1
|
MacLean J, Stirn J, Bidelman GM. Auditory-motor entrainment and listening experience shape the perceptual learning of concurrent speech. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604167. [PMID: 39071391 PMCID: PMC11275804 DOI: 10.1101/2024.07.18.604167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background Plasticity from auditory experience shapes the brain's encoding and perception of sound. Though prior research demonstrates that neural entrainment (i.e., brain-to-acoustic synchronization) aids speech perception, how long- and short-term plasticity influence entrainment to concurrent speech has not been investigated. Here, we explored neural entrainment mechanisms and the interplay between short- and long-term neuroplasticity for rapid auditory perceptual learning of concurrent speech sounds in young, normal-hearing musicians and nonmusicians. Method Participants learned to identify double-vowel mixtures during ∼45 min training sessions with concurrent high-density EEG recordings. We examined the degree to which brain responses entrained to the speech-stimulus train (∼9 Hz) to investigate whether entrainment to speech prior to behavioral decision predicted task performance. Source and directed functional connectivity analyses of the EEG probed whether behavior was driven by group differences auditory-motor coupling. Results Both musicians and nonmusicians showed rapid perceptual learning in accuracy with training. Interestingly, listeners' neural entrainment strength prior to target speech mixtures predicted behavioral identification performance; stronger neural synchronization was observed preceding incorrect compared to correct trial responses. We also found stark hemispheric biases in auditory-motor coupling during speech entrainment, with greater auditory-motor connectivity in the right compared to left hemisphere for musicians (R>L) but not in nonmusicians (R=L). Conclusions Our findings confirm stronger neuroacoustic synchronization and auditory-motor coupling during speech processing in musicians. Stronger neural entrainment to rapid stimulus trains preceding incorrect behavioral responses supports the notion that alpha-band (∼10 Hz) arousal/suppression in brain activity is an important modulator of trial-by-trial success in perceptual processing.
Collapse
|
2
|
Jin J, Zheng Q, Liu H, Feng K, Bai Y, Ni G. Musical experience enhances time discrimination: Evidence from cortical responses. Ann N Y Acad Sci 2024; 1536:167-176. [PMID: 38829709 DOI: 10.1111/nyas.15153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Time discrimination, a critical aspect of auditory perception, is influenced by numerous factors. Previous research has suggested that musical experience can restructure the brain, thereby enhancing time discrimination. However, this phenomenon remains underexplored. In this study, we seek to elucidate the enhancing effect of musical experience on time discrimination, utilizing both behavioral and electroencephalogram methodologies. Additionally, we aim to explore, through brain connectivity analysis, the role of increased connectivity in brain regions associated with auditory perception as a potential contributory factor to time discrimination induced by musical experience. The results show that the music-experienced group demonstrated higher behavioral accuracy, shorter reaction time, and shorter P3 and mismatch response latencies as compared to the control group. Furthermore, the music-experienced group had higher connectivity in the left temporal lobe. In summary, our research underscores the positive impact of musical experience on time discrimination and suggests that enhanced connectivity in brain regions linked to auditory perception may be responsible for this enhancement.
Collapse
Affiliation(s)
- Jiaqi Jin
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Qi Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Hongxing Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Kunyun Feng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yanru Bai
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, China
| | - Guangjian Ni
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Puschmann S, Regev M, Fakhar K, Zatorre RJ, Thiel CM. Attention-Driven Modulation of Auditory Cortex Activity during Selective Listening in a Multispeaker Setting. J Neurosci 2024; 44:e1157232023. [PMID: 38388426 PMCID: PMC11007309 DOI: 10.1523/jneurosci.1157-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 02/24/2024] Open
Abstract
Real-world listening settings often consist of multiple concurrent sound streams. To limit perceptual interference during selective listening, the auditory system segregates and filters the relevant sensory input. Previous work provided evidence that the auditory cortex is critically involved in this process and selectively gates attended input toward subsequent processing stages. We studied at which level of auditory cortex processing this filtering of attended information occurs using functional magnetic resonance imaging (fMRI) and a naturalistic selective listening task. Forty-five human listeners (of either sex) attended to one of two continuous speech streams, presented either concurrently or in isolation. Functional data were analyzed using an inter-subject analysis to assess stimulus-specific components of ongoing auditory cortex activity. Our results suggest that stimulus-related activity in the primary auditory cortex and the adjacent planum temporale are hardly affected by attention, whereas brain responses at higher stages of the auditory cortex processing hierarchy become progressively more selective for the attended input. Consistent with these findings, a complementary analysis of stimulus-driven functional connectivity further demonstrated that information on the to-be-ignored speech stream is shared between the primary auditory cortex and the planum temporale but largely fails to reach higher processing stages. Our findings suggest that the neural processing of ignored speech cannot be effectively suppressed at the level of early cortical processing of acoustic features but is gradually attenuated once the competing speech streams are fully segregated.
Collapse
Affiliation(s)
- Sebastian Puschmann
- Biological Psychology Lab, Department of Psychology, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Cluster of Excellence "Hearing4all", Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Mor Regev
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Kayson Fakhar
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Hamburg Center of Neuroscience, Hamburg 20246, Germany
| | - Robert J Zatorre
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Quebec H2V 2S9, Canada
| | - Christiane M Thiel
- Biological Psychology Lab, Department of Psychology, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Cluster of Excellence "Hearing4all", Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
4
|
Alemi R, Wolfe J, Neumann S, Manning J, Hanna L, Towler W, Wilson C, Bien A, Miller S, Schafer E, Gemignani J, Koirala N, Gracco VL, Deroche M. Motor Processing in Children With Cochlear Implants as Assessed by Functional Near-Infrared Spectroscopy. Percept Mot Skills 2024; 131:74-105. [PMID: 37977135 PMCID: PMC10863375 DOI: 10.1177/00315125231213167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Auditory-motor and visual-motor networks are often coupled in daily activities, such as when listening to music and dancing; but these networks are known to be highly malleable as a function of sensory input. Thus, congenital deafness may modify neural activities within the connections between the motor, auditory, and visual cortices. Here, we investigated whether the cortical responses of children with cochlear implants (CI) to a simple and repetitive motor task would differ from that of children with typical hearing (TH) and we sought to understand whether this response related to their language development. Participants were 75 school-aged children, including 50 with CI (with varying language abilities) and 25 controls with TH. We used functional near-infrared spectroscopy (fNIRS) to record cortical responses over the whole brain, as children squeezed the back triggers of a joystick that vibrated or not with the squeeze. Motor cortex activity was reflected by an increase in oxygenated hemoglobin concentration (HbO) and a decrease in deoxygenated hemoglobin concentration (HbR) in all children, irrespective of their hearing status. Unexpectedly, the visual cortex (supposedly an irrelevant region) was deactivated in this task, particularly for children with CI who had good language skills when compared to those with CI who had language delays. Presence or absence of vibrotactile feedback made no difference in cortical activation. These findings support the potential of fNIRS to examine cognitive functions related to language in children with CI.
Collapse
Affiliation(s)
- Razieh Alemi
- Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Jace Wolfe
- Oberkotter Foundation, Oklahoma City, OK, USA
| | - Sara Neumann
- Hearts for Hearing Foundation, Oklahoma City, OK, USA
| | - Jacy Manning
- Hearts for Hearing Foundation, Oklahoma City, OK, USA
| | - Lindsay Hanna
- Hearts for Hearing Foundation, Oklahoma City, OK, USA
| | - Will Towler
- Hearts for Hearing Foundation, Oklahoma City, OK, USA
| | - Caleb Wilson
- Department of Otolaryngology-Head & Neck Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Alexander Bien
- Department of Otolaryngology-Head & Neck Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sharon Miller
- Department of Audiology & Speech-Language Pathology, University of North Texas, Denton, TX, USA
| | - Erin Schafer
- Department of Audiology & Speech-Language Pathology, University of North Texas, Denton, TX, USA
| | - Jessica Gemignani
- Department of Developmental and Social Psychology, University of Padua, Padova, Italy
| | | | | | - Mickael Deroche
- Department of Psychology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
5
|
Pang C, Zhou Y, Han S. Temporal Unfolding of Racial Ingroup Bias in Neural Responses to Perceived Dynamic Pain in Others. Neurosci Bull 2024; 40:157-170. [PMID: 37635197 PMCID: PMC10838865 DOI: 10.1007/s12264-023-01102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/13/2023] [Indexed: 08/29/2023] Open
Abstract
In this study, we investigated how empathic neural responses unfold over time in different empathy networks when viewing same-race and other-race individuals in dynamic painful conditions. We recorded magnetoencephalography signals from Chinese adults when viewing video clips showing a dynamic painful (or non-painful) stimulation to Asian and White models' faces to trigger painful (or neutral) expressions. We found that perceived dynamic pain in Asian models modulated neural activities in the visual cortex at 100 ms-200 ms, in the orbitofrontal and subgenual anterior cingulate cortices at 150 ms-200 ms, in the anterior cingulate cortex around 250 ms-350 ms, and in the temporoparietal junction and middle temporal gyrus around 600 ms after video onset. Perceived dynamic pain in White models modulated activities in the visual, anterior cingulate, and primary sensory cortices after 500 ms. Our findings unraveled earlier dynamic activities in multiple neural circuits in response to same-race (vs other-race) individuals in dynamic painful situations.
Collapse
Affiliation(s)
- Chenyu Pang
- School of Psychological and Cognitive Sciences, PKU-IDG/McGovern Institute for Brain Research, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100081, China
| | - Yuqing Zhou
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shihui Han
- School of Psychological and Cognitive Sciences, PKU-IDG/McGovern Institute for Brain Research, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100081, China.
| |
Collapse
|
6
|
Poikonen H, Tobler S, Trninić D, Formaz C, Gashaj V, Kapur M. Math on cortex-enhanced delta phase synchrony in math experts during long and complex math demonstrations. Cereb Cortex 2024; 34:bhae025. [PMID: 38365270 PMCID: PMC11461154 DOI: 10.1093/cercor/bhae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/18/2024] Open
Abstract
Neural oscillations are important for working memory and reasoning and they are modulated during cognitively challenging tasks, like mathematics. Previous work has examined local cortical synchrony on theta (4-8 Hz) and alpha (8-13 Hz) bands over frontal and parietal electrodes during short mathematical tasks when sitting. However, it is unknown whether processing of long and complex math stimuli evokes inter-regional functional connectivity. We recorded cortical activity with EEG while math experts and novices watched long (13-68 seconds) and complex (bachelor-level) math demonstrations when sitting and standing. Fronto-parietal connectivity over the left hemisphere was stronger in math experts than novices reflected by enhanced delta (0.5-4 Hz) phase synchrony in experts. Processing of complex math tasks when standing extended the difference to right hemisphere, suggesting that other cognitive processes, such as maintenance of body balance when standing, may interfere with novice's internal concentration required during complex math tasks more than in experts. There were no groups differences in phase synchrony over theta or alpha frequencies. These results suggest that low-frequency oscillations modulate inter-regional connectivity during long and complex mathematical cognition and demonstrate one way in which the brain functions of math experts differ from those of novices: through enhanced fronto-parietal functional connectivity.
Collapse
Affiliation(s)
- Hanna Poikonen
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
- Centre of Excellence in Music, Mind, Body and Brain, Faculty of Educational Sciences, University of Helsinki, Helsinki 00014, Finland
| | - Samuel Tobler
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
| | - Dragan Trninić
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
| | - Cléa Formaz
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
| | - Venera Gashaj
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
- Department of Psychology, University of Tuebingen, Tuebingen 72076, Germany
| | - Manu Kapur
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
| |
Collapse
|
7
|
Somech N, Mizrahi T, Caspi Y, Axelrod V. Functional near-infrared spectroscopy imaging of the prefrontal cortex during a naturalistic comedy movie. Front Neurosci 2022; 16:913540. [PMID: 36161175 PMCID: PMC9493198 DOI: 10.3389/fnins.2022.913540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Naturalistic stimulation (i.e., movies and auditory narratives of some minutes' length) has been a powerful approach to bringing more real-life experiences into laboratory experiments. Data-driven, intersubject correlation (ISC) analysis permits examining to what extent activity in a specific brain region correlates across participants during exposure to a naturalistic stimulus, as well as testing whether neural activity correlates with behavioral measures. Notably, most of the previous research with naturalistic stimuli was conducted using functional fMRI (fMRI). Here, we tested whether a naturalistic approach and the ISC are feasible using functional near-infrared spectroscopy (fNIRS) - the imaging method particularly suited for populations of patients and children. Fifty-three healthy adult participants watched twice a 3-min segment of a Charlie Chaplin movie while we recorded the brain activity on the surface of their prefrontal cortex using fNIRS. In addition, an independent group of 18 participants used a continuous scoring procedure to rate the extent to which they felt that different parts of the movie fragment were funny. Our two findings were as follows. First, we found higher-than-zero ISC in fNIRS signals in the prefrontal cortex lobes, a result that was particularly high in the oxygenated channels during the first repetition of the movie. Second, we found a significant negative correlation between oxygenated brain signals and ratings of the movie's humorousness. In a series of control analyses we demonstrated that this latter correlation could not be explained by various non-humor-related movie sensory properties (e.g., auditory volume and image brightness). The key overall outcome of the present study is that fNIRS in combination with the naturalistic paradigms and the ISC might be a sensitive and powerful research method to explore cognitive processing. Our results also suggest a potential role of the prefrontal cortex in humor appreciation.
Collapse
Affiliation(s)
- Noam Somech
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Tamar Mizrahi
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- Head Injuries Rehabilitation Department, Sheba Medical Center, Ramat Gan, Israel
| | - Yael Caspi
- Department of Psychology, Bar-Ilan University, Ramat Gan, Israel
| | - Vadim Axelrod
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
8
|
Liu X, Dai Y, Xie H, Zhen Z. A studyforrest extension, MEG recordings while watching the audio-visual movie "Forrest Gump". Sci Data 2022; 9:206. [PMID: 35562378 PMCID: PMC9106652 DOI: 10.1038/s41597-022-01299-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 03/30/2022] [Indexed: 01/01/2023] Open
Abstract
Naturalistic stimuli, such as movies, are being increasingly used to map brain function because of their high ecological validity. The pioneering studyforrest and other naturalistic neuroimaging projects have provided free access to multiple movie-watching functional magnetic resonance imaging (fMRI) datasets to prompt the community for naturalistic experimental paradigms. However, sluggish blood-oxygenation-level-dependent fMRI signals are incapable of resolving neuronal activity with the temporal resolution at which it unfolds. Instead, magnetoencephalography (MEG) measures changes in the magnetic field produced by neuronal activity and is able to capture rich dynamics of the brain at the millisecond level while watching naturalistic movies. Herein, we present the first public prolonged MEG dataset collected from 11 participants while watching the 2 h long audio-visual movie "Forrest Gump". Minimally preprocessed data was also provided to facilitate the use of the dataset. As a studyforrest extension, we envision that this dataset, together with fMRI data from the studyforrest project, will serve as a foundation for exploring the neural dynamics of various cognitive functions in real-world contexts.
Collapse
Affiliation(s)
- Xingyu Liu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Yuxuan Dai
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Hailun Xie
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Zonglei Zhen
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, China.
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| |
Collapse
|
9
|
Rimmele JM, Kern P, Lubinus C, Frieler K, Poeppel D, Assaneo MF. Musical Sophistication and Speech Auditory-Motor Coupling: Easy Tests for Quick Answers. Front Neurosci 2022; 15:764342. [PMID: 35058741 PMCID: PMC8763673 DOI: 10.3389/fnins.2021.764342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/22/2021] [Indexed: 12/05/2022] Open
Abstract
Musical training enhances auditory-motor cortex coupling, which in turn facilitates music and speech perception. How tightly the temporal processing of music and speech are intertwined is a topic of current research. We investigated the relationship between musical sophistication (Goldsmiths Musical Sophistication index, Gold-MSI) and spontaneous speech-to-speech synchronization behavior as an indirect measure of speech auditory-motor cortex coupling strength. In a group of participants (n = 196), we tested whether the outcome of the spontaneous speech-to-speech synchronization test (SSS-test) can be inferred from self-reported musical sophistication. Participants were classified as high (HIGHs) or low (LOWs) synchronizers according to the SSS-test. HIGHs scored higher than LOWs on all Gold-MSI subscales (General Score, Active Engagement, Musical Perception, Musical Training, Singing Skills), but the Emotional Attachment scale. More specifically, compared to a previously reported German-speaking sample, HIGHs overall scored higher and LOWs lower. Compared to an estimated distribution of the English-speaking general population, our sample overall scored lower, with the scores of LOWs significantly differing from the normal distribution, with scores in the ∼30th percentile. While HIGHs more often reported musical training compared to LOWs, the distribution of training instruments did not vary across groups. Importantly, even after the highly correlated subscores of the Gold-MSI were decorrelated, particularly the subscales Musical Perception and Musical Training allowed to infer the speech-to-speech synchronization behavior. The differential effects of musical perception and training were observed, with training predicting audio-motor synchronization in both groups, but perception only in the HIGHs. Our findings suggest that speech auditory-motor cortex coupling strength can be inferred from training and perceptual aspects of musical sophistication, suggesting shared mechanisms involved in speech and music perception.
Collapse
Affiliation(s)
- Johanna M. Rimmele
- Department of Neuroscience, Max-Planck-Institute for Empirical Aesthetics, Frankfurt, Germany
- Max Planck NYU Center for Language, Music and Emotion, New York, NY, United States
| | - Pius Kern
- Department of Neuroscience, Max-Planck-Institute for Empirical Aesthetics, Frankfurt, Germany
| | - Christina Lubinus
- Department of Neuroscience, Max-Planck-Institute for Empirical Aesthetics, Frankfurt, Germany
| | - Klaus Frieler
- Department of Neuroscience, Max-Planck-Institute for Empirical Aesthetics, Frankfurt, Germany
| | - David Poeppel
- Department of Neuroscience, Max-Planck-Institute for Empirical Aesthetics, Frankfurt, Germany
- Max Planck NYU Center for Language, Music and Emotion, New York, NY, United States
- Department of Psychology, New York University, New York, NY, United States
- Ernst Strüngmann Institute for Neuroscience, Frankfurt, Germany
| | - M. Florencia Assaneo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
10
|
Zhang Y, Kim JH, Brang D, Liu Z. Naturalistic Stimuli: A Paradigm for Multi-Scale Functional Characterization of the Human Brain. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 19:100298. [PMID: 34423178 PMCID: PMC8376216 DOI: 10.1016/j.cobme.2021.100298] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Movies, audio stories, and virtual reality are increasingly used as stimuli for functional brain imaging. Such naturalistic paradigms are in sharp contrast to the tradition of experimental reductionism in neuroscience research. Being complex, dynamic, and diverse, naturalistic stimuli set up a more ecologically relevant condition and induce highly reproducible brain responses across a wide range of spatiotemporal scales. Here, we review recent technical advances and scientific findings on imaging the brain under naturalistic stimuli. Then we elaborate on the premise of using naturalistic paradigms for multi-scale, multi-modal, and high-throughput functional characterization of the human brain. We further highlight the growing potential of using deep learning models to infer neural information processing from brain responses to naturalistic stimuli. Lastly, we advocate large-scale collaborations to combine brain imaging and recording data across experiments, subjects, and labs that use the same set of naturalistic stimuli.
Collapse
Affiliation(s)
- Yizhen Zhang
- Department of Electrical Engineering and Computer Science, University of Michigan
| | - Jung-Hoon Kim
- Department of Biomedical Engineering, University of Michigan
- Weldon School of Biomedical Engineering, Purdue University
| | - David Brang
- Department of Psychology, University of Michigan
| | - Zhongming Liu
- Department of Electrical Engineering and Computer Science, University of Michigan
- Department of Biomedical Engineering, University of Michigan
| |
Collapse
|
11
|
Kandylaki KD, Criscuolo A. Neural Tracking of Speech: Top-Down and Bottom-Up Influences in the Musician's Brain. J Neurosci 2021; 41:6579-6581. [PMID: 34348984 PMCID: PMC8336707 DOI: 10.1523/jneurosci.0756-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 11/21/2022] Open
Affiliation(s)
- Katerina D Kandylaki
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Antonio Criscuolo
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER, Maastricht, The Netherlands
| |
Collapse
|