10 days. The aripiprazole-mediated decrease in ATXN3 abundance may reflect a complex response culminating in the modulation of specific components of cellular protein homeostasis. Aripiprazole represents a potentially promising therapeutic drug for Machado-Joseph disease and possibly other neurological proteinopathies.
Collapse
Affiliation(s)
| | - Naila S Ashraf
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Svetlana Fischer
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Yemen Yang
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Emily Schapka
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Gnanada Joshi
- Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Thomas J McQuade
- Center for Chemical Genomics, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Rahil M Dharia
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Mark Dulchavsky
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Michelle Ouyang
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - David Cook
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Duxin Sun
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Martha J Larsen
- Center for Chemical Genomics, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, Institute for Neurodegenerative Diseases, University of California at San Francisco, San Francisco, CA, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University, Detroit, MI, USA.,Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Magdalena I Ivanova
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.,Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Dopamine D2 Receptors Modulate Pyramidal Neurons in Mouse Medial Prefrontal Cortex through a Stimulatory G-Protein Pathway. J Neurosci 2017; 37:10063-10073. [PMID: 28912160 DOI: 10.1523/jneurosci.1893-17.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/04/2017] [Indexed: 02/08/2023] Open
Abstract
Dopaminergic modulation of prefrontal cortex (PFC) is thought to play key roles in many cognitive functions and to be disrupted in pathological conditions, such as schizophrenia. We have previously described a phenomenon whereby dopamine D2 receptor (D2R) activation elicits afterdepolarizations (ADPs) in subcortically projecting (SC) pyramidal neurons within L5 of the PFC. These D2R-induced ADPs only occur following synaptic input, which activates NMDARs, even when the delay between the synaptic input and ADPs is relatively long (e.g., several hundred milliseconds). Here, we use a combination of electrophysiological, optogenetic, pharmacological, transgenic, and chemogenetic approaches to elucidate cellular mechanisms underlying this phenomenon in male and female mice. We find that knocking out D2Rs eliminates the ADP in a cell-autonomous fashion, confirming that this ADP depends on D2Rs. Hyperpolarizing current injection, but not AMPA receptor blockade, prevents synaptic stimulation from facilitating D2R-induced ADPs, suggesting that this phenomenon depends on the recruitment of voltage-dependent currents (e.g., NMDAR-mediated Ca2+ influx) by synaptic input. Finally, the D2R-induced ADP is blocked by inhibitors of cAMP/PKA signaling, insensitive to pertussis toxin or β-arrestin knock-out, and mimicked by Gs-DREADD stimulation, suggesting that D2R activation elicits the ADP by stimulating cAMP/PKA signaling. These results show that this unusual physiological phenomenon, in which D2Rs enhance cellular excitability in a manner that depends on synaptic input, is mediated at the cellular level through the recruitment of signaling pathways associated with Gs, rather than the Gi/o-associated mechanisms that have classically been ascribed to D2Rs.SIGNIFICANCE STATEMENT Dopamine D2 receptors (D2Rs) in the prefrontal cortex (PFC) are thought to play important roles in behaviors, including working memory and cognitive flexibility. Variation in D2Rs has also been implicated in schizophrenia, Tourette syndrome, and bipolar disorder. Recently, we described a new mechanism through which D2R activation can enhance the excitability of pyramidal neurons in the PFC. Here, we explore the underlying cellular mechanisms. Surprisingly, although D2Rs are classically assumed to signal through Gi/o-coupled G-proteins and/or scaffolding proteins, such as β-arrestin, we find that the effects of D2Rs on prefrontal pyramidal neurons are actually mediated by pathways associated with Gs-mediated signaling. Furthermore, we show how, via this D2R-dependent phenomenon, synaptic input can enhance the excitability of prefrontal neurons over timescales on the order of seconds. These results elucidate cellular mechanisms underlying a novel signaling pathway downstream of D2Rs that may contribute to prefrontal function under normal and pathological conditions.
Collapse
|
14
|
Jongkees BJ, Steenbergen L, Colzato LS. Color vision predicts processing modes of goal activation during action cascading. Cortex 2017; 94:123-130. [PMID: 28759802 DOI: 10.1016/j.cortex.2017.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 11/19/2022]
Abstract
One of the most important functions of cognitive control is action cascading: the ability to cope with multiple response options when confronted with various task goals. A recent study implicates a key role for dopamine (DA) in this process, suggesting higher D1 efficiency shifts the action cascading strategy toward a more serial processing mode, whereas higher D2 efficiency promotes a shift in the opposite direction by inducing a more parallel processing mode (Stock, Arning, Epplen, & Beste, 2014). Given that DA is found in high concentration in the retina and modulation of retinal DA release displays characteristics of D2-receptors (Peters, Schweibold, Przuntek, & Müller, 2000), color vision discrimination might serve as an index of D2 efficiency. We used color discrimination, assessed with the Lanthony Desaturated Panel D-15 test, to predict individual differences (N = 85) in a stop-change paradigm that provides a well-established measure of action cascading. In this task it is possible to calculate an individual slope value for each participant that estimates the degree of overlap in task goal activation. When the stopping process of a previous task goal has not finished at the time the change process toward a new task goal is initiated (parallel processing), the slope value becomes steeper. In case of less overlap (more serial processing), the slope value becomes flatter. As expected, participants showing better color vision were more prone to activate goals in a parallel manner as indicated by a steeper slope. Our findings suggest that color vision might represent a predictor of D2 efficiency and the predisposed processing mode of goal activation during action cascading.
Collapse
Affiliation(s)
- Bryant J Jongkees
- Institute of Psychological Research and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.
| | - Laura Steenbergen
- Institute of Psychological Research and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands; Amsterdam Brain & Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Lorenza S Colzato
- Institute of Psychological Research and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands; Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany; Institute for Sports and Sport Science, University of Kassel, Kassel, Germany
| |
Collapse
|
15
|
N-acetylcysteine amide (AD4) reduces cocaine-induced reinstatement. Psychopharmacology (Berl) 2016; 233:3437-48. [PMID: 27469021 DOI: 10.1007/s00213-016-4388-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/12/2016] [Indexed: 02/07/2023]
Abstract
RATIONALE Chronic exposure to drugs of abuse changes glutamatergic transmission in human addicts and animal models. N-acetylcysteine (NAC) is a cysteine prodrug that indirectly activates cysteine-glutamate antiporters. In the extrasynaptic space, NAC restores basal glutamate levels during drug abstinence and normalizes increased glutamatergic tone in rats during reinstatement to drugs of abuse. In initial clinical trials, repeated NAC administration seems to be promising for reduced craving in cocaine addicts. OBJECTIVE In this study, NAC-amide, called AD4 or NACA, was examined in intravenous cocaine self-administration and extinction/reinstatement procedures in rats. We investigated the behavioral effects of AD4 in the olfactory bulbectomized (OBX) rats, considered an animal model of depression. Finally, we tested rats injected with AD4 or NAC during 10-daily extinction training sessions to examine subsequent cocaine seeking. RESULTS AD4 (25-75 mg kg(-1)) given acutely did not alter the rewarding effects of cocaine in OBX rats and sham-operated controls. However, at 6.25-50 mg kg(-1), AD4 decreased dose-dependently cocaine seeking and relapse triggered by cocaine priming or drug-associated conditioned cues in both phenotypes. Furthermore, repeated treatment with AD4 (25 mg kg(-1)) or NAC (100 mg kg(-1)) during daily extinction trials reduced reinstatement of drug-seeking behavior in sham-operated controls. In the OBX rats only, AD4 effectively blocked cocaine-seeking behavior. CONCLUSIONS Our results demonstrate that AD4 is effective at blocking cocaine-seeking behavior, highlighting its potential clinical use toward cocaine use disorder.
Collapse
|
16
|
Combined approaches for the relief of spinal cord injury-induced neuropathic pain. Complement Ther Med 2016; 25:27-33. [DOI: 10.1016/j.ctim.2015.12.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 02/06/2023] Open
|
17
|
Gantz SC, Robinson BG, Buck DC, Bunzow JR, Neve RL, Williams JT, Neve KA. Distinct regulation of dopamine D2S and D2L autoreceptor signaling by calcium. eLife 2015; 4. [PMID: 26308580 PMCID: PMC4575989 DOI: 10.7554/elife.09358] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/25/2015] [Indexed: 11/29/2022] Open
Abstract
D2 autoreceptors regulate dopamine release throughout the brain. Two isoforms of the D2 receptor, D2S and D2L, are expressed in midbrain dopamine neurons. Differential roles of these isoforms as autoreceptors are poorly understood. By virally expressing the isoforms in dopamine neurons of D2 receptor knockout mice, this study assessed the calcium-dependence and drug-induced plasticity of D2S and D2L receptor-dependent G protein-coupled inwardly rectifying potassium (GIRK) currents. The results reveal that D2S, but not D2L receptors, exhibited calcium-dependent desensitization similar to that exhibited by endogenous autoreceptors. Two pathways of calcium signaling that regulated D2 autoreceptor-dependent GIRK signaling were identified, which distinctly affected desensitization and the magnitude of D2S and D2L receptor-dependent GIRK currents. Previous in vivo cocaine exposure removed calcium-dependent D2 autoreceptor desensitization in wild type, but not D2S-only mice. Thus, expression of D2S as the exclusive autoreceptor was insufficient for cocaine-induced plasticity, implying a functional role for the co-expression of D2S and D2L autoreceptors. DOI:http://dx.doi.org/10.7554/eLife.09358.001 Dopamine is an important component of the brain's reward system and is commonly referred to as a ‘feel-good’ chemical. It is mainly released from neurons in the brain in response to natural rewards, such as food or sex, and following exposure to, or in anticipation of, certain drugs of abuse (including cocaine). Dopamine-releasing neurons also sense dopamine, and just like someone can change the volume of their voice by hearing themselves speak, dopamine neurons regulate how much dopamine is released based on how much dopamine they sense. This feedback system is known as autoinhibition. These neurons sense dopamine when it binds to, and activates, so-called ‘dopamine D2 receptors’ on their cell surface. But not all D2 receptors are alike. Instead there are two variants called D2S and D2L. Previous studies have shown that D2 receptor signaling in dopamine neurons is altered by the concentration of calcium ions inside these cells. Furthermore, exposure to cocaine and other drugs is known to change how these calcium ions regulate D2 receptor signaling. Now, Gantz et al. have used mice that produce only a single variant of the D2 receptor (either D2S or D2L) in their dopamine neurons to uncover similarities and differences between the two variants. The experiments show that localized increases in calcium ion concentration make D2S less capable of autoinhibition, like D2 receptors in neurons from wild type mice, without affecting autoinhibition by D2L. In further experiments, some of these mice were given cocaine before D2 receptor signaling was assessed. In dopamine neurons from wild type mice, a single exposure to cocaine eliminates the calcium-dependent regulation; thus, cocaine treatment causes a D2L-like response. In contrast, cocaine treatment did not affect the calcium-dependent regulation when only one variant of the D2 receptor was present. This implies that dopamine neurons must have both D2S and D2L receptors before the drug can induce changes in D2 receptor signaling. These findings also challenge the long-held view that the D2S receptor is the predominant form involved in autoinhibition. The next challenge is to determine how cocaine induces an apparent switch from D2S to D2L and the implications of this switch for the development of cocaine addiction. DOI:http://dx.doi.org/10.7554/eLife.09358.002
Collapse
Affiliation(s)
- Stephanie C Gantz
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Brooks G Robinson
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - David C Buck
- Research Service, VA Portland Health Care System, United States Department of Veterans Affairs, Portland, United States
| | - James R Bunzow
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Rachael L Neve
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - John T Williams
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Kim A Neve
- Research Service, VA Portland Health Care System, United States Department of Veterans Affairs, Portland, United States
| |
Collapse
|
18
|
de Jong JW, Roelofs TJM, Mol FMU, Hillen AEJ, Meijboom KE, Luijendijk MCM, van der Eerden HAM, Garner KM, Vanderschuren LJMJ, Adan RAH. Reducing Ventral Tegmental Dopamine D2 Receptor Expression Selectively Boosts Incentive Motivation. Neuropsychopharmacology 2015; 40:2085-95. [PMID: 25735756 PMCID: PMC4613606 DOI: 10.1038/npp.2015.60] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 12/18/2022]
Abstract
Altered mesolimbic dopamine signaling has been widely implicated in addictive behavior. For the most part, this work has focused on dopamine within the striatum, but there is emerging evidence for a role of the auto-inhibitory, somatodendritic dopamine D2 receptor (D2R) in the ventral tegmental area (VTA) in addiction. Thus, decreased midbrain D2R expression has been implicated in addiction in humans. Moreover, knockout of the gene encoding the D2R receptor (Drd2) in dopamine neurons has been shown to enhance the locomotor response to cocaine in mice. Therefore, we here tested the hypothesis that decreasing D2R expression in the VTA of adult rats, using shRNA knockdown, promotes addiction-like behavior in rats responding for cocaine or palatable food. Rats with decreased VTA D2R expression showed markedly increased motivation for both sucrose and cocaine under a progressive ratio schedule of reinforcement, but the acquisition or maintenance of cocaine self-administration were not affected. They also displayed enhanced cocaine-induced locomotor activity, but no change in basal locomotion. This robust increase in incentive motivation was behaviorally specific, as we did not observe any differences in fixed ratio responding, extinction responding, reinstatement or conditioned suppression of cocaine, and sucrose seeking. We conclude that VTA D2R knockdown results in increased incentive motivation, but does not directly promote other aspects of addiction-like behavior.
Collapse
Affiliation(s)
- Johannes W de Jong
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Theresia J M Roelofs
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frédérique M U Mol
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anne E J Hillen
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Katharina E Meijboom
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mieneke C M Luijendijk
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Harrie A M van der Eerden
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Keith M Garner
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Louk J M J Vanderschuren
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands,Division of Behavioural Neuroscience, Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Roger A H Adan
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands,Department Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, STR.4.205, Universiteitweg 100, 3584 CG Utrecht, The Netherlands, Tel: +887568517, E-mail:
| |
Collapse
|
19
|
Verdejo-Garcia A, Clark L, Verdejo-Román J, Albein-Urios N, Martinez-Gonzalez JM, Gutierrez B, Soriano-Mas C. Neural substrates of cognitive flexibility in cocaine and gambling addictions. Br J Psychiatry 2015; 207:158-64. [PMID: 26045346 DOI: 10.1192/bjp.bp.114.152223] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 11/23/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Individuals with cocaine and gambling addictions exhibit cognitive flexibility deficits that may underlie persistence of harmful behaviours. AIMS We investigated the neural substrates of cognitive inflexibility in cocaine users v. pathological gamblers, aiming to disambiguate common mechanisms v. cocaine effects. METHOD Eighteen cocaine users, 18 pathological gamblers and 18 controls performed a probabilistic reversal learning task during functional magnetic resonance imaging, and were genotyped for the DRD2/ANKK Taq1A polymorphism. RESULTS Cocaine users and pathological gamblers exhibited reduced ventrolateral prefrontal cortex (PFC) signal during reversal shifting. Cocaine users further showed increased dorsomedial PFC (dmPFC) activation relative to pathological gamblers during perseveration, and decreased dorsolateral PFC activation relative to pathological gamblers and controls during shifting. Preliminary genetic findings indicated that cocaine users carrying the DRD2/ANKK Taq1A1+ genotype may derive unique stimulatory effects on shifting-related ventrolateral PFC signal. CONCLUSIONS Reduced ventrolateral PFC activation during shifting may constitute a common neural marker across gambling and cocaine addictions. Additional cocaine-related effects relate to a wider pattern of task-related dysregulation, reflected in signal abnormalities in dorsolateral and dmPFC.
Collapse
Affiliation(s)
- Antonio Verdejo-Garcia
- Antonio Verdejo-Garcia, PhD, School of Psychology and Psychiatry, Monash University, Melbourne, Australia, Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain and Red de Trastornos Adictivos, Universidad de Granada. Granada, Spain; Luke Clark, PhD, Department of Psychology, Centre for Gambling Research at UBC, University of British Columbia, Canada; Juan Verdejo-Román, MSc, Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain; Natalia Albein-Urios, PhD, Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain; José M. Martinez-Gonzalez, PhD, Red de Trastornos Adictivos, Universidad de Granada, Granada, Spain and Centro Provincial de Drogodependencias, Diputacion de Granada, Granada, Spain; Blanca Gutierrez, PhD, Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain, Department of Psychiatry, Universidad de Granada, Granada, Spain and CIBERSAM, Carlos III Health Institute, Barcelona, Spain; Carles Soriano-Mas, PhD, Department of Psychiatry, Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain and CIBERSAM, Carlos III Health Institute, Barcelona, Spain, Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain
| | - Luke Clark
- Antonio Verdejo-Garcia, PhD, School of Psychology and Psychiatry, Monash University, Melbourne, Australia, Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain and Red de Trastornos Adictivos, Universidad de Granada. Granada, Spain; Luke Clark, PhD, Department of Psychology, Centre for Gambling Research at UBC, University of British Columbia, Canada; Juan Verdejo-Román, MSc, Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain; Natalia Albein-Urios, PhD, Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain; José M. Martinez-Gonzalez, PhD, Red de Trastornos Adictivos, Universidad de Granada, Granada, Spain and Centro Provincial de Drogodependencias, Diputacion de Granada, Granada, Spain; Blanca Gutierrez, PhD, Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain, Department of Psychiatry, Universidad de Granada, Granada, Spain and CIBERSAM, Carlos III Health Institute, Barcelona, Spain; Carles Soriano-Mas, PhD, Department of Psychiatry, Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain and CIBERSAM, Carlos III Health Institute, Barcelona, Spain, Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain
| | - Juan Verdejo-Román
- Antonio Verdejo-Garcia, PhD, School of Psychology and Psychiatry, Monash University, Melbourne, Australia, Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain and Red de Trastornos Adictivos, Universidad de Granada. Granada, Spain; Luke Clark, PhD, Department of Psychology, Centre for Gambling Research at UBC, University of British Columbia, Canada; Juan Verdejo-Román, MSc, Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain; Natalia Albein-Urios, PhD, Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain; José M. Martinez-Gonzalez, PhD, Red de Trastornos Adictivos, Universidad de Granada, Granada, Spain and Centro Provincial de Drogodependencias, Diputacion de Granada, Granada, Spain; Blanca Gutierrez, PhD, Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain, Department of Psychiatry, Universidad de Granada, Granada, Spain and CIBERSAM, Carlos III Health Institute, Barcelona, Spain; Carles Soriano-Mas, PhD, Department of Psychiatry, Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain and CIBERSAM, Carlos III Health Institute, Barcelona, Spain, Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain
| | - Natalia Albein-Urios
- Antonio Verdejo-Garcia, PhD, School of Psychology and Psychiatry, Monash University, Melbourne, Australia, Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain and Red de Trastornos Adictivos, Universidad de Granada. Granada, Spain; Luke Clark, PhD, Department of Psychology, Centre for Gambling Research at UBC, University of British Columbia, Canada; Juan Verdejo-Román, MSc, Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain; Natalia Albein-Urios, PhD, Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain; José M. Martinez-Gonzalez, PhD, Red de Trastornos Adictivos, Universidad de Granada, Granada, Spain and Centro Provincial de Drogodependencias, Diputacion de Granada, Granada, Spain; Blanca Gutierrez, PhD, Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain, Department of Psychiatry, Universidad de Granada, Granada, Spain and CIBERSAM, Carlos III Health Institute, Barcelona, Spain; Carles Soriano-Mas, PhD, Department of Psychiatry, Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain and CIBERSAM, Carlos III Health Institute, Barcelona, Spain, Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain
| | - José M Martinez-Gonzalez
- Antonio Verdejo-Garcia, PhD, School of Psychology and Psychiatry, Monash University, Melbourne, Australia, Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain and Red de Trastornos Adictivos, Universidad de Granada. Granada, Spain; Luke Clark, PhD, Department of Psychology, Centre for Gambling Research at UBC, University of British Columbia, Canada; Juan Verdejo-Román, MSc, Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain; Natalia Albein-Urios, PhD, Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain; José M. Martinez-Gonzalez, PhD, Red de Trastornos Adictivos, Universidad de Granada, Granada, Spain and Centro Provincial de Drogodependencias, Diputacion de Granada, Granada, Spain; Blanca Gutierrez, PhD, Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain, Department of Psychiatry, Universidad de Granada, Granada, Spain and CIBERSAM, Carlos III Health Institute, Barcelona, Spain; Carles Soriano-Mas, PhD, Department of Psychiatry, Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain and CIBERSAM, Carlos III Health Institute, Barcelona, Spain, Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain
| | - Blanca Gutierrez
- Antonio Verdejo-Garcia, PhD, School of Psychology and Psychiatry, Monash University, Melbourne, Australia, Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain and Red de Trastornos Adictivos, Universidad de Granada. Granada, Spain; Luke Clark, PhD, Department of Psychology, Centre for Gambling Research at UBC, University of British Columbia, Canada; Juan Verdejo-Román, MSc, Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain; Natalia Albein-Urios, PhD, Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain; José M. Martinez-Gonzalez, PhD, Red de Trastornos Adictivos, Universidad de Granada, Granada, Spain and Centro Provincial de Drogodependencias, Diputacion de Granada, Granada, Spain; Blanca Gutierrez, PhD, Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain, Department of Psychiatry, Universidad de Granada, Granada, Spain and CIBERSAM, Carlos III Health Institute, Barcelona, Spain; Carles Soriano-Mas, PhD, Department of Psychiatry, Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain and CIBERSAM, Carlos III Health Institute, Barcelona, Spain, Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain
| | - Carles Soriano-Mas
- Antonio Verdejo-Garcia, PhD, School of Psychology and Psychiatry, Monash University, Melbourne, Australia, Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain and Red de Trastornos Adictivos, Universidad de Granada. Granada, Spain; Luke Clark, PhD, Department of Psychology, Centre for Gambling Research at UBC, University of British Columbia, Canada; Juan Verdejo-Román, MSc, Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain; Natalia Albein-Urios, PhD, Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain; José M. Martinez-Gonzalez, PhD, Red de Trastornos Adictivos, Universidad de Granada, Granada, Spain and Centro Provincial de Drogodependencias, Diputacion de Granada, Granada, Spain; Blanca Gutierrez, PhD, Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain, Department of Psychiatry, Universidad de Granada, Granada, Spain and CIBERSAM, Carlos III Health Institute, Barcelona, Spain; Carles Soriano-Mas, PhD, Department of Psychiatry, Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain and CIBERSAM, Carlos III Health Institute, Barcelona, Spain, Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
20
|
Roseberry AG. Acute fasting increases somatodendritic dopamine release in the ventral tegmental area. J Neurophysiol 2015; 114:1072-82. [PMID: 26084913 DOI: 10.1152/jn.01008.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/11/2015] [Indexed: 11/22/2022] Open
Abstract
Fasting and food restriction alter the activity of the mesolimbic dopamine system to affect multiple reward-related behaviors. Food restriction decreases baseline dopamine levels in efferent target sites and enhances dopamine release in response to rewards such as food and drugs. In addition to releasing dopamine from axon terminals, dopamine neurons in the ventral tegmental area (VTA) also release dopamine from their soma and dendrites, and this somatodendritic dopamine release acts as an autoinhibitory signal to inhibit neighboring VTA dopamine neurons. It is unknown whether acute fasting also affects dopamine release, including the local inhibitory somatodendritic dopamine release in the VTA. In these studies, I have tested whether fasting affects the inhibitory somatodendritic dopamine release within the VTA by examining whether an acute 24-h fast affects the inhibitory postsynaptic current mediated by evoked somatodendritic dopamine release (D2R IPSC). Fasting increased the contribution of the first action potential to the overall D2R IPSC and increased the ratio of repeated D2R IPSCs evoked at short intervals. Fasting also reduced the effect of forskolin on the D2R IPSC and led to a significantly bigger decrease in the D2R IPSC in low extracellular calcium. Finally, fasting resulted in an increase in the D2R IPSCs when a more physiologically relevant train of D2R IPSCs was used. Taken together, these results indicate that fasting caused a change in the properties of somatodendritic dopamine release, possibly by increasing dopamine release, and that this increased release can be sustained under conditions where dopamine neurons are highly active.
Collapse
Affiliation(s)
- Aaron G Roseberry
- Department of Biology, Center for Obesity Reversal, and Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
21
|
Pomierny-Chamiolo L, Miszkiel J, Frankowska M, Pomierny B, Niedzielska E, Smaga I, Fumagalli F, Filip M. Withdrawal from cocaine self-administration and yoked cocaine delivery dysregulates glutamatergic mGlu5 and NMDA receptors in the rat brain. Neurotox Res 2014; 27:246-58. [PMID: 25408547 PMCID: PMC4353866 DOI: 10.1007/s12640-014-9502-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/06/2014] [Accepted: 11/06/2014] [Indexed: 12/16/2022]
Abstract
In human addicts and in animal models, chronic cocaine use leads to numerous alterations in glutamatergic transmission, including its receptors. The present study focused on metabotropic glutamatergic receptors type 5 (mGluR5) and N-methyl-D-aspartate receptor subunits (NMDAR: GluN1, GluN2A, GluN2B) proteins during cocaine self-administration and after 10-day of extinction training in rats. To discriminate the contingent from the non-contingent cocaine delivery, we employed the “yoked”-triad control procedure. Protein expression in rat prefrontal cortex, nucleus accumbens, hippocampus, and dorsal striatum was determined. We also examined the Homer1b/c protein, a member of the postsynaptic density protein family that links NMDAR to mGluR5. Our results revealed that cocaine self-administration selectively increased GluN1 and GluN2A subunit in the rat hippocampus and dorsal striatum, respectively, while mGluR5 protein expression was similarly increased in the dorsal striatum of both experimental groups. Withdrawal from both contingent and non-contingent cocaine delivery induced parallel increases in prefrontal cortical GluN2A protein expression, hippocampal mGluR5, and GluN1 protein expression as well as in accumbal GluN1 subunit expression, while the mGluR5 expression was reduced in the prefrontal cortex. Extinction training in animals with a history of cocaine self-administration resulted in an elevation of the hippocampal GluN2A/GluN2B subunits and accumbal mGluR5, and in a 50 % decrease of mGluR5 protein expression in the dorsal striatum. The latter reduction was associated with Homer1b/1c protein level decrease. Our results showed that both contingent and non-contingent cocaine administration produces numerous, brain region specific, alterations in the mGluR5, NMDA, and Homer1b/1c protein expression which are dependent on the modality of cocaine administration.
Collapse
Affiliation(s)
- Lucyna Pomierny-Chamiolo
- Department of Toxicology, Department of Biochemical Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland,
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Tang WK, Morgan CJA, Lau GC, Liang HJ, Tang A, Ungvari GS. Psychiatric morbidity in ketamine users attending counselling and youth outreach services. Subst Abus 2014; 36:67-74. [PMID: 25023206 DOI: 10.1080/08897077.2014.935560] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND No study has examined ketamine users' psychiatric morbidity using structured diagnostic instruments. The aim of this study was thus to determine the psychiatric comorbidity of community-based ketamine users using the Structured Clinical Interview for DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition), Axis I Disorders (SCID). METHODS A convenience sample of 200 frequent ketamine users was recruited from community organizations in Hong Kong. Participants were screened with the Severity of Dependence Scale (SDS), Beck Depression Inventory (BDI), Anxiety subscale of the Hospital Anxiety Depression Scale (HADSA), and SCID psychotic symptoms. Those who scored above the threshold (cutoff point of 8/9 on the BDI and 4/5 on HADSA) or displayed evidence of psychotic symptoms were referred for a structured clinical interview conducted by a psychiatrist. RESULTS One hundred and seventy participants scored above the cutoff point on 1 or more of the scales, and 115 participants attended the SCID interview. Fifty-one of these 115 participants received a psychiatric diagnosis of 1 or more comorbidities for the month preceding the interview. Mood disorders accounted for 80.4% of the diagnoses, anxiety disorders for 33.3%, and psychotic disorders for 7.8%. CONCLUSIONS Female gender and history of psychiatric/psychological clinic attendance were significantly associated with comorbid psychiatric disorders, whereas ketamine dependence had a borderline association.
Collapse
Affiliation(s)
- Wai Kwong Tang
- a Department of Psychiatry , Chinese University of Hong Kong , Hong Kong SAR , China
| | | | | | | | | | | |
Collapse
|
23
|
Ford CP. The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Neuroscience 2014; 282:13-22. [PMID: 24463000 DOI: 10.1016/j.neuroscience.2014.01.025] [Citation(s) in RCA: 363] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 01/09/2023]
Abstract
Dopamine D2-autoreceptors play a key role in regulating the activity of dopamine neurons and control the synthesis, release and uptake of dopamine. These Gi/o-coupled inhibitory receptors play a major part in shaping dopamine transmission. Found at both somatodendritic and axonal sites, autoreceptors regulate the firing patterns of dopamine neurons and control the timing and amount of dopamine released from their terminals in target regions. Alterations in the expression and activity of autoreceptors are thought to contribute to Parkinson's disease as well as schizophrenia, drug addiction and attention-deficit hyperactivity disorder (ADHD), which emphasizes the importance of D2-autoreceptors in regulating the dopamine system. This review will summarize the cellular actions of dopamine autoreceptors and discuss recent advances that have furthered our understanding of the mechanisms by which D2-receptors control dopamine transmission.
Collapse
Affiliation(s)
- C P Ford
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4970, United States; Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4970, United States.
| |
Collapse
|
24
|
Cocaine-induced changes in NMDA receptor signaling. Mol Neurobiol 2014; 50:494-506. [PMID: 24445951 DOI: 10.1007/s12035-014-8636-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/02/2014] [Indexed: 01/27/2023]
Abstract
Addictive states are often thought to rely on lasting modification of signaling at relevant synapses. A long-standing theory posits that activity at N-methyl-D-aspartate receptors (NMDARs) is a critical component of long-term synaptic plasticity in many brain areas. Indeed, NMDAR signaling has been found to play a role in the etiology of addictive states, in particular, following cocaine exposure. However, no consensus is apparent with respect to the specific effects of cocaine exposure on NMDARs. Part of the difficulty lies in the fact that NMDARs interact extensively with multiple membrane proteins and intracellular signaling cascades. This allows for highly heterogeneous patterns of NMDAR regulation by cocaine in distinct brain regions and at distinct synapses. The picture is further complicated by findings that cocaine effects on NMDARs are sensitive to the behavioral history of cocaine exposure such as the mode of cocaine administration. This review provides a summary of evidence for cocaine-induced changes in NMDAR expression, cocaine-induced alterations in NMDAR function, and cocaine effects on NMDAR control of intracellular signaling cascades.
Collapse
|