1
|
Madadi Asl M, Valizadeh A. Entrainment by transcranial alternating current stimulation: Insights from models of cortical oscillations and dynamical systems theory. Phys Life Rev 2025; 53:147-176. [PMID: 40106964 DOI: 10.1016/j.plrev.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Signature of neuronal oscillations can be found in nearly every brain function. However, abnormal oscillatory activity is linked with several brain disorders. Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that can potentially modulate neuronal oscillations and influence behavior both in health and disease. Yet, a complete understanding of how interacting networks of neurons are affected by tACS remains elusive. Entrainment effects by which tACS synchronizes neuronal oscillations is one of the main hypothesized mechanisms, as evidenced in animals and humans. Computational models of cortical oscillations may shed light on the entrainment effects of tACS, but current modeling studies lack specific guidelines to inform experimental investigations. This study addresses the existing gap in understanding the mechanisms of tACS effects on rhythmogenesis within the brain by providing a comprehensive overview of both theoretical and experimental perspectives. We explore the intricate interactions between oscillators and periodic stimulation through the lens of dynamical systems theory. Subsequently, we present a synthesis of experimental findings that demonstrate the effects of tACS on both individual neurons and collective oscillatory patterns in animal models and humans. Our review extends to computational investigations that elucidate the interplay between tACS and neuronal dynamics across diverse cortical network models. To illustrate these concepts, we conclude with a simple oscillatory neuron model, showcasing how fundamental theories of oscillatory behavior derived from dynamical systems, such as phase response of neurons to external perturbation, can account for the entrainment effects observed with tACS. Studies reviewed here render the necessity of integrated experimental and computational approaches for effective neuromodulation by tACS in health and disease.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran.
| | - Alireza Valizadeh
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran; Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran; The Zapata-Briceño Institute of Neuroscience, Madrid, Spain
| |
Collapse
|
2
|
Chang P, Pérez-González M, Constable J, Bush D, Cleverley K, Tybulewicz VLJ, Fisher EMC, Walker MC. Neuronal oscillations in cognition: Down syndrome as a model of mouse to human translation. Neuroscientist 2025; 31:308-325. [PMID: 39316548 PMCID: PMC12103642 DOI: 10.1177/10738584241271414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Down syndrome (DS), a prevalent cognitive disorder resulting from trisomy of human chromosome 21 (Hsa21), poses a significant global health concern. Affecting approximately 1 in 800 live births worldwide, DS is the leading genetic cause of intellectual disability and a major predisposing factor for early-onset Alzheimer's dementia. The estimated global population of individuals with DS is 6 million, with increasing prevalence due to advances in DS health care. Global efforts are dedicated to unraveling the mechanisms behind the varied clinical outcomes in DS. Recent studies on DS mouse models reveal disrupted neuronal circuits, providing insights into DS pathologies. Yet, translating these findings to humans faces challenges due to limited systematic electrophysiological analyses directly comparing human and mouse. Additionally, disparities in experimental procedures between the two species pose hurdles to successful translation. This review provides a concise overview of neuronal oscillations in human and rodent cognition. Focusing on recent DS mouse model studies, we highlight disruptions in associated brain function. We discuss various electrophysiological paradigms and suggest avenues for exploring molecular dysfunctions contributing to DS-related cognitive impairments. Deciphering neuronal oscillation intricacies holds promise for targeted therapies to alleviate cognitive disabilities in DS individuals.
Collapse
Affiliation(s)
- Pishan Chang
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, UK
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | | | - Jessica Constable
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, UK
| | - Daniel Bush
- Department of Neuroscience, Physiology, and Pharmacology, UCL, London, UK
| | - Karen Cleverley
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, UK
| | | | | | - Matthew C. Walker
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| |
Collapse
|
3
|
Wang J, Liu Z, Hu J, Tong S, Sun J, Hong X. Test-retest reliability of pre-cue and anticipatory alpha activity in visual spatial attention. Neuroscience 2025; 575:85-93. [PMID: 40221016 DOI: 10.1016/j.neuroscience.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Alpha-band activity over the parietal-occipital cortex is a canonical neural marker of visual spatial attention. However, the ongoing debate surrounds whether this activity represents as an active mechanism in gating visual information processing or if it merely reflects an epiphenomenal consequence of anticipatory attentional shifts. Despite this debate, the temporal stability of alpha activity in visual spatial attention, an essential aspect for this discussion, remains ambiguous. Notably, our recent findings highlighted the significant impact of pre-cue alpha power on anticipatory alpha activity in spatial attention tasks, yet the reliability of these pre-cue alpha effects remained unexplored. Here we evaluated the short-term test-retest reliability of both pre-cue and anticipatory alpha activity in healthy young adults who engaged in the same spatial cueing paradigm over two consecutive days. Reliability was gauged using the intraclass coefficient (ICC). Our results demonstrated excellent reliability of pre-cue alpha power, alpha event-related desynchronization (ERD) and individual alpha frequency (IAF), and moderate reliability of alpha lateralization index (LI). Additionally, by categorizing participants into higher and lower pre-cue alpha power sub-groups based on median-splitting, we observed no significant differences in ICCs between the two sub-groups for anticipatory alpha ERD, LI and IAF, except for a significantly higher ICC of pre-cue alpha power in the higher sub-group than the lower sub-group. Taken together, by examining the short-term reliability of alpha-band activity in visual spatial attention for the first time, our study lays a foundational step for the ongoing discourse regarding its functional implications in visual spatial attention.
Collapse
Affiliation(s)
- Jingyi Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ziqiu Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jingyi Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Junfeng Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Xiangfei Hong
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Pilipenko A, Samaha J. Selective Effects of Ongoing Alpha-Band Activity on Magno- and Parvo-Mediated Detection. Psychophysiology 2025; 62:e70070. [PMID: 40329495 PMCID: PMC12056284 DOI: 10.1111/psyp.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/12/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025]
Abstract
Spontaneous fluctuations in cortical excitability, as reflected in variation in occipital alpha-band activity (8-12 Hz), have been shown to explain trial-to-trial variability in perception. Specifically, observers typically report seeing a stimulus more often during states of weak alpha power, likely due to a shift in detection criterion. However, prior work has paid little attention to the specific stimulus properties mediating detection. In early vision, different stimulus properties are preferentially processed along the magnocellular (MC) and parvocellular (PC) pathways, which vary in their preference for spatial and temporal frequency content and chromatic information. The goal of this study was to understand how spontaneous alpha power affects the detection of stimuli which are preferentially processed by either the MC or PC pathway. To achieve this, we used the "Steady/Pulsed Paradigm" which presented a brief, near-threshold stimulus in two conditions intended to bias processing to one or the other pathway. Our results showed an interaction effect of pre-stimulus alpha power on detection between the two conditions. While weak alpha power was predictive of seeing the stimulus in the steady condition (MC-biased), no significant effect was found in the pulsed condition (PC-biased). This interaction was driven by a selective alpha-related criterion shift in the steady condition, with no effect of pre-stimulus alpha on sensitivity (d') in either condition. Our results imply that alpha oscillations may differentially regulate excitability in the MC and PC pathways.
Collapse
Affiliation(s)
- April Pilipenko
- Department of PsychologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Jason Samaha
- Department of PsychologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| |
Collapse
|
5
|
Gelinas JN, Khodagholy D. Interictal network dysfunction and cognitive impairment in epilepsy. Nat Rev Neurosci 2025:10.1038/s41583-025-00924-3. [PMID: 40295879 DOI: 10.1038/s41583-025-00924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 04/30/2025]
Abstract
Epilepsy is diagnosed when neural networks become capable of generating excessive or hypersynchronous activity patterns that result in observable seizures. In many cases, epilepsy is associated with cognitive comorbidities that persist between seizures and negatively impact quality of life. Dysregulation of the coordinated physiological network interactions that are required for cognitive function has been implicated in mediating these enduring symptoms, but the causal mechanisms are often elusive. Here, we provide an overview of neural network abnormalities with the potential to contribute to cognitive dysfunction in epilepsy. We examine these pathological interactions across spatial and temporal scales, additionally highlighting the dynamics that arise in response to the brain's intrinsic capacity for plasticity. Understanding these processes will facilitate development of network-level interventions to address cognitive comorbidities that remain undertreated by currently available epilepsy therapeutics.
Collapse
Affiliation(s)
- Jennifer N Gelinas
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Paediatrics, University of California, Irvine, CA, USA.
- Children's Hospital of Orange County, Orange, CA, USA.
| | - Dion Khodagholy
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Electrical Engineering, University of California, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
- Department of Materials Science and Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
6
|
Arora K, Gayet S, Kenemans JL, Van der Stigchel S, Chota S. Dissociating external and internal attentional selection. iScience 2025; 28:112282. [PMID: 40248115 PMCID: PMC12005331 DOI: 10.1016/j.isci.2025.112282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/19/2024] [Accepted: 03/20/2025] [Indexed: 04/19/2025] Open
Abstract
Just as attention can shift externally toward relevant objects in the visual environment, it can shift internally toward relevant items within Visual Working Memory (VWM). Recent work has shown that spatial attention is automatically directed toward the previous location of an attended memory item, as it is to locations of perceived stimuli. When attending memory items, however, there is no sensory information to be processed at the previous location. Thus, we asked whether internal attention-akin to external attention-modulates sensory processing. In two EEG experiments, we compared location-specific sensory enhancements during attentional selection of external (perceived) versus internal (memorized) stimuli. Alpha-power and gaze-position biases confirmed an inherent spatial organization within VWM. However, Rapid Invisible Frequency Tagging (RIFT) revealed sensory modulation only during external attentional selection. Thus, VWM is not blindly recruiting existing mechanisms of external attention, but instead uses space as an organizational principle to store and select memories.
Collapse
Affiliation(s)
- Kabir Arora
- Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584CS Utrecht, the Netherlands
| | - Surya Gayet
- Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584CS Utrecht, the Netherlands
| | - J. Leon Kenemans
- Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584CS Utrecht, the Netherlands
| | | | - Samson Chota
- Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584CS Utrecht, the Netherlands
| |
Collapse
|
7
|
Nan J, Jaiswal S, Ramanathan D, Withers MC, Mishra J. Climate trauma from wildfire exposure impacts cognitive decision-making. Sci Rep 2025; 15:11992. [PMID: 40240429 PMCID: PMC12003910 DOI: 10.1038/s41598-025-94672-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Climate trauma refers to the chronic mental health sequalae of climate disaster events. We have previously shown evidence for such trauma with accompanying anxiety and depression symptoms after California's 2018 Camp Fire wildfire. Here, we investigate whether this climate trauma also impacts cognitive decision-making and its neural correlates. One year after the wildfire, we recruited three groups - those directly exposed (n = 27), indirectly exposed (community members who witnessed the wildfire but not directly exposed, n = 21), versus non-exposed controls (n = 27). Participants performed a decision-making task that led to immediate and cumulative point rewards on each trial with simultaneous electroencephalography (EEG) recordings. We evaluated Win-Stay behavior in choosing to stay with the greater expected value (cumulative reward) option. Directly-exposed individuals showed significantly reduced Win-Stay behavior relative to the other groups. EEG analyses showed significantly greater parietal alpha activity for the selected choice and ensuing rewards in directly fire-exposed individuals, with an underlying cortical source of this activity in posterior cingulate cortex. Overall, these findings suggest that climate trauma may significantly impact neuro-cognitive processing in the context of value-based decision-making, which may serve as a useful biomarker target for future mental health interventions in climate change impacted communities.
Collapse
Affiliation(s)
- Jason Nan
- Neural Engineering and Translation Labs (NEATLabs), University of California, San Diego, 9500 Gilman Drive, Mail Code 0737, La Jolla, CA, 92037, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| | - Satish Jaiswal
- Neural Engineering and Translation Labs (NEATLabs), University of California, San Diego, 9500 Gilman Drive, Mail Code 0737, La Jolla, CA, 92037, USA
| | - Dhakshin Ramanathan
- Neural Engineering and Translation Labs (NEATLabs), University of California, San Diego, 9500 Gilman Drive, Mail Code 0737, La Jolla, CA, 92037, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Mental Health, VA San Diego Medical Center, San Diego, CA, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Medical Center, San Diego, CA, USA
| | | | - Jyoti Mishra
- Neural Engineering and Translation Labs (NEATLabs), University of California, San Diego, 9500 Gilman Drive, Mail Code 0737, La Jolla, CA, 92037, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Medical Center, San Diego, CA, USA
| |
Collapse
|
8
|
Morucci P, Giannelli F, Richter CG, Molinaro N. Spoken words affect visual object recognition via the modulation of alpha and beta oscillations. Front Neurosci 2025; 19:1467249. [PMID: 40297533 PMCID: PMC12034728 DOI: 10.3389/fnins.2025.1467249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 03/12/2025] [Indexed: 04/30/2025] Open
Abstract
Hearing spoken words can enhance the recognition of visual object categories. Yet, the mechanisms that underpin this facilitation are incompletely understood. Recent proposals suggest that words can alter visual processes by activating category-specific representations in sensory regions. Here, we tested the hypothesis that neural oscillations serve as a mechanism to activate language-generated visual representations. Participants performed a cue-picture matching task where cues were either spoken words, in their native or second language, or natural sounds, while their EEG and reaction times were recorded. Behaviorally, we found that images cued by words were recognized faster than those cued by natural sounds. This indicates that language activates more accurate semantic representations compared to natural sounds. A time-frequency analysis of cue-target intervals revealed that this label-advantage effect was associated with enhanced power in posterior alpha (9-11 Hz) and beta oscillations (17-19 Hz), both of which were larger when the image was preceded by a word compared to a natural sound. These results suggest that alpha and beta rhythms may play distinct functional roles to support language-mediated visual object recognition: alpha might function to amplify sensory representations in posterior regions, while beta may (re)activate the network states elicited by the auditory cue.
Collapse
Affiliation(s)
- Piermatteo Morucci
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Basque Center on Cognition Brain and Language (BCBL), University of the Basque Country UPV/EHU, San Sebastian, Spain
| | - Francesco Giannelli
- Cognition and Brain Plasticity Unit, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
| | - Craig G. Richter
- Basque Center on Cognition Brain and Language (BCBL), University of the Basque Country UPV/EHU, San Sebastian, Spain
| | - Nicola Molinaro
- Basque Center on Cognition Brain and Language (BCBL), University of the Basque Country UPV/EHU, San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
9
|
Bender A, Voytek B, Schaworonkow N. Resting-state alpha and mu rhythms change shape across development but lack diagnostic sensitivity for ADHD and autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.13.562301. [PMID: 40236114 PMCID: PMC11996428 DOI: 10.1101/2023.10.13.562301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
In the human brain, the alpha rhythm in occipital cortex and the mu rhythm in sensorimotor cortex are among the most prominent rhythms, with both rhythms functionally implicated in gating modality-specific information. Separation of these rhythms is non-trivial due to the spatial mixing of these oscillations in sensor space. Using a computationally efficient processing pipeline requiring no manual data cleaning, we isolated alpha and/or mu rhythms from electroencephalography recordings performed on 1605 children aged 5-18. Using the extracted time series for each rhythm, we characterized the waveform shape on a cycle-by-cycle basis and examined whether and how the waveform shape differs across development. We demonstrate that alpha and mu rhythms both exhibit nonsinusoidal waveform shape that changes significantly across development, in addition to the known large changes in oscillatory frequency. This dataset also provided an opportunity to assess oscillatory measures for attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). We found no differences in the resting-state features of these alpha-band rhythms for either ADHD or ASD in comparison to typically developing participants in this dataset. While waveform shape is ignored by traditional Fourier spectral analyses, these nonsinusoidal properties may be informative for building more constrained generative models for different types of alpha-band rhythms, yielding more specific insight into their generation.
Collapse
|
10
|
Ding X, Zhou Y, Liu Y, Yao XL, Wang JX, Xie Q. Application and research progress of different frequency tACS in stroke rehabilitation: A systematic review. Brain Res 2025; 1852:149521. [PMID: 39983809 DOI: 10.1016/j.brainres.2025.149521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/09/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
After a stroke, abnormal changes in neural oscillations that are related to the severity and prognosis of the disease can occur. Resetting these abnormal neural oscillations is a potential approach for stroke rehabilitation. Transcranial alternating current stimulation (tACS) can modulate intrinsic neural oscillations noninvasively and has attracted attention as a possible technique to improve multiple post-stroke symptoms, including deficits in speech, vision, and motor ability and overall neurological recovery. The clinical effect of tACS varies according to the selected frequency. Therefore, choosing an appropriate frequency to optimize outcomes for specific dysfunctions is essential. This review focuses on the current research status and possibilities of tACS with different frequencies in stroke rehabilitation. We also discuss the possible mechanisms of tACS in stroke to provide a theoretical foundation for the method and highlight the controversial aspects that need further exploration. Although tACS has great potential, few clinical studies have applied it in the treatment of stroke, and no consensus has been reached. We analyze limitations in experimental designs and identify potential tACS approaches worthy of exploration in the future.
Collapse
Affiliation(s)
- Xue Ding
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Rehabilitation Medicine, Shanghai Ruijin Rehabilitation Hospital, Shanghai, China
| | - Yu Zhou
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Liu
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ling Yao
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji-Xian Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qing Xie
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Rehabilitation Medicine, Shanghai Ruijin Rehabilitation Hospital, Shanghai, China.
| |
Collapse
|
11
|
Bonnefond M, Jensen O. The role of alpha oscillations in resisting distraction. Trends Cogn Sci 2025; 29:368-379. [PMID: 39668059 DOI: 10.1016/j.tics.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024]
Abstract
The role of alpha oscillations (8-13 Hz) in suppressing distractors is extensively debated. One debate concerns whether alpha oscillations suppress anticipated visual distractors through increased power. Whereas some studies suggest that alpha oscillations support distractor suppression, others do not. We identify methodological differences that may explain these discrepancies. A second debate concerns the mechanistic role of alpha oscillations. We and others previously proposed that alpha oscillations implement gain reduction in early visual regions when target load or distractor interference is high. Here, we suggest that parietal alpha oscillations support gating or stabilization of attentional focus and that alpha oscillations in ventral attention network (VAN) support resistance to attention capture. We outline future studies needed to uncover the precise mechanistic role of alpha oscillations.
Collapse
Affiliation(s)
- Mathilde Bonnefond
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, COPHY, F-69500, Bron, France.
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK; Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK; Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|
12
|
Melcón M, van Bree S, Sánchez-Carro Y, Barreiro-Fernández L, Kolibius LD, Alzueta E, Wimber M, Capilla A, Hanslmayr S. Evidence for a constant occipital spotlight of attention using MVPA on EEG data. PLoS One 2025; 20:e0320233. [PMID: 40138358 PMCID: PMC11940686 DOI: 10.1371/journal.pone.0320233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/14/2025] [Indexed: 03/29/2025] Open
Abstract
While traditional behavioural and electroencephalographic studies claim that visuospatial attention stays fixed at one location at a time, recent research has rather shown that attention rhythmically fluctuates between locations at different rates. However, little is known about the temporal dynamics of this fluctuation and whether it changes over time. We addressed this question by investigating how the neural pattern of visuospatial attention behaves over space and time by employing classification and conventional analysis of occipito-parietal EEG activity. Furthermore, we simulated data with the attentional electrophysiological correlates to control for the ground truth that would give rise to certain classification patterns. We analysed two visuospatial cueing tasks, with a peripheral and a central cue to control for sensory-driven processes, where attention was covertly oriented to the left or right hemifield. First, to decode the spatial locus of attention from neural activity, we trained and tested a classifier on every timepoint from the attentional cue to the stimulus onset. This resulted in one temporal generalization matrix per participant, which was time-frequency decomposed to identify the sampling rhythm. Independently, we calculated a lateralization index based on ERPs and alpha-band power and correlated these indices with classifier performance. Eventually, we simulated two dataset, with ERPs and alpha-band attentional modulations, and employed the same decoding approach. Our results show that attention settled on the cued hemifield in a late time window, but an early and rhythmic sampling of both hemifields exclusively after the peripheral cue. Only the ERP lateralization index correlated with classifier performance in the periperhal cue dataset, suggesting that the early rhythmic state did not reflect attentional sampling but instead was driven by the cue location, idea also supported by our simulations. Together, our results characterise the occipital attentional sampling as a constant process slightly delayed after the cue.
Collapse
Affiliation(s)
- María Melcón
- Department of Biological and Health Psychology, Universidad Autónoma de Madrid, Madrid, Spain
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Sander van Bree
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- Department of Medicine, Justus Liebig University, Giessen, Germany
| | - Yolanda Sánchez-Carro
- Faculty of Psychology, European University of the Canary Islands, Santa Cruz de Tenerife, Spain
| | | | - Luca D. Kolibius
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- Department of Biomedical Engineering, Columbia University, New York, New York, United States of America
| | - Elisabet Alzueta
- Department of Biological and Health Psychology, Universidad Autónoma de Madrid, Madrid, Spain
- Biosciences Division, Center for Health Sciences, SRI International, Menlo Park, California, United States of America.
| | - Maria Wimber
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Almudena Capilla
- Department of Biological and Health Psychology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Simon Hanslmayr
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
13
|
Gresch D, Behnke L, van Ede F, Nobre AC, Boettcher SEP. Neural dynamics of reselecting visual and motor contents in working memory after external interference. J Neurosci 2025; 45:e2347242025. [PMID: 40097181 PMCID: PMC12044030 DOI: 10.1523/jneurosci.2347-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/09/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
In everyday tasks, we must often shift our focus away from internal representations held in working memory to engage with perceptual events in the external world. Here, we investigated how our internal focus is reestablished following an interrupting task by tracking the reselection of visual representations and their associated action plans in working memory. Specifically, we ask whether reselection occurs for both visual and motor memory attributes and when this reselection occurs. We developed a visual-motor working-memory task in which participants were retrospectively cued to select one of two memory items before being interrupted by a perceptual discrimination task. To determine what information was reselected, the memory items had distinct visual and motor attributes. To determine when internal representations were reselected, the interrupting task was presented at one of three distinct time points following the retro-cue. We employed electroencephalography time-frequency analyses to track the initial selection and later reselection of visual and motor representations, as operationalized through modulations of posterior alpha (8-12 Hz) activity relative to the memorized item location (visual) and of central beta (13-30 Hz) activity relative to the required response hand (motor). Our results showed that internal visual and motor contents were concurrently reselected immediately after completing the interrupting task, rather than only when internal information was required for memory-guided behavior. Thus, following interruption, we swiftly resume our internal focus in working memory through the simultaneous reselection of memorized visual representations and their associated action plans, thereby restoring internal contents to a ready-to-use state.Significance statement A key challenge for working memory is to maintain past visual representations and their associated actions while engaging with the external environment. Our cognitive system must, therefore, often juggle multiple tasks within a common time frame. Despite the ubiquity of multi-task situations in everyday life, working memory has predominantly been studied devoid of additional perceptual, attentional, and response demands during the retention interval. Here, we investigate the neural dynamics of returning to internal contents following task-relevant interruptions. Particularly, we identify which attributes of internal representations are reselected and when this reselection occurs. Our findings demonstrate that both visual and motor contents are reselected immediately and in tandem after completion of an external, interrupting task.
Collapse
Affiliation(s)
- Daniela Gresch
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom
- Department of Psychology, Yale University, New Haven, CT 06510, United States of America
| | - Larissa Behnke
- Department of Psychology, Universität Zürich, Zürich, 8050, Switzerland
- Neuroscience Center Zurich (ZNZ), Universität Zürich and ETH Zürich, 8057, Zürich, Switzerland
- Department of Experimental Psychology, Ludwig-Maximilians-Universität München, München, 80802, Germany
| | - Freek van Ede
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
| | - Anna C Nobre
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom
- Department of Psychology, Yale University, New Haven, CT 06510, United States of America
- Wu Tsai Institute, Yale University, New Haven, CT 06510, United States of America
| | - Sage E P Boettcher
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom
| |
Collapse
|
14
|
Wang M, Wei S, Zhang Y, Jia M, Teng C, Wang W, Xu J. Event-Related Brain Oscillations Changes in Major Depressive Disorder Patients During Emotional Face Recognition. Clin EEG Neurosci 2025:15500594241304490. [PMID: 40080064 DOI: 10.1177/15500594241304490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Major depressive disorder (MDD) is a disorder with multiple impairments, among which emotion disorder is the most main one. Nowadays, evoked activity (EA), such as event-related potential (ERP), has mostly been studied for MDD, but induced activity (IA) analysis is still lacking. In this paper, EA, IA and event-related spectral perturbation (ERSP) were studied and compared between MDD patients and healthy controls (HC). Electroencephalogram (EEG) of 26 healthy controls and 21 MDD patients were recorded during three different facial expression (positive, neutral, negative) recognition tasks. Two phases of task execution process were studied, the early stage (0-200 ms after stimuli), and the late stage (200-500 ms after stimuli). ERSP, EA index and IA index of θ (4-7 Hz), α (8-13 Hz) and β (14-30 Hz) frequency bands were calculated and compared between two groups for two phases, respectively. In the early stage, the results indicated a decreased IA in α band in MDD compared to HC in frontal and parieto-occipital areas during neutral and negative face recognition. During the late stage, reduced IA and lower ERSP were also observed in α band in frontal and parieto-occipital areas in MDD during neutral and negative face recognition. Moreover, IA in θ band in MDD was lower than HC during negative face recognition. The findings reflected the abnormality of negative emotion processing in MDD, which could help to interpret the neural mechanism of depression.
Collapse
Affiliation(s)
- Mengwei Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Sichuan Digital Economy Industry Development Research Institute, Chengdu, China
| | - Sihong Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Sichuan Digital Economy Industry Development Research Institute, Chengdu, China
| | - Yiyang Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Min Jia
- Department of Psychiatry, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chaolin Teng
- Department of Aerospace Medicine, The Air Force Medical University, Xi'an, Shaanxi, China
| | - Wei Wang
- Department of Psychiatry, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jin Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Sichuan Digital Economy Industry Development Research Institute, Chengdu, China
| |
Collapse
|
15
|
Zhang H, York AK, Jonides J. Attentional capture by abrupt onsets: Foundations and emerging issues. J Exp Psychol Hum Percept Perform 2025; 51:283-299. [PMID: 40029311 PMCID: PMC11908675 DOI: 10.1037/xhp0001275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The study of attentional allocation due to external stimulation has a long history in psychology. Early research by Yantis and Jonides suggested that abrupt onsets constitute a unique class of stimuli that captures attention in a stimulus-driven fashion unless attention is proactively directed elsewhere. Since then, the study of visual attention has evolved significantly. This article revisits the core conclusions by Yantis and Jonides in light of subsequent findings and highlights emerging issues for future investigation. These issues include clarifying key concepts of visual attention, adopting measures with greater spatiotemporal precision, exploring how past experiences modulate the effects of abrupt onsets, and understanding individual differences in attentional allocation. Addressing these issues is challenging but crucial, and we offer some perspectives on how one might choose to study these issues going forward. Finally, we call for more investigation into abrupt onsets. Perhaps due to their strong potential to capture attention, abrupt onsets are often set aside in pursuit of other conditions that show attenuation of distractor interference. However, given their real-world relevance, abrupt onsets represent the exact type of stimuli that we need to study more to connect laboratory attention research to real life. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
Collapse
Affiliation(s)
- Han Zhang
- University of Michigan, Department of Psychology
| | - A Kane York
- University of Michigan, Department of Psychology
| | - John Jonides
- University of Michigan, Department of Psychology
| |
Collapse
|
16
|
Meyyappan S, Rajan A, Yang Q, Mangun GR, Ding M. Decoding Visual Spatial Attention Control. eNeuro 2025; 12:ENEURO.0512-24.2025. [PMID: 39947905 PMCID: PMC11875837 DOI: 10.1523/eneuro.0512-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
In models of visual spatial attention control, it is commonly held that top-down control signals originate in the dorsal attention network, propagating to the visual cortex to modulate baseline neural activity and bias sensory processing. However, the precise distribution of these top-down influences across different levels of the visual hierarchy is debated. In addition, it is unclear whether these baseline neural activity changes translate into improved performance. We analyzed attention-related baseline activity during the anticipatory period of a voluntary spatial attention task, using two independent functional magnetic resonance imaging datasets and two analytic approaches. First, as in prior studies, univariate analysis showed that covert attention significantly enhanced baseline neural activity in higher-order visual areas contralateral to the attended visual hemifield, while effects in lower-order visual areas (e.g., V1) were weaker and more variable. Second, in contrast, multivariate pattern analysis (MVPA) revealed significant decoding of attention conditions across all visual cortical areas, with lower-order visual areas exhibiting higher decoding accuracies than higher-order areas. Third, decoding accuracy, rather than the magnitude of univariate activation, was a better predictor of a subject's stimulus discrimination performance. Finally, the MVPA results were replicated across two experimental conditions, where the direction of spatial attention was either externally instructed by a cue or based on the participants' free choice decision about where to attend. Together, these findings offer new insights into the extent of attentional biases in the visual hierarchy under top-down control and how these biases influence both sensory processing and behavioral performance.
Collapse
Affiliation(s)
- Sreenivasan Meyyappan
- Center for Mind and Brain, University of California, Davis, California 95618
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611
| | - Abhijit Rajan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611
| | - Qiang Yang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611
| | - George R Mangun
- Center for Mind and Brain, University of California, Davis, California 95618
- Departments of Psychology and Neurology, University of California, Davis, California 95616
| | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
17
|
Geffen A, Bland N, Sale M. μ-Transcranial Alternating Current Stimulation Induces Phasic Entrainment and Plastic Facilitation of Corticospinal Excitability. Eur J Neurosci 2025; 61:e70042. [PMID: 40040311 PMCID: PMC11880748 DOI: 10.1111/ejn.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/04/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
Transcranial alternating current stimulation (tACS) has been proposed to modulate neural activity through two primary mechanisms: entrainment and neuroplasticity. The current study aimed to probe both of these mechanisms in the context of the sensorimotor μ-rhythm using transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to assess entrainment of corticospinal excitability (CSE) during stimulation (i.e., online) and immediately following stimulation, as well as neuroplastic aftereffects on CSE and μ EEG power. Thirteen participants received three sessions of stimulation. Each session consisted of 90 trials of μ-tACS tailored to each participant's individual μ frequency (IMF), with each trial consisting of 16 s of tACS followed by 8 s of rest (for a total of 24 min of tACS and 12 min of rest per session). Motor-evoked potentials (MEPs) were acquired at the start and end of the session (n = 41), and additional MEPs were acquired across the different phases of tACS at three epochs within each tACS trial (n = 90 for each epoch): early online, late online and offline echo. Resting EEG activity was recorded at the start, end and throughout the tACS session. The data were then pooled across the three sessions for each participant to maximise the MEP sample size per participant. We present preliminary evidence of CSE entrainment persisting immediately beyond tACS and have also replicated the plastic CSE facilitation observed in previous μ-tACS studies, thus supporting both entrainment and neuroplasticity as mechanisms by which tACS can modulate neural activity.
Collapse
Affiliation(s)
- Asher Geffen
- School of Health and Rehabilitation SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - Nicholas Bland
- School of Health and Rehabilitation SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - Martin V. Sale
- School of Health and Rehabilitation SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
18
|
Wang X, Chen S, Wang K, Cao L. Predicted action-effects shape action representation through pre-activation of alpha oscillations. Commun Biol 2025; 8:275. [PMID: 39987217 PMCID: PMC11846963 DOI: 10.1038/s42003-025-07750-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/14/2025] [Indexed: 02/24/2025] Open
Abstract
Actions are typically accompanied by sensory feedback (or action-effects). Action-effects, in turn, influence the action. Theoretical accounts of action control assume a pre-activation of action-effects prior to action execution. Here we show that when participants were asked to report the time of their voluntary keypress using the position of a fast-rotating clock hand, a predictable action-effect (i.e. a 250 ms delayed sound after keypress) led to a shift of visuospatial attention towards the clock hand position of action-effect onset, thus demonstrating an influence of action-effects on action representation. Importantly, the attention shift occurred about 1 second before the action execution, which was further preceded and predicted by a lateralisation of alpha oscillations in the visual cortex. Our results indicate that when the spatial location is the key feature of action-effects, the neural implementation of the action-effect pre-activation is achieved through alpha lateralisation.
Collapse
Affiliation(s)
- Xin Wang
- Department of Psychology and Behavioural Sciences, Zhejiang University, Hangzhou, China
| | - Shitao Chen
- Department of Psychology and Behavioural Sciences, Zhejiang University, Hangzhou, China
| | - Keyang Wang
- Department of Psychology and Behavioural Sciences, Zhejiang University, Hangzhou, China
| | - Liyu Cao
- Department of Psychology and Behavioural Sciences, Zhejiang University, Hangzhou, China.
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China.
| |
Collapse
|
19
|
daSilva Morgan K, Collerton D, Firbank MJ, Schumacher J, Ffytche DH, Taylor JP. Visual cortical activity in Charles Bonnet syndrome: testing the deafferentation hypothesis. J Neurol 2025; 272:199. [PMID: 39932561 PMCID: PMC11813974 DOI: 10.1007/s00415-024-12741-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 02/14/2025]
Abstract
Visual hallucinations in individuals following sight loss (Charles Bonnet syndrome; CBS) have been posited to arise because of spontaneous, compensatory, neural activity in the visual cortex following sensory input loss from the eyes-known as deafferentation. However, neurophysiological investigations of CBS remain limited. We performed a multi-modal investigation comparing visual cortical activity in 19 people with eye disease who experience visual hallucinations (CBS) with 18 people with eye disease without hallucinations (ED-Controls; matched for age and visual acuity) utilising functional MRI, EEG, and transcranial magnetic stimulation (TMS). A pattern of altered visual cortical activity in people with CBS was noted across investigations. Reduced BOLD activation in ventral extrastriate and primary visual cortex, and reduced EEG alpha-reactivity in response to visual stimulation was observed in CBS compared to ED-Controls. The CBS group also demonstrated a shift towards lower frequency band oscillations in the EEG, indicative of cortical slowing, with significantly greater occipital theta power compared to ED-controls. Furthermore, a significant association between reduced activation in response to visual stimulation and increased excitability (in the form of reduced TMS phosphene thresholds) was observed in CBS, indicating persistent visual cortical activation consistent with hyperexcitability, which was found to be significantly associated with increased hallucination severity. These results provide converging lines of evidence to support the role of increased visual cortical excitability in the formation of visual hallucinations in some people following sight loss, consistent with the deafferentation hypothesis.
Collapse
Affiliation(s)
- Katrina daSilva Morgan
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle Upon Tyne, NE4 5PL, UK.
| | - Daniel Collerton
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle Upon Tyne, NE4 5PL, UK
| | - Michael J Firbank
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle Upon Tyne, NE4 5PL, UK
| | - Julia Schumacher
- Deutsches Zentrum Für Neurodegenerative Erkrankungen Standort Rostock/Greifswald, Rostock, Mecklenburg-Vorpommern, Germany
- Department of Neurology, University Medical Center Rostock, Rostock, Germany
| | - Dominic H Ffytche
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle Upon Tyne, NE4 5PL, UK
| |
Collapse
|
20
|
Lucia S, Di Russo F. Identification of anticipatory brain activity in a time discrimination task. Brain Cogn 2025; 183:106243. [PMID: 39637612 DOI: 10.1016/j.bandc.2024.106243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
The purpose of this study was to investigate anticipatory functions in temporal cognition, identifying the presence of proactive brain processing specifically preceding a time discrimination task. To this aim, two discriminative response tasks (DRTs) were employed: a feature DRT and a temporal (T-DRT). While the F-DRT required discrimination among different geometrical shapes, the T-DRT required discrimination among different stimulus durations. Specifically, this study investigated the role of premotor and prefrontal cortices, and sensory visual areas in preparatory activity preceding time-processing by electroencephalographic methods and analyzing the event-related potential (ERP). ERP components associated with motor (the BP), cognitive (the pN), and sensory readiness (the vN) were analyzed on 21 participants completing the two DRTs. The results support the involvement of all considered brain areas in temporal cognition but extend this information by indicating that these areas can be engaged during the preparation phase before the stimulus is delivered. Furthermore, the T-DRT requires strong anticipatory activity in the PFC likely serving as a moderator of upcoming motor responses. Finally, visual areas were greatly engaged in the early phase of sensory readiness of the T-DRT probably to create top-down low-level representations of imminent events to facilitate perception.
Collapse
Affiliation(s)
- Stefania Lucia
- Dept. of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy; International School for Advanced Studies (SISSA), Trieste, Italy.
| | - Francesco Di Russo
- Dept. of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
| |
Collapse
|
21
|
Nasrawi R, Mautner-Rohde M, van Ede F. Memory load influences our preparedness to act on visual representations in working memory without affecting their accessibility. Prog Neurobiol 2025; 245:102717. [PMID: 39788447 DOI: 10.1016/j.pneurobio.2025.102717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/18/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
It is well established that when we hold more content in working memory, we are slower to act upon part of that content when it becomes relevant for behavior. Here, we asked whether this load-related slowing is due to slower access to the sensory representations held in working memory (as predicted by serial working-memory search), or by a reduced preparedness to act upon those sensory representations once accessed. To address this, we designed a visual-motor working-memory task in which participants memorized the orientation of two or four colored bars, of which one was cued for reproduction. We independently tracked EEG markers associated with the selection of visual (cued item location) and motor (relevant manual action) information from the EEG time-frequency signal, and compared their latencies as a function of memory load. We confirm slower memory-guided behavior with higher working-memory load and show that this is associated with delayed motor selection. In contrast, we find no evidence for a concomitant delay in the latency of visual selection. Moreover, we show that variability in decision times within each memory-load condition is associated with corresponding changes in the latency of motor, but not visual selection. These results reveal how memory load affects our preparedness to act on sensory representations in working memory, while leaving sensory access itself unaffected. This posits action readiness as a key factor that shapes the speed of memory-guided behavior and that underlies delayed responding with higher working-memory load.
Collapse
Affiliation(s)
- Rose Nasrawi
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, the Netherlands.
| | - Mika Mautner-Rohde
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, the Netherlands
| | - Freek van Ede
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, the Netherlands.
| |
Collapse
|
22
|
Arnold DH, Hutchinson M, Bouyer LN, Schwarzkopf DS, Pellicano E, Saurels BW. Don't think of a pink elephant: Individual differences in visualisation predict involuntary imagery and its neural correlates. Cortex 2025; 183:53-65. [PMID: 39616965 DOI: 10.1016/j.cortex.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/27/2024] [Accepted: 10/30/2024] [Indexed: 02/21/2025]
Abstract
There are substantial differences in the capacity of people to have imagined visual experiences, ranging from a lifelong inability (Congenital Aphantasia) to people who report having imagined experiences that are as vivid as actually seeing (Hyper-Phantasia). While Congenital Aphantasia has typically been framed as a cognitive deficit, it is possible that a weak or absent ability to have imagined visual sensations is balanced by a heightened resistance to intrusive thoughts - which are experienced as an imagined sensation. Here, we report on a direct test of that proposition. We asked people to either imagine, or to try not to imagine having a range of audio and visual experiences while we recorded their brain activity with electroencephalography (EEG). Ratings describing the subjective vividness of different people's voluntary visualisations predicted if they would also report having involuntary visualisations - such as an imagined experience of seeing a pink elephant when they were asked not to. Both the prevalence of different people's involuntary visualisations and the typical vividness of their visualisations could be predicted by neural correlates of disinhibition, working memory, and neural feedback. Our data suggest that the propensity of people to have involuntary visual experiences can scale with the subjective intensity of their typical experiences of visualisation.
Collapse
Affiliation(s)
- Derek H Arnold
- Perception Lab, School of Psychology, The University of Queensland, Australia.
| | - Mary Hutchinson
- Perception Lab, School of Psychology, The University of Queensland, Australia
| | - Loren N Bouyer
- Perception Lab, School of Psychology, The University of Queensland, Australia
| | - D Samuel Schwarzkopf
- Experimental Psychology, University College London, UK; School of Optometry & Vision Science, The University of Auckland, New Zealand
| | | | - Blake W Saurels
- Perception Lab, School of Psychology, The University of Queensland, Australia
| |
Collapse
|
23
|
Dehaghani NS, Zarei M. Pre-stimulus activities affect subsequent visual processing: Empirical evidence and potential neural mechanisms. Brain Behav 2025; 15:e3654. [PMID: 39907172 PMCID: PMC11795279 DOI: 10.1002/brb3.3654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 02/06/2025] Open
Abstract
PURPOSE Humans obtain most of their information from visual stimuli. The perception of these stimuli may be modulated by the ongoing pre-stimulus brain activities. Depending on the task design, the processing of different cognitive functions such as spatial attention, feature-based attention, temporal attention, arousal, and mental imagery may start prior to the stimulus onset. METHOD This process is typically accompanied by changes in pre-stimulus oscillatory activities including power, phase, or connectivity in different frequency bands. To explain the effect of these changes, several mechanisms have been proposed. In this article, we review these changes and the potential mechanisms in the context of the pre-stimulus enabled cognitive functions. We provide evidence both in favor of and against the most documented mechanisms and conclude that no single mechanism can solely delineate the effects of pre-stimulus brain activities on later processing. Instead, multiple mechanisms may work in tandem to guide pre-stimulus brain activities. FINDING Additionally, our findings indicate that in many studies a combination of these cognitive functions begins prior to stimulus onset. CONCLUSION Thus, dissociating these cognitive functions is challenging based on the current literature, and the need for precise task designs in later studies to differentiate between them is crucial.
Collapse
Affiliation(s)
| | - Mojtaba Zarei
- Institute of Medical Science and TechnologyShahid Beheshti UniversityTehranIran
- Department of NeurologyOdense University HospitalOdenseDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
24
|
Cruz G, Melcón M, Sutandi L, Matias Palva J, Palva S, Thut G. Oscillatory Brain Activity in the Canonical Alpha-Band Conceals Distinct Mechanisms in Attention. J Neurosci 2025; 45:e0918242024. [PMID: 39406514 PMCID: PMC11694399 DOI: 10.1523/jneurosci.0918-24.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 01/03/2025] Open
Abstract
Brain oscillations in the alpha-band (8-14 Hz) have been linked to specific processes in attention and perception. In particular, decreases in posterior alpha-amplitude are thought to reflect activation of perceptually relevant brain areas for target engagement, while alpha-amplitude increases have been associated with inhibition for distractor suppression. Traditionally, these alpha-changes have been viewed as two facets of the same process. However, recent evidence calls for revisiting this interpretation. Here, we recorded MEG/EEG in 32 participants (19 females) during covert visuospatial attention shifts (spatial cues) and two control conditions (neutral cue, no-attention cue), while tracking fixational eye movements. In disagreement with a single, perceptually relevant alpha-process, we found the typical alpha-modulations contra- and ipsilateral to the attention focus to be triple dissociated in their timing, topography, and spectral features: Ipsilateral alpha-increases occurred early, over occipital sensors, at a high alpha-frequency (10-14 Hz) and were expressed during spatial attention (alpha spatial cue > neutral cue). In contrast, contralateral alpha-decreases occurred later, over parietal sensors, at a lower alpha-frequency (7-10 Hz) and were associated with attention deployment in general (alpha spatial and neutral cue < no-attention cue). Additionally, the lateralized early alpha-increases but not alpha-decreases during spatial attention coincided in time with directionally biased microsaccades. Overall, this suggests that the attention-related early alpha-increases and late alpha-decreases reflect distinct, likely reflexive versus endogenously controlled attention mechanisms. We conclude that there is more than one perceptually relevant posterior alpha-oscillation, which need to be dissociated for a detailed account of their roles in perception and attention.
Collapse
Affiliation(s)
- Gabriela Cruz
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, United Kingdom
| | - María Melcón
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, United Kingdom
| | - Leonardo Sutandi
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, United Kingdom
| | - J Matias Palva
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, United Kingdom
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
- Department of Neuroscience and Biomedical engineering, Aalto University, Helsinki 02150, Finland
| | - Satu Palva
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, United Kingdom
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Gregor Thut
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, United Kingdom
- Centre de Recherche Cerveau et Cognition (Cerco), CNRS UMR5549 and Université de Toulouse, Toulouse 31059, France
| |
Collapse
|
25
|
Murray SO, Seczon DL, Pettet M, Rea HM, Woodard KM, Kolodny T, Webb SJ. Increased alpha power in autistic adults: Relation to sensory behaviors and cortical volume. Autism Res 2025; 18:56-69. [PMID: 39555754 DOI: 10.1002/aur.3266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
Alpha-band (~10 Hz) neural oscillations, crucial for gating sensory information, may offer insights into the atypical sensory experiences characteristic of autism spectrum disorder (ASD). We investigated alpha-band EEG activity in autistic adults (n = 29) compared with a nonautistic group (n = 23) under various stimulus-driven and resting-state conditions. The autistic group showed consistently higher alpha amplitude across all time points. In addition, there was proportionally more suppression of alpha at stimulus onset in the autistic group, and alpha amplitude in this stimulus-onset period correlated with sensory behaviors. Recent research suggests a link between subcortical structures' volume and cortical alpha magnitude. Prompted by this, we explored the association between alpha power and the volume of subcortical structures and total cortical volume in ASD. Our findings indicate a significant correlation with total cortical volume and a group by hippocampal volume interaction, pointing to the potential role of anatomical structural characteristics as potential modulators of cortical alpha oscillations in ASD. Overall, the results highlight altered alpha in autistic individuals as potentially contributing to the heightened sensory symptoms in autistic compared with nonautistic adults.
Collapse
Affiliation(s)
- Scott O Murray
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Daniela L Seczon
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Mark Pettet
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Hannah M Rea
- Department of Psychiatry and Behavioral Science, University of Washington, Seattle, Washington, USA
| | - Kristin M Woodard
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Tamar Kolodny
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Sara Jane Webb
- Department of Psychiatry and Behavioral Science, University of Washington, Seattle, Washington, USA
- Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
26
|
Koenig L, He BJ. Spontaneous slow cortical potentials and brain oscillations independently influence conscious visual perception. PLoS Biol 2025; 23:e3002964. [PMID: 39820589 PMCID: PMC11737857 DOI: 10.1371/journal.pbio.3002964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025] Open
Abstract
Perceptual awareness results from an intricate interaction between external sensory input and the brain's spontaneous activity. Pre-stimulus ongoing activity influencing conscious perception includes both brain oscillations in the alpha (7 to 14 Hz) and beta (14 to 30 Hz) frequency ranges and aperiodic activity in the slow cortical potential (SCP, <5 Hz) range. However, whether brain oscillations and SCPs independently influence conscious perception or do so through shared mechanisms remains unknown. Here, we addressed this question in 2 independent magnetoencephalography (MEG) data sets involving near-threshold visual perception tasks in humans using low-level (Gabor patches) and high-level (objects, faces, houses, animals) stimuli, respectively. We found that oscillatory power and large-scale SCP activity influence conscious perception through independent mechanisms that do not have shared variance. In addition, through mediation analysis, we show that pre-stimulus oscillatory power and SCP activity have different relations to pupil size-an index of arousal-in their influences on conscious perception. Together, these findings suggest that oscillatory power and SCPs independently contribute to perceptual awareness, with distinct relations to pupil-linked arousal.
Collapse
Affiliation(s)
- Lua Koenig
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Biyu J. He
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Departments of Neurology, Neuroscience & Physiology, Radiology, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, New York, United States of America
| |
Collapse
|
27
|
Hsu HH, Yang YR, Chou LW, Huang YC, Wang RY. The Brain Waves During Reaching Tasks in People with Subacute Low Back Pain: A Cross-Sectional Study. IEEE Trans Neural Syst Rehabil Eng 2024; PP:183-190. [PMID: 40030660 DOI: 10.1109/tnsre.2024.3521286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Subacute low back pain (sLBP) is a critical transitional phase between acute and chronic stages and is key in determining the progression to chronic pain. While persistent pain has been linked to changes in brain activity, studies have focused mainly on acute and chronic phases, leaving neural changes during the subacute phase-especially during movement-under-researched. This cross-sectional study aimed to investigate changes in brain activity and the impact of pain intensity in individuals with sLBP during rest and reaching movements. Using a 28-electrode EEG, we measured motor-related brain waves, including theta, alpha, beta, and gamma oscillations. Transitioning from rest to movement phases resulted in significant reductions (> 80%) in mean power across all frequency bands, indicating dynamic brain activation in response to movement. Furthermore, pain intensity was significantly correlated with brain wave activity. During rest, pain intensity was positively correlated with alpha oscillation activity in the central brain area (r = 0.40, p < 0.05). In contrast, during movement, pain intensity was negatively correlated with changes in brain activity (r = -0.36 to -0.40, p < 0.05). These findings suggest that pain influences brain activity differently during rest and movement, underscoring the impact of pain levels on neural networks related to the sensorimotor system in sLBP and highlighting the importance of understanding neural changes during this critical transitional phase.
Collapse
|
28
|
Iwakiri M, Takeo Y, Ikeda T, Hara M, Sugata H. Lateralized alpha oscillatory activity in the inferior parietal lobule to the right hemisphere during left-side visual stimulation. Neuropsychologia 2024; 205:109017. [PMID: 39442752 DOI: 10.1016/j.neuropsychologia.2024.109017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Understanding the neural mechanisms underlying spatial attention is crucial for unraveling the pathogenesis of unilateral spatial neglect (USN). However, the neural link between spatial attention and USN remains unclear. Thus, the neural mechanisms of spatial attention in the left and right hemispheres were compared. Twenty healthy volunteers participated in a hand mental rotation task in which they determined whether images depicted as left or right hands. The hand images were randomly displayed in the upper, lower, left, and right directions, centered on a fixation point. The laterality index for the alpha oscillatory activity was determined to assess the lateralization of neural activity during visual stimulation. Our results revealed a significant shift in alpha oscillatory neural activity in the inferior parietal lobule (IPL) towards the right hemisphere when visual stimulation occurred on the left side. In contrast, no significant oscillatory shift in the alpha band towards the left hemisphere was observed in the IPL when the visual stimulus was presented on the right side. These findings indicate that the spatial attention on the left side depends on oscillatory alpha activity in the right IPL, whereas that on the right side doesn't depend on either hemispheric alpha activity. These results provide valuable insights into the neural mechanisms of hemispatial neglect.
Collapse
Affiliation(s)
- Marino Iwakiri
- Department of Rehabilitation, Oita University Hospital, Oita, Japan; Graduate School of Welfare and Health Science, Oita University, Oita, Japan
| | - Yuhi Takeo
- Department of Rehabilitation, Oita University Hospital, Oita, Japan; Graduate School of Medicine, Oita University, Oita, Japan
| | - Takashi Ikeda
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Masayuki Hara
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Hisato Sugata
- Graduate School of Welfare and Health Science, Oita University, Oita, Japan; Graduate School of Medicine, Oita University, Oita, Japan.
| |
Collapse
|
29
|
Zeng Y, Sauseng P, Alamia A. Alpha Traveling Waves during Working Memory: Disentangling Bottom-Up Gating and Top-Down Gain Control. J Neurosci 2024; 44:e0532242024. [PMID: 39505407 PMCID: PMC11638811 DOI: 10.1523/jneurosci.0532-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 11/08/2024] Open
Abstract
While previous works established the inhibitory role of alpha oscillations during working memory maintenance, it remains an open question whether such an inhibitory control is a top-down process. Here, we attempted to disentangle this issue by considering the spatiotemporal component of waves in the alpha band, i.e., alpha traveling waves. We reanalyzed two pre-existing and open-access EEG datasets (N = 180, 90 males, 80 females, 10 unknown) where participants performed lateralized, visual delayed match-to-sample working memory tasks. In the first dataset, the distractor load was manipulated (2, 4, or 6), whereas in the second dataset, the memory span varied between 1, 3, and 6 items. We focused on the propagation of alpha waves on the anterior-posterior axis during the retention period. Our results reveal an increase in alpha-band forward waves as the distractor load increased, but also an increase in forward waves and a decrease in backward waves as the memory set size increased. Our results also showed a lateralization effect: alpha forward waves exhibited a more pronounced increase in the hemisphere contralateral to the distractors, whereas the reduction in backward waves was stronger in the hemisphere contralateral to the targets. In short, the forward waves were regulated by distractors, whereas targets inversely modulated backward waves. Such a dissociation of goal-related and goal-irrelevant physiological signals suggests the coexistence of bottom-up and top-down inhibitory processes: alpha forward waves might convey a gating effect driven by distractor load, while backward waves may represent direct top-down gain control of downstream visual areas.
Collapse
Affiliation(s)
- Yifan Zeng
- Department of Psychology, Universität Zürich, Zürich 8050, Switzerland
| | - Paul Sauseng
- Department of Psychology, Universität Zürich, Zürich 8050, Switzerland
| | - Andrea Alamia
- Cerco, CNRS Université de Toulouse, Toulouse 31059, France
- ANITI,Université de Toulouse, Toulouse 31062, France
| |
Collapse
|
30
|
Campbell AJ, Anijärv TE, Pace T, Treacy C, Lagopoulos J, Hermens DF, Levenstein JM, Andrews SC. Resting-state EEG correlates of sustained attention in healthy ageing: Cross-sectional findings from the LEISURE study. Neurobiol Aging 2024; 144:68-77. [PMID: 39288668 DOI: 10.1016/j.neurobiolaging.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
While structural and biochemical brain changes are well-documented in ageing, functional neuronal network differences, as indicated by electrophysiological markers, are less clear. Moreover, age-related changes in sustained attention and their associated electrophysiological correlates are still poorly understood. To address this, we analysed cross-sectional baseline electroencephalography (EEG) and cognitive data from the Lifestyle Intervention Study for Dementia Risk Reduction (LEISURE). Participants were 96 healthy older adults, aged 50-84. We examined resting-state EEG periodic (individual alpha frequency [IAF], aperiodic-adjusted individual alpha power [aIAP]) and aperiodic (exponent and offset) activity, and their associations with age and sustained attention. Results showed associations between older age and slower IAF, but not aIAP or global aperiodic exponent and offset. Additionally, hierarchical linear regression revealed that after controlling for demographic variables, faster IAF was associated with better Sustained Attention to Response Task performance, and mediation analysis confirmed IAF as a mediator between age and sustained attention performance. These findings indicate that IAF may be an important marker of ageing, and a slower IAF may signal diminished cognitive processing capacity for sustained attention in older adults.
Collapse
Affiliation(s)
- Alicia J Campbell
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia.
| | - Toomas Erik Anijärv
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Thomas Pace
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| | - Ciara Treacy
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| | - Jim Lagopoulos
- Thompson Brain and Mind Healthcare Ltd, Birtinya, QLD, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| | - Jacob M Levenstein
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| | - Sophie C Andrews
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| |
Collapse
|
31
|
Galeano‐Otálvaro J, Martorell J, Meyer L, Titone L. Neural encoding of melodic expectations in music across EEG frequency bands. Eur J Neurosci 2024; 60:6734-6749. [PMID: 39469882 PMCID: PMC11612851 DOI: 10.1111/ejn.16581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
The human brain tracks regularities in the environment and extrapolates these to predict future events. Prior work on music cognition suggests that low-frequency (1-8 Hz) brain activity encodes melodic predictions beyond the stimulus acoustics. Building on this work, we aimed to disentangle the frequency-specific neural dynamics linked to melodic prediction uncertainty (modelled as entropy) and prediction error (modelled as surprisal) for temporal (note onset) and content (note pitch) information. By using multivariate temporal response function (TRF) models, we re-analysed the electroencephalogram (EEG) from 20 subjects (10 musicians) who listened to Western tonal music. Our results show that melodic expectation metrics improve the EEG reconstruction accuracy in all frequency bands below the gamma range (< 30 Hz). Crucially, we found that entropy contributed more strongly to the reconstruction accuracy enhancement compared to surprisal in all frequency bands. Additionally, we found that the encoding of temporal, but not content, information metrics was not limited to low frequencies, rather it extended to higher frequencies (> 8 Hz). An analysis of the TRF weights revealed that the temporal predictability of a note (entropy of note onset) may be encoded in the delta- (1-4 Hz) and beta-band (12-30 Hz) brain activity prior to the stimulus, suggesting that these frequency bands associate with temporal predictions. Strikingly, we also revealed that melodic expectations selectively enhanced EEG reconstruction accuracy in the beta band for musicians, and in the alpha band (8-12 Hz) for non-musicians, suggesting that musical expertise influences the neural dynamics underlying predictive processing in music cognition.
Collapse
Affiliation(s)
- Juan‐Daniel Galeano‐Otálvaro
- Max Planck Research Group Language CyclesMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Jordi Martorell
- Max Planck Research Group Language CyclesMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Basque Center on Cognition, Brain and Language (BCBL)Donostia‐San SebastiánSpain
| | - Lars Meyer
- Max Planck Research Group Language CyclesMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Clinic for Phoniatrics and PedaudiologyUniversity Hospital MünsterMünsterGermany
| | - Lorenzo Titone
- Max Planck Research Group Language CyclesMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
32
|
Gresch D, Boettcher SEP, Gohil C, van Ede F, Nobre AC. Neural dynamics of shifting attention between perception and working-memory contents. Proc Natl Acad Sci U S A 2024; 121:e2406061121. [PMID: 39536078 PMCID: PMC11588118 DOI: 10.1073/pnas.2406061121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
In everyday tasks, our focus of attention shifts seamlessly between contents in the sensory environment and internal memory representations. Yet, research has mainly considered external and internal attention in isolation. We used magnetoencephalography to compare the neural dynamics of shifting attention to visual contents within vs. between the external and internal domains. Participants performed a combined perception and working-memory task in which two sequential cues guided attention to upcoming (external) or memorized (internal) sensory information. Critically, the second cue could redirect attention to visual content within the same or alternative domain as the first cue. Multivariate decoding unveiled distinct patterns of human brain activity when shifting attention within vs. between domains. Brain activity distinguishing within- from between-domain shifts was broadly distributed and highly dynamic. Intriguingly, crossing domains did not invoke an additional stage prior to shifting attention. Alpha lateralization, a canonical marker of shifting spatial attention, showed no delay when cues redirected attention to the same vs. alternative domain. Instead, evidence suggested that neural states associated with a given domain linger and influence subsequent shifts of attention within vs. between domains. Our findings provide critical insights into the neural dynamics that govern attentional shifts between perception and working memory.
Collapse
Affiliation(s)
- Daniela Gresch
- Department of Experimental Psychology, University of Oxford, OxfordOX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, OxfordOX3 7JX, United Kingdom
- Department of Psychology, Yale University, New Haven, CT06510
| | - Sage E. P. Boettcher
- Department of Experimental Psychology, University of Oxford, OxfordOX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, OxfordOX3 7JX, United Kingdom
| | - Chetan Gohil
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, OxfordOX3 7JX, United Kingdom
| | - Freek van Ede
- Institute for Brain and Behaviour Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Anna C. Nobre
- Department of Experimental Psychology, University of Oxford, OxfordOX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, OxfordOX3 7JX, United Kingdom
- Department of Psychology, Yale University, New Haven, CT06510
- Wu Tsai Institute, Yale University, New Haven, CT06510
| |
Collapse
|
33
|
Meyyappan S, Rajan A, Yang Q, Mangun GR, Ding M. Decoding Visual Spatial Attention Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.05.552084. [PMID: 37609147 PMCID: PMC10441319 DOI: 10.1101/2023.08.05.552084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
In models of visual spatial attention control, it is commonly held that top-down control signals originate in the dorsal attention network, propagating to the visual cortex to modulate baseline neural activity and bias sensory processing. However, the precise distribution of these top-down influences across different levels of the visual hierarchy is debated. In addition, it is unclear whether these changes in baseline neural activity directly translate into improved performance. We analyzed attention-related baseline activity during the anticipatory period of a trial-by-trial voluntary spatial attention task, using two independent fMRI datasets, and two different analytic approaches. First, as in prior studies, univariate analysis showed that covert attention significantly enhanced baseline neural activity in higher-order visual areas contralateral to the attended visual hemifield, while effects in lower-order visual areas (e.g., V1) were weaker and more variable. Second, in contrast, multivariate pattern analysis (MVPA) revealed significant decoding of attention conditions across all visual cortical areas, with lower-order visual areas exhibiting higher decoding accuracies than higher-order areas. Third, decoding accuracy, rather than the magnitude of univariate activation, was a better predictor of a subject's stimulus discrimination performance. Finally, the MVPA results were replicated across two experimental conditions, where the direction of spatial attention was either externally instructed by a cue or based on the participants free choice decision about where to attend. Together, these findings offer new insights into the extent of attentional biases in the visual hierarchy under top-down control, and how these biases influence both sensory processing and behavioral performance. Highlights Multivariate pattern analysis revealed the presence of top-down attentional biasing signals in all areas of the visual hierarchy whereas univariate analysis was not able to reveal the full extent of attentional biasing in the visual cortex.The decoding accuracy derived from the MVPA analysis but not the magnitude difference derived from the univariate analysis predicted the subject's behavioral performance in stimulus discrimination.The MVPA results were consistent across two experimental conditions where the direction of spatial attention was driven either by external instructions or from purely internal decisions.
Collapse
|
34
|
Sattelberger J, Haque H, Juvonen JJ, Siebenhühner F, Palva JM, Palva S. Local and interareal alpha and low-beta band oscillation dynamics underlie the bilateral field advantage in visual working memory. Cereb Cortex 2024; 34:bhae448. [PMID: 39540759 PMCID: PMC11561930 DOI: 10.1093/cercor/bhae448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Visual working memory has a limited maximum capacity, which can be larger if stimuli are presented bilaterally vs. unilaterally. However, the neuronal mechanisms underlying this bilateral field advantage are not known. Visual working memory capacity is predicted by oscillatory delay-period activity, specifically, by a decrease in alpha (8 to 12 Hz) band amplitudes in posterior brain regions reflecting attentional deployment and related shifts in excitation, as well as a concurrent increase of prefrontal oscillation amplitudes and interareal synchronization in multiple frequencies reflecting active maintenance of information. Here, we asked whether posterior alpha suppression or prefrontal oscillation enhancement explains the bilateral field advantage. We recorded brain activity with high-density electroencephalography, while subjects (n = 26, 14 males) performed a visual working memory task with uni- and bilateral visual stimuli. The bilateral field advantage was associated with early suppression of low-alpha (6 to 10 Hz) and alpha-beta (10 to 17 Hz) band amplitudes, and a subsequent alpha-beta amplitude increase, which, along with a concurrent load-dependent interareal synchronization in the high-alpha band (10 to 15 Hz), correlated with hit rates and reaction times and thus predicted higher maximum capacities in bilateral than unilateral visual working memory. These results demonstrate that the electrophysiological basis of the bilateral field advantage in visual working memory is both in the changes in attentional deployment and enhanced interareal integration.
Collapse
Affiliation(s)
- Judith Sattelberger
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
| | - Hamed Haque
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
| | - Joonas J Juvonen
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
- Department of Neuroscience and Bioengineering (NBE), Aalto University, P.O. Box 11000 (Otakaari 1B), FI-00076 Espoo, Finland
| | - Felix Siebenhühner
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
| | - Jaakko Matias Palva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
- Department of Neuroscience and Bioengineering (NBE), Aalto University, P.O. Box 11000 (Otakaari 1B), FI-00076 Espoo, Finland
| | - Satu Palva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
- Centre for Cognitive Neuroimaging (CCNi), School of Psychology and Neuroscience, University of Glasgow, G12 8QB Glasgow, United Kingdom
| |
Collapse
|
35
|
Yang X, Fiebelkorn IC, Jensen O, Knight RT, Kastner S. Differential neural mechanisms underlie cortical gating of visual spatial attention mediated by alpha-band oscillations. Proc Natl Acad Sci U S A 2024; 121:e2313304121. [PMID: 39471220 PMCID: PMC11551340 DOI: 10.1073/pnas.2313304121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 07/18/2024] [Indexed: 11/01/2024] Open
Abstract
Selective attention relies on neural mechanisms that facilitate processing of behaviorally relevant sensory information while suppressing irrelevant information, consistently linked to alpha-band oscillations in human M/EEG studies. We analyzed cortical alpha responses from intracranial electrodes implanted in eight epilepsy patients, who performed a visual spatial attention task. Electrocorticographic data revealed a spatiotemporal dissociation between attention-modulated alpha desynchronization, associated with the enhancement of sensory processing, and alpha synchronization, associated with the suppression of sensory processing, during the cue-target interval. Dorsal intraparietal areas contralateral to the attended hemifield primarily exhibited a delayed and sustained alpha desynchronization, while ventrolateral extrastriatal areas ipsilateral to the attended hemifield primarily exhibited an earlier and sustained alpha synchronization. Analyses of cross-frequency coupling between alpha phase and broadband high-frequency activity (HFA) further revealed cross-frequency interactions along the visual hierarchy contralateral to the attended locations. Directionality analyses indicate that alpha phase in early and extrastriatal visual areas modulated HFA power in downstream visual areas, thus potentially facilitating the feedforward processing of an upcoming, spatially predictable target. In contrast, in areas ipsilateral to the attended locations, HFA power modulated local alpha phase in early and extrastriatal visual areas, with suppressed interareal interactions, potentially attenuating the processing of distractors. Our findings reveal divergent alpha-mediated neural mechanisms underlying target enhancement and distractor suppression during the deployment of spatial attention, reflecting enhanced functional connectivity at attended locations, while suppressed functional connectivity at unattended locations. The collective dynamics of these alpha-mediated neural mechanisms play complementary roles in the efficient gating of sensory information.
Collapse
Affiliation(s)
- Xiaofang Yang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ08544
- Department of Psychology, Princeton University, Princeton, NJ08544
| | - Ian C. Fiebelkorn
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ08544
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY14627
| | - Ole Jensen
- Department of Experimental Psychology, University of Oxford, OxfordOX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, OxfordOX3 7JX, United Kingdom
| | - Robert T. Knight
- Helen Wills Neuroscience Institute and Department of Psychology, University of California at Berkeley, Berkeley, CA94720
| | - Sabine Kastner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ08544
- Department of Psychology, Princeton University, Princeton, NJ08544
| |
Collapse
|
36
|
Meyyappan S, Ding M, Mangun GR. Hierarchical Organization of Visual Feature Attention Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.02.615879. [PMID: 39554008 PMCID: PMC11566002 DOI: 10.1101/2024.10.02.615879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Attention can be deployed in anticipation of visual stimuli based on features such as their color or direction of motion. This anticipatory feature-based attention involves top-down neural control signals from the frontoparietal network that bias visual cortex to enhance the processing of attended information and suppress distraction. So, for example, anticipatory attention control can enable effective selection based on stimulus color while ignoring distracting information about stimulus motion. But as well, anticipatory attention can be focused more narrowly, for example, to select specific colors or motion directions that define task-relevant events and objects. One important question that remains open is whether anticipatory attention control first biases broad feature dimensions such as color versus motion before biasing the specific feature attributes (e.g., blue vs. green). To investigate this, we recorded EEG activity during a task where participants were cued to either attend to a color (blue or green) or a motion direction (up or down) on a trial-by-trial basis. Applying multivariate decoding approaches to the EEG alpha band (8-12 Hz) activity during the attention control period (cue-target interval), we observed significant decoding for both the attended dimensions (color vs. motion) and specific feature attributes (blue vs. green; up vs. down). Importantly, the temporal onset of the dimension-level biasing (color vs. motion) preceded that of the attribute-level biasing (e.g., blue vs. green). These findings demonstrate that the top-down control of feature-based attention proceeds in a hierarchical fashion, first biasing the broad feature dimension, and then narrowing to the specific feature attribute. Significance Statement During voluntary feature-based attention, electrophysiological and neuroimaging studies have highlighted the role of anticipatory (top-down) biasing of the sensory cortex in enhancing the selection of attended stimulus attributes, but little is known about how this is achieved. In particular, it is not clear whether attending to an attribute such as a color (blue vs. green) or motion direction (up vs. down) first biases all neural structures coding that dimension (color/motion) before biasing the specific attribute, or if the top-down signals directly bias only the attended attribute. Using EEG and multivariate decoding, we report that top-down attention control follows a hierarchical organization: first, the broader attended feature dimension is biased, which is followed by the biasing of the specific feature attribute.
Collapse
|
37
|
Prakash SS, Mayo JP, Ray S. Dissociation of Attentional State and Behavioral Outcome Using Local Field Potentials. eNeuro 2024; 11:ENEURO.0327-24.2024. [PMID: 39389779 PMCID: PMC11552547 DOI: 10.1523/eneuro.0327-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/07/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Successful behavior depends on the attentional state and other factors related to decision-making, which may modulate neuronal activity differently. Here, we investigated whether attentional state and behavioral outcome (i.e., whether a target is detected or missed) are distinguishable using the power and phase of local field potential recorded bilaterally from area V4 of two male rhesus monkeys performing a cued visual attention task. To link each trial's outcome to pairwise measures of attention that are typically averaged across trials, we used several methods to obtain single-trial estimates of spike count correlation and phase consistency. Surprisingly, while attentional location was best discriminated using gamma and high-gamma power, behavioral outcome was best discriminated by alpha power and steady-state visually evoked potential. Power outperformed absolute phase in attentional/behavioral discriminability, although single-trial gamma phase consistency provided reasonably high attentional discriminability. Our results suggest a dissociation between the neuronal mechanisms that regulate attentional focus and behavioral outcome.
Collapse
Affiliation(s)
- Surya S Prakash
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - J Patrick Mayo
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India,
| |
Collapse
|
38
|
Morrow A, Pilipenko A, Turkovich E, Sankaran S, Samaha J. Endogenous Attention Affects Decision-related Neural Activity but Not Afferent Visual Responses. J Cogn Neurosci 2024; 36:2481-2494. [PMID: 39145755 DOI: 10.1162/jocn_a_02239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Endogenous shifts of spatial attention toward an upcoming stimulus are associated with improvements in behavioral responses to the stimulus, preparatory retinotopic shifts in alpha power, and changes in ERPs. Although attentional modulation of several early sensory ERPs is well established, there is still debate about under what circumstances attention affects the earliest cortical visual evoked response-the C1 ERP component-which is putatively generated from afferent input into primary visual cortex. Moreover, the effects of spatial attention on the recently discovered ERP signature of evidence accumulation-the central parietal positivity (CPP)-have not been fully characterized. The present study assessed the effect of spatial attention on the C1 and CPP components through a spatially cued contrast discrimination task using stimuli that were specifically designed to produce large-amplitude C1 responses and that varied in sensory evidence strength to characterize the CPP. Participants responded according to which of two checkerboard stimuli had greater contrast following an 80% valid cue toward the upper or lower visual field. Prestimulus alpha power changed topographically based on the cue, suggesting participants shifted attention to prepare for the upcoming stimuli. Despite these attentional shifts in alpha power and the fact that the stimuli reliably elicited C1 responses several times greater than many prior studies, there was no evidence of an attention effect on the C1. The CPP, however, showed a clear increase in build-up rate on valid trials. Our findings suggest that endogenous attention may not affect the early C1 ERP component but may improve behavior at a decision stage, as reflected in brain signals related to evidence accumulation (the CPP).
Collapse
|
39
|
Djordjevic C, Saab CY. Beyond pain privacy and pain meters: a new vision for pain biomarkers. FRONTIERS IN PAIN RESEARCH 2024; 5:1397645. [PMID: 39420982 PMCID: PMC11484042 DOI: 10.3389/fpain.2024.1397645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
To an individual, pain is unambiguously real. To a caregiver, assessing pain in others is a challenging process shrouded in doubt. To explain this challenge, many assume that pain "belongs" exclusively to the bearer of that experience and accept the dogma that pain is private. However, privacy also entails that it is not possible to identify, share, or communicate that experience with others. Obviously, this is not true and the consequences of pain privacy would be devastating for healthcare. Pain is indeed unique and subjective, but not necessarily private. Pain is in fact readily communicable, though perhaps not as effectively and reliably as caregivers would like. On the other hand, healthcare systems mandate objective metrics in pain diagnosis. Smiley face caricatures are a staple of clinical practice and a universal standard for reporting pain levels. These conditions create a double paradox: Assess a private experience that is inaccessible, and use numerical scales to measure subjective attributes. Navigating this stressful environment, medical professionals experience intellectual dissonance, patients are frustrated, and value-based care is undermined. Offering a way out, first, we refute the privacy and objectification of pain citing philosophical, behavioral, and neuroscientific arguments. We discuss Wittgensteinian views against privacy, explore the clear evolutionary advantage of communicating pain to others, and identify neural circuits in the mammalian brain that contribute to empathy. Second, we highlight the subjectivity of pain, embracing the complexity and uniqueness of an individual's pain. We also provide compelling evidence for brain mechanisms that actively shape the pain experience according to predictive coding principles. Third, we offer a vision for the development of biomarker technologies that assess pain fairly without engendering bias against the patient's narrative. Our recommendations are based on the overwhelming appreciation that "medicine by emoji" is inadequate for capturing the multidimensional nature of pain. Our view is that the most promising candidates for pain biomarkers consist of self-reports as ground truth augmented by physiological signatures of biological relevance to pain. Integration of subjective and objective multimodal features will be key for the development of comprehensive pain assessment models.
Collapse
Affiliation(s)
- Charles Djordjevic
- Nursing, Cleveland Clinic Foundation, Cleveland, OH, United States
- Department of Humanities, Lorain County Community College, Lorain, OH, United States
| | - Carl Y. Saab
- Departmentof Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, OH, United States
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Engineering, Brown University, Providence, RI, United States
| |
Collapse
|
40
|
Chen X, Cao L, Haendel BF. Right visual field advantage in orientation discrimination is influenced by biased suppression. Sci Rep 2024; 14:22687. [PMID: 39349588 PMCID: PMC11442441 DOI: 10.1038/s41598-024-73967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Visual input is not equally processed over space. In recent years, a right visual field advantage during free walking and standing in orientation discrimination and contrast detection task was reported. The current study investigated the underlying mechanism of the previously reported right visual field advantage. It particularly tested if the advantage is driven by a stronger suppression of distracting input from the left visual field or improved processing of targets from the right visual field. Combing behavioural and electrophysiological measurements in a mobile EEG and augmented reality setup, human participants (n = 30) in a standing and a walking condition performed a line orientation discrimination task with stimulus eccentricity and distractor status being manipulated. The right visual field advantage, as demonstrated in accuracy and reaction time, was influenced by the distractor status. Specifically, the right visual field advantage was only observed when the target had an incongruent line orientation with the distractor. Neural data further showed that the right visual field advantage was paralleled by a strong modulation of neural activity in the right hemisphere (i.e. contralateral to the distractor). A significant positive correlation between this right hemispheric event related potential (ERP) and behavioural measures (accuracy and reaction time) was found exclusively for trials in which a target was presented on the right and an incongruent distractor was presented on the left. The right hemispheric ERP component further predicted the strength of the right visual field advantage. Notably, the lateralised brain activity and the right visual field advantage were both independent of stimulus eccentricity and the movement state of participants. Overall, our findings suggest an important role of spatially biased suppression of left distracting input in the right visual field advantage as found in orientation discrimination.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Psychology and Behavioural Sciences, Zhejiang University, Hangzhou, 310058, China.
- Department of Psychology (III), Julius-Maximilians-Universität Würzburg, 97070, Würzburg, Germany.
| | - Liyu Cao
- Department of Psychology and Behavioural Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, 311121, China
| | - Barbara F Haendel
- Department of Psychology and Behavioural Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Psychology (III), Julius-Maximilians-Universität Würzburg, 97070, Würzburg, Germany
- Neurology department, University Hospital Würzburg, 97080, Würzburg, Germany
| |
Collapse
|
41
|
Middag-van Spanje M, Nijboer TCW, Schepers J, van Heugten C, Sack AT, Schuhmann T. Alpha transcranial alternating current stimulation as add-on to neglect training: a randomized trial. Brain Commun 2024; 6:fcae287. [PMID: 39301290 PMCID: PMC11411215 DOI: 10.1093/braincomms/fcae287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/08/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024] Open
Abstract
Visuospatial neglect is a common and debilitating condition following unilateral stroke, significantly impacting cognitive functioning and daily life. There is an urgent need for effective treatments that can provide clinically relevant and sustained benefits. In addition to traditional stroke treatment, non-invasive brain stimulation, such as transcranial alternating current stimulation, shows promise as a complementary approach to enhance stroke recovery. In the current study, we aimed to evaluate the additive effects of multi-session transcranial alternating current stimulation at alpha frequency when combined with visual scanning training in chronic stroke patients with visuospatial neglect. In this double-blind randomized controlled trial, we compared the effects of active transcranial alternating current stimulation at alpha frequency to sham (placebo) transcranial alternating current stimulation, both combined with visual scanning training. Both groups received eighteen 40-minute training sessions over a 6-week period. A total of 22 chronic visuospatial neglect patients participated in the study (active group n = 12, sham group n = 10). The median age was 61.0 years, with a median time since stroke of 36.1 months. We assessed the patients at six time-points: at baseline, after the first, ninth and eighteenth training sessions, as well as 1 week and 3 months following the completion of the combined neuromodulation intervention. The primary outcome measure was the change in performance on a visual search task, specifically the star cancellation task. Secondary outcomes included performance on a visual detection task, two line bisection tasks and three tasks evaluating visuospatial neglect in daily living. We found significantly improved visual search (primary outcome) and visual detection performance in the neglected side in the active transcranial alternating current stimulation group, compared to the sham transcranial alternating current stimulation group. We did not observe stimulation effects on line bisection performance nor in daily living. Time effects were observed on all but one outcome measures. Multi-session transcranial alternating current stimulation combined with visual scanning training may be a more effective treatment for chronic visuospatial neglect than visual scanning training alone. These findings provide valuable insights into novel strategies for stroke recovery, even long after the injury, with the aim of enhancing cognitive rehabilitation outcomes and improving the overall quality of life for individuals affected by this condition. Trial registration: ClinicalTrials.gov; registration number: NCT05466487; https://clinicaltrials.gov/ct2/show/NCT05466487.
Collapse
Affiliation(s)
- Marij Middag-van Spanje
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- InteraktContour, 8070 AC Nunspeet, The Netherlands
| | - Tanja C W Nijboer
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS Utrecht, The Netherlands
- Center of Excellence for Rehabilitation Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht and De Hoogstraat Rehabilitation, 3583 TM Utrecht, The Netherlands
| | - Jan Schepers
- Department of Methodology and Statistics, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Caroline van Heugten
- Limburg Brain Injury Center, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (MBIC), Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- Centre for Integrative Neuroscience, Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Teresa Schuhmann
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (MBIC), Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
42
|
Costa GN, Schaum M, Duarte JV, Martins R, Duarte IC, Castelhano J, Wibral M, Castelo‐Branco M. Distinct oscillatory patterns differentiate between segregation and integration processes in perceptual grouping. Hum Brain Mapp 2024; 45:e26779. [PMID: 39185735 PMCID: PMC11345702 DOI: 10.1002/hbm.26779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/03/2024] [Accepted: 06/25/2024] [Indexed: 08/27/2024] Open
Abstract
Recently, there has been a resurgence in experimental and conceptual efforts to understand how brain rhythms can serve to organize visual information. Oscillations can provide temporal structure for neuronal processing and form a basis for integrating information across brain areas. Here, we use a bistable paradigm and a data-driven approach to test the hypothesis that oscillatory modulations associate with the integration or segregation of visual elements. Spectral signatures of perception of bound and unbound configurations of visual moving stimuli were studied using magnetoencephalography (MEG) in ambiguous and unambiguous conditions. Using a 2 × 2 design, we were able to isolate correlates from visual integration, either perceptual or stimulus-driven, from attentional and ambiguity-related activity. Two frequency bands were found to be modulated by visual integration: an alpha/beta frequency and a higher frequency gamma-band. Alpha/beta power was increased in several early visual cortical and dorsal visual areas during visual integration, while gamma-band power was surprisingly increased in the extrastriate visual cortex during segregation. This points to an integrative role for alpha/beta activity, likely from top-down signals maintaining a single visual representation. On the other hand, when more representations have to be processed in parallel gamma-band activity is increased, which is at odds with the notion that gamma oscillations are related to perceptual coherence. These modulations were confirmed in intracranial EEG recordings and partially originate from distinct brain areas. Our MEG and stereo-EEG data confirms predictions of binding mechanisms depending on low-frequency activity for long-range integration and for organizing visual processing while refuting a straightforward correlation between gamma-activity and perceptual binding. PRACTITIONER POINTS: Distinct neurophysiological signals underlie competing bistable percepts. Increased alpha/beta activity correlate with visual integration while gamma correlates with segmentation. Ambiguous percepts drive alpha/beta activity in the posterior cingulate cortex.
Collapse
Affiliation(s)
- Gabriel Nascimento Costa
- Institute for Biomedical Imaging and Translational Research (CIBIT)University of CoimbraCoimbraPortugal
- Institute of Nuclear Sciences Applied to Health (ICNAS)University of CoimbraCoimbraPortugal
- Present address:
Trinity College DublinDublinIreland
| | - Michael Schaum
- MEG Unit, Brain Imaging CenterGoethe UniversityFrankfurt/MainGermany
| | - João Valente Duarte
- Institute for Biomedical Imaging and Translational Research (CIBIT)University of CoimbraCoimbraPortugal
- Institute of Nuclear Sciences Applied to Health (ICNAS)University of CoimbraCoimbraPortugal
| | - Ricardo Martins
- Institute for Biomedical Imaging and Translational Research (CIBIT)University of CoimbraCoimbraPortugal
- Institute of Nuclear Sciences Applied to Health (ICNAS)University of CoimbraCoimbraPortugal
| | - Isabel Catarina Duarte
- Institute for Biomedical Imaging and Translational Research (CIBIT)University of CoimbraCoimbraPortugal
- Institute of Nuclear Sciences Applied to Health (ICNAS)University of CoimbraCoimbraPortugal
| | - João Castelhano
- Institute for Biomedical Imaging and Translational Research (CIBIT)University of CoimbraCoimbraPortugal
- Institute of Nuclear Sciences Applied to Health (ICNAS)University of CoimbraCoimbraPortugal
| | - Michael Wibral
- MEG Unit, Brain Imaging CenterGoethe UniversityFrankfurt/MainGermany
- Campus Institute for Dynamics of Biological NetworksGeorg‐August UniversityGöttingenGermany
| | - Miguel Castelo‐Branco
- Institute for Biomedical Imaging and Translational Research (CIBIT)University of CoimbraCoimbraPortugal
- Institute of Nuclear Sciences Applied to Health (ICNAS)University of CoimbraCoimbraPortugal
| |
Collapse
|
43
|
Ghafari T, Mazzetti C, Garner K, Gutteling T, Jensen O. Modulation of alpha oscillations by attention is predicted by hemispheric asymmetry of subcortical regions. eLife 2024; 12:RP91650. [PMID: 39017666 PMCID: PMC11254381 DOI: 10.7554/elife.91650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Evidence suggests that subcortical structures play a role in high-level cognitive functions such as the allocation of spatial attention. While there is abundant evidence in humans for posterior alpha band oscillations being modulated by spatial attention, little is known about how subcortical regions contribute to these oscillatory modulations, particularly under varying conditions of cognitive challenge. In this study, we combined MEG and structural MRI data to investigate the role of subcortical structures in controlling the allocation of attentional resources by employing a cued spatial attention paradigm with varying levels of perceptual load. We asked whether hemispheric lateralization of volumetric measures of the thalamus and basal ganglia predicted the hemispheric modulation of alpha-band power. Lateral asymmetry of the globus pallidus, caudate nucleus, and thalamus predicted attention-related modulations of posterior alpha oscillations. When the perceptual load was applied to the target and the distractor was salient caudate nucleus asymmetry predicted alpha-band modulations. Globus pallidus was predictive of alpha-band modulations when either the target had a high load, or the distractor was salient, but not both. Finally, the asymmetry of the thalamus predicted alpha band modulation when neither component of the task was perceptually demanding. In addition to delivering new insight into the subcortical circuity controlling alpha oscillations with spatial attention, our finding might also have clinical applications. We provide a framework that could be followed for detecting how structural changes in subcortical regions that are associated with neurological disorders can be reflected in the modulation of oscillatory brain activity.
Collapse
Affiliation(s)
- Tara Ghafari
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| | - Cecilia Mazzetti
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| | - Kelly Garner
- School of Psychology, University of New South WalesKensingtonAustralia
| | - Tjerk Gutteling
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
- CERMEP-Imagerie du Vivant, MEG DepartmentLyonFrance
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| |
Collapse
|
44
|
Wang J, Wang J, Hu J, Sun J, Li C, Hong X, Tong S. Baseline alpha wave predicts post-cue alpha during visual spatial attention with linear mixed model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40040163 DOI: 10.1109/embc53108.2024.10782793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Electroencephalography alpha-band (8-13 Hz) activity following spatial cues during visual attention has been extensively studied. However, its functional role remains unclear, possibly due to individual differences or contributing factors. Our recent study showed that post-cue alpha activity depended on baseline alpha by splitting participants based on their median baseline alpha, which, however, ignored the difference in baseline alpha within the subgroups. We thus re-analyzed post-cue alpha with the linear mixed model (LMM), considering individual differences and larger sample sizes for the predictability of baseline alpha. We found that post-cue alpha wave could be well predicted by baseline alpha in two tasks (n = 30 each) with instructional and probabilistic cues based on the LMM (R2=0.994). Our results showed that the LMM was superior in tackling the contributing factors in the study of post-cue alpha activity, and baseline alpha could be a reliable predictor of post-cue alpha activity in visual spatial attention.
Collapse
|
45
|
Ricci L, Tombini M, Savastano E, Pulitano P, Piccioli M, Forti M, Sancetta B, Boscarino M, Narducci F, Mecarelli O, Ciccozzi M, Di Lazzaro V, Assenza G. Quantitative EEG analysis of brivaracetam in drug-resistant epilepsy: A pharmaco-EEG study. Clin Neurophysiol 2024; 163:152-159. [PMID: 38749380 DOI: 10.1016/j.clinph.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/29/2024] [Accepted: 04/20/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVE Brivaracetam (BRV) is a recent antiseizure medication (ASM) approved as an add-on therapy for people with focal epilepsy. BRV has a good efficacy and safety profile compared to other ASMs. However, its specific effects on resting-state EEG activity and connectivity are unknown. The aim of this study is to evaluate quantitative EEG changes induced by BRV therapy in a population of adult people with drug-resistant epilepsy (PwE) compared to healthy controls (HC). METHODS We performed a longitudinal, retrospective, pharmaco-EEG study on a population of 23 PwE and a group of 25 HC. Clinical outcome was dichotomized into drug-responders (i.e., >50% reduction in seizures' frequency; RES) and non-responders (N-RES) after two years of BRV. EEG parameters were compared between PwE and HC at baseline (pre-BRV) and after three months of BRV therapy (post-BRV). We investigated BRV-related variations in EEG connectivity using the phase locking value (PLV). RESULTS BRV therapy did not induce modifications in power spectrum density across different frequency bands. PwE presented lower PLV connectivity values compared to HC in all frequency bands. RES exhibited lower theta PLV connectivity compared to HC before initiating BRV and experienced an increase after BRV, eliminating the significant difference from HC. CONCLUSIONS This study shows that BRV does not alter the EEG power spectrum in PwE, supporting its favourable neuropsychiatric side-effect profile, and induces the disappearance of EEG connectivity differences between PwE and HC. SIGNIFICANCE The integration of EEG quantitative analysis in epilepsy can provide insights into the efficacy, mechanism of action, and side effects of ASMs.
Collapse
Affiliation(s)
- Lorenzo Ricci
- Department of Medicine and Surgery, Research Unit of Neurology, Neurobiology, Neurophysiology, University Campus Bio-Medico di Roma, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Via Alvaro del Portillo, 200, 00128 Rome, Italy; Medical Statistic and Molecular Epidemiology Unit, University Campus Bio-Medico di Roma, Rome, Italy.
| | - Mario Tombini
- Department of Medicine and Surgery, Research Unit of Neurology, Neurobiology, Neurophysiology, University Campus Bio-Medico di Roma, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Ersilia Savastano
- AORN Santobono Pausilipon, UOC Neurologia, via Mario Fiore 6, 80129 Naples, Italy
| | - Patrizia Pulitano
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Italy
| | - Marta Piccioli
- UOC Neurology, PO San Filippo Neri, ASL Roma 1, Rome, Italy
| | - Marco Forti
- Medical Statistic and Molecular Epidemiology Unit, University Campus Bio-Medico di Roma, Rome, Italy; Department of Statistical Sciences, Sapienza University of Rome, Rome, Italy
| | - Biagio Sancetta
- Department of Medicine and Surgery, Research Unit of Neurology, Neurobiology, Neurophysiology, University Campus Bio-Medico di Roma, Rome, Italy
| | - Marilisa Boscarino
- Department of Medicine and Surgery, Research Unit of Neurology, Neurobiology, Neurophysiology, University Campus Bio-Medico di Roma, Rome, Italy; Istituti Clinici Scientifici Maugeri, IRCCS, Neurorehabilitation Department of Milano Institute, Milan, Italy
| | - Flavia Narducci
- Department of Medicine and Surgery, Research Unit of Neurology, Neurobiology, Neurophysiology, University Campus Bio-Medico di Roma, Rome, Italy
| | - Oriano Mecarelli
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Italy
| | - Massimo Ciccozzi
- Medical Statistic and Molecular Epidemiology Unit, University Campus Bio-Medico di Roma, Rome, Italy
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Research Unit of Neurology, Neurobiology, Neurophysiology, University Campus Bio-Medico di Roma, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Giovanni Assenza
- Department of Medicine and Surgery, Research Unit of Neurology, Neurobiology, Neurophysiology, University Campus Bio-Medico di Roma, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| |
Collapse
|
46
|
Redding ZV, Fiebelkorn IC. Separate Cue- and Alpha-Related Mechanisms for Distractor Suppression. J Neurosci 2024; 44:e1444232024. [PMID: 38729761 PMCID: PMC11209672 DOI: 10.1523/jneurosci.1444-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Research on selective attention has largely focused on the enhancement of behaviorally important information, with less focus on the suppression of distracting information. Enhancement and suppression can operate through a push-pull relationship attributable to competitive interactions among neural populations. There has been considerable debate, however, regarding (1) whether suppression can be voluntarily deployed, independent of enhancement, and (2) whether voluntary deployment of suppression is associated with neural processes occurring prior to the distractor onset. Here, we investigated the interplay between pre- and post-distractor neural processes, while male and female human subjects performed a visual search task with a cue that indicated the location of an upcoming distractor. We utilized two established EEG markers of suppression: the distractor positivity (PD) and alpha power (∼8-15 Hz). The PD-a component of event-related potentials-has been linked with successful distractor suppression, and increased alpha power has been linked with attenuated sensory processing. Cueing the location of an upcoming distractor speeded responses and led to an earlier PD, consistent with earlier suppression due to strategic use of a spatial cue. In comparison, higher predistractor alpha power contralateral to distractors led to a later PD, consistent with later suppression. Lower alpha power contralateral to distractors instead led to distractor-related attentional capture. Lateralization of alpha power was not linked to the spatial cue. This observation, combined with differences in the timing of suppression-as indexed by earlier and later PD components-demonstrates that cue-related, voluntary suppression can occur separate from alpha-related gating of sensory processing.
Collapse
Affiliation(s)
- Zach V Redding
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, New York 14627
| | - Ian C Fiebelkorn
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, New York 14627
| |
Collapse
|
47
|
Prakash SS, Mayo JP, Ray S. Dissociation of attentional state and behavioral outcome using local field potentials. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.05.552102. [PMID: 37609148 PMCID: PMC10441331 DOI: 10.1101/2023.08.05.552102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Successful behavior depends on attentional state and other factors related to decision-making, which may modulate neuronal activity differently. Here, we investigated whether attentional state and behavioral outcome (i.e., whether a target is detected or missed) are distinguishable using the power and phase of local field potential (LFP) recorded bilaterally from area V4 of monkeys performing a cued visual attention task. To link each trial's outcome to pairwise measures of attention that are typically averaged across trials, we used several methods to obtain single-trial estimates of spike count correlation and phase consistency. Surprisingly, while attentional location was best discriminated using gamma and high-gamma power, behavioral outcome was best discriminated by alpha power and steady-state visually evoked potential. Power outperformed absolute phase in attentional/behavioral discriminability, although single-trial gamma phase consistency provided reasonably high attentional discriminability. Our results suggest a dissociation between the neuronal mechanisms that regulate attentional focus and behavioral outcome.
Collapse
Affiliation(s)
- Surya S Prakash
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India, 560012
| | - J Patrick Mayo
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, 15219
| | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India, 560012
| |
Collapse
|
48
|
Sharpley CF, Bitsika V, Evans ID, Vessey KA, Jesulola E, Agnew LL. Depression Severity, Slow- versus Fast-Wave Neural Activity, and Symptoms of Melancholia. Brain Sci 2024; 14:607. [PMID: 38928607 PMCID: PMC11202185 DOI: 10.3390/brainsci14060607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Melancholia is a major and severe subtype of depression, with only limited data regarding its association with neurological phenomena. To extend the current understanding of how particular aspects of melancholia are correlated with brain activity, electroencephalographic data were collected from 100 adults (44 males and 56 females, all aged 18 y or more) and investigated for the association between symptoms of melancholia and the ratios of alpha/beta activity and theta/beta activity at parietal-occipital EEG sites PO1 and PO2. The results indicate differences in these associations according to the depressive status of participants and the particular symptom of melancholia. Depressed participants exhibited meaningfully direct correlations between alpha/beta and theta/beta activity and the feeling that "Others would be better off if I was dead" at PO1, whereas non-depressed participants had significant inverse correlations between theta/beta activity and "Feeling useless and not needed" and "I find it hard to make decisions" at PO1. The results are discussed in terms of the relative levels of fast-wave (beta) versus slow-wave (alpha, theta) activity exhibited by depressed and non-depressed participants in the parietal-occipital region and the cognitive activities that are relevant to that region.
Collapse
Affiliation(s)
- Christopher F. Sharpley
- Brain-Behaviour Research Group, University of New England, Armidale, NSW 2351, Australia; (V.B.); (I.D.E.); (K.A.V.); (E.J.); (L.L.A.)
| | - Vicki Bitsika
- Brain-Behaviour Research Group, University of New England, Armidale, NSW 2351, Australia; (V.B.); (I.D.E.); (K.A.V.); (E.J.); (L.L.A.)
| | - Ian D. Evans
- Brain-Behaviour Research Group, University of New England, Armidale, NSW 2351, Australia; (V.B.); (I.D.E.); (K.A.V.); (E.J.); (L.L.A.)
| | - Kirstan A. Vessey
- Brain-Behaviour Research Group, University of New England, Armidale, NSW 2351, Australia; (V.B.); (I.D.E.); (K.A.V.); (E.J.); (L.L.A.)
| | - Emmanuel Jesulola
- Brain-Behaviour Research Group, University of New England, Armidale, NSW 2351, Australia; (V.B.); (I.D.E.); (K.A.V.); (E.J.); (L.L.A.)
- Department of Neurosurgery, The Alfred Hospital, Melbourne, VIC 3000, Australia
| | - Linda L. Agnew
- Brain-Behaviour Research Group, University of New England, Armidale, NSW 2351, Australia; (V.B.); (I.D.E.); (K.A.V.); (E.J.); (L.L.A.)
- Department of Health, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
49
|
Lam AKF, Carrick J, Kao CH, Phillips CL, Zheng YZ, Yee BJ, Kim JW, Grunstein RR, Naismith SL, D’Rozario AL. Electroencephalographic slowing during REM sleep in older adults with subjective cognitive impairment and mild cognitive impairment. Sleep 2024; 47:zsae051. [PMID: 38394454 PMCID: PMC11168761 DOI: 10.1093/sleep/zsae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/27/2023] [Indexed: 02/25/2024] Open
Abstract
STUDY OBJECTIVES In older adults with Alzheimer's disease, slowing of electroencephalographic (EEG) activity during REM sleep has been observed. Few studies have examined EEG slowing during REM in those with mild cognitive impairment (MCI) and none have examined its relationship with cognition in this at-risk population. METHODS Two hundred and ten older adults (mean age = 67.0, SD = 8.2 years) underwent comprehensive neuropsychological, medical, and psychiatric assessment and overnight polysomnography. Participants were classified as subjective cognitive impairment (SCI; n = 75), non-amnestic MCI (naMCI, n = 85), and amnestic MCI (aMCI, n = 50). REM EEG slowing was defined as (δ + θ)/(α + σ + β) power and calculated for frontal, central, parietal, and occipital regions. Analysis of variance compared REM EEG slowing between groups. Correlations between REM EEG slowing and cognition, including learning and memory, visuospatial and executive functions, were examined within each subgroup. RESULTS The aMCI group had significantly greater REM EEG slowing in the parietal and occipital regions compared to the naMCI and SCI groups (partial η2 = 0.06, p < 0.05 and 0.06, p < 0.05, respectively), and greater EEG slowing in the central region compared to SCI group (partial η2 = 0.03, p < 0.05). Greater REM EEG slowing in parietal (r = -0.49) and occipital regions (r = -0.38 [O1/M2] and -0.33 [O2/M1]) were associated with poorer visuospatial performance in naMCI. CONCLUSIONS REM EEG slowing may differentiate older adults with memory impairment from those without. Longitudinal studies are now warranted to examine the prognostic utility of REM EEG slowing for cognitive and dementia trajectories.
Collapse
Affiliation(s)
- Aaron Kin Fu Lam
- School of Psychology, University of Sydney, Camperdown, NSW, Australia
- Woolcock Institute of Medical Research, Centre for Sleep and Chronobiology, Glebe, NSW, Australia
- School of Psychological Sciences, Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
| | - James Carrick
- School of Psychology, University of Sydney, Camperdown, NSW, Australia
| | - Chien-Hui Kao
- Woolcock Institute of Medical Research, Centre for Sleep and Chronobiology, Glebe, NSW, Australia
- School of Psychological Sciences, Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
| | - Craig L Phillips
- Woolcock Institute of Medical Research, Centre for Sleep and Chronobiology, Glebe, NSW, Australia
- School of Psychological Sciences, Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
| | - Yi Zhong Zheng
- Woolcock Institute of Medical Research, Centre for Sleep and Chronobiology, Glebe, NSW, Australia
| | - Brendon J Yee
- Woolcock Institute of Medical Research, Centre for Sleep and Chronobiology, Glebe, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Central Clinical School, University of Sydney, Camperdown, NSW, Australia
| | - Jong Won Kim
- Department of Healthcare IT, Inje University, Gimhae, Gyeongsangnam-do, South Korea
| | - Ronald R Grunstein
- Woolcock Institute of Medical Research, Centre for Sleep and Chronobiology, Glebe, NSW, Australia
- Sydney Medical School, Faculty of Medicine and Health, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Sharon L Naismith
- School of Psychology, University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Angela L D’Rozario
- Woolcock Institute of Medical Research, Centre for Sleep and Chronobiology, Glebe, NSW, Australia
- School of Psychological Sciences, Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
50
|
Iturra-Mena AM, Moser J, Díaz DE, Chen SYH, Rosenblum K, Muzik M, Fitzgerald KD. Anxiety Symptoms in Young Children Are Associated With a Maladaptive Neurobehavioral Profile of Error Responding. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:571-579. [PMID: 38467303 PMCID: PMC11156542 DOI: 10.1016/j.bpsc.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/13/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Childhood anxiety symptoms have been linked to alterations in cognitive control and error processing, but the diverse findings on neural markers of anxiety in young children, which vary by severity and developmental stage, suggest the need for a wider perspective. Integrating new neural markers with established ones, such as the error-related negativity, the error positivity, and frontal theta, could clarify this association. Error-related alpha suppression (ERAS) is a recently proposed index of post-error attentional engagement that has not yet been explored in children with anxiety. METHODS To identify neurobehavioral profiles of anxiety in young children by integrating ERAS with the error-related negativity, error positivity, frontal theta, and post-error performance indicators, we employed K-means clustering as an unsupervised multimetric approach. For this, we first aimed to confirm the presence and scalp distribution of ERAS in young children. We performed event-related potentials and spectral analysis of electroencephalogram data collected during a Go/NoGo task (Zoo Task) completed by 181 children (ages 4-7 years; 103 female) who were sampled from across the clinical-to-nonclinical range of anxiety severity using the Child Behavior Checklist. RESULTS Results confirmed ERAS, showing lower post-error alpha power, maximal suppression at occipital sites, and less ERAS in younger children. K-means clustering revealed that high anxiety and younger age were associated with reduction in ERAS and frontal theta, less negative error-related negativity, enlarged error positivity, more post-error slowing, and reduced post-error accuracy. CONCLUSIONS Our findings indicate a link between ERAS, maladaptive neural mechanisms of attention elicited by errors, and anxiety in young children, suggesting that anxiety may arise from or interfere with attention and error processing.
Collapse
Affiliation(s)
- Ann M Iturra-Mena
- Department of Psychiatry, Columbia University, New York, New York; Data Science Institute, Columbia University, New York, New York.
| | - Jason Moser
- Department of Psychology, Michigan State University, East Lansing, Michigan
| | - Dana E Díaz
- Department of Psychiatry, Columbia University, New York, New York; New York State Psychiatric Institute, New York, New York
| | | | | | - Maria Muzik
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Kate D Fitzgerald
- Department of Psychiatry, Columbia University, New York, New York; New York State Psychiatric Institute, New York, New York
| |
Collapse
|