1
|
Song D, Ruff D, Cohen M, Huang C. Neuronal heterogeneity of normalization strength in a circuit model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624903. [PMID: 39605397 PMCID: PMC11601594 DOI: 10.1101/2024.11.22.624903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The size of a neuron's receptive field increases along the visual hierarchy. Neurons in higher-order visual areas integrate information through a canonical computation called normalization, where neurons respond sublinearly to multiple stimuli in the receptive field. Neurons in the visual cortex exhibit highly heterogeneous degrees of normalization. Recent population recordings from visual cortex find that the interactions between neurons, measured by spike count correlations, depend on their normalization strengths. However, the circuit mechanism underlying the heterogeneity of normalization is unclear. In this work, we study normalization in a spiking neuron network model of visual cortex. The model produces a range of neuronal heterogeneity of normalization strength and the heterogeneity is highly correlated with the inhibitory current each neuron receives. Our model reproduces the dependence of spike count correlations on normalization as observed in experimental data, which is explained by the covariance with the inhibitory current. We find that neurons with stronger normalization are more sensitive to contrast differences in images and encode information more efficiently. In addition, networks with more heterogeneity in normalization encode more information about visual stimuli. Together, our model provides a mechanistic explanation of heterogeneous normalization strengths in the visual cortex, and sheds new light on the computational benefits of neuronal heterogeneity.
Collapse
Affiliation(s)
- Deying Song
- Joint Program in Neural Computation and Machine Learning, Neuroscience Institute, and Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA
- Center for the Neural Basis of Cognition, Pittsburgh, PA
| | - Douglas Ruff
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL
| | - Marlene Cohen
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL
| | - Chengcheng Huang
- Center for the Neural Basis of Cognition, Pittsburgh, PA
- Department of Neuroscience and Department of Mathematics, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
2
|
Shah S, Hembrook-Short J, Mock V, Briggs F. Correlated variability and its attentional modulation depend on anatomical connectivity. Proc Natl Acad Sci U S A 2024; 121:e2318841121. [PMID: 39172780 PMCID: PMC11363273 DOI: 10.1073/pnas.2318841121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Visual cortical neurons show variability in their responses to repeated presentations of a stimulus and a portion of this variability is shared across neurons. Attention may enhance visual perception by reducing shared spiking variability. However, shared variability and its attentional modulation are not consistent within or across cortical areas, and depend on additional factors such as neuronal type. A critical factor that has not been tested is actual anatomical connectivity. We measured spike count correlations among pairs of simultaneously recorded neurons in the primary visual cortex (V1) for which anatomical connectivity was inferred from spiking cross-correlations. Neurons were recorded in monkeys performing a contrast-change discrimination task requiring covert shifts in visual spatial attention. Accordingly, spike count correlations were compared across trials in which attention was directed toward or away from the visual stimulus overlapping recorded neuronal receptive fields. Consistent with prior findings, attention did not significantly alter spike count correlations among random pairings of unconnected V1 neurons. However, V1 neurons connected via excitatory synapses showed a significant reduction in spike count correlations with attention. Interestingly, V1 neurons connected via inhibitory synapses demonstrated high spike count correlations overall that were not modulated by attention. Correlated variability in excitatory circuits also depended upon neuronal tuning for contrast, the task-relevant stimulus feature. These results indicate that shared variability depends on the type of connectivity in neuronal circuits. Also, attention significantly reduces shared variability in excitatory circuits, even when attention effects on randomly sampled neurons within the same area are weak.
Collapse
Affiliation(s)
- Shraddha Shah
- Neuroscience Graduate Program, University of Rochester, Rochester, NY14627
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX77030
| | | | - Vanessa Mock
- Department of Neuroscience, University of Rochester School of Medicine, Rochester, NY14642
| | - Farran Briggs
- Department of Neuroscience, University of Rochester School of Medicine, Rochester, NY14642
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, Rochester, NY14642
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY14627
- Center for Visual Science, University of Rochester, Rochester, NY14627
| |
Collapse
|
3
|
Seo S, Bharmauria V, Schütz A, Yan X, Wang H, Crawford JD. Multiunit Frontal Eye Field Activity Codes the Visuomotor Transformation, But Not Gaze Prediction or Retrospective Target Memory, in a Delayed Saccade Task. eNeuro 2024; 11:ENEURO.0413-23.2024. [PMID: 39054056 PMCID: PMC11373882 DOI: 10.1523/eneuro.0413-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Single-unit (SU) activity-action potentials isolated from one neuron-has traditionally been employed to relate neuronal activity to behavior. However, recent investigations have shown that multiunit (MU) activity-ensemble neural activity recorded within the vicinity of one microelectrode-may also contain accurate estimations of task-related neural population dynamics. Here, using an established model-fitting approach, we compared the spatial codes of SU response fields with corresponding MU response fields recorded from the frontal eye fields (FEFs) in head-unrestrained monkeys (Macaca mulatta) during a memory-guided saccade task. Overall, both SU and MU populations showed a simple visuomotor transformation: the visual response coded target-in-eye coordinates, transitioning progressively during the delay toward a future gaze-in-eye code in the saccade motor response. However, the SU population showed additional secondary codes, including a predictive gaze code in the visual response and retention of a target code in the motor response. Further, when SUs were separated into regular/fast spiking neurons, these cell types showed different spatial code progressions during the late delay period, only converging toward gaze coding during the final saccade motor response. Finally, reconstructing MU populations (by summing SU data within the same sites) failed to replicate either the SU or MU pattern. These results confirm the theoretical and practical potential of MU activity recordings as a biomarker for fundamental sensorimotor transformations (e.g., target-to-gaze coding in the oculomotor system), while also highlighting the importance of SU activity for coding more subtle (e.g., predictive/memory) aspects of sensorimotor behavior.
Collapse
Affiliation(s)
- Serah Seo
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
| | - Vishal Bharmauria
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida 33606
| | - Adrian Schütz
- Department of Neurophysics, Philipps-Universität Marburg, 35032 Marburg, Germany
- Center for Mind, Brain, and Behavior - CMBB, Philipps-Universität Marburg, 35032 Marburg, and Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Xiaogang Yan
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
| | - Hongying Wang
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
| | - J Douglas Crawford
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
- Departments of Psychology, Biology, Kinesiology & Health Sciences, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
4
|
Shams M, Thier P, Lomber SG, Merrikhi Y. Resilience of FEF neuronal saccade code to V4 perturbations. J Neurophysiol 2023; 130:1243-1251. [PMID: 37850785 PMCID: PMC10994545 DOI: 10.1152/jn.00056.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/06/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023] Open
Abstract
The frontal eye field (FEF) plays a key role in initiating rapid eye movements known as saccades. Accumulation models have been proposed to explain the dynamic of these neurons and how they may enable the initiation of saccades. To update the scope of the viability of this model, we studied single neurons recorded from the FEF of two rhesus monkeys while they performed a memory-guided saccade task. We evaluated the degree to which each type of FEF neuron complied with these models by quantifying how precisely their discharge predicted an imminent saccade based on their immediate presaccadic activity. We found that decoders trained on single neurons with a stronger motor component performed better than decoders trained on neurons with a stronger visual component in predicting the saccade. Importantly, despite a dramatic effect on the reaction times, the perturbations delivered to the FEF neurons via area V4 did not impact their saccade predictability. Our results demonstrate a high degree of resilience of the FEF neuronal presaccadic discharge patterns, fulfilling the predictions of accumulation models.NEW & NOTEWORTHY We studied neurons in the brain's frontal eye field (FEF) to understand how these neurons predict swift eye shifts called saccades. We found that neurons with more movement-related activity were better at predicting saccades than those with sensory-related activity. Interestingly, electrical disruptions of this region strongly impacted saccade onset times but did not affect the individual neuron's saccade predictability, consistent with models suggesting that a specific threshold in neural activity triggers the saccade.
Collapse
Affiliation(s)
- Mohammad Shams
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Peter Thier
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Stephen G Lomber
- Department of Physiology, Faculty of Medicine, McGill University, Montréal, Quebec, Canada
| | - Yaser Merrikhi
- Department of Physiology, Faculty of Medicine, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
5
|
Zhao S, Zhou J, Zhang Y, Wang DH. γ And β Band Oscillation in Working Memory Given Sequential or Concurrent Multiple Items: A Spiking Network Model. eNeuro 2023; 10:ENEURO.0373-22.2023. [PMID: 37903618 PMCID: PMC10630927 DOI: 10.1523/eneuro.0373-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2023] [Accepted: 10/22/2023] [Indexed: 11/01/2023] Open
Abstract
Working memory (WM) can maintain sequential and concurrent information, and the load enhances the γ band oscillation during the delay period. To provide a unified account for these phenomena in working memory, we investigated a continuous network model consisting of pyramidal cells, high-threshold fast-spiking interneurons (FS), and low-threshold nonfast-spiking interneurons (nFS) for working memory of sequential and concurrent directional cues. Our model exhibits the γ (30-100 Hz) and β (10-30 Hz) band oscillation during the retention of both concurrent cues and sequential cues. We found that the β oscillation results from the interaction between pyramidal cells and nFS, whereas the γ oscillation emerges from the interaction between pyramidal cells and FS because of the strong excitation elicited by cue presentation, shedding light on the mechanism underlying the enhancement of γ power in many cognitive executions.
Collapse
Affiliation(s)
- Shukuo Zhao
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Jinpu Zhou
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Yongwen Zhang
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Da-Hui Wang
- School of Systems Science, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Jung YJ, Sun SH, Almasi A, Yunzab M, Meffin H, Ibbotson MR. Characterization of extracellular spike waveforms recorded in wallaby primary visual cortex. Front Neurosci 2023; 17:1244952. [PMID: 37746137 PMCID: PMC10517629 DOI: 10.3389/fnins.2023.1244952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Extracellular recordings were made from 642 units in the primary visual cortex (V1) of a highly visual marsupial, the Tammar wallaby. The receptive field (RF) characteristics of the cells were objectively estimated using the non-linear input model (NIM), and these were correlated with spike shapes. We found that wallaby cortical units had 68% regular spiking (RS), 12% fast spiking (FS), 4% triphasic spiking (TS), 5% compound spiking (CS) and 11% positive spiking (PS). RS waveforms are most often associated with recordings from pyramidal or spiny stellate cell bodies, suggesting that recordings from these cell types dominate in the wallaby cortex. In wallaby, 70-80% of FS and RS cells had orientation selective RFs and had evenly distributed linear and nonlinear RFs. We found that 47% of wallaby PS units were non-orientation selective and they were dominated by linear RFs. Previous studies suggest that the PS units represent recordings from the axon terminals of non-orientation selective cells originating in the lateral geniculate nucleus (LGN). If this is also true in wallaby, as strongly suggested by their low response latencies and bursty spiking properties, the results suggest that significantly more neurons in wallaby LGN are already orientation selective. In wallaby, less than 10% of recorded spikes had triphasic (TS) or sluggish compound spiking (CS) waveforms. These units had a mixture of orientation selective and non-oriented properties, and their cellular origins remain difficult to classify.
Collapse
Affiliation(s)
- Young Jun Jung
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia
- National Vision Research Institute, Australian College of Optometry Carlton, Carlton, VIC, Australia
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Shi H. Sun
- National Vision Research Institute, Australian College of Optometry Carlton, Carlton, VIC, Australia
| | - Ali Almasi
- National Vision Research Institute, Australian College of Optometry Carlton, Carlton, VIC, Australia
| | - Molis Yunzab
- National Vision Research Institute, Australian College of Optometry Carlton, Carlton, VIC, Australia
| | - Hamish Meffin
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Michael R. Ibbotson
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia
- National Vision Research Institute, Australian College of Optometry Carlton, Carlton, VIC, Australia
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Doostmohammadi J, Gieselmann MA, van Kempen J, Lashgari R, Yoonessi A, Thiele A. Ripples in macaque V1 and V4 are modulated by top-down visual attention. Proc Natl Acad Sci U S A 2023; 120:e2210698120. [PMID: 36696442 PMCID: PMC9945997 DOI: 10.1073/pnas.2210698120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/22/2022] [Indexed: 01/26/2023] Open
Abstract
Sharp-wave ripples (SWRs) are highly synchronous neuronal activity events. They have been predominantly observed in the hippocampus during offline states such as pause in exploration, slow-wave sleep, and quiescent wakefulness. SWRs have been linked to memory consolidation, spatial navigation, and spatial decision-making. Recently, SWRs have been reported during visual search, a form of remote spatial exploration, in macaque hippocampus. However, the association between SWRs and multiple forms of awake conscious and goal-directed behavior is unknown. We report that ripple activity occurs in macaque visual areas V1 and V4 during focused spatial attention. The occurrence of ripples is modulated by stimulus characteristics, increased by attention toward the receptive field, and by the size of the attentional focus. During attention cued to the receptive field, the monkey's reaction time in detecting behaviorally relevant events was reduced by ripples. These results show that ripple activity is not limited to hippocampal activity during offline states, rather they occur in the neocortex during active attentive states and vigilance behaviors.
Collapse
Affiliation(s)
- Jafar Doostmohammadi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran13, Iran
- Biosciences Institute, Newcastle University, Newcastle upon TyneNE1 7RU, United Kingdom
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, IPM, Tehran13, Iran
| | - Marc Alwin Gieselmann
- Biosciences Institute, Newcastle University, Newcastle upon TyneNE1 7RU, United Kingdom
| | - Jochem van Kempen
- Biosciences Institute, Newcastle University, Newcastle upon TyneNE1 7RU, United Kingdom
| | - Reza Lashgari
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran13, Iran
| | - Ali Yoonessi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran13, Iran
| | - Alexander Thiele
- Biosciences Institute, Newcastle University, Newcastle upon TyneNE1 7RU, United Kingdom
| |
Collapse
|
8
|
van Kempen J, Brandt C, Distler C, Bellgrove MA, Thiele A. Dopamine influences attentional rate modulation in Macaque posterior parietal cortex. Sci Rep 2022; 12:6914. [PMID: 35484302 PMCID: PMC9050696 DOI: 10.1038/s41598-022-10634-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Cognitive neuroscience has made great strides in understanding the neural substrates of attention, but our understanding of its neuropharmacology remains incomplete. Although dopamine has historically been studied in relation to frontal functioning, emerging evidence suggests important dopaminergic influences in parietal cortex. We recorded single- and multi-unit activity whilst iontophoretically administering dopaminergic agonists and antagonists while rhesus macaques performed a spatial attention task. Out of 88 units, 50 revealed activity modulation by drug administration. Dopamine inhibited firing rates according to an inverted-U shaped dose-response curve and increased gain variability. D1 receptor antagonists diminished firing rates according to a monotonic function and interacted with attention modulating gain variability. Finally, both drugs decreased the pupil light reflex. These data show that dopamine shapes neuronal responses and modulates aspects of attentional processing in parietal cortex.
Collapse
Affiliation(s)
- Jochem van Kempen
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Christian Brandt
- Research Unit for ORL - Head and Neck Surgery and Audiology, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
| | - Claudia Distler
- Allgemeine Zoologie Und Neurobiologie, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Mark A Bellgrove
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Alexander Thiele
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
9
|
Bakshi A, Roy S, Mallick A, Ghosh K. A discrete magno-parvo additive model in early vision for explaining brightness perception in varying contrastive contexts. BIOLOGICAL CYBERNETICS 2022; 116:5-21. [PMID: 34635954 DOI: 10.1007/s00422-021-00896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
A varying contrastive context filter (VCCF)-based model of brightness perception has been proposed. It is motivated first by a recently proposed difference of difference-of-Gaussian (DDOG) filter. Alongside, it is also inspired from the fact that the nature evolves various discrete systems and mechanisms to carry out many of its complex tasks. A weight factor, used for the linear combination of two filters representing the magnocellular and parvocellular channels in the central visual pathway, has been defined and termed as the factor of contrastive context (FOCC) in the present model. This is a binary variable that lends a property of discretization to the DDOG filter. By analyzing important brightness contrast as well as brightness assimilation illusions, we arrive at the minimal set of values (only two) for FOCC, using which one is able to successfully predict the direction of brightness shift in both situations of brightness contrast, claimed and categorized here as low contrastive context, and those of brightness assimilation, claimed and categorized here as high contrastive context perception, depending upon whether the initial M-channel-filtered stimulus is above or below a threshold of the contrastive context. As distinct from Michelson/Weber/RMS contrast, high or low, the contrastive context claimed is dependent on the edge information in the stimulus determined by the Laplacian operator, also used in the DDOG model. We compared the proposed model against the already well-established oriented difference-of-Gaussian (ODOG) model of brightness perception. Extensive simulations suggest that though for most illusions both ODOG and VCCF produce correct output, for certain intricate cases in which the ODOG filter fails to correctly predict the illusory effect, our proposed VCCF model continues to remain effective.
Collapse
|
10
|
Joshi S, Gold JI. Context-dependent relationships between locus coeruleus firing patterns and coordinated neural activity in the anterior cingulate cortex. eLife 2022; 11:63490. [PMID: 34994344 PMCID: PMC8765756 DOI: 10.7554/elife.63490] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/16/2021] [Indexed: 01/30/2023] Open
Abstract
Ascending neuromodulatory projections from the locus coeruleus (LC) affect cortical neural networks via the release of norepinephrine (NE). However, the exact nature of these neuromodulatory effects on neural activity patterns in vivo is not well understood. Here, we show that in awake monkeys, LC activation is associated with changes in coordinated activity patterns in the anterior cingulate cortex (ACC). These relationships, which are largely independent of changes in firing rates of individual ACC neurons, depend on the type of LC activation: ACC pairwise correlations tend to be reduced when ongoing (baseline) LC activity increases but enhanced when external events evoke transient LC responses. Both relationships covary with pupil changes that reflect LC activation and arousal. These results suggest that modulations of information processing that reflect changes in coordinated activity patterns in cortical networks can result partly from ongoing, context-dependent, arousal-related changes in activation of the LC-NE system.
Collapse
Affiliation(s)
- Siddhartha Joshi
- Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
| | - Joshua I Gold
- Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
11
|
Piette C, Vandecasteele M, Bosch-Bouju C, Goubard V, Paillé V, Cui Y, Mendes A, Perez S, Valtcheva S, Xu H, Pouget P, Venance L. Intracellular Properties of Deep-Layer Pyramidal Neurons in Frontal Eye Field of Macaque Monkeys. Front Synaptic Neurosci 2021; 13:725880. [PMID: 34621162 PMCID: PMC8490863 DOI: 10.3389/fnsyn.2021.725880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Although many details remain unknown, several positive statements can be made about the laminar distribution of primate frontal eye field (FEF) neurons with different physiological properties. Most certainly, pyramidal neurons in the deep layer of FEF that project to the brainstem carry movement and fixation signals but clear evidence also support that at least some deep-layer pyramidal neurons projecting to the superior colliculus carry visual responses. Thus, deep-layer neurons in FEF are functionally heterogeneous. Despite the useful functional distinctions between neuronal responses in vivo, the underlying existence of distinct cell types remain uncertain, mostly due to methodological limitations of extracellular recordings in awake behaving primates. To substantiate the functionally defined cell types encountered in the deep layer of FEF, we measured the biophysical properties of pyramidal neurons recorded intracellularly in brain slices issued from macaque monkey biopsies. Here, we found that biophysical properties recorded in vitro permit us to distinguish two main subtypes of regular-spiking neurons, with, respectively, low-resistance and low excitability vs. high-resistance and strong excitability. These results provide useful constraints for cognitive models of visual attention and saccade production by indicating that at least two distinct populations of deep-layer neurons exist.
Collapse
Affiliation(s)
- Charlotte Piette
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL University, Paris, France
| | - Marie Vandecasteele
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL University, Paris, France
| | - Clémentine Bosch-Bouju
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL University, Paris, France
| | - Valérie Goubard
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL University, Paris, France
| | - Vincent Paillé
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL University, Paris, France
| | - Yihui Cui
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL University, Paris, France
| | - Alexandre Mendes
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL University, Paris, France
| | - Sylvie Perez
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL University, Paris, France
| | - Silvana Valtcheva
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL University, Paris, France
| | - Hao Xu
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL University, Paris, France
| | - Pierre Pouget
- INSERM, CNRS, Institut du Cerveau, Sorbonne Université, Paris, France
| | - Laurent Venance
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL University, Paris, France
| |
Collapse
|
12
|
Banaie Boroujeni K, Tiesinga P, Womelsdorf T. Interneuron-specific gamma synchronization indexes cue uncertainty and prediction errors in lateral prefrontal and anterior cingulate cortex. eLife 2021; 10:69111. [PMID: 34142661 PMCID: PMC8248985 DOI: 10.7554/elife.69111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/17/2021] [Indexed: 12/27/2022] Open
Abstract
Inhibitory interneurons are believed to realize critical gating functions in cortical circuits, but it has been difficult to ascertain the content of gated information for well-characterized interneurons in primate cortex. Here, we address this question by characterizing putative interneurons in primate prefrontal and anterior cingulate cortex while monkeys engaged in attention demanding reversal learning. We find that subclasses of narrow spiking neurons have a relative suppressive effect on the local circuit indicating they are inhibitory interneurons. One of these interneuron subclasses showed prominent firing rate modulations and (35–45 Hz) gamma synchronous spiking during periods of uncertainty in both, lateral prefrontal cortex (LPFC) and anterior cingulate cortex (ACC). In LPFC, this interneuron subclass activated when the uncertainty of attention cues was resolved during flexible learning, whereas in ACC it fired and gamma-synchronized when outcomes were uncertain and prediction errors were high during learning. Computational modeling of this interneuron-specific gamma band activity in simple circuit motifs suggests it could reflect a soft winner-take-all gating of information having high degree of uncertainty. Together, these findings elucidate an electrophysiologically characterized interneuron subclass in the primate, that forms gamma synchronous networks in two different areas when resolving uncertainty during adaptive goal-directed behavior.
Collapse
Affiliation(s)
| | - Paul Tiesinga
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, United States.,Department of Biology, Centre for Vision Research, York University, Toronto, Canada
| |
Collapse
|
13
|
Dasilva M, Brandt C, Alwin Gieselmann M, Distler C, Thiele A. Contribution of Ionotropic Glutamatergic Receptors to Excitability and Attentional Signals in Macaque Frontal Eye Field. Cereb Cortex 2021; 31:3266-3284. [PMID: 33626129 PMCID: PMC8196243 DOI: 10.1093/cercor/bhab007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 11/27/2022] Open
Abstract
Top-down attention, controlled by frontal cortical areas, is a key component of cognitive operations. How different neurotransmitters and neuromodulators flexibly change the cellular and network interactions with attention demands remains poorly understood. While acetylcholine and dopamine are critically involved, glutamatergic receptors have been proposed to play important roles. To understand their contribution to attentional signals, we investigated how ionotropic glutamatergic receptors in the frontal eye field (FEF) of male macaques contribute to neuronal excitability and attentional control signals in different cell types. Broad-spiking and narrow-spiking cells both required N-methyl-D-aspartic acid and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor activation for normal excitability, thereby affecting ongoing or stimulus-driven activity. However, attentional control signals were not dependent on either glutamatergic receptor type in broad- or narrow-spiking cells. A further subdivision of cell types into different functional types using cluster-analysis based on spike waveforms and spiking characteristics did not change the conclusions. This can be explained by a model where local blockade of specific ionotropic receptors is compensated by cell embedding in large-scale networks. It sets the glutamatergic system apart from the cholinergic system in FEF and demonstrates that a reduction in excitability is not sufficient to induce a reduction in attentional control signals.
Collapse
Affiliation(s)
- Miguel Dasilva
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.,College of Medicine and Health, University of Exeter, EX1 2LU, UK
| | - Christian Brandt
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.,Institute of Clinical Research, University of Southern Denmark, DK-5230 Odense, Denmark
| | | | - Claudia Distler
- Allgemeine Zoologie und Neurobiologie, Ruhr-Universität Bochum, Bochum 44801 Germany
| | - Alexander Thiele
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
14
|
Local and system mechanisms for action execution and observation in parietal and premotor cortices. Curr Biol 2021; 31:2819-2830.e4. [PMID: 33984266 PMCID: PMC8279740 DOI: 10.1016/j.cub.2021.04.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/23/2020] [Accepted: 04/14/2021] [Indexed: 11/16/2022]
Abstract
The action observation network (AON) includes a system of brain areas largely shared with action execution in both human and nonhuman primates. Yet temporal and tuning specificities of distinct areas and of physiologically identified neuronal classes in the encoding of self and others’ action remain unknown. We recorded the activity of 355 single units from three crucial nodes of the AON, the anterior intraparietal area (AIP), and premotor areas F5 and F6, while monkeys performed a Go/No-Go grasping task and observed an experimenter performing it. At the system level, during task execution, F6 displays a prevalence of suppressed neurons and signals whether an action has to be performed, whereas AIP and F5 share a prevalence of facilitated neurons and remarkable target selectivity; during task observation, F5 stands out for its unique prevalence of facilitated neurons and its stronger and earlier modulation than AIP and F6. By applying unsupervised clustering of spike waveforms, we found distinct cell classes unevenly distributed across areas, with different firing properties and carrying specific visuomotor signals. Broadly spiking neurons exhibited a balanced amount of facilitated and suppressed activity during action execution and observation, whereas narrower spiking neurons showed more mutually facilitated responses during the execution of one’s own and others’ action, particularly in areas AIP and F5. Our findings elucidate the time course of activity and firing properties of neurons in the AON during one’s own and others’ action, from the system level of anatomically distinct areas to the local level of physiologically distinct cell classes. F6 neurons show a prevalence of suppressed activity, encoding whether to act Area F5 and AIP share a prevalence of facilitated neurons and target selectivity Across-areas, waveform-based clustering distinguished three neuronal classes Narrow-spiking neurons exhibit mutual modulation during self and others’ action
Collapse
|
15
|
Ferro D, van Kempen J, Boyd M, Panzeri S, Thiele A. Directed information exchange between cortical layers in macaque V1 and V4 and its modulation by selective attention. Proc Natl Acad Sci U S A 2021; 118:e2022097118. [PMID: 33723059 PMCID: PMC8000025 DOI: 10.1073/pnas.2022097118] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Achieving behavioral goals requires integration of sensory and cognitive information across cortical laminae and cortical regions. How this computation is performed remains unknown. Using local field potential recordings and spectrally resolved conditional Granger causality (cGC) analysis, we mapped visual information flow, and its attentional modulation, between cortical layers within and between macaque brain areas V1 and V4. Stimulus-induced interlaminar information flow within V1 dominated upwardly, channeling information toward supragranular corticocortical output layers. Within V4, information flow dominated from granular to supragranular layers, but interactions between supragranular and infragranular layers dominated downwardly. Low-frequency across-area communication was stronger from V4 to V1, with little layer specificity. Gamma-band communication was stronger in the feedforward V1-to-V4 direction. Attention to the receptive field of V1 decreased communication between all V1 layers, except for granular-to-supragranular layer interactions. Communication within V4, and from V1 to V4, increased with attention across all frequencies. While communication from V4 to V1 was stronger in lower-frequency bands (4 to 25 Hz), attention modulated cGCs from V4 to V1 across all investigated frequencies. Our data show that top-down cognitive processes result in reduced communication within cortical areas, increased feedforward communication across all frequency bands, and increased gamma-band feedback communication.
Collapse
Affiliation(s)
- Demetrio Ferro
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
- Center for Mind and Brain Sciences, University of Trento, 38068 Rovereto, Italy
- Center for Brain and Cognition, Universitat Pompeu Fabra, 08002 Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Jochem van Kempen
- Biosciences Institute, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Michael Boyd
- Biosciences Institute, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Stefano Panzeri
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy;
| | - Alexander Thiele
- Biosciences Institute, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| |
Collapse
|
16
|
Avila E, Lakshminarasimhan KJ, DeAngelis GC, Angelaki DE. Visual and Vestibular Selectivity for Self-Motion in Macaque Posterior Parietal Area 7a. Cereb Cortex 2020; 29:3932-3947. [PMID: 30365011 DOI: 10.1093/cercor/bhy272] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 09/05/2018] [Indexed: 01/12/2023] Open
Abstract
We examined the responses of neurons in posterior parietal area 7a to passive rotational and translational self-motion stimuli, while systematically varying the speed of visually simulated (optic flow cues) or actual (vestibular cues) self-motion. Contrary to a general belief that responses in area 7a are predominantly visual, we found evidence for a vestibular dominance in self-motion processing. Only a small fraction of neurons showed multisensory convergence of visual/vestibular and linear/angular self-motion cues. These findings suggest possibly independent neuronal population codes for visual versus vestibular and linear versus angular self-motion. Neural responses scaled with self-motion magnitude (i.e., speed) but temporal dynamics were diverse across the population. Analyses of laminar recordings showed a strong distance-dependent decrease for correlations in stimulus-induced (signal correlation) and stimulus-independent (noise correlation) components of spike-count variability, supporting the notion that neurons are spatially clustered with respect to their sensory representation of motion. Single-unit and multiunit response patterns were also correlated, but no other systematic dependencies on cortical layers or columns were observed. These findings describe a likely independent multimodal neural code for linear and angular self-motion in a posterior parietal area of the macaque brain that is connected to the hippocampal formation.
Collapse
Affiliation(s)
- Eric Avila
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Gregory C DeAngelis
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| | - Dora E Angelaki
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.,Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| |
Collapse
|
17
|
Morales C, Gohel S, Scheiman M, Li X, Santos EM, Sangoi A, Alvarez TL. Test-retest of a phoria adaptation stimulus-induced functional MRI experiment. J Vis 2020; 20:17. [PMID: 32797193 PMCID: PMC7438664 DOI: 10.1167/jov.20.8.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study was designed to identify the neural substrates activated during a phoria adaptation task using functional magnetic resonance imaging (MRI) in young adults with normal binocular vision and to test the repeatability of the fMRI measurements for this protocol. The phoria adaptation task consisted of a block protocol of 90 seconds of near visual crossed fixation followed by 90 seconds of far visual uncrossed fixation, repeated three times; the data were collected during two different experimental sessions. Results showed that the oculomotor vermis, cuneus, and primary visual cortex had the greatest functional activity within the regions of interest studied when stimulated by the phoria adaptation task. The oculomotor vermis functional activity had an intraclass correlation coefficient (ICC) of 0.3, whereas the bilateral cuneus and primary visual cortex had good ICC results of greater than 0.6. These results suggest that the sustained visual fixation task described within this study reliably activates the neural substrates of phoria adaptation. This protocol establishes a methodology that can be used in future longitudinal studies investigating therapeutic interventions that may modify phoria adaptation.
Collapse
Affiliation(s)
- Cristian Morales
- Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Suril Gohel
- Department of Health Informatics, Rutgers University School of Health Professions, Newark, NJ, USA
| | - Mitchell Scheiman
- Pennsylvania College of Optometry, Salus University, Philadelphia, PA, USA
| | - Xiaobo Li
- Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Elio M Santos
- Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Ayushi Sangoi
- Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Tara L Alvarez
- Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
18
|
Milton R, Shahidi N, Dragoi V. Dynamic states of population activity in prefrontal cortical networks of freely-moving macaque. Nat Commun 2020; 11:1948. [PMID: 32327660 PMCID: PMC7181779 DOI: 10.1038/s41467-020-15803-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
Neural responses in the cerebral cortex change dramatically between the 'synchronized' state during sleep and 'desynchronized' state during wakefulness. Our understanding of cortical state emerges largely from experiments performed in sensory areas of head-fixed or tethered rodents due to technical limitations of recording from larger freely-moving animals for several hours. Here, we report a system integrating wireless electrophysiology, wireless eye tracking, and real-time video analysis to examine the dynamics of population activity in a high-level, executive area - dorsolateral prefrontal cortex (dlPFC) of unrestrained monkey. This technology allows us to identify cortical substates during quiet and active wakefulness, and transitions in population activity during rest. We further show that narrow-spiking neurons exhibit stronger synchronized fluctuations in population activity than broad-spiking neurons regardless of state. Our results show that cortical state is controlled by behavioral demands and arousal by asymmetrically modulating the slow response fluctuations of local excitatory and inhibitory cell populations.
Collapse
Affiliation(s)
- Russell Milton
- Department of Neurobiology & Anatomy, McGovern Medical School, University of Texas, Houston, TX, 77030, USA
| | - Neda Shahidi
- Department of Neurobiology & Anatomy, McGovern Medical School, University of Texas, Houston, TX, 77030, USA
| | - Valentin Dragoi
- Department of Neurobiology & Anatomy, McGovern Medical School, University of Texas, Houston, TX, 77030, USA.
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
19
|
Zhang T, Pan X, Xu X, Wang R. A cortical model with multi-layers to study visual attentional modulation of neurons at the synaptic level. Cogn Neurodyn 2019; 13:579-599. [PMID: 31741694 PMCID: PMC6825110 DOI: 10.1007/s11571-019-09540-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/08/2019] [Accepted: 05/12/2019] [Indexed: 11/24/2022] Open
Abstract
Visual attention is a selective process of visual information and improves perceptual performance by modulating activities of neurons in the visual system. It has been reported that attention increased firing rates of neurons, reduced their response variability and improved reliability of coding relevant stimuli. Recent neurophysiological studies demonstrated that attention also enhanced the synaptic efficacy between neurons mediated through NMDA and AMPA receptors. Majority of computational models of attention usually are based on firing rates, which cannot explain attentional modulations observed at the synaptic level. To understand mechanisms of attentional modulations at the synaptic level, we proposed a neural network consisting of three layers, corresponding to three different brain regions. Each layer has excitatory and inhibitory neurons. Each neuron was modeled by the Hodgkin-Huxley model. The connections between neurons were through excitatory AMPA and NMDA receptors, as well as inhibitory GABAA receptors. Since the binding process of neurotransmitters with receptors is stochastic in the synapse, it is hypothesized that attention could reduce the variation of the stochastic binding process and increase the fraction of bound receptors in the model. We investigated how attention modulated neurons' responses at the synaptic level on the basis of this hypothesis. Simulated results demonstrated that attention increased firing rates of neurons and reduced their response variability. The attention-induced effects were stronger in higher regions compared to those in lower regions, and stronger for inhibitory neurons than for excitatory neurons. In addition, AMPA receptor antagonist (CNQX) impaired attention-induced modulations on neurons' responses, while NMDA receptor antagonist (APV) did not. These results suggest that attention may modulate neuronal activity at the synaptic level.
Collapse
Affiliation(s)
- Tao Zhang
- Institute for Cognitive Neurodynamics, East China University of Science and Technology, Meilong Road 130, Shanghai, People’s Republic of China
| | - Xiaochuan Pan
- Institute for Cognitive Neurodynamics, East China University of Science and Technology, Meilong Road 130, Shanghai, People’s Republic of China
| | - Xuying Xu
- Institute for Cognitive Neurodynamics, East China University of Science and Technology, Meilong Road 130, Shanghai, People’s Republic of China
| | - Rubin Wang
- Institute for Cognitive Neurodynamics, East China University of Science and Technology, Meilong Road 130, Shanghai, People’s Republic of China
| |
Collapse
|
20
|
Cell class-specific modulation of attentional signals by acetylcholine in macaque frontal eye field. Proc Natl Acad Sci U S A 2019; 116:20180-20189. [PMID: 31527242 PMCID: PMC6778228 DOI: 10.1073/pnas.1905413116] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Attention is critical to high-level cognition, and attentional deficits are a hallmark of cognitive dysfunction. A key transmitter for attentional control is acetylcholine, but its cellular actions in attention-controlling areas remain poorly understood. Here we delineate how muscarinic and nicotinic receptors affect basic neuronal excitability and attentional control signals in different cell types in macaque frontal eye field. We found that broad spiking and narrow spiking cells both require muscarinic and nicotinic receptors for normal excitability, thereby affecting ongoing or stimulus-driven activity. Attentional control signals depended on muscarinic, not nicotinic receptors in broad spiking cells, while they depended on both muscarinic and nicotinic receptors in narrow spiking cells. Cluster analysis revealed that muscarinic and nicotinic effects on attentional control signals were highly selective even for different subclasses of narrow spiking cells and of broad spiking cells. These results demonstrate that cholinergic receptors are critical to establish attentional control signals in the frontal eye field in a cell type-specific manner.
Collapse
|
21
|
Trainito C, von Nicolai C, Miller EK, Siegel M. Extracellular Spike Waveform Dissociates Four Functionally Distinct Cell Classes in Primate Cortex. Curr Biol 2019; 29:2973-2982.e5. [PMID: 31447374 DOI: 10.1016/j.cub.2019.07.051] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/21/2019] [Accepted: 07/17/2019] [Indexed: 11/19/2022]
Abstract
Understanding the function of different neuronal cell types is key to understanding brain function. However, cell-type diversity is typically overlooked in electrophysiological studies in awake behaving animals. Here, we show that four functionally distinct cell classes can be robustly identified from extracellular recordings in several cortical regions of awake behaving monkeys. We recorded extracellular spiking activity from dorsolateral prefrontal cortex (dlPFC), the frontal eye field (FEF), and the lateral intraparietal area of macaque monkeys during a visuomotor decision-making task. We employed unsupervised clustering of spike waveforms, which robustly dissociated four distinct cell classes across all three brain regions. The four cell classes were functionally distinct. They showed different baseline firing statistics, visual response dynamics, and coding of visual information. Although cell-class-specific baseline statistics were consistent across brain regions, response dynamics and information coding were regionally specific. Our results identify four functionally distinct spike-waveform-based cell classes in primate cortex. This opens a new window to dissect and study the cell-type-specific function of cortical circuits.
Collapse
Affiliation(s)
- Caterina Trainito
- Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Strasse 25, 72076 Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Strasse 27, 72076 Tübingen, Germany; MEG Center, University of Tübingen, Otfried-Müller-Strasse 47, 72076 Tübingen, Germany; IMPRS for Cognitive and Systems Neuroscience, University of Tübingen, Österbergstrasse 3, 72074 Tübingen, Germany
| | - Constantin von Nicolai
- Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Strasse 25, 72076 Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Strasse 27, 72076 Tübingen, Germany; MEG Center, University of Tübingen, Otfried-Müller-Strasse 47, 72076 Tübingen, Germany
| | - Earl K Miller
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Markus Siegel
- Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Strasse 25, 72076 Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Strasse 27, 72076 Tübingen, Germany; MEG Center, University of Tübingen, Otfried-Müller-Strasse 47, 72076 Tübingen, Germany.
| |
Collapse
|
22
|
Thiele A, Bellgrove MA. Neuromodulation of Attention. Neuron 2019; 97:769-785. [PMID: 29470969 PMCID: PMC6204752 DOI: 10.1016/j.neuron.2018.01.008] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/26/2017] [Accepted: 01/02/2018] [Indexed: 02/07/2023]
Abstract
Attention is critical to high-level cognition and attention deficits are a hallmark of neurologic and neuropsychiatric disorders. Although years of research indicates that distinct neuromodulators influence attentional control, a mechanistic account that traverses levels of analysis (cells, circuits, behavior) is missing. However, such an account is critical to guide the development of next-generation pharmacotherapies aimed at forestalling or remediating the global burden associated with disorders of attention. Here, we summarize current neuroscientific understanding of how attention affects single neurons and networks of neurons. We then review key results that have informed our understanding of how neuromodulation shapes these neuron and network properties and thereby enables the appropriate allocation of attention to relevant external or internal events. Finally, we highlight areas where we believe hypotheses can be formulated and tackled experimentally in the near future, thereby critically increasing our mechanistic understanding of how attention is implemented at the cellular and network levels.
Collapse
Affiliation(s)
- Alexander Thiele
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.
| | - Mark A Bellgrove
- Monash Institute of Cognitive and Clinical Neurosciences (MICCN) and School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
23
|
Neural Variability Is Quenched by Attention. J Neurosci 2019; 39:5975-5985. [PMID: 31152124 DOI: 10.1523/jneurosci.0355-19.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/08/2019] [Accepted: 04/21/2019] [Indexed: 01/09/2023] Open
Abstract
Attention can be subdivided into several components, including alertness and spatial attention. It is believed that the behavioral benefits of attention, such as increased accuracy and faster reaction times, are generated by an increase in neural activity and a decrease in neural variability, which enhance the signal-to-noise ratio of task-relevant neural populations. However, empirical evidence regarding attention-related changes in neural variability in humans is extremely rare. Here we used EEG to demonstrate that trial-by-trial neural variability was reduced by visual cues that modulated alertness and spatial attention. Reductions in neural variability were specific to the visual system and larger in the contralateral hemisphere of the attended visual field. Subjects with higher initial levels of neural variability and larger decreases in variability exhibited greater behavioral benefits from attentional cues. These findings demonstrate that both alertness and spatial attention modulate neural variability and highlight the importance of reducing/quenching neural variability for attaining the behavioral benefits of attention.SIGNIFICANCE STATEMENT Attention is thought to improve perception by increasing the signal-to-noise ratio of the neuronal populations that encode the attended stimulus. Signal-to-noise ratio can be enhanced by increasing neural response (signal) and/or by reducing neural variability (noise). The ability of attention to increase neural responses has been studied extensively, but the effects of attention on neural variability have rarely been examined in humans. Here, we demonstrate that modulating different components of attention, including alertness and spatial attention, reduces neural variability in humans. Furthermore, we show that subjects with larger reductions in neural variability exhibit greater behavioral benefits from attention. These results demonstrate that reduction of neural variability is a fundamental feature of attentional processes in humans with clear behavioral importance.
Collapse
|
24
|
Sanayei M, Chen X, Chicharro D, Distler C, Panzeri S, Thiele A. Perceptual learning of fine contrast discrimination changes neuronal tuning and population coding in macaque V4. Nat Commun 2018; 9:4238. [PMID: 30315163 PMCID: PMC6185947 DOI: 10.1038/s41467-018-06698-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 09/19/2018] [Indexed: 11/29/2022] Open
Abstract
Perceptual learning, the improvement in perceptual abilities with training, is thought to be mediated by an alteration of neuronal tuning. It remains poorly understood how tuning properties change as training progresses, whether improved stimulus tuning directly links to increased behavioural readout of sensory information, or how population coding mechanisms change with training. Here, we recorded continuously from multiple neuronal clusters in area V4 while macaque monkeys learned a fine contrast categorization task. Training increased neuronal coding abilities by shifting the steepest point of contrast response functions towards the categorization boundary. Population coding accuracy of difficult discriminations resulted largely from an increased information coding of individual channels, particularly for those channels that in early learning had larger ability for easy discriminations, but comparatively small encoding abilities for difficult discriminations. Population coding was also enhanced by specific changes in correlations. Neuronal activity became more indicative of upcoming choices with training. Perceptual learning, the improvement in perceptual abilities with training, is thought to involve changes in neuronal 'tuning'. Here, the authors show that perceptual learning works by making neurons increasingly sensitive to task-relevant differences in stimuli, and by improving population coding mechanisms.
Collapse
Affiliation(s)
- Mehdi Sanayei
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Xing Chen
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Daniel Chicharro
- Laboratory of Neural Computation, Istituto Italiano di Tecnologia, 38068, Rovereto, Italy.,Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Claudia Distler
- Allgemeine Zoologie und Neurobiologie, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Stefano Panzeri
- Laboratory of Neural Computation, Istituto Italiano di Tecnologia, 38068, Rovereto, Italy
| | - Alexander Thiele
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
25
|
Lowe KA, Schall JD. Functional Categories of Visuomotor Neurons in Macaque Frontal Eye Field. eNeuro 2018; 5:ENEURO.0131-18.2018. [PMID: 30406195 PMCID: PMC6220589 DOI: 10.1523/eneuro.0131-18.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022] Open
Abstract
Frontal eye field (FEF) in macaque monkeys contributes to visual attention, visual-motor transformations and production of eye movements. Traditionally, neurons in FEF have been classified by the magnitude of increased discharge rates following visual stimulus presentation, during a waiting period, and associated with eye movement production. However, considerable heterogeneity remains within the traditional visual, visuomovement, and movement categories. Cluster analysis is a data-driven method of identifying self-segregating groups within a dataset. Because many cluster analysis techniques exist and outcomes vary with analysis assumptions, consensus clustering aggregates over multiple analyses, identifying robust groups. To describe more comprehensively the neuronal composition of FEF, we applied a consensus clustering technique for unsupervised categorization of patterns of spike rate modulation measured during a memory-guided saccade task. We report 10 functional categories, expanding on the traditional 3 categories. Categories were distinguished by latency, magnitude, and sign of visual response; the presence of sustained activity; and the dynamics, magnitude and sign of saccade-related modulation. Consensus clustering can include other metrics and can be applied to datasets from other brain regions to provide better information guiding microcircuit models of cortical function.
Collapse
Affiliation(s)
- Kaleb A Lowe
- Department of Psychology, Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, Tennessee 37240
| | - Jeffrey D Schall
- Department of Psychology, Center for Integrative and Cognitive Neuroscience, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, Tennessee 37240
| |
Collapse
|
26
|
Schmitz TW, Duncan J. Normalization and the Cholinergic Microcircuit: A Unified Basis for Attention. Trends Cogn Sci 2018; 22:422-437. [PMID: 29576464 DOI: 10.1016/j.tics.2018.02.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/23/2018] [Accepted: 02/26/2018] [Indexed: 12/22/2022]
Abstract
Attention alters three key properties of population neural activity - firing rate, rate variability, and shared variability between neurons. All three properties are well explained by a single canonical computation - normalization - that acts across hierarchically integrated brain systems. Combining data from rodents and nonhuman primates, we argue that cortical cholinergic modulation originating from the basal forebrain closely mimics the effects of directed attention on these three properties of population neural activity. Cholinergic modulation of the cortical microcircuit underlying normalization may represent a key biological basis for the rapid and flexible changes in population neuronal coding that are required by directed attention.
Collapse
Affiliation(s)
- Taylor W Schmitz
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3801 rue University, Montreal, QC, H3A 2B4, Canada.
| | - John Duncan
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK; Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford OX1 3UD, UK
| |
Collapse
|
27
|
Differences in reward processing between putative cell types in primate prefrontal cortex. PLoS One 2017; 12:e0189771. [PMID: 29261734 PMCID: PMC5736196 DOI: 10.1371/journal.pone.0189771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 11/26/2017] [Indexed: 11/19/2022] Open
Abstract
Single-unit studies in monkeys have demonstrated that neurons in the prefrontal cortex predict the reward type, reward amount or reward availability associated with a stimulus. To examine contributions of pyramidal cells and interneurons in reward processing, single-unit activity was extracellularly recorded in prefrontal cortices of four monkeys performing a reward prediction task. Based on their shapes of spike waveforms, prefrontal neurons were classified into broad-spike and narrow-spike units that represented putative pyramidal cells and interneurons, respectively. We mainly observed that narrow-spike neurons showed higher firing rates but less bursty discharges than did broad-spike neurons. Both narrow-spike and broad-spike cells selectively responded to the stimulus, reward and their interaction, and the proportions of each type of selective neurons were similar between the two cell classes. Moreover, the two types of cells displayed equal reliability of reward or stimulus discrimination. Furthermore, we found that broad-spike and narrow-spike cells showed distinct mechanisms for encoding reward or stimulus information. Broad-spike neurons raised their firing rate relative to the baseline rate to represent the preferred reward or stimulus information, whereas narrow-spike neurons inhibited their firing rate lower than the baseline rate to encode the non-preferred reward or stimulus information. Our results suggest that narrow-spike and broad-spike cells were equally involved in reward and stimulus processing in the prefrontal cortex. They utilized a binary strategy to complementarily represent reward or stimulus information, which was consistent with the task structure in which the monkeys were required to remember two reward conditions and two visual stimuli.
Collapse
|
28
|
Cholinergic Overstimulation Attenuates Rule Selectivity in Macaque Prefrontal Cortex. J Neurosci 2017; 38:1137-1150. [PMID: 29255006 DOI: 10.1523/jneurosci.3198-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine is released in the prefrontal cortex (PFC) and is a key modulator of cognitive performance in primates. Cholinergic stimulation has been shown to have beneficial effects on performance of cognitive tasks, and cholinergic receptors are being actively explored as promising targets for ameliorating cognitive deficits in Alzheimer's disease. We hypothesized that cholinergic stimulation of PFC during performance of a cognitive task would augment neuronal activity and neuronal coding of task attributes. We iontophoretically applied the general cholinergic receptor agonist carbachol onto neurons in dorsolateral PFC (DLPFC) of male rhesus macaques performing rule-guided prosaccades and antisaccades, a well established oculomotor task for testing cognitive control. Carbachol application had heterogeneous effects on neuronal excitability, with both excitation and suppression observed in significant proportions. Contrary to our prediction, neurons with rule-selective activity exhibited a reduction in selectivity during carbachol application. Cholinergic stimulation disrupted rule selectivity regardless of whether it had suppressive or excitatory effects on these neurons. In addition, cholinergic stimulation excited putative pyramidal neurons, whereas the activity of putative interneurons remained unchanged. Moreover, cholinergic stimulation attenuated saccade direction selectivity in putative pyramidal neurons due to nonspecific increases in activity. Our results suggest excessive cholinergic stimulation has detrimental effects on DLPFC representations of task attributes. These findings delineate the complexity and heterogeneity of neuromodulation of cerebral cortex by cholinergic stimulation, an area of active exploration with respect to the development of cognitive enhancers.SIGNIFICANCE STATEMENT The neurotransmitter acetylcholine is known to be important for cognitive processes in the prefrontal cortex. Removal of acetylcholine from prefrontal cortex can disrupt short-term memory performance and is reminiscent of Alzheimer's disease, which is characterized by degeneration of acetylcholine-producing neurons. Stimulation of cholinergic receptors is being explored to create cognitive enhancers for the treatment of Alzheimer's disease and other psychiatric diseases. Here, we stimulated cholinergic receptors in prefrontal cortex and examined its effects on neurons that are engaged in cognitive behavior. Surprisingly, cholinergic stimulation decreased neurons' ability to discriminate between rules. This work suggests that overstimulation of acetylcholine receptors could disrupt neuronal processing during cognition and is relevant to the design of cognitive enhancers based on stimulating the cholinergic system.
Collapse
|
29
|
Paneri S, Gregoriou GG. Top-Down Control of Visual Attention by the Prefrontal Cortex. Functional Specialization and Long-Range Interactions. Front Neurosci 2017; 11:545. [PMID: 29033784 PMCID: PMC5626849 DOI: 10.3389/fnins.2017.00545] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 09/19/2017] [Indexed: 11/13/2022] Open
Abstract
The ability to select information that is relevant to current behavioral goals is the hallmark of voluntary attention and an essential part of our cognition. Attention tasks are a prime example to study at the neuronal level, how task related information can be selectively processed in the brain while irrelevant information is filtered out. Whereas, numerous studies have focused on elucidating the mechanisms of visual attention at the single neuron and population level in the visual cortices, considerably less work has been devoted to deciphering the distinct contribution of higher-order brain areas, which are known to be critical for the employment of attention. Among these areas, the prefrontal cortex (PFC) has long been considered a source of top-down signals that bias selection in early visual areas in favor of the attended features. Here, we review recent experimental data that support the role of PFC in attention. We examine the existing evidence for functional specialization within PFC and we discuss how long-range interactions between PFC subregions and posterior visual areas may be implemented in the brain and contribute to the attentional modulation of different measures of neural activity in visual cortices.
Collapse
Affiliation(s)
- Sofia Paneri
- Faculty of Medicine, University of Crete, Heraklion, Greece.,Institute of Applied and Computational Mathematics, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Georgia G Gregoriou
- Faculty of Medicine, University of Crete, Heraklion, Greece.,Institute of Applied and Computational Mathematics, Foundation for Research and Technology Hellas, Heraklion, Greece
| |
Collapse
|