1
|
Smith EM, Coughlan ML, Maday S. Turning garbage into gold: Autophagy in synaptic function. Curr Opin Neurobiol 2024; 90:102937. [PMID: 39667255 DOI: 10.1016/j.conb.2024.102937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/26/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024]
Abstract
Trillions of synapses in the human brain enable thought and behavior. Synaptic connections must be established and maintained, while retaining dynamic flexibility to respond to experiences. These processes require active remodeling of the synapse to control the composition and integrity of proteins and organelles. Macroautophagy (hereafter, autophagy) provides a mechanism to edit and prune the synaptic proteome. Canonically, autophagy has been viewed as a homeostatic process, which eliminates aged and damaged proteins to maintain neuronal survival. However, accumulating evidence suggests that autophagy also degrades specific cargoes in response to neuronal activity to impact neuronal transmission, excitability, and synaptic plasticity. Here, we will discuss the diverse roles, regulation, and mechanisms of neuronal autophagy in synaptic function and contributions from glial autophagy in these processes.
Collapse
Affiliation(s)
- Erin Marie Smith
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maeve Louise Coughlan
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandra Maday
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Huang N, Li H, Sun L, Feng J, Gao Z, Lin Z, Yang Y, Wang B, Wang J. Guijiajiao-Lujiaojiao Synergistically Promote Spermatogenesis in Tripterygium Wilfordii Polyglycoside-Induced Oligoasthenozoospermia Rats via PI3K/AKT Signaling Pathway. Am J Mens Health 2024; 18:15579883241293941. [PMID: 39526752 PMCID: PMC11555725 DOI: 10.1177/15579883241293941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Guijiajiao-Lujiaojiao (GL) is a combination of Traditional Chinese Medicine (TCM) that can be used to treat oligoasthenozoospermia (OAS). However, its mechanistic role in OAS needs to be better understood and necessitates more studies. This study was planned to investigate GL's therapeutic effects and its mechanistic role in the tripterygium wilfordii polyglycoside (GTW)-induced OAS rat model. In total, 60 Sprague-Dawley (SD) rats at 8 weeks of age were assigned to six groups: blank (NC), model (GTW), GL low-dose (GL-L, 0.3 g/kg/day), GL medium-dose (GL-M, 0.6 g/kg/day), GL high-dose (GL-H, 1.2 g/kg/day), and GL high-dose + PI3K inhibitor LY294002 (GL-H 1.2 g/kg/day + LY 1.2 mg/kg/day) groups. The model was characterized after 8 weeks to examine sperm concentration and viability, serum hormone levels, testes histopathology, and specific protein markers. The treatment efficacy was evaluated by mRNA and protein expression levels, among other parameters. Compared with the GTW group, the viability and concentration of rat spermatozoa were significantly increased after GL intervention (p < .01). Meanwhile, the serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and T hormones in rats in the GL-M and GL-H groups were significantly higher than those in the GTW group (p < .05). Furthermore, GL enhanced the proliferation of spermatogenic cells by modulating the PI3K/AKT signaling pathway, increasing and decreasing the levels of Bcl-2 and Bax proteins, respectively. It is concluded that the mechanism by which GL effectively enhanced the spermatogenic function of the GTW-induced OAS model may be attributed to the PI3K/AKT signaling pathway activation and the elevation of serum LH, FSH, and T hormone levels.
Collapse
Affiliation(s)
- Nianwen Huang
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
- Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haisong Li
- Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Longji Sun
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
- Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junlong Feng
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
- Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zixiang Gao
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
- Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhechao Lin
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
- Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Yang
- Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bin Wang
- Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jisheng Wang
- Andrology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Xia QQ, Singh A, Wang J, Xuan ZX, Singer JD, Powell CM. Autism risk gene Cul3 alters neuronal morphology via caspase-3 activity in mouse hippocampal neurons. Front Cell Neurosci 2024; 18:1320784. [PMID: 38803442 PMCID: PMC11129687 DOI: 10.3389/fncel.2024.1320784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Autism Spectrum Disorders (ASDs) are neurodevelopmental disorders (NDDs) in which children display differences in social interaction/communication and repetitive stereotyped behaviors along with variable associated features. Cul3, a gene linked to ASD, encodes CUL3 (CULLIN-3), a protein that serves as a key component of a ubiquitin ligase complex with unclear function in neurons. Cul3 homozygous deletion in mice is embryonic lethal; thus, we examine the role of Cul3 deletion in early synapse development and neuronal morphology in hippocampal primary neuronal cultures. Homozygous deletion of Cul3 significantly decreased dendritic complexity and dendritic length, as well as axon formation. Synaptic spine density significantly increased, mainly in thin and stubby spines along with decreased average spine volume in Cul3 knockouts. Both heterozygous and homozygous knockout of Cul3 caused significant reductions in the density and colocalization of gephyrin/vGAT puncta, providing evidence of decreased inhibitory synapse number, while excitatory synaptic puncta vGulT1/PSD95 density remained unchanged. Based on previous studies implicating elevated caspase-3 after Cul3 deletion, we demonstrated increased caspase-3 in our neuronal cultures and decreased neuronal cell viability. We then examined the efficacy of the caspase-3 inhibitor Z-DEVD-FMK to rescue the decrease in neuronal cell viability, demonstrating reversal of the cell viability phenotype with caspase-3 inhibition. Studies have also implicated caspase-3 in neuronal morphological changes. We found that caspase-3 inhibition largely reversed the dendrite, axon, and spine morphological changes along with the inhibitory synaptic puncta changes. Overall, these data provide additional evidence that Cul3 regulates the formation or maintenance of cell morphology, GABAergic synaptic puncta, and neuronal viability in developing hippocampal neurons in culture.
Collapse
Affiliation(s)
- Qiang-qiang Xia
- Department of Neurobiology, Marnix E. Heersink School of Medicine & Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anju Singh
- Department of Neurobiology, Marnix E. Heersink School of Medicine & Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jing Wang
- Department of Neurobiology, Marnix E. Heersink School of Medicine & Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zhong Xin Xuan
- Department of Neurobiology, Marnix E. Heersink School of Medicine & Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jeffrey D. Singer
- Department of Biology, Portland State University, Portland, OR, United States
| | - Craig M. Powell
- Department of Neurobiology, Marnix E. Heersink School of Medicine & Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
4
|
Demyashkin G, Karakaeva E, Saakian S, Tarusova N, Guseinova A, Vays A, Gotovtsev K, Atiakshin D, Shegai P, Kaprin A. Comparative Characterisation of Proliferation and Apoptosis of Colonic Epithelium after Electron Irradiation with 2 GY and 25 GY. Int J Mol Sci 2024; 25:1196. [PMID: 38256269 PMCID: PMC10817034 DOI: 10.3390/ijms25021196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Development of new techniques for multimodal treatment and diagnostics of various neoplasms and the improvement of current techniques can significantly increase the life expectancy of patients with carcinomas of the colon and abdominal-cavity organs, since prevention of various side effects of radiation therapy is one of the main problems of oncological care. Electron irradiation is one of the most promising types of radiation therapy. There are no data on proliferation and apoptosis of the colon epithelium after irradiation with electrons, especially in different modes (single and summary). Morphological evaluation of apoptosis and proliferation of colonic epithelium after local irradiation with electrons were conducted at doses of 2 Gy (Gray) and 25 Gy. Colon fragments from sexually mature Wistar rats (n = 50, body weight 200 ± 10 g) were divided into three groups: I-control (n = 10); II-experimental group (n = 20; local single electron irradiation at a dose of 2 Gy); III-experimental group (n = 30) with local fractional irradiation with electrons at a total dose of 25 Gy. They were studied using light microscopy using hematoxylin and eosin staining and immunohistochemical reactions with antibodies to Ki-67 and caspase-3 (Cas3). Morphological disorders were accompanied by increased expression of pro-apoptotic molecules (caspase-3), and the period of regeneration by proliferative marker (Ki-67). Colon electron irradiation led to disturbances in the histoarchitecture of varying severity, and an increase in cell apoptosis was observed (increased expression of caspase-3 and decrease in Ki-67). In addition, modulation of the PI3K/AKT and MAPK/ERK signalling pathways was detected. The most pronounced destructive changes were observed in the group of 25 Gy fractionated electron irradiation.
Collapse
Affiliation(s)
- Grigory Demyashkin
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Elza Karakaeva
- Department of Pathomorphology, National Medical Research Centre of Radiology, Ministry of Health of Russia, 125284 Moscow, Russia
| | - Susanna Saakian
- Department of Pathomorphology, National Medical Research Centre of Radiology, Ministry of Health of Russia, 125284 Moscow, Russia
| | - Natalia Tarusova
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Amina Guseinova
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Anita Vays
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Konstantin Gotovtsev
- Laboratory of Histology and Immunohistochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Dmitrii Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, RUDN University, 117198 Moscow, Russia
| | - Petr Shegai
- Department of Pathomorphology, National Medical Research Centre of Radiology, Ministry of Health of Russia, 125284 Moscow, Russia
| | - Andrey Kaprin
- Department of Pathomorphology, National Medical Research Centre of Radiology, Ministry of Health of Russia, 125284 Moscow, Russia
| |
Collapse
|
5
|
Keary KM, Gu QH, Chen J, Li Z. Dendritic distribution of autophagosomes underlies pathway-selective induction of LTD. Cell Rep 2023; 42:112898. [PMID: 37516958 PMCID: PMC10528062 DOI: 10.1016/j.celrep.2023.112898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/31/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
The mechanism of long-term depression (LTD), a cellular substrate for learning, memory, and behavioral flexibility, is extensively studied in Schaffer collateral (SC) synapses, with inhibition of autophagy identified as a key factor. SC inputs terminate at basal and proximal apical dendrites, whereas distal apical dendrites receive inputs from the temporoammonic pathway (TAP). Here, we demonstrate that TAP and SC synapses have a shared LTD mechanism reliant on NMDA receptors, caspase-3, and autophagy inhibition. Despite this shared LTD mechanism, proximal apical dendrites contain more autophagosomes than distal apical dendrites. Additionally, unlike SC LTD, which diminishes with age, TAP LTD persists into adulthood. Our previous study shows that the high autophagy in adulthood disallows SC LTD induction. The reduction of autophagosomes from proximal to distal dendrites, combined with distinct LTD inducibility at SC and TAP synapses, suggests a model where the differential distribution of autophagosomes in dendrites gates LTD inducibility at specific circuits.
Collapse
Affiliation(s)
- Kevin M Keary
- Section on Synapse Development Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA; Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Qin-Hua Gu
- Section on Synapse Development Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy (AIM) Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zheng Li
- Section on Synapse Development Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Nguyen TTM, Gadet R, Lanfranchi M, Lahaye RA, Yandiev S, Lohez O, Mikaelian I, Jabbour L, Rimokh R, Courchet J, Saudou F, Popgeorgiev N, Gillet G. Mitochondrial Bcl-xL promotes brain synaptogenesis by controlling non-lethal caspase activation. iScience 2023; 26:106674. [PMID: 37182099 PMCID: PMC10173740 DOI: 10.1016/j.isci.2023.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/25/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Non-lethal caspase activation (NLCA) has been linked to neurodevelopmental processes. However, how neurons control NLCA remains elusive. Here, we focused on Bcl-xL, a Bcl-2 homolog regulating caspase activation through the mitochondria. We generated a mouse model, referred to as ER-xL, in which Bcl-xL is absent in the mitochondria, yet present in the endoplasmic reticulum. Unlike bclx knockout mice that died at E13.5, ER-xL mice survived embryonic development but died post-partum because of altered feeding behavior. Enhanced caspase-3 activity was observed in the brain and the spinal cord white matter, but not the gray matter. No increase in cell death was observed in ER-xL cortical neurons, suggesting that the observed caspase-3 activation was apoptosis-independent. ER-xL neurons displayed increased caspase-3 activity in the neurites, resulting in impaired axon arborescence and synaptogenesis. Together, our findings suggest that mitochondrial Bcl-xL finely tunes caspase-3 through Drp-1-dependent mitochondrial fission, which is critical to neural network design.
Collapse
Affiliation(s)
- Trang Thi Minh Nguyen
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Rudy Gadet
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Marine Lanfranchi
- Université de Lyon, Université Claude Bernard Lyon 1, Physiopathologie et Génétique du Neurone et du Muscle, UMR 5261, INSERM U 1315, Institut NeuroMyoGène, 69008 Lyon, France
| | - Romane A. Lahaye
- Grenoble Institut des Neurosciences, Université Grenoble Alpes, Inserm U1216, 38700 La Tronche, France
| | - Sozerko Yandiev
- Université de Lyon, Université Claude Bernard Lyon 1, Physiopathologie et Génétique du Neurone et du Muscle, UMR 5261, INSERM U 1315, Institut NeuroMyoGène, 69008 Lyon, France
| | - Olivier Lohez
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Ivan Mikaelian
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Lea Jabbour
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Ruth Rimokh
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Julien Courchet
- Université de Lyon, Université Claude Bernard Lyon 1, Physiopathologie et Génétique du Neurone et du Muscle, UMR 5261, INSERM U 1315, Institut NeuroMyoGène, 69008 Lyon, France
| | - Frédéric Saudou
- Grenoble Institut des Neurosciences, Université Grenoble Alpes, Inserm U1216, 38700 La Tronche, France
| | - Nikolay Popgeorgiev
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
- Institut Universitaire de France (IUF), 75231 Paris Cedex 5, France
| | - Germain Gillet
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
- Hospices civils de Lyon, Laboratoire d’anatomie et cytologie pathologiques, Centre Hospitalier Lyon Sud, chemin du Grand Revoyet, 69495 Pierre Bénite, France
| |
Collapse
|
7
|
Ma Z, Liu K, Zhang RF, Xie ZX, Liu W, Deng Y, Li X, Xu B. Manganese-induced α-synuclein overexpression promotes the accumulation of dysfunctional synaptic vesicles and hippocampal synaptotoxicity by suppressing Rab26-dependent autophagy in presynaptic neurons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159753. [PMID: 36341850 DOI: 10.1016/j.scitotenv.2022.159753] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/02/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Manganese (Mn) overexposure induces learning and memory impairments in mice by disrupting the functions of synapses and synaptic vesicles (SVs) in the hippocampus, which is associated with α-synuclein (α-Syn) overexpression. Rab26-dependent autophagy is a key signaling step required for impaired SV clearance; however, it is unclear whether Mn-induced α-Syn overexpression is linked to dysregulated Rab26-dependent autophagy in presynaptic neurons. In this study, we developed manganism models in male C57BL/6 mice and hippocampal primary neurons to observe the associations between Mn-induced α-Syn overexpression and impaired SV accumulation. The results of the in vivo experiments showed that 100 and 200 μmol/kg Mn exposure significantly impaired memory and synaptic plasticity in the mice, which was related to the accumulation of impaired SVs in the hippocampus. Consistent with the in vivo outcomes, the level of in vitro injured SVs in the 50 and 100 μmol/L Mn-exposed neuron group were higher than that in the control group. Moreover, 100 μmol/L Mn suppressed the initiation of Rab26-dependent autophagy at the synapse. Then, we transfected neurons with LV-α-Syn short hairpin RNA (shRNA) and exposed the neurons to Mn for an additional 24 h. Surprisingly, the area of colocalization between Rab26 and Atg16L1 and the expression level of LC3II-positive SVs were both higher in Mn-exposed LV-α-Syn shRNA-transfected neurons than those in Mn-treated normal or Mn-treated LV-scrambled shRNA-transfected neurons. Thus, Mn-induced α-Syn overexpression was responsible for the dysregulation of Rab26-dependent autophagy, thereby promoting the accumulation of injured SVs, and causing synaptotoxicity and cognitive and memory deficits in mice.
Collapse
Affiliation(s)
- Zhuo Ma
- Department of Environmental Health, School of Public Health, China Medical University, People's Republic of China
| | - Kuan Liu
- Department of Environmental Health, School of Public Health, China Medical University, People's Republic of China
| | - Rui-Feng Zhang
- Department of Environmental Health, School of Public Health, China Medical University, People's Republic of China
| | - Zi-Xin Xie
- Department of Environmental Health, School of Public Health, China Medical University, People's Republic of China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, People's Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, People's Republic of China
| | - Xin Li
- Department of Occupational Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, 110122 Shenyang, Liaoning Province, People's Republic of China.
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, People's Republic of China.
| |
Collapse
|
8
|
Sidibe DK, Kulkarni VV, Dong A, Herr JB, Vogel MC, Stempel MH, Maday S. Brain-derived neurotrophic factor stimulates the retrograde pathway for axonal autophagy. J Biol Chem 2022; 298:102673. [PMID: 36336077 PMCID: PMC9768381 DOI: 10.1016/j.jbc.2022.102673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Autophagy is a lysosomal degradation pathway important for neuronal development, function, and survival. How autophagy in axons is regulated by neurotrophins to impact neuronal viability and function is poorly understood. Here, we use live-cell imaging in primary neurons to investigate the regulation of axonal autophagy by the neurotrophin brain-derived neurotrophic factor (BDNF) and elucidate whether autophagosomes carry BDNF-mediated signaling information. We find that BDNF induces autophagic flux in primary neurons by stimulating the retrograde pathway for autophagy in axons. We observed an increase in autophagosome density and retrograde flux in axons, and a corresponding increase in autophagosome density in the soma. However, we find little evidence of autophagosomes comigrating with BDNF. In contrast, BDNF effectively engages its cognate receptor TrkB to undergo retrograde transport in the axon. These compartments, however, are distinct from LC3-positive autophagic organelles in the axon. Together, we find that BDNF stimulates autophagy in the axon, but retrograde autophagosomes do not appear to carry BDNF cargo. Thus, autophagosomes likely do not play a major role in relaying neurotrophic signaling information across the axon in the form of active BDNF/TrkB complexes. Rather, BDNF likely stimulates autophagy as a consequence of BDNF-induced processes that require canonical roles for autophagy in degradation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sandra Maday
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
9
|
Gu Q, Duan K, Petralia RS, Wang YX, Li Z. BAX regulates dendritic spine development via mitochondrial fusion. Neurosci Res 2022; 182:25-31. [PMID: 35688289 PMCID: PMC9378631 DOI: 10.1016/j.neures.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
BAX is a Bcl-2 family protein acting on apoptosis. It also promotes mitochondrial fusion by interacting with the mitochondrial fusion protein Mitofusin (Mfn1 and Mfn2). Neuronal mitochondria are important for the development and modification of dendritic spines, which are subcellular compartments accommodating excitatory synapses in postsynaptic neurons. The abundance of dendritic mitochondria influences dendritic spine development. Mitochondrial fusion is essential for mitochondrial homeostasis. Here, we show that in the hippocampal neuron of BAX knockout mice, mitochondrial fusion is impaired, leading to decreases in mitochondrial length and total mitochondrial mass in dendrites. Notably, BAX knockout mice also have fewer dendritic spines and less cellular Adenosine 5'triphosphate (ATP) in dendrites. The spine and ATP changes are abolished by restoring mitochondria fusion via overexpressing Mfn1 and Mfn2. These findings indicate that BAX-mediated mitochondrial fusion in neurons is crucial for the development of dendritic spines and the maintenance of cellular ATP levels.
Collapse
Affiliation(s)
- Qinhua Gu
- Section on Synapse Development Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kaizheng Duan
- Section on Synapse Development Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zheng Li
- Section on Synapse Development Plasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Sidibe DK, Vogel MC, Maday S. Organization of the autophagy pathway in neurons. Curr Opin Neurobiol 2022; 75:102554. [PMID: 35649324 PMCID: PMC9990471 DOI: 10.1016/j.conb.2022.102554] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 01/18/2023]
Abstract
Macroautophagy (hereafter referred to as autophagy) is an essential quality-control pathway in neurons, which face unique functional and morphological challenges in maintaining the integrity of organelles and the proteome. To overcome these challenges, neurons have developed compartment-specific pathways for autophagy. In this review, we discuss the organization of the autophagy pathway, from autophagosome biogenesis, trafficking, to clearance, in the neuron. We dissect the compartment-specific mechanisms and functions of autophagy in axons, dendrites, and the soma. Furthermore, we highlight examples of how steps along the autophagy pathway are impaired in the context of aging and neurodegenerative disease, which underscore the critical importance of autophagy in maintaining neuronal function and survival.
Collapse
Affiliation(s)
- David K Sidibe
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria C Vogel
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sandra Maday
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Zhou Y, Huang N, Li Y, Ba Z, Luo Y. Effect of icaritin on autophagy-related protein expression in TDP-43-transfected SH-SY5Y cells. PeerJ 2022; 10:e13703. [PMID: 35811810 PMCID: PMC9261921 DOI: 10.7717/peerj.13703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/19/2022] [Indexed: 01/17/2023] Open
Abstract
Objective To study the protective effect and mechanism of icaritin (ICT) in a SH-SY5Y cells with virus-loaded TAR DNA-binding domain protein 43(TDP-43) by examining the effect of ICT on the expression of autophagy-related proteins in TDP-43-infected SH-SY5Y cells. Methods A TDP-43-induced neuronal cell injury model was established by transfecting well-growing SH-SY5Y cells with virus loaded with the TDP-43 gene. The changes in cell viability were detected by the CCK-8 method. After successful transfection, the establishment of the model was verified by real-time quantitative PCR (qPCR) and Western blot methods. After the cells were subjected to drug intervention with ICT, the changes in the expression levels of TDP-43, cleaved Caspase-3, LC3 II/I, Beclin-1 and p62 were detected by Western blotting. Results After ICT intervention, it was found that compared with that of the TDP-43 group, the cell viability of the TDP-43+ICT group increased, the expression level of TDP-43 decreased, and the expression levels of the apoptotic protein cleaved Caspase-3, autophagy protein Beclin-1, and LC3-II/I decreased, while the expression level of the autophagy protein p62 increased. Conclusion ICT has a protective effect on the SH-SY5Y cell injury model transfected with TDP-43. This protective effect may be related to reducing the protein expression of TDP-43 and inhibiting autophagy.
Collapse
Affiliation(s)
- Yanjun Zhou
- Department of Neurology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
| | - Nanqu Huang
- National Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
| | - Yuanyuan Li
- National Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
| | - Zhisheng Ba
- National Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
| | - Yong Luo
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
| |
Collapse
|
12
|
Sarić N, Hashimoto-Torii K, Jevtović-Todorović V, Ishibashi N. Nonapoptotic caspases in neural development and in anesthesia-induced neurotoxicity. Trends Neurosci 2022; 45:446-458. [PMID: 35491256 PMCID: PMC9117442 DOI: 10.1016/j.tins.2022.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
Apoptosis, classically initiated by caspase pathway activation, plays a prominent role during normal brain development as well as in neurodegeneration. The noncanonical, nonlethal arm of the caspase pathway is evolutionarily conserved and has also been implicated in both processes, yet is relatively understudied. Dysregulated pathway activation during critical periods of neurodevelopment due to environmental neurotoxins or exposure to compounds such as anesthetics can have detrimental consequences for brain maturation and long-term effects on behavior. In this review, we discuss key molecular characteristics and roles of the noncanonical caspase pathway and how its dysregulation may adversely affect brain development. We highlight both genetic and environmental factors that regulate apoptotic and sublethal caspase responses and discuss potential interventions that target the noncanonical caspase pathway for developmental brain injuries.
Collapse
Affiliation(s)
- Nemanja Sarić
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA; Department of Pediatrics, Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - Nobuyuki Ishibashi
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA; Department of Pediatrics, Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Children's National Heart Institute, Children's National Hospital, Washington, DC, USA.
| |
Collapse
|
13
|
Zhou Z, Xu J, Huang N, Tang J, Ma P, Cheng Y. A Pyroptosis-Related Gene Signature Associated with Prognosis and Tumor Immune Microenvironment in Gliomas. Int J Gen Med 2022; 15:4753-4769. [PMID: 35571289 PMCID: PMC9091698 DOI: 10.2147/ijgm.s353762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background Pyroptosis is a novel form of cell death that plays a significant role in cancer, while the prognostic values of pyroptosis-related genes in gliomas have not been revealed. Methods We analyzed the RNA-seq and clinical data of gliomas from the University of California Santa Cruz (UCSC) Xena database to determine differentially expressed pyroptosis-related genes. Based on these genes, a pyroptosis genes signature was constructed after univariate Cox analysis and Lasso Cox analyses. The sensitivity and specificity of pyroptosis genes signature were verified by the Chinese Glioma Genome Atlas (CGGA) dataset. Finally, we explored the association of risk signatures with tumor microenvironment and immune cell infiltration. Results Of 15 differentially expressed pyroptosis-related genes, three genes of BCL2 associated X (BAX), caspase 3 (CASP3), and caspase 4 (CASP4) were used to construct the risk signature. The effectiveness of risk signature for predicting survival at 1, 3, 5 years was performed by the receiver operating characteristic curve (ROC), and the area under curves (AUC) was 0.739, 0.817, and 0.800, respectively. Functional enrichment results showed signal transduction, cell adhesion, immune response, and inflammatory response were enriched. The immune analysis revealed that pyroptosis had a remarkable effect on the immune microenvironment. Conclusion In this study, we constructed a pyroptosis-related gene signature, which can serve as a potential biomarker for predicting the survival of glioma patients. Additionally, we suggested that pyroptosis may promote gliomas development by inducing chronic inflammation microenvironment.
Collapse
Affiliation(s)
- Zunjie Zhou
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jing Xu
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ning Huang
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jun Tang
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ping Ma
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yuan Cheng
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Correspondence: Yuan Cheng, Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Yuzhong District, Chongqing, People’s Republic of China, Tel +8613708329653, Email
| |
Collapse
|
14
|
Evolutionary Diversity and Function of Metacaspases in Plants: Similar to but Not Caspases. Int J Mol Sci 2022; 23:ijms23094588. [PMID: 35562978 PMCID: PMC9104976 DOI: 10.3390/ijms23094588] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Caspase is a well-studied metazoan protease involved in programmed cell death and immunity in animals. Obviously, homologues of caspases with evolutionarily similar sequences and functions should exist in plants, and yet, they do not exist in plants. Plants contain structural homologues of caspases called metacaspases, which differ from animal caspases in a rather distinct way. Metacaspases, a family of cysteine proteases, play critical roles in programmed cell death during plant development and defense responses. Plant metacaspases are further subdivided into types I, II, and III. In the type I Arabidopsis MCs, AtMC1 and AtMC2 have similar structures, but antagonistically regulate hypersensitive response cell death upon immune receptor activation. This regulatory action is similar to caspase-1 inhibition by caspase-12 in animals. However, so far very little is known about the biological function of the other plant metacaspases. From the increased availability of genomic data, the number of metacaspases in the genomes of various plant species varies from 1 in green algae to 15 in Glycine max. It is implied that the functions of plant metacaspases will vary due to these diverse evolutions. This review is presented to comparatively analyze the evolution and function of plant metacaspases compared to caspases.
Collapse
|
15
|
Dehkordi MH, Munn RGK, Fearnhead HO. Non-Canonical Roles of Apoptotic Caspases in the Nervous System. Front Cell Dev Biol 2022; 10:840023. [PMID: 35281082 PMCID: PMC8904960 DOI: 10.3389/fcell.2022.840023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Caspases are a family of cysteine proteases that predominantly cleave their substrates after aspartic acid residues. Much of what we know of caspases emerged from investigation a highly conserved form of programmed cell death called apoptosis. This form of cell death is regulated by several caspases, including caspase-2, caspase-3, caspase-7, caspase-8 and caspase-9. However, these “killer” apoptotic caspases have emerged as versatile enzymes that play key roles in a wide range of non-apoptotic processes. Much of what we understand about these non-apoptotic roles is built on work investigating how “killer” caspases control a range of neuronal cell behaviors. This review will attempt to provide an up to date synopsis of these roles.
Collapse
Affiliation(s)
- Mahshid H. Dehkordi
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland
| | | | - Howard O. Fearnhead
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland
- *Correspondence: Howard O. Fearnhead,
| |
Collapse
|