1
|
Segraves MA. Using Natural Scenes to Enhance our Understanding of the Cerebral Cortex's Role in Visual Search. Annu Rev Vis Sci 2023; 9:435-454. [PMID: 37164028 DOI: 10.1146/annurev-vision-100720-124033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Using natural scenes is an approach to studying the visual and eye movement systems approximating how these systems function in everyday life. This review examines the results from behavioral and neurophysiological studies using natural scene viewing in humans and monkeys. The use of natural scenes for the study of cerebral cortical activity is relatively new and presents challenges for data analysis. Methods and results from the use of natural scenes for the study of the visual and eye movement cortex are presented, with emphasis on new insights that this method provides enhancing what is known about these cortical regions from the use of conventional methods.
Collapse
Affiliation(s)
- Mark A Segraves
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA;
| |
Collapse
|
2
|
Park S, Serences JT. Relative precision of top-down attentional modulations is lower in early visual cortex compared to mid- and high-level visual areas. J Neurophysiol 2022; 127:504-518. [PMID: 35020526 PMCID: PMC8836715 DOI: 10.1152/jn.00300.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 02/03/2023] Open
Abstract
Top-down spatial attention enhances cortical representations of behaviorally relevant visual information and increases the precision of perceptual reports. However, little is known about the relative precision of top-down attentional modulations in different visual areas, especially compared with the highly precise stimulus-driven responses that are observed in early visual cortex. For example, the precision of attentional modulations in early visual areas may be limited by the relatively coarse spatial selectivity and the anatomical connectivity of the areas in prefrontal cortex that generate and relay the top-down signals. Here, we used functional MRI (fMRI) and human participants to assess the precision of bottom-up spatial representations evoked by high-contrast stimuli across the visual hierarchy. Then, we examined the relative precision of top-down attentional modulations in the absence of spatially specific bottom-up drive. Whereas V1 showed the largest relative difference between the precision of top-down attentional modulations and the precision of bottom-up modulations, midlevel areas such as V4 showed relatively smaller differences between the precision of top-down and bottom-up modulations. Overall, this interaction between visual areas (e.g., V1 vs. V4) and the relative precision of top-down and bottom-up modulations suggests that the precision of top-down attentional modulations is limited by the representational fidelity of areas that generate and relay top-down feedback signals.NEW & NOTEWORTHY When the relative precision of purely top-down and bottom-up signals were compared across visual areas, early visual areas like V1 showed higher bottom-up precision compared with top-down precision. In contrast, midlevel areas showed similar levels of top-down and bottom-up precision. This result suggests that the precision of top-down attentional modulations may be limited by the relatively coarse spatial selectivity and the anatomical connectivity of the areas generating and relaying the signals.
Collapse
Affiliation(s)
- Sunyoung Park
- Department of Psychology, University of California San Diego, La Jolla, California
| | - John T Serences
- Department of Psychology, University of California San Diego, La Jolla, California
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California
| |
Collapse
|
3
|
D'Souza JF, Price NSC, Hagan MA. Marmosets: a promising model for probing the neural mechanisms underlying complex visual networks such as the frontal-parietal network. Brain Struct Funct 2021; 226:3007-3022. [PMID: 34518902 PMCID: PMC8541938 DOI: 10.1007/s00429-021-02367-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/23/2021] [Indexed: 01/02/2023]
Abstract
The technology, methodology and models used by visual neuroscientists have provided great insights into the structure and function of individual brain areas. However, complex cognitive functions arise in the brain due to networks comprising multiple interacting cortical areas that are wired together with precise anatomical connections. A prime example of this phenomenon is the frontal–parietal network and two key regions within it: the frontal eye fields (FEF) and lateral intraparietal area (area LIP). Activity in these cortical areas has independently been tied to oculomotor control, motor preparation, visual attention and decision-making. Strong, bidirectional anatomical connections have also been traced between FEF and area LIP, suggesting that the aforementioned visual functions depend on these inter-area interactions. However, advancements in our knowledge about the interactions between area LIP and FEF are limited with the main animal model, the rhesus macaque, because these key regions are buried in the sulci of the brain. In this review, we propose that the common marmoset is the ideal model for investigating how anatomical connections give rise to functionally-complex cognitive visual behaviours, such as those modulated by the frontal–parietal network, because of the homology of their cortical networks with humans and macaques, amenability to transgenic technology, and rich behavioural repertoire. Furthermore, the lissencephalic structure of the marmoset brain enables application of powerful techniques, such as array-based electrophysiology and optogenetics, which are critical to bridge the gaps in our knowledge about structure and function in the brain.
Collapse
Affiliation(s)
- Joanita F D'Souza
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Clayton, VIC, 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, 3800, Australia
| | - Nicholas S C Price
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Clayton, VIC, 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, 3800, Australia
| | - Maureen A Hagan
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Clayton, VIC, 3800, Australia. .,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, 3800, Australia.
| |
Collapse
|
4
|
McSorley E, Cruickshank AG, McCloy R. Inhibition of saccade initiation improves saccade accuracy: The role of local and remote visual distractors in the control of saccadic eye movements. J Vis 2021; 21:17. [PMID: 33729451 PMCID: PMC7980046 DOI: 10.1167/jov.21.3.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 01/28/2021] [Indexed: 11/24/2022] Open
Abstract
When a distractor appears close to the target location, saccades are less accurate. However, the presence of a further distractor, remote from those stimuli, increases the saccade response latency and improves accuracy. Explanations for this are either that the second, remote distractor impacts directly on target selection processes or that the remote distractor merely impairs the ability to initiate a saccade and changes the time at which unaffected target selection processes are accessed. In order to tease these two explanations apart, here we examine the relationship between latency and accuracy of saccades to a target and close distractor pair while a remote distractor appears at variable distance. Accuracy improvements are found to follow a similar pattern, regardless of the presence of the remote distractor, which suggests that the effect of the remote distractor is not the result of a direct impact on the target selection process. Our findings support the proposal that a remote distractor impairs the ability to initiate a saccade, meaning the competition between target and close distractor is accessed at a later time, thus resulting in more accurate saccades.
Collapse
Affiliation(s)
- Eugene McSorley
- School of Psychology and Clinical Language Sciences, University of Reading, Berkshire, UK
| | - Alice G Cruickshank
- School of Psychology and Clinical Language Sciences, University of Reading, Berkshire, UK
| | - Rachel McCloy
- School of Psychology and Clinical Language Sciences, University of Reading, Berkshire, UK
| |
Collapse
|
5
|
Feizpour A, Majka P, Chaplin TA, Rowley D, Yu HH, Zavitz E, Price NSC, Rosa MGP, Hagan MA. Visual responses in the dorsolateral frontal cortex of marmoset monkeys. J Neurophysiol 2020; 125:296-304. [PMID: 33326337 DOI: 10.1152/jn.00581.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The marmoset monkey (Callithrix jacchus) has gained attention in neurophysiology research as a new primate model for visual processing and behavior. In particular, marmosets have a lissencephalic cortex, making multielectrode, optogenetic, and calcium-imaging techniques more accessible than other primate models. However, the degree of homology of brain circuits for visual behavior with those identified in macaques and humans is still being ascertained. For example, whereas the location of the frontal eye fields (FEF) within the dorsolateral frontal cortex has been proposed, it remains unclear whether neurons in the corresponding areas show visual responses-an important characteristic of FEF neurons in other species. Here, we provide the first description of receptive field properties and neural response latencies in the marmoset dorsolateral frontal cortex, based on recordings using Utah arrays in anesthetized animals. We find brisk visual responses in specific regions of the dorsolateral prefrontal cortex, particularly in areas 8aV, 8C, and 6DR. As in macaque FEF, the receptive fields were typically large (10°-30° in diameter) and the median responses latency was brisk (60 ms). These results constrain the possible interpretations about the location of the marmoset FEF and suggest that the marmoset model's significant advantages for the use of physiological techniques may be leveraged in the study of visuomotor cognition.NEW & NOTEWORTHY Behavior and cognition in humans and other primates rely on networks of brain areas guided by the frontal cortex. The marmoset offers exciting new opportunities to study links between brain physiology and behavior, but the functions of frontal cortex areas are still being identified in this species. Here, we provide the first evidence of visual receptive fields in the marmoset dorsolateral frontal cortex, an important step toward future studies of visual cognitive behavior.
Collapse
Affiliation(s)
- Azadeh Feizpour
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| | - Piotr Majka
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Tristan A Chaplin
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| | - Declan Rowley
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| | - Hsin-Hao Yu
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| | - Elizabeth Zavitz
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| | - Nicholas S C Price
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| | - Maureen A Hagan
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
6
|
Visual Responses in FEF, Unlike V1, Primarily Reflect When the Visual Context Renders a Receptive Field Salient. J Neurosci 2017; 37:9871-9879. [PMID: 28912158 DOI: 10.1523/jneurosci.1446-17.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 11/21/2022] Open
Abstract
When light falls within a neuronal visual receptive field (RF) the resulting activity is referred to as the visual response. Recent work suggests this activity is in response to both the visual stimulation and the abrupt appearance, or salience, of the presentation. Here we present a novel method for distinguishing the two, based on the timing of random and nonrandom presentations. We examined these contributions in frontal eye field (FEF; N = 51) and as a comparison, an early stage in the primary visual cortex (V1; N = 15) of male monkeys (Macaca mulatta). An array of identical stimuli was presented within and outside the neuronal RF while we manipulated salience by varying the time between stimulus presentations. We hypothesized that the rapid presentation would reduce salience (the sudden appearance within the visual field) of a stimulus at any one location, and thus decrease responses driven by salience in the RF. We found that when the interstimulus interval decreased from 500 to 16 ms there was an approximate 79% reduction in the FEF response compared with an estimated 17% decrease in V1. This reduction in FEF response for rapid presentation was evident even when the random sequence preceding a stimulus did not stimulate the RF for 500 ms. The time course of these response changes in FEF suggest that salience is represented much earlier (<100 ms following stimulus onset) than previously estimated. Our results suggest that the contribution of salience dominates at higher levels of the visual system.SIGNIFICANCE STATEMENT The neuronal responses in early visual processing [e.g., primary visual cortex (V1)] reflect primarily the retinal stimulus. Processing in higher visual areas is modulated by a combination of the visual stimulation and contextual factors, such as salience, but identifying these components separately has been difficult. Here we quantified these contributions at a late stage of visual processing [frontal eye field (FEF)] and as a comparison, an early stage in V1. Our results suggest that as visual information continues through higher levels of processing the neural responses are no longer driven primarily by the visual stimulus in the receptive field, but by the broader context that stimulus defines-very different from current views about visual signals in FEF.
Collapse
|
7
|
Khan AZ, Munoz DP, Takahashi N, Blohm G, McPeek RM. Effects of a pretarget distractor on saccade reaction times across space and time in monkeys and humans. J Vis 2017; 16:5. [PMID: 27148697 PMCID: PMC5833323 DOI: 10.1167/16.7.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Previous studies have shown that the influence of a behaviorally irrelevant distractor on saccade reaction times (SRTs) varies depending on the temporal and spatial relationship between the distractor and the saccade target. We measured distractor influence on SRTs to a subsequently presented target, varying the spatial location and the timing between the distractor and the target. The distractor appeared at one of four equally eccentric locations, followed by a target (either 50 ms or 200 ms after) at one of 136 different locations encompassing an area of 20° square. We extensively tested two humans and two monkeys on this task to determine interspecies similarities and differences, since monkey neurophysiology is often used to interpret human behavioral findings. Results were similar across species; for the short interval (50 ms), SRTs were shortest to a target presented close to or at the distractor location and increased primarily as a function of the distance from the distractor. There was also an effect of distractor-target direction and visual field. For the long interval (200 ms) the results were inverted; SRTs were longest for short distances between the distractor and target and decreased as a function of distance from distractor. Both SRT patterns were well captured by a two-dimensional dynamic field model with short-distance excitation and long-distance inhibition, based upon known functional connectivity found in the superior colliculus that includes wide-spread excitation and inhibition. Based on these findings, we posit that the different time-dependent patterns of distractor-related SRTs can emerge from the same underlying neuronal mechanisms common to both species.
Collapse
|
8
|
Coupling between One-Dimensional Networks Reconciles Conflicting Dynamics in LIP and Reveals Its Recurrent Circuitry. Neuron 2016; 93:221-234. [PMID: 27989463 DOI: 10.1016/j.neuron.2016.11.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 07/13/2016] [Accepted: 11/07/2016] [Indexed: 11/20/2022]
Abstract
Little is known about the internal circuitry of the primate lateral intraparietal area (LIP). During two versions of a delayed-saccade task, we found radically different network dynamics beneath similar population average firing patterns. When neurons are not influenced by stimuli outside their receptive fields (RFs), dynamics of the high-dimensional LIP network during slowly varying activity lie predominantly in one multi-neuronal dimension, as described previously. However, when activity is suppressed by stimuli outside the RF, slow LIP dynamics markedly deviate from a single dimension. The conflicting results can be reconciled if two LIP local networks, each underlying an RF location and dominated by a single multi-neuronal activity pattern, are suppressively coupled to each other. These results demonstrate the low dimensionality of slow LIP local dynamics, and suggest that LIP local networks encoding the attentional and movement priority of competing visual locations actively suppress one another.
Collapse
|
9
|
Krock RM, Moore T. Visual sensitivity of frontal eye field neurons during the preparation of saccadic eye movements. J Neurophysiol 2016; 116:2882-2891. [PMID: 27683894 DOI: 10.1152/jn.01140.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 09/22/2016] [Indexed: 11/22/2022] Open
Abstract
Primate vision is continuously disrupted by saccadic eye movements, and yet this disruption goes unperceived. One mechanism thought to reduce perception of this self-generated movement is saccadic suppression, a global loss of visual sensitivity just before, during, and after saccadic eye movements. The frontal eye field (FEF) is a candidate source of neural correlates of saccadic suppression previously observed in visual cortex, because it contributes to the generation of visually guided saccades and modulates visual cortical responses. However, whether the FEF exhibits a perisaccadic reduction in visual sensitivity that could be transmitted to visual cortex is unknown. To determine whether the FEF exhibits a signature of saccadic suppression, we recorded the visual responses of FEF neurons to brief, full-field visual probe stimuli presented during fixation and before onset of saccades directed away from the receptive field in rhesus macaques (Macaca mulatta) We measured visual sensitivity during both epochs and found that it declines before saccade onset. Visual sensitivity was significantly reduced in visual but not visuomotor neurons. This reduced sensitivity was also present in visual neurons with no movement-related modulation during visually guided saccades and thus occurred independently from movement-related activity. Across the population of visual neurons, sensitivity began declining ∼80 ms before saccade onset. We also observed a similar presaccadic reduction in sensitivity to isoluminant, chromatic stimuli. Our results demonstrate that the signaling of visual information by FEF neurons is reduced during saccade preparation, and thus these neurons exhibit a signature of saccadic suppression.
Collapse
Affiliation(s)
- Rebecca M Krock
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California; and
| | - Tirin Moore
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California; and .,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
10
|
Braga RM, Hellyer PJ, Wise RJS, Leech R. Auditory and visual connectivity gradients in frontoparietal cortex. Hum Brain Mapp 2016; 38:255-270. [PMID: 27571304 PMCID: PMC5215394 DOI: 10.1002/hbm.23358] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 11/06/2022] Open
Abstract
A frontoparietal network of brain regions is often implicated in both auditory and visual information processing. Although it is possible that the same set of multimodal regions subserves both modalities, there is increasing evidence that there is a differentiation of sensory function within frontoparietal cortex. Magnetic resonance imaging (MRI) in humans was used to investigate whether different frontoparietal regions showed intrinsic biases in connectivity with visual or auditory modalities. Structural connectivity was assessed with diffusion tractography and functional connectivity was tested using functional MRI. A dorsal-ventral gradient of function was observed, where connectivity with visual cortex dominates dorsal frontal and parietal connections, while connectivity with auditory cortex dominates ventral frontal and parietal regions. A gradient was also observed along the posterior-anterior axis, although in opposite directions in prefrontal and parietal cortices. The results suggest that the location of neural activity within frontoparietal cortex may be influenced by these intrinsic biases toward visual and auditory processing. Thus, the location of activity in frontoparietal cortex may be influenced as much by stimulus modality as the cognitive demands of a task. It was concluded that stimulus modality was spatially encoded throughout frontal and parietal cortices, and was speculated that such an arrangement allows for top-down modulation of modality-specific information to occur within higher-order cortex. This could provide a potentially faster and more efficient pathway by which top-down selection between sensory modalities could occur, by constraining modulations to within frontal and parietal regions, rather than long-range connections to sensory cortices. Hum Brain Mapp 38:255-270, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rodrigo M Braga
- Center for Brain Science, Harvard University, Cambridge, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Charlestown, Massachusetts.,The Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
| | - Peter J Hellyer
- The Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom.,Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Richard J S Wise
- The Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
| | - Robert Leech
- The Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Mayo JP, Morrison RM, Smith MA. A Probabilistic Approach to Receptive Field Mapping in the Frontal Eye Fields. Front Syst Neurosci 2016; 10:25. [PMID: 27047352 PMCID: PMC4796031 DOI: 10.3389/fnsys.2016.00025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/29/2016] [Indexed: 11/20/2022] Open
Abstract
Studies of the neuronal mechanisms of perisaccadic vision often lack the resolution needed to determine important changes in receptive field (RF) structure. Such limited analytical power can lead to inaccurate descriptions of visuomotor processing. To address this issue, we developed a precise, probabilistic technique that uses a generalized linear model (GLM) for mapping the visual RFs of frontal eye field (FEF) neurons during stable fixation (Mayo et al., 2015). We previously found that full-field RF maps could be obtained using 1–8 dot stimuli presented at frame rates of 10–150 ms. FEF responses were generally robust to changes in the number of stimuli presented or the rate of presentation, which allowed us to visualize RFs over a range of spatial and temporal resolutions. Here, we compare the quality of RFs obtained over different stimulus and GLM parameters to facilitate future work on the detailed mapping of FEF RFs. We first evaluate the interactions between the number of stimuli presented per trial, the total number of trials, and the quality of RF mapping. Next, we vary the spatial resolution of our approach to illustrate the tradeoff between visualizing RF sub-structure and sampling at high resolutions. We then evaluate local smoothing as a possible correction for situations where under-sampling occurs. Finally, we provide a preliminary demonstration of the usefulness of a probabilistic approach for visualizing full-field perisaccadic RF shifts. Our results present a powerful, and perhaps necessary, framework for studying perisaccadic vision that is applicable to FEF and possibly other visuomotor regions of the brain.
Collapse
Affiliation(s)
- J Patrick Mayo
- Department of Neurobiology, Duke University Durham, NC, USA
| | - Robert M Morrison
- Center for the Neural Basis of Cognition, University of PittsburghPittsburgh, PA, USA; Center for Neuroscience, University of PittsburghPittsburgh, PA, USA; Medical Scientist Training Program, University of PittsburghPittsburgh, PA, USA
| | - Matthew A Smith
- Center for the Neural Basis of Cognition, University of PittsburghPittsburgh, PA, USA; Center for Neuroscience, University of PittsburghPittsburgh, PA, USA; Medical Scientist Training Program, University of PittsburghPittsburgh, PA, USA; Department of Ophthalmology and Department of Bioengineering, University of PittsburghPittsburgh, PA, USA; Fox Center for Vision Restoration, University of PittsburghPittsburgh, PA, USA
| |
Collapse
|
12
|
Affiliation(s)
- Jeffrey D. Schall
- Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, and Department of Psychology, Vanderbilt University, Nashville, Tennessee 37203;
| |
Collapse
|
13
|
Mayo JP, DiTomasso AR, Sommer MA, Smith MA. Dynamics of visual receptive fields in the macaque frontal eye field. J Neurophysiol 2015; 114:3201-10. [PMID: 26378208 DOI: 10.1152/jn.00746.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/13/2015] [Indexed: 11/22/2022] Open
Abstract
Neuronal receptive fields (RFs) provide the foundation for understanding systems-level sensory processing. In early visual areas, investigators have mapped RFs in detail using stochastic stimuli and sophisticated analytical approaches. Much less is known about RFs in prefrontal cortex. Visual stimuli used for mapping RFs in prefrontal cortex tend to cover a small range of spatial and temporal parameters, making it difficult to understand their role in visual processing. To address these shortcomings, we implemented a generalized linear model to measure the RFs of neurons in the macaque frontal eye field (FEF) in response to sparse, full-field stimuli. Our high-resolution, probabilistic approach tracked the evolution of RFs during passive fixation, and we validated our results against conventional measures. We found that FEF neurons exhibited a surprising level of sensitivity to stimuli presented as briefly as 10 ms or to multiple dots presented simultaneously, suggesting that FEF visual responses are more precise than previously appreciated. FEF RF spatial structures were largely maintained over time and between stimulus conditions. Our results demonstrate that the application of probabilistic RF mapping to FEF and similar association areas is an important tool for clarifying the neuronal mechanisms of cognition.
Collapse
Affiliation(s)
- J Patrick Mayo
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Amie R DiTomasso
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Marc A Sommer
- Department of Biomedical Engineering, Center for Cognitive Neuroscience and the Duke Institute for Brain Sciences, Duke University, Durham, North Carolina; and
| | - Matthew A Smith
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Rubin DB, Van Hooser SD, Miller KD. The stabilized supralinear network: a unifying circuit motif underlying multi-input integration in sensory cortex. Neuron 2015; 85:402-17. [PMID: 25611511 DOI: 10.1016/j.neuron.2014.12.026] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2014] [Indexed: 01/09/2023]
Abstract
Neurons in sensory cortex integrate multiple influences to parse objects and support perception. Across multiple cortical areas, integration is characterized by two neuronal response properties: (1) surround suppression--modulatory contextual stimuli suppress responses to driving stimuli; and (2) "normalization"--responses to multiple driving stimuli add sublinearly. These depend on input strength: for weak driving stimuli, contextual influences facilitate or more weakly suppress and summation becomes linear or supralinear. Understanding the circuit operations underlying integration is critical to understanding cortical function and disease. We present a simple, general theory. A wealth of integrative properties, including the above, emerge robustly from four cortical circuit properties: (1) supralinear neuronal input/output functions; (2) sufficiently strong recurrent excitation; (3) feedback inhibition; and (4) simple spatial properties of intracortical connections. Integrative properties emerge dynamically as circuit properties, with excitatory and inhibitory neurons showing similar behaviors. In new recordings in visual cortex, we confirm key model predictions.
Collapse
Affiliation(s)
- Daniel B Rubin
- Center for Theoretical Neuroscience, Doctoral Program in Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Stephen D Van Hooser
- Department of Biology, Swartz Center for Theoretical Biology, Brandeis University, Waltham, MA 02454, USA
| | - Kenneth D Miller
- Center for Theoretical Neuroscience, Doctoral Program in Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Neuroscience, Swartz Program in Theoretical Neuroscience, Kavli Institute for Brain Science, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
15
|
Balmer TS, Pallas SL. Visual experience prevents dysregulation of GABAB receptor-dependent short-term depression in adult superior colliculus. J Neurophysiol 2015; 113:2049-61. [PMID: 25568162 DOI: 10.1152/jn.00882.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/03/2015] [Indexed: 11/22/2022] Open
Abstract
Progressive loss of plasticity during development prevents refined circuits from regressing to an immature state and is thought to depend on maturation of GABAergic inhibition. For example, a gradual reduction in size of visual receptive fields (RFs) occurs in the superior colliculus (SC) during development. Maintenance of the refined state throughout adulthood requires early light exposure. Here we investigate the potential role of changes in long- or short-term plasticity in experience-dependent maintenance of refined RFs. Using an acute SC slice preparation, we found that long-term plasticity was not affected by visual deprivation, indicating that it does not underlie deprivation-induced RF enlargement. In contrast, visual deprivation altered short-term plasticity in an unexpected way. Specifically, GABAB receptor (GABABR)-mediated paired pulse depression was increased in slices from dark-reared animals. This increase was mimicked by GABAAR blockade in slices from normally reared animals, suggesting that experience-dependent maintenance of GABAAR function prevents an increase in probability of neurotransmitter release. GABABR-mediated short-term depression in response to strong stimulation (such as occurs during vision) was reduced in slices from dark-reared animals. This change was mimicked in slices from normal animals by reducing GABA release. These results are consistent with the hypothesis that early visual experience maintains GABAergic inhibition and prevents later deprivation-induced alterations of short-term depression in SC. Identifying how plasticity is restricted in mature circuits could guide therapies to enhance recovery of function in adults.
Collapse
Affiliation(s)
- Timothy S Balmer
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Sarah L Pallas
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
16
|
Microcircuitry of agranular frontal cortex: testing the generality of the canonical cortical microcircuit. J Neurosci 2014; 34:5355-69. [PMID: 24719113 DOI: 10.1523/jneurosci.5127-13.2014] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We investigated whether a frontal area that lacks granular layer IV, supplementary eye field, exhibits features of laminar circuitry similar to those observed in primary sensory areas. We report, for the first time, visually evoked local field potentials (LFPs) and spiking activity recorded simultaneously across all layers of agranular frontal cortex using linear electrode arrays. We calculated current source density from the LFPs and compared the laminar organization of evolving sinks to those reported in sensory areas. Simultaneous, transient synaptic current sinks appeared first in layers III and V followed by more prolonged current sinks in layers I/II and VI. We also found no variation of single- or multi-unit visual response latency across layers, and putative pyramidal neurons and interneurons displayed similar response latencies. Many units exhibited pronounced discharge suppression that was strongest in superficial relative to deep layers. Maximum discharge suppression also occurred later in superficial than in deep layers. These results are discussed in the context of the canonical cortical microcircuit model originally formulated to describe early sensory cortex. The data indicate that agranular cortex resembles sensory areas in certain respects, but the cortical microcircuit is modified in nontrivial ways.
Collapse
|
17
|
Nassi JJ, Gómez-Laberge C, Kreiman G, Born RT. Corticocortical feedback increases the spatial extent of normalization. Front Syst Neurosci 2014; 8:105. [PMID: 24910596 PMCID: PMC4039070 DOI: 10.3389/fnsys.2014.00105] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/13/2014] [Indexed: 11/13/2022] Open
Abstract
Normalization has been proposed as a canonical computation operating across different brain regions, sensory modalities, and species. It provides a good phenomenological description of non-linear response properties in primary visual cortex (V1), including the contrast response function and surround suppression. Despite its widespread application throughout the visual system, the underlying neural mechanisms remain largely unknown. We recently observed that corticocortical feedback contributes to surround suppression in V1, raising the possibility that feedback acts through normalization. To test this idea, we characterized area summation and contrast response properties in V1 with and without feedback from V2 and V3 in alert macaques and applied a standard normalization model to the data. Area summation properties were well explained by a form of divisive normalization, which computes the ratio between a neuron's driving input and the spatially integrated activity of a "normalization pool." Feedback inactivation reduced surround suppression by shrinking the spatial extent of the normalization pool. This effect was independent of the gain modulation thought to mediate the influence of contrast on area summation, which remained intact during feedback inactivation. Contrast sensitivity within the receptive field center was also unaffected by feedback inactivation, providing further evidence that feedback participates in normalization independent of the circuit mechanisms involved in modulating contrast gain and saturation. These results suggest that corticocortical feedback contributes to surround suppression by increasing the visuotopic extent of normalization and, via this mechanism, feedback can play a critical role in contextual information processing.
Collapse
Affiliation(s)
- Jonathan J Nassi
- Department of Neurobiology, Harvard Medical School Boston, MA, USA
| | - Camille Gómez-Laberge
- Department of Neurobiology, Harvard Medical School Boston, MA, USA ; Department of Ophthalmology, Boston Children's Hospital Boston, MA, USA
| | - Gabriel Kreiman
- Department of Ophthalmology, Boston Children's Hospital Boston, MA, USA ; Swartz Center for Theoretical Neuroscience, Harvard University Cambridge, MA, USA
| | - Richard T Born
- Department of Neurobiology, Harvard Medical School Boston, MA, USA
| |
Collapse
|
18
|
Atabaki A, Marciniak K, Dicke PW, Karnath HO, Thier P. Parietal blood oxygenation level-dependent response evoked by covert visual search reflects set-size effect in monkeys. Eur J Neurosci 2013; 39:832-40. [PMID: 24279771 DOI: 10.1111/ejn.12427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 10/13/2013] [Accepted: 10/17/2013] [Indexed: 12/01/2022]
Abstract
Distinguishing a target from distractors during visual search is crucial for goal-directed behaviour. The more distractors that are presented with the target, the larger is the subject's error rate. This observation defines the set-size effect in visual search. Neurons in areas related to attention and eye movements, like the lateral intraparietal area (LIP) and frontal eye field (FEF), diminish their firing rates when the number of distractors increases, in line with the behavioural set-size effect. Furthermore, human imaging studies that have tried to delineate cortical areas modulating their blood oxygenation level-dependent (BOLD) response with set size have yielded contradictory results. In order to test whether BOLD imaging of the rhesus monkey cortex yields results consistent with the electrophysiological findings and, moreover, to clarify if additional other cortical regions beyond the two hitherto implicated are involved in this process, we studied monkeys while performing a covert visual search task. When varying the number of distractors in the search task, we observed a monotonic increase in error rates when search time was kept constant as was expected if monkeys resorted to a serial search strategy. Visual search consistently evoked robust BOLD activity in the monkey FEF and a region in the intraparietal sulcus in its lateral and middle part, probably involving area LIP. Whereas the BOLD response in the FEF did not depend on set size, the LIP signal increased in parallel with set size. These results demonstrate the virtue of BOLD imaging in monkeys when trying to delineate cortical areas underlying a cognitive process like visual search. However, they also demonstrate the caution needed when inferring neural activity from BOLD activity.
Collapse
Affiliation(s)
- A Atabaki
- Department of Cognitive Neurology, Hertie-Institute for Clinical Brain Research, Otfried-Müller-Strasse 27, 72076, Tübingen, Germany
| | | | | | | | | |
Collapse
|
19
|
Peel TR, Johnston K, Lomber SG, Corneil BD. Bilateral saccadic deficits following large and reversible inactivation of unilateral frontal eye field. J Neurophysiol 2013; 111:415-33. [PMID: 24155010 DOI: 10.1152/jn.00398.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inactivation permits direct assessment of the functional contribution of a given brain area to behavior. Previous inactivation studies of the frontal eye field (FEF) have either used large permanent ablations or reversible pharmacological techniques that only inactivate a small volume of tissue. Here we evaluated the impact of large, yet reversible, FEF inactivation on visually guided, delayed, and memory-guided saccades, using cryoloops implanted in the arcuate sulcus. While FEF inactivation produced the expected triad of contralateral saccadic deficits (increased reaction time, decreased accuracy and peak velocity) and performance errors (neglect or misdirected saccades), we also found consistent increases in reaction times of ipsiversive saccades in all three tasks. In addition, FEF inactivation did not increase the proportion of premature saccades to ipsilateral targets, as was predicted on the basis of pharmacological studies. Consistent with previous studies, greater deficits accompanied saccades toward extinguished visual cues. Our results attest to the functional contribution of the FEF to saccades in both directions. We speculate that the comparative effects of different inactivation techniques relate to the volume of inactivated tissue within the FEF. Larger inactivation volumes may reveal the functional contribution of more sparsely distributed neurons within the FEF, such as those related to ipsiversive saccades. Furthermore, while focal FEF inactivation may disinhibit the mirroring site in the other FEF, larger inactivation volumes may induce broad disinhibition in the other FEF that paradoxically prolongs oculomotor processing via increased competitive interactions.
Collapse
Affiliation(s)
- Tyler R Peel
- The Brain and Mind Institute, London, Ontario, Canada
| | | | | | | |
Collapse
|
20
|
Nishida S, Tanaka T, Ogawa T. Separate evaluation of target facilitation and distractor suppression in the activity of macaque lateral intraparietal neurons during visual search. J Neurophysiol 2013; 110:2773-91. [PMID: 24068752 DOI: 10.1152/jn.00360.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During visual search, neurons in the lateral intraparietal area (LIP) discriminate the target from distractors by exhibiting stronger activation when the target appears within the receptive field than when it appears outside the receptive field. It is generally thought that such target-discriminative activity is produced by the combination of target-related facilitation and distractor-related suppression. However, little is known about how the target-discriminative activity is constituted by these two types of neural modulation. To address this issue, we recorded activity from LIP of monkeys performing a visual search task that consisted of target-present and target-absent trials. Monkeys had to make a saccade to a target in the target-present trials, whereas they had to maintain fixation in the target-absent trials, in which only distractors were presented. By introducing the activity from the latter trials as neutral activity, we were able to separate the target-discriminative activity into target-related elevation and distractor-related reduction components. We found that the target-discriminative activity of most LIP neurons consisted of the combination of target-related elevation and distractor-related reduction or only target-related elevation. In contrast, target-discriminative activity composed of only distractor-related reduction was observed for very few neurons. We also found that, on average, target-related elevation was stronger and occurred earlier compared with distractor-related reduction. Finally, we consider possible underlying mechanisms, including lateral inhibitory interactions, responsible for target-discriminative activity in visual search. The present findings provide insight into how neuronal modulations shape target-discriminative activity during visual search.
Collapse
Affiliation(s)
- Satoshi Nishida
- Department of Integrative Brain Science, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | |
Collapse
|
21
|
Miller EK, Buschman TJ. Cortical circuits for the control of attention. Curr Opin Neurobiol 2012; 23:216-22. [PMID: 23265963 DOI: 10.1016/j.conb.2012.11.011] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/28/2012] [Indexed: 01/28/2023]
Abstract
How are some thoughts favored over others? A wealth of data at the level of single neurons has yielded candidate brain areas and mechanisms for our best-understood model: visual attention. Recent work has naturally evolved toward efforts at a more integrative, network, understanding. It suggests that focusing attention arises from interactions between widespread cortical and subcortical networks that may be regulated via their rhythmic synchronization.
Collapse
Affiliation(s)
- Earl K Miller
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| | | |
Collapse
|