1
|
Nashawi H, Foltz CT, Smail MA, Buesing DR, Herman JP, Ulrich-Lai YM. The impact of limited sucrose intake on perineuronal nets of parvalbumin interneurons in the basolateral amygdala: A potential role in stress resilience. Physiol Behav 2025; 290:114774. [PMID: 39631451 DOI: 10.1016/j.physbeh.2024.114774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/24/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Natural rewards like regular sucrose consumption can buffer physiological and behavioral stress responses, likely mediated, at least in part, by increased plasticity in parvalbumin-positive (PV+) interneurons in the basolateral amygdala (BLA). As PV+ interneuron plasticity is tightly regulated by specialized extracellular matrix structures called perineuronal nets (PNNs), this study investigated the impact of regular sucrose consumption vs. repetitive stress on the PNNs that surround PV+ interneurons in the BLA, as well as the number of glutamatergic (vGLUT1) and GABAergic (vGAT) appositions that PV+ cells receive. Male rats were given an established limited sucrose intake (LSI) feeding paradigm (vs. water-fed controls) and were co-exposed to a brief restraint stress (vs. no stress controls), daily for 14 days. Sucrose consumption increased the proportion of PV+ cells that were surrounded by PNNs, independent of stress exposure. PV+ cells with PNNs had more vGLUT1-positive and fewer vGAT-positive appositions compared to those lacking PNNs. Additionally, sucrose consumption increased the ratio of excitatory/inhibitory appositions onto PV+ cells, suggesting the possibility of elevated PV+ interneuron tone, leading to greater inhibition of the BLA's stress-excitatory output. These findings indicate that sucrose consumption influences PNN formation and structural plasticity on PV+ interneurons in the BLA, which has implications for understanding the neurological mechanisms underlying stress resilience by natural rewards.
Collapse
Affiliation(s)
- Houda Nashawi
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati, Cincinnati, OH, USA; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| | - Corey T Foltz
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati, Cincinnati, OH, USA
| | - Marissa A Smail
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati, Cincinnati, OH, USA; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| | - Dana R Buesing
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati, Cincinnati, OH, USA
| | - James P Herman
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati, Cincinnati, OH, USA
| | - Yvonne M Ulrich-Lai
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Ramsaran AI, Ventura S, Gallucci J, De Snoo ML, Josselyn SA, Frankland PW. A sensitive period for the development of episodic-like memory in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622296. [PMID: 39574753 PMCID: PMC11580884 DOI: 10.1101/2024.11.06.622296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Episodic-like memory is a later-developing cognitive function supported by the hippocampus. In mice, the formation of extracellular perineuronal nets in subfield CA1 of the dorsal hippocampus controls the emergence of episodic-like memory during the fourth postnatal week (Ramsaran et al., 2023). Whether the timing of episodic-like memory onset is hard-wired, or flexibly set by early-life experiences during a critical or sensitive period for hippocampal maturation, is unknown. Here, we show that the trajectories for episodic-like memory development vary for mice given different sets of experiences spanning the second and third postnatal weeks. Specifically, episodic-like memory precision developed later in mice that experienced early-life adversity, while it developed earlier in mice that experienced early-life enrichment. Moreover, we demonstrate that early-life experiences set the timing of episodic-like memory development by modulating the pace of perineuronal net formation in dorsal CA1. These results indicate that the hippocampus undergoes a sensitive period during which early-life experiences determine the timing for episodic-like memory development.
Collapse
|
3
|
Aukema RJ, Petrie GN, Baglot SL, Gilpin NW, Hill MN. Acute stress activates basolateral amygdala neurons expressing corticotropin-releasing hormone receptor type 1 (CRHR1): Topographical distribution and projection-specific activation in male and female rats. Neurobiol Stress 2024; 33:100694. [PMID: 39634490 PMCID: PMC11615582 DOI: 10.1016/j.ynstr.2024.100694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/18/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Although the basolateral amygdala (BLA) and corticotropin releasing hormone receptor type I (CRHR1) signaling are both central to the stress response, the spatial and circuit-specific distribution of CRHR1 have not been identified in the BLA at a high resolution. We used transgenic male and female CRHR1-Cre-tdTomato rats to topographically map the distribution of BLACRHR1 neurons and identify whether they are activated by acute stress. Additionally, we used the BLA circuits projecting to the central amygdala (CeA) and nucleus accumbens (NAc) as a model to test circuit-specific expression of CRHR1 in the BLA. We established several key findings. First, CRHR1 had the strongest expression in the lateral amygdala and in caudal portions of the BLA. Second, acute restraint stress increased FOS expression of CRHR1 neurons, and stress-induced activation was particularly strong in medial subregions of the BLA. Third, stress significantly increased FOS expression on BLA-NAc, but not BLA-CeA projectors, and BLA-NAc activation was more robust in males than females. Finally, CRHR1 was expressed on a subset of BLA-CeA and BLA-NAc projection neurons. Collectively, this expands our understanding of BLA molecular- and circuit-specific activation patterns following acute stress.
Collapse
Affiliation(s)
- Robert J. Aukema
- Neuroscience Graduate Program, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Gavin N. Petrie
- Neuroscience Graduate Program, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Samantha L. Baglot
- Neuroscience Graduate Program, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Nicholas W. Gilpin
- Department of Physiology, Louisiana State University, New Orleans, LA, 70112, USA
| | - Matthew N. Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Departments of Cell Biology & Anatomy and Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
4
|
Harbour K, Eid F, Serafin E, Hayes M, Baccei ML. Early life stress modulates neonatal somatosensation and the transcriptional profile of immature sensory neurons. Pain 2024:00006396-990000000-00719. [PMID: 39661738 DOI: 10.1097/j.pain.0000000000003416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/27/2024] [Indexed: 12/13/2024]
Abstract
ABSTRACT Early life stress (ELS) is associated with an increased risk of experiencing chronic pain during adulthood, but surprisingly little is known about the short-term influence of ELS on nociceptive processing in the immature nervous system and the concomitant effects on somatosensation in the neonate. Here, we investigate how ELS modulates pain in neonatal mice and the transcriptional and electrophysiological signatures of immature dorsal root ganglia (DRG). Shortly after the administration of a neonatal limiting bedding (NLB) paradigm from postnatal days (P)2 to P9, both male and female pups exhibited robust hypersensitivity in response to tactile, pressure, and noxious cold stimuli compared with a control group housed under standard conditions, with no change in their sensitivity to noxious heat. Bulk RNA-seq analysis of L3-L5 DRGs at P9 revealed significant alterations in the transcription of pain- and itch-related genes following ELS, highlighted by a marked downregulation in Sst, Nppb, Chrna6, Trpa1, and Il31ra. Nonetheless, ex vivo whole-cell patch-clamp recordings from putative A- and C-fiber sensory neurons in the neonatal DRG found no significant changes in their intrinsic membrane excitability following NLB. Overall, these findings suggest that ELS triggers hyperalgesia in neonates across multiple pain modalities that is accompanied by transcriptional plasticity within developing sensory neurons. A better understanding of the mechanisms governing the interactions between chronic stress and pain during the neonatal period could inform the future development of novel interventional strategies to relieve pain in infants and children who have experienced trauma.
Collapse
Affiliation(s)
- Kyle Harbour
- Molecular, Cellular and Biochemical Pharmacology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Fady Eid
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Elizabeth Serafin
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Madailein Hayes
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
- American Society for Pharmacology and Experimental Therapeutics Summer Research Program, Department of Pharmacology and Systems Physiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Mark L Baccei
- Molecular, Cellular and Biochemical Pharmacology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- American Society for Pharmacology and Experimental Therapeutics Summer Research Program, Department of Pharmacology and Systems Physiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
| |
Collapse
|
5
|
Jamwal S, Islam R, Kaswan ZM, Ahmed S, Bowers C, Giuliano L, Kaffman A. Postnatal Enrichment Corrects Deficits in Perineuronal Net Formation and Reversal Learning in Adult Mice Exposed to Early Adversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.614236. [PMID: 39386482 PMCID: PMC11463485 DOI: 10.1101/2024.09.21.614236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Childhood neglect is associated with cortical thinning, hyperactivity, and deficits in cognitive flexibility that are difficult to reverse later in life. Despite being the most prevalent form of early adversity, little is currently understood about the mechanisms responsible for these neurodevelopmental abnormalities, and no animal models have yet replicated key structural and behavioral features of childhood neglect/deprivation. To address these gaps, we have recently demonstrated that mice exposed to impoverished conditions, specifically limited bedding (LB), exhibit behavioral and structural changes that resemble those observed in adolescents who have experienced severe neglect. Here, we show that LB leads to long-term deficits in reversal learning, which can be fully reversed by briefly exposing LB pups to enrichment (toys) in their home cage from postnatal days 14 to 25. Reversal learning failed to induce normal c-fos activation in the orbitofrontal cortex (OFC) of LB mice, a deficit that was normalized by early enrichment. Additionally, LB decreased the density of parvalbumin-positive cells surrounded by perineuronal nets (PV+PNN+) and increased the ratio of glutamatergic to inhibitory synapse densities in the OFC, deficits that were also reversed by enrichment. Degradation of PNN in the OFC of adult mice impaired reversal learning, reduced c-fos activation, and increased the ratio of glutamatergic to inhibitory synapse densities in the OFC to levels comparable to those observed in LB mice. Collectively, our findings suggest that postnatal deprivation and enrichment impact the formation of PV+PNN+ cells in the OFC, a developmental process that is essential for cognitive flexibility in adulthood.
Collapse
Affiliation(s)
- Sumit Jamwal
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Rafiad Islam
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Zoe MacDowell Kaswan
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Sahabuddin Ahmed
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Christian Bowers
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Lauryn Giuliano
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Arie Kaffman
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| |
Collapse
|
6
|
Rahimian R, Belliveau C, Simard S, Turecki G, Mechawar N. Perineuronal Net Alterations Following Early-Life Stress: Are Microglia Pulling Some Strings? Biomolecules 2024; 14:1087. [PMID: 39334854 PMCID: PMC11430691 DOI: 10.3390/biom14091087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
The extracellular matrix plays a key role in synapse formation and in the modulation of synaptic function in the central nervous system. Recent investigations have revealed that microglia, the resident immune cells of the brain, are involved in extracellular matrix remodeling under both physiological and pathological conditions. Moreover, the dysregulation of both innate immune responses and the extracellular matrix has been documented in stress-related psychopathologies as well as in relation to early-life stress. However, the dynamics of microglial regulation of the ECM and how it can be impacted by early-life adversity have been understudied. This brief review provides an overview of the recent literature on this topic, drawing from both animal model and human post mortem studies. Direct and indirect mechanisms through which microglia may regulate the extracellular matrix-including perineuronal nets-are presented and discussed in light of the interactions with other cell types.
Collapse
Affiliation(s)
- Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC H4H 1R3, Canada; (R.R.); (C.B.); (S.S.); (G.T.)
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
| | - Claudia Belliveau
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC H4H 1R3, Canada; (R.R.); (C.B.); (S.S.); (G.T.)
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
| | - Sophie Simard
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC H4H 1R3, Canada; (R.R.); (C.B.); (S.S.); (G.T.)
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC H4H 1R3, Canada; (R.R.); (C.B.); (S.S.); (G.T.)
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC H4H 1R3, Canada; (R.R.); (C.B.); (S.S.); (G.T.)
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
7
|
Cattaneo A, Begni V, Zonca V, Riva MA. Early life adversities, psychopathologies and novel pharmacological strategies. Pharmacol Ther 2024; 260:108686. [PMID: 38969307 DOI: 10.1016/j.pharmthera.2024.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Exposure to adversities during early life stages (early life adversities - ELA), ranging from pregnancy to adolescence, represents a major risk factor for the vulnerability to mental disorders. Hence, it is important to understand the molecular and functional underpinning of such relationship, in order to develop strategies aimed at reducing the psychopathologic burden associated with ELA, which may eventually lead to a significant improvement in clinical practice. In this review, we will initially recapitulate clinical and preclinical evidence supporting the link between ELA and psychopathology and we will primarily discuss the main biological mechanisms that have been described as potential mediators of the effects of ELA on the psychopathologic risk, including the role for genetic factors as well as sex differences. The knowledge emerging from these studies may be instrumental for the development of novel therapeutic strategies aimed not only at correcting the deficits that emerge from ELA exposure, but also in preventing the manifestation of a full-blown psychopathologic condition. With this respect, we will specifically focus on adolescence as a key time frame for disease onset as well as for early therapeutic intervention. We believe that incorporating clinical and preclinical research data in the context of early life adversities can be instrumental to elucidate the mechanisms contributing to the risk for psychopathology or that may promote resilience. This will ultimately allow the identification of 'at risk' individuals who may benefit from specific forms of interventions that, by interfering with disease trajectories, could result in more benign clinical outcomes.
Collapse
Affiliation(s)
- Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Valentina Zonca
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
8
|
Théberge S, Belliveau C, Xie D, Khalaf R, Perlman K, Rahimian R, Davoli MA, Turecki G, Mechawar N. Parvalbumin interneurons in human ventromedial prefrontal cortex: a comprehensive post-mortem study of myelination and perineuronal nets in neurotypical individuals and depressed suicides with and without a history of child abuse. Cereb Cortex 2024; 34:bhae197. [PMID: 38760318 PMCID: PMC11101286 DOI: 10.1093/cercor/bhae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
Cortical parvalbumin interneurons (PV+) are major regulators of excitatory/inhibitory information processing, and their maturation is associated with the opening of developmental critical periods (CP). Recent studies reveal that cortical PV+ axons are myelinated, and that myelination along with perineuronal net (PNN) maturation around PV+ cells is associated with the closures of CP. Although PV+ interneurons are susceptible to early-life stress, their relationship between their myelination and PNN coverage remains unexplored. This study compared the fine features of PV+ interneurons in well-characterized human post-mortem ventromedial prefrontal cortex samples (n = 31) from depressed suicides with or without a history of child abuse (CA) and matched controls. In healthy controls, 81% of all sampled PV+ interneurons displayed a myelinated axon, while a subset (66%) of these cells also displayed a PNN, proposing a relationship between both attributes. Intriguingly, a 3-fold increase in the proportion of unmyelinated PV+ interneurons with a PNN was observed in CA victims, along with greater PV-immunofluorescence intensity in myelinated PV+ cells with a PNN. This study, which is the first to provide normative data on myelination and PNNs around PV+ interneurons in human neocortex, sheds further light on the cellular and molecular consequences of early-life adversity on cortical PV+ interneurons.
Collapse
Affiliation(s)
- Stéphanie Théberge
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montreal, QC, Canada
| | - Claudia Belliveau
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montreal, QC, Canada
| | - Dongyue Xie
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
| | - Roy Khalaf
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
| | - Kelly Perlman
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montreal, QC, Canada
| | - Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
| | - Maria Antonietta Davoli
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montreal, QC, Canada
- Department of Psychiatry, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montréal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montreal, QC, Canada
- Department of Psychiatry, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montréal, QC, Canada
| |
Collapse
|
9
|
Jakovljević A, Stamenković V, Poleksić J, Hamad MIK, Reiss G, Jakovcevski I, Andjus PR. The Role of Tenascin-C on the Structural Plasticity of Perineuronal Nets and Synaptic Expression in the Hippocampus of Male Mice. Biomolecules 2024; 14:508. [PMID: 38672524 PMCID: PMC11047978 DOI: 10.3390/biom14040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Neuronal plasticity is a crucial mechanism for an adapting nervous system to change. It is shown to be regulated by perineuronal nets (PNNs), the condensed forms of the extracellular matrix (ECM) around neuronal bodies. By assessing the changes in the number, intensity, and structure of PNNs, the ultrastructure of the PNN mesh, and the expression of inhibitory and excitatory synaptic inputs on these neurons, we aimed to clarify the role of an ECM glycoprotein, tenascin-C (TnC), in the dorsal hippocampus. To enhance neuronal plasticity, TnC-deficient (TnC-/-) and wild-type (TnC+/+) young adult male mice were reared in an enriched environment (EE) for 8 weeks. Deletion of TnC in TnC-/- mice showed an ultrastructural reduction of the PNN mesh and an increased inhibitory input in the dentate gyrus (DG), and an increase in the number of PNNs with a rise in the inhibitory input in the CA2 region. EE induced an increased inhibitory input in the CA2, CA3, and DG regions; in DG, the change was also followed by an increased intensity of PNNs. No changes in PNNs or synaptic expression were found in the CA1 region. We conclude that the DG and CA2 regions emerged as focal points of alterations in PNNs and synaptogenesis with EE as mediated by TnC.
Collapse
Affiliation(s)
- Ana Jakovljević
- Center for Laser Microscopy, Institute for Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
| | - Vera Stamenković
- Center for Integrative Brain Research, Seattle Children’s Research Institute, 1900 9th Ave, Seattle, WA 98125, USA;
| | - Joko Poleksić
- Institute of Anatomy “Niko Miljanic”, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Gebhard Reiss
- Institut für Anatomie und Klinische Morphologie, Universität Witten/Herdecke, 58455 Witten, Germany;
| | - Igor Jakovcevski
- Institut für Anatomie und Klinische Morphologie, Universität Witten/Herdecke, 58455 Witten, Germany;
| | - Pavle R. Andjus
- Center for Laser Microscopy, Institute for Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
10
|
Morphett JC, Whittaker AL, Reichelt AC, Hutchinson MR. Perineuronal net structure as a non-cellular mechanism contributing to affective state: A scoping review. Neurosci Biobehav Rev 2024; 158:105568. [PMID: 38309496 DOI: 10.1016/j.neubiorev.2024.105568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Affective state encompasses emotional responses to our physiology and influences how we perceive and respond within our environment. In affective disorders such as depression, cognitive adaptability is challenged, and structural and functional brain changes have been identified. However, an incomplete understanding persists of the molecular and cellular mechanisms at play in affective state. An exciting area of newly appreciated importance is perineuronal nets (PNNs); a specialised component of extracellular matrix playing a critical role in neuroprotection and synaptic plasticity. A scoping review found 24 studies demonstrating that PNNs are still a developing field of research with a promising general trend for stress in adulthood to increase the intensity of PNNs, whereas stress in adolescence reduced (potentially developmentally delayed) PNN numbers and intensity, while antidepressants correlated with reduced PNN numbers. Despite promising trends, limited research underscores the need for further exploration, emphasizing behavioral outcomes for validating affective states. Understanding PNNs' role may offer therapeutic insights for depression and inform biomarker development, advancing precision medicine and enhancing well-being.
Collapse
Affiliation(s)
- J C Morphett
- School of Biomedicine, Adelaide Medical School, University of Adelaide, Adelaide, Kaurna Country, Australia.
| | - A L Whittaker
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - A C Reichelt
- School of Biomedicine, Adelaide Medical School, University of Adelaide, Adelaide, Kaurna Country, Australia
| | - M R Hutchinson
- School of Biomedicine, Adelaide Medical School, University of Adelaide, Adelaide, Kaurna Country, Australia; Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, SA, Australia; Davies Livestock Research Centre, University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
11
|
Chen S, Yin Y, Zhang Y, Jiang W, Hou Z, Yuan Y. Childhood abuse influences clinical features of major depressive disorder by modulating the functional network of the right amygdala subregions. Asian J Psychiatr 2024; 93:103946. [PMID: 38330856 DOI: 10.1016/j.ajp.2024.103946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Childhood trauma and the amygdala play essential roles in major depressive disorder (MDD) mechanisms. However, the neurobiological mechanism among them remains unclear. Therefore, we explored the relationship among the amygdala subregion's abnormal functional connectivity (FC), clinical features, and childhood trauma in MDD. We obtained resting-state functional magnetic resonance imaging (fMRI) in 115 MDD patients and 91 well-matched healthy controls (HC). Amygdala subregions were defined according to the Human Brainnetome Atlas. The case vs. control difference in FCs was extracted. After controlling for age, sex, and education years, the mediations between the detected abnormal FCs and clinical features were analyzed, including the onset age of MDD and the Hamilton Depression Scale-24 (HAMD-24) reductive rate. Compared with HC subjects, we found, only the right amygdala subregions, namely the right medial amygdala (mAmyg.R) and the right lateral amygdala (lAmyg.R), showed a significant decrease in whole-brain FCs in MDD patients. Only childhood abuse experiences were significantly associated with amygdala subregion connectivity and clinical features in MDD patients. Additionally, The FCs between the mAmyg.R and extensive frontal, temporal, and subcortical regions mediated between the early life abuses and disease onset or treatment outcome. The findings indicate that the abnormal connectivity of the right amygdala subregions is involved in MDD's pathogenesis and clinical characteristics.
Collapse
Affiliation(s)
- Suzhen Chen
- Department of Psychosomatics, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yingying Yin
- Department of Psychosomatics, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yuqun Zhang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenhao Jiang
- Department of Psychosomatics, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhenghua Hou
- Department of Psychosomatics, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychosomatics, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
12
|
Dang TN, Tien SN, Ochi R, Le Trung D, Nishio K, Kuwamura H, Kurose T, Fujita N, Nishijo H, Nakamura Y, Hisaoka-Nakashima K, Morioka N, Urakawa S. Enhanced anxiety-like behavior induced by chronic neuropathic pain and related parvalbumin-positive neurons in male rats. Behav Brain Res 2024; 459:114786. [PMID: 38036265 DOI: 10.1016/j.bbr.2023.114786] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Anxiety commonly co-occurs with and exacerbates pain, but the interaction between pain progression and anxiety, and its underlying mechanisms remain unclear. Inhibitory interneurons play a crucial role in maintaining normal central nervous system function and are suggested to be involved in pain-induced anxiety. This study aimed to elucidate the time-dependent effects of neuropathic pain on the developmental anxiety-like behaviors and related inhibitory interneurons; parvalbumin (PV)- and cholecystokinin (CCK)-positive neurons in corticolimbic regions. Using an 8-week-old male Wistar rat model with partial sciatic nerve ligation (pSNL), anxiety-like behaviors were biweekly assessed post-surgery through open field (OF) and elevated plus maze (EPM) tests. From 4 weeks post-surgery, pSNL rats exhibited reduced OF center time, rearing, and initial activity, along with diminished EPM open-arm activities (time spent, head dips, movement, and rearing), which correlated with the paw withdrawal threshold. These effects were absent at 2 weeks post-surgery. At 8 weeks post-surgery, specific behaviors (decreased total rearing and increased inactive time in EPM) were observed in the pSNL group. Immunohistochemistry revealed changes in PV- and CCK-positive neurons in specific corticolimbic subregions of pSNL rats at 8 weeks post-surgery. Notably, PV-positive neuron densities in the basolateral amygdaloid complex (BLC) and hippocampal cornu ammonis areas 1 and 2 correlated with anxiety-like behavioral parameters. PV-positive neurons in the BLC of pSNL rats were predominantly changed in large-cell subtypes and were less activated. These findings indicate that anxiety-like behaviors emerge in the late phase of neuropathic pain and relate to PV-positive neurons in corticolimbic regions of pSNL rats.
Collapse
Affiliation(s)
- Thu Nguyen Dang
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Son Nguyen Tien
- Department of Rheumatology and Endocrinology, Military Hospital 103, Vietnam Military Medical University, No. 261 Phung Hung Street, Ha Dong District, Hanoi 12108, Viet Nam
| | - Ryosuke Ochi
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Duc Le Trung
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Kyo Nishio
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Hiroki Kuwamura
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Tomoyuki Kurose
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Naoto Fujita
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Hisao Nishijo
- Faculty of Human Sciences, University of East Asia, 2-12-1 Ichinomiya Gakuen-cho, Shimonoseki City, Yamaguchi 751-8503, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Susumu Urakawa
- Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan.
| |
Collapse
|
13
|
Gore IR, Gould E. Developmental and adult stress: effects of steroids and neurosteroids. Stress 2024; 27:2317856. [PMID: 38563163 PMCID: PMC11046567 DOI: 10.1080/10253890.2024.2317856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/03/2024] [Indexed: 04/04/2024] Open
Abstract
In humans, exposure to early life adversity has profound implications for susceptibility to developing neuropsychiatric disorders later in life. Studies in rodents have shown that stress experienced during early postnatal life can have lasting effects on brain development. Glucocorticoids and sex steroids are produced in endocrine glands and the brain from cholesterol; these molecules bind to nuclear and membrane-associated steroid receptors. Unlike other steroids that can also be made in the brain, neurosteroids bind specifically to neurotransmitter receptors, not steroid receptors. The relationships among steroids, neurosteroids, and stress are multifaceted and not yet fully understood. However, studies demonstrating altered levels of progestogens, androgens, estrogens, glucocorticoids, and their neuroactive metabolites in both developmental and adult stress paradigms strongly suggest that these molecules may be important players in stress effects on brain circuits and behavior. In this review, we discuss the influence of developmental and adult stress on various components of the brain, including neurons, glia, and perineuronal nets, with a focus on sex steroids and neurosteroids. Gaining an enhanced understanding of how early adversity impacts the intricate systems of brain steroid and neurosteroid regulation could prove instrumental in identifying novel therapeutic targets for stress-related conditions.
Collapse
Affiliation(s)
- Isha R Gore
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Elizabeth Gould
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| |
Collapse
|
14
|
Brosens N, Simon C, Kessels HW, Lucassen PJ, Krugers HJ. Early life stress lastingly alters the function and AMPA-receptor composition of glutamatergic synapses in the hippocampus of male mice. J Neuroendocrinol 2023; 35:e13346. [PMID: 37901923 DOI: 10.1111/jne.13346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 10/31/2023]
Abstract
Early postnatal life is a sensitive period of development that shapes brain structure and function later in life. Exposure to stress during this critical time window can alter brain development and may enhance the susceptibility to psychopathology and neurodegenerative disorders later in life. The developmental effects of early life stress (ELS) on synaptic function are not fully understood, but could provide mechanistic insights into how ELS modifies later brain function and disease risk. We here assessed the effects of ELS on synaptic function and composition in the hippocampus of male mice. Mice were subjected to ELS by housing dams and pups with limited bedding and nesting material from postnatal days (P) 2-9. Synaptic strength was measured in terms of miniature excitatory postsynaptic currents (mEPSCs) in the hippocampal dentate gyrus at three different developmental stages: the early postnatal phase (P9), preadolescence (P21, at weaning) and adulthood at 3 months of age (3MO). Hippocampal synaptosome fractions were isolated from P9 and 3MO tissue and analyzed for protein content to assess postsynaptic composition. Finally, dendritic spine density was assessed in the DG at 3MO. At P9, ELS increased mEPSC frequency and amplitude. In parallel, synaptic composition was altered as PSD-95, GluA3 and GluN2B content were significantly decreased. The increased mEPSC frequency was sustained up to 3MO, at which age, GluA3 content was significantly increased. No differences were found in dendritic spine density. These findings highlight how ELS affects the development of hippocampal synapses, which could provide valuable insight into mechanisms how ELS alters brain function later in life.
Collapse
Affiliation(s)
- Niek Brosens
- SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Carla Simon
- SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Paul J Lucassen
- SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Harm J Krugers
- SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Giovanniello J, Bravo-Rivera C, Rosenkranz A, Matthew Lattal K. Stress, associative learning, and decision-making. Neurobiol Learn Mem 2023; 204:107812. [PMID: 37598745 DOI: 10.1016/j.nlm.2023.107812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/02/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Exposure to acute and chronic stress has significant effects on the basic mechanisms of associative learning and memory. Stress can both impair and enhance associative learning depending on type, intensity, and persistence of the stressor, the subject's sex, the context that the stress and behavior is experienced in, and the type of associative learning taking place. In some cases, stress can cause or exacerbate the maladaptive behavior that underlies numerous psychiatric conditions including anxiety disorders, obsessive-compulsive disorder, post-traumatic stress disorder, substance use disorder, and others. Therefore, it is critical to understand how the varied effects of stress, which may normally facilitate adaptive behavior, can also become maladaptive and even harmful. In this review, we highlight several findings of associative learning and decision-making processes that are affected by stress in both human and non-human subjects and how they are related to one another. An emerging theme from this work is that stress biases behavior towards less flexible strategies that may reflect a cautious insensitivity to changing contingencies. We consider how this inflexibility has been observed in different associative learning procedures and suggest that a goal for the field should be to clarify how factors such as sex and previous experience influence this inflexibility.
Collapse
Affiliation(s)
| | - Christian Bravo-Rivera
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, PR 00935, United States.
| | - Amiel Rosenkranz
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Chicago Medical School, Rosalind Franklin University of Medicine and Science, United States.
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| |
Collapse
|
16
|
Mundorf A, Ocklenburg S. Hemispheric asymmetries in mental disorders: evidence from rodent studies. J Neural Transm (Vienna) 2023; 130:1153-1165. [PMID: 36842091 PMCID: PMC10460727 DOI: 10.1007/s00702-023-02610-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
The brain is built with hemispheric asymmetries in structure and function to enable fast neuronal processing. In neuroimaging studies, several mental disorders have been associated with altered or attenuated hemispheric asymmetries. However, the exact mechanism linking asymmetries and disorders is not known. Here, studies in animal models of mental disorders render important insights into the etiology and neuronal alterations associated with both disorders and atypical asymmetry. In this review, the current literature of animal studies in rats and mice focusing on anxiety and fear, anhedonia and despair, addiction or substance misuse, neurodegenerative disorders as well as stress exposure, and atypical hemispheric asymmetries is summarized. Results indicate overall increased right-hemispheric neuronal activity and a left-sided behavioral bias associated with symptoms of anxiety, fear, anhedonia, behavioral despair as well as stress exposure. Addiction behavior is associated with right-sided bias and transgenic models of Alzheimer's disease indicate an asymmetrical accumulation of fibrillar plaques. Most studies focused on changes in the bilateral amygdala and frontal cortex. Across studies, two crucial factors influencing atypical asymmetries arose independently of the disorder modeled: sex and developmental age. In conclusion, animal models of mental disorders demonstrate atypical hemispheric asymmetries similar to findings in patients. Particularly, increased left-sided behavior and greater right-hemispheric activity were found across models applying stress-based paradigms. However, sex- and age-dependent effects on atypical hemispheric asymmetries are present that require further investigation. Animal models enable the analysis of hemispheric changes on the molecular level which may be most effective to detect early alterations.
Collapse
Affiliation(s)
- Annakarina Mundorf
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany.
| | - Sebastian Ocklenburg
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
- ICAN Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Hamburg, Germany
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
17
|
Hardi FA, Goetschius LG, Tillem S, McLoyd V, Brooks-Gunn J, Boone M, Lopez-Duran N, Mitchell C, Hyde LW, Monk CS. Early childhood household instability, adolescent structural neural network architecture, and young adulthood depression: A 21-year longitudinal study. Dev Cogn Neurosci 2023; 61:101253. [PMID: 37182338 PMCID: PMC10200816 DOI: 10.1016/j.dcn.2023.101253] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023] Open
Abstract
Unstable and unpredictable environments are linked to risk for psychopathology, but the underlying neural mechanisms that explain how instability relate to subsequent mental health concerns remain unclear. In particular, few studies have focused on the association between instability and white matter structures despite white matter playing a crucial role for neural development. In a longitudinal sample recruited from a population-based study (N = 237), household instability (residential moves, changes in household composition, caregiver transitions in the first 5 years) was examined in association with adolescent structural network organization (network integration, segregation, and robustness of white matter connectomes; Mage = 15.87) and young adulthood anxiety and depression (six years later). Results indicate that greater instability related to greater global network efficiency, and this association remained after accounting for other types of adversity (e.g., harsh parenting, neglect, food insecurity). Moreover, instability predicted increased depressive symptoms via increased network efficiency even after controlling for previous levels of symptoms. Exploratory analyses showed that structural connectivity involving the left fronto-lateral and temporal regions were most strongly related to instability. Findings suggest that structural network efficiency relating to household instability may be a neural mechanism of risk for later depression and highlight the ways in which instability modulates neural development.
Collapse
Affiliation(s)
- Felicia A Hardi
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States of America
| | - Leigh G Goetschius
- The Hilltop Institute, University of Maryland, Baltimore County, Baltimore, MD, United States of America
| | - Scott Tillem
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States of America
| | - Vonnie McLoyd
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States of America
| | - Jeanne Brooks-Gunn
- Teachers College, Columbia University, New York, NY, United States of America; College of Physicians and Surgeons, Columbia University, New York, NY, United States of America
| | - Montana Boone
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States of America
| | - Nestor Lopez-Duran
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States of America
| | - Colter Mitchell
- Survey Research Center of the Institute for Social Research, University of Michigan, United States of America; Population Studies Center of the Institute for Social Research, University of Michigan, United States of America
| | - Luke W Hyde
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States of America; Survey Research Center of the Institute for Social Research, University of Michigan, United States of America
| | - Christopher S Monk
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States of America; Survey Research Center of the Institute for Social Research, University of Michigan, United States of America; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States of America; Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
18
|
Martins de Carvalho L, Chen H, Sutter M, Lasek AW. Sexually dimorphic role for insular perineuronal nets in aversion-resistant alcohol consumption. Front Psychiatry 2023; 14:1122423. [PMID: 36926460 PMCID: PMC10011443 DOI: 10.3389/fpsyt.2023.1122423] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
Compulsive alcohol drinking is a key symptom of alcohol use disorder (AUD) that is particularly resistant to treatment. An understanding of the biological factors that underly compulsive drinking will allow for the development of new therapeutic targets for AUD. One animal model of compulsive alcohol drinking involves the addition of bitter-tasting quinine to an ethanol solution and measuring the willingness of the animal to consume ethanol despite the aversive taste. Previous studies have demonstrated that this type of aversion-resistant drinking is modulated in the insular cortex of male mice by specialized condensed extracellular matrix known as perineuronal nets (PNNs), which form a lattice-like structure around parvalbumin-expressing neurons in the cortex. Several laboratories have shown that female mice exhibit higher levels of aversion-resistant ethanol intake, but the role of PNNs in females in this behavior has not been examined. Here we compared PNNs in the insula of male and female mice and determined if disrupting PNNs in female mice would alter aversion-resistant ethanol intake. PNNs were visualized in the insula by fluorescent labeling with Wisteria floribunda agglutinin (WFA) and disrupted in the insula by microinjecting chondroitinase ABC, an enzyme that digests the chondroitin sulfate glycosaminoglycan component of PNNs. Mice were tested for aversion-resistant ethanol consumption by the addition of sequentially increasing concentrations of quinine to the ethanol in a two-bottle choice drinking in the dark procedure. PNN staining intensity was higher in the insula of female compared to male mice, suggesting that PNNs in females might contribute to elevated aversion-resistant drinking. However, disruption of PNNs had limited effect on aversion-resistant drinking in females. In addition, activation of the insula during aversion-resistant drinking, as measured by c-fos immunohistochemistry, was lower in female mice than in males. Taken together, these results suggest that neural mechanisms underlying aversion-resistant ethanol consumption differ in males and females.
Collapse
|
19
|
Woodward EM, Ringland A, Ackerman J, Coutellier L. Prepubertal ovariectomy confers resilience to stress-induced anxiety in adult female mice. Psychoneuroendocrinology 2023; 148:105997. [PMID: 36470154 PMCID: PMC9898172 DOI: 10.1016/j.psyneuen.2022.105997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
The increased vulnerability to stress-induced neuropsychiatric disorders in women, including anxiety disorders, does not emerge until pubertal onset, suggesting a role for ovarian hormones in organizing sex-specific vulnerability to anxiety. Parvalbumin (PV) interneurons in the prefrontal cortex are a potential target for these ovarian hormones. PV+ interneurons undergo maturation during the adolescent period and have been shown to be sensitive to stress and to mediate stress-induced anxiety in female mice. To test the idea that ovarian hormones at puberty are necessary for the acquisition of sensitivity to stress, hypothetically driving the response of PV+ interneurons to stress, we performed ovariectomy or sham surgery before pubertal onset in female mice. These mice then were exposed to four weeks of unpredictable chronic mild stress in adulthood. We then assessed anxiety-like behavior and PV/FosB colocalization in the medial PFC. Additionally, we assessed stress-induced anxiety-like behavior in female mice following ovariectomy in adulthood to determine if puberty is a sensitive period for ovarian hormones in mediating vulnerability to stress. We found that prepubertal ovariectomy protects against the development of anxiety-like behavior in adulthood, an effect not found following ovariectomy in adulthood. This effect may be independent of ovarian hormones on prefrontal PV+ interneurons response to stress.
Collapse
Affiliation(s)
- Emma M Woodward
- Department of Neuroscience, Ohio State University, 255 Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH 43210, USA.
| | - Amanda Ringland
- Department of Neuroscience, Ohio State University, 255 Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH 43210, USA; Department of Psychology, Ohio State University, 1835 Neil Avenue, Columbus, OH 43210, USA.
| | - Jennifer Ackerman
- Department of Neuroscience, Ohio State University, 255 Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH 43210, USA; Department of Psychology, Ohio State University, 1835 Neil Avenue, Columbus, OH 43210, USA.
| | - Laurence Coutellier
- Department of Neuroscience, Ohio State University, 255 Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH 43210, USA; Department of Psychology, Ohio State University, 1835 Neil Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
20
|
Zhu X, Grace AA. Sex- and exposure age-dependent effects of adolescent stress on ventral tegmental area dopamine system and its afferent regulators. Mol Psychiatry 2023; 28:611-624. [PMID: 36224257 PMCID: PMC9918682 DOI: 10.1038/s41380-022-01820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
Abstract
Adolescent stress is a risk factor for schizophrenia. Emerging evidence suggests that age-dependent sensitive windows for childhood trauma are associated more strongly with adult psychosis, but the neurobiological basis and potential sex differences are unknown.Using in vivo electrophysiology and immunohistology in rats, we systematically compared the effects of two age-defined adolescent stress paradigms, prepubertal (postnatal day [PD] 21-30; PreP-S) and postpubertal (PD41-50; PostP-S) foot-shock and restraint combined stress, on ventral tegmental area (VTA) dopaminergic activity, pyramidal neuron activity in the ventral hippocampus (vHipp) and the basolateral amygdala (BLA), corticoamygdalar functional inhibitory control, and vHipp and BLA parvalbumin interneuron (PVI) impairments. These endpoints were selected based on their well-documented roles in the pathophysiology of psychosis.Overall, we found distinct sex- and exposure age-dependent stress vulnerability. Specifically, while males were selectively vulnerable to PreP-S-induced adult VTA dopamine neuron and vHipp hyperactivities, females were selectively vulnerable to PostP-S. These male selective PreP-S effects were correlated with stress-induced aberrant persistent BLA hyperactivity, dysfunctional prefrontal inhibitory control of BLA neurons, and vHipp/BLA PVI impairments. In contrast, female PostP-S only produced vHipp PVI impairments in adults, with the BLA structure and functions largely unaffected.Our results indicated distinct adolescent-sensitive periods during which stress can sex-dependently confer maximal risks to corticolimbic systems to drive dopamine hyperactivity, which provide critical insights into the neurobiological basis for sex-biased stress-related psychopathologies emphasizing but not limited to schizophrenia. Furthermore, our work also provides a framework for future translational research on age-sensitive targeted interventions.
Collapse
Affiliation(s)
- Xiyu Zhu
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Anthony A Grace
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
de Carvalho LM, Chen H, Sutter M, Lasek AW. Sexually Dimorphic Role for Insular Perineuronal Nets in Aversion-Resistant Ethanol Consumption. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525899. [PMID: 36747687 PMCID: PMC9901005 DOI: 10.1101/2023.01.27.525899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Compulsive alcohol drinking is a key symptom of alcohol use disorder (AUD) that is particularly resistant to treatment. An understanding of the biological factors that underly compulsive drinking will allow for the development of new therapeutic targets for AUD. One animal model of compulsive alcohol drinking involves the addition of bitter-tasting quinine to an ethanol solution and measuring the willingness of the animal to consume ethanol despite the aversive taste. Previous studies have demonstrated that this type of aversion-resistant drinking is modulated in the insular cortex of male mice by specialized condensed extracellular matrix known as perineuronal nets (PNNs), which form a lattice-like structure around parvalbumin-expressing neurons in the cortex. Several laboratories have shown that female mice exhibit higher levels of aversion-resistant ethanol intake but the role of PNNs in females in this behavior has not been examined. Here we compared PNNs in the insula of male and female mice and determined if disrupting PNNs in female mice would alter aversion-resistant ethanol intake. PNNs were visualized in the insula by fluorescent labeling with Wisteria floribunda agglutinin (WFA) and disrupted in the insula by microinjecting chondroitinase ABC, an enzyme that digests the chondroitin sulfate glycosaminoglycan component of PNNs. Mice were tested for aversion-resistant ethanol consumption by the addition of sequentially increasing concentrations of quinine to the ethanol in a two-bottle choice drinking in the dark procedure. PNN staining intensity was higher in the insula of female compared to male mice, suggesting that PNNs in females might contribute to elevated aversion-resistant drinking. However, disruption of PNNs had limited effect on aversion-resistant drinking in females. In addition, activation of the insula during aversion-resistant drinking, as measured by c-fos immunohistochemistry, was lower in female mice than in males. Taken together, these results suggest that neural mechanisms underlying aversion-resistant ethanol consumption differ in males and females.
Collapse
|
22
|
Points of divergence on a bumpy road: early development of brain and immune threat processing systems following postnatal adversity. Mol Psychiatry 2023; 28:269-283. [PMID: 35705633 DOI: 10.1038/s41380-022-01658-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 01/11/2023]
Abstract
Lifelong indices of maladaptive behavior or illness often stem from early physiological aberrations during periods of dynamic development. This is especially true when dysfunction is attributable to early life adversity (ELA), when the environment itself is unsuitable to support development of healthy behavior. Exposure to ELA is strongly associated with atypical sensitivity and responsivity to potential threats-a characteristic that could be adaptive in situations where early adversity prepares individuals for lifelong danger, but which often manifests in difficulties with emotion regulation and social relationships. By synthesizing findings from animal research, this review will consider threat sensitivity through the lenses of associated corticolimbic brain circuitry and immune mechanisms, both of which are immature early in life to maximize adaptation for protection against environmental challenges to an individual's well-being. The forces that drive differential development of corticolimbic circuits include caretaking stimuli, physiological and psychological stressors, and sex, which influences developmental trajectories. These same forces direct developmental processes of the immune system, which bidirectionally communicates with sensory systems and emotion regulation circuits within the brain. Inflammatory signals offer a further force influencing the timing and nature of corticolimbic plasticity, while also regulating sensitivity to future threats from the environment (i.e., injury or pathogens). The early development of these systems programs threat sensitivity through juvenility and adolescence, carving paths for probable function throughout adulthood. To strategize prevention or management of maladaptive threat sensitivity in ELA-exposed populations, it is necessary to fully understand these early points of divergence.
Collapse
|
23
|
Helman TJ, Headrick JP, Stapelberg NJC, Braidy N. The sex-dependent response to psychosocial stress and ischaemic heart disease. Front Cardiovasc Med 2023; 10:1072042. [PMID: 37153459 PMCID: PMC10160413 DOI: 10.3389/fcvm.2023.1072042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Stress is an important risk factor for modern chronic diseases, with distinct influences in males and females. The sex specificity of the mammalian stress response contributes to the sex-dependent development and impacts of coronary artery disease (CAD). Compared to men, women appear to have greater susceptibility to chronic forms of psychosocial stress, extending beyond an increased incidence of mood disorders to include a 2- to 4-fold higher risk of stress-dependent myocardial infarction in women, and up to 10-fold higher risk of Takotsubo syndrome-a stress-dependent coronary-myocardial disorder most prevalent in post-menopausal women. Sex differences arise at all levels of the stress response: from initial perception of stress to behavioural, cognitive, and affective responses and longer-term disease outcomes. These fundamental differences involve interactions between chromosomal and gonadal determinants, (mal)adaptive epigenetic modulation across the lifespan (particularly in early life), and the extrinsic influences of socio-cultural, economic, and environmental factors. Pre-clinical investigations of biological mechanisms support distinct early life programming and a heightened corticolimbic-noradrenaline-neuroinflammatory reactivity in females vs. males, among implicated determinants of the chronic stress response. Unravelling the intrinsic molecular, cellular and systems biological basis of these differences, and their interactions with external lifestyle/socio-cultural determinants, can guide preventative and therapeutic strategies to better target coronary heart disease in a tailored sex-specific manner.
Collapse
Affiliation(s)
- Tessa J. Helman
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
- Correspondence: Tessa J. Helman
| | - John P. Headrick
- Schoolof Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | | | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
| |
Collapse
|
24
|
Li Z, Sun Y, Ding L, Yang J, Huang J, Cheng M, Wu L, Zhuang Z, Chen C, Huang Y, Zhu Z, Jiang S, Huang F, Wang C, Liu S, Liu L, Lei Y. Deciphering the distinct transcriptomic and gene regulatory map in adult macaque basal ganglia cells. Gigascience 2022; 12:giad095. [PMID: 38091510 PMCID: PMC10716911 DOI: 10.1093/gigascience/giad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/09/2023] [Accepted: 10/10/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The basal ganglia are a complex of interconnected subcortical structures located beneath the mammalian cerebral cortex. The degeneration of dopaminergic neurons in the basal ganglia is the primary pathological feature of Parkinson's disease. Due to a lack of integrated analysis of multiomics datasets across multiple basal ganglia brain regions, very little is known about the regulatory mechanisms of this area. FINDINGS We utilized high-throughput transcriptomic and epigenomic analysis to profile over 270,000 single-nucleus cells to create a cellular atlas of the basal ganglia, characterizing the cellular composition of 4 regions of basal ganglia in adult macaque brain, including the striatum, substantia nigra (SN), globus pallidum, and amygdala. We found a distinct epigenetic regulation on gene expression of neuronal and nonneuronal cells across regions in basal ganglia. We identified a cluster of SN-specific astrocytes associated with neurodegenerative diseases and further explored the conserved and primate-specific transcriptomics in SN cell types across human, macaque, and mouse. Finally, we integrated our epigenetic landscape of basal ganglia cells with human disease heritability and identified a regulatory module consisting of candidate cis-regulatory elements that are specific to medium spiny neurons and associated with schizophrenia. CONCLUSIONS In general, our macaque basal ganglia atlas provides valuable insights into the comprehensive transcriptome and epigenome of the most important and populous cell populations in the macaque basal ganglia. We have identified 49 cell types based on transcriptomic profiles and 47 cell types based on epigenomic profiles, some of which exhibit region specificity, and characterized the molecular relationships underlying these brain regions.
Collapse
Affiliation(s)
- Zihao Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310030, China
| | - Yunong Sun
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310030, China
| | | | - Jing Yang
- BGI Research, Hangzhou 310030, China
| | | | | | - Liang Wu
- BGI Research, Shenzhen 518083, China
| | | | - Cheng Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310030, China
| | - Yunqi Huang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310030, China
| | - Zhiyong Zhu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310030, China
| | - Siyuan Jiang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310030, China
| | - Fubaoqian Huang
- BGI Research, Hangzhou 310030, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Chunqing Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Shenzhen 518083, China
| | - Shiping Liu
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| | - Longqi Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| | - Ying Lei
- BGI Research, Shenzhen 518083, China
| |
Collapse
|
25
|
Haikonen J, Englund J, Amarilla SP, Kharybina Z, Shintyapina A, Kegler K, Garcia MS, Atanasova T, Taira T, Hartung H, Lauri SE. Aberrant cortical projections to amygdala GABAergic neurons contribute to developmental circuit dysfunction following early life stress. iScience 2022; 26:105724. [PMID: 36582824 PMCID: PMC9792886 DOI: 10.1016/j.isci.2022.105724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/12/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Early life stress (ELS) results in enduring dysfunction of the corticolimbic circuitry, underlying emotional and social behavior. However, the neurobiological mechanisms involved remain elusive. Here, we have combined viral tracing and electrophysiological techniques to study the effects of maternal separation (MS) on frontolimbic connectivity and function in young (P14-21) rats. We report that aberrant prefrontal inputs to basolateral amygdala (BLA) GABAergic interneurons transiently increase the strength of feed-forward inhibition in the BLA, which raises LTP induction threshold in MS treated male rats. The enhanced GABAergic activity after MS exposure associates with lower functional synchronization within prefrontal-amygdala networks in vivo. Intriguingly, no differences in these parameters were detected in females, which were also resistant to MS dependent changes in anxiety-like behaviors. Impaired plasticity and synchronization during the sensitive period of circuit refinement may contribute to long-lasting functional changes in the prefrontal-amygdaloid circuitry that predispose to neuropsychiatric conditions later on in life.
Collapse
Affiliation(s)
- Joni Haikonen
- HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland,Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Jonas Englund
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Shyrley Paola Amarilla
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland,Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Zoia Kharybina
- HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland,Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Alexandra Shintyapina
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Kristel Kegler
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Marta Saez Garcia
- HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Tsvetomira Atanasova
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Tomi Taira
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Henrike Hartung
- HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Sari E. Lauri
- HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland,Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland,Corresponding author
| |
Collapse
|
26
|
Catale C, Martini A, Piscitelli RM, Senzasono B, Iacono LL, Mercuri NB, Guatteo E, Carola V. Early-life social stress induces permanent alterations in plasticity and perineuronal nets in the mouse anterior cingulate cortex. Eur J Neurosci 2022; 56:5763-5783. [PMID: 36117291 DOI: 10.1111/ejn.15825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/13/2022] [Accepted: 09/15/2022] [Indexed: 12/29/2022]
Abstract
Child maltreatment disrupts trajectories of brain development, but the underlying pathways are unclear. Stressful stimuli in early life interfere with maturation of local inhibitory circuitry and deposition of perineuronal nets (PNNs), specialized extracellular matrix structures involved in the closure of critical periods of development. Alterations in cortical PNN and parvalbumin (PV) following early-life stress (ELS) have been detected in human and animal studies. Aberrations in the anterior cingulate cortex (ACC) are the most consistent neuroimaging findings in maltreated people, but the molecular mechanisms linking ELS with ACC dysfunctions are unknown. Here, we employed a mouse model of early social threat to test whether ELS experienced in a sensitive period for ACC maturation could induce long-term aberrations of PNN and PV development in the ACC, with consequences on plasticity and ACC-dependent behavior. We found that ELS increased PNN but not PV expression in the ACC of young adult mice. This was associated with reduced frequency of inhibitory postsynaptic currents and long-term potentiation impairments and expression of intense object phobia. Our findings provide information on the long-term effects of ELS on ACC functionality and PNN formation and present evidence for a novel neurobiological pathway underlying the impact of early adversity on the brain.
Collapse
Affiliation(s)
- Clarissa Catale
- Division of Experimental Neuroscience, Neurobiology of Behavior Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Alessandro Martini
- Division of Experimental Neuroscience, Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Rosa Maria Piscitelli
- Division of Experimental Neuroscience, Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Motor Science and Wellness, Parthenope University of Naples, Naples, Italy
| | | | - Luisa Lo Iacono
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Rome, Italy
| | - Nicola B Mercuri
- Division of Experimental Neuroscience, Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Ezia Guatteo
- Division of Experimental Neuroscience, Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Motor Science and Wellness, Parthenope University of Naples, Naples, Italy
| | - Valeria Carola
- Division of Experimental Neuroscience, Neurobiology of Behavior Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
27
|
Guarque-Chabrera J, Sanchez-Hernandez A, Ibáñez-Marín P, Melchor-Eixea I, Miquel M. Role of Perineuronal nets in the cerebellar cortex in cocaine-induced conditioned preference, extinction, and reinstatement. Neuropharmacology 2022; 218:109210. [PMID: 35985392 DOI: 10.1016/j.neuropharm.2022.109210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 10/31/2022]
Abstract
Perineuronal nets (PNNs) are cartilage-like structures of extracellular matrix molecules that enwrap in a net-like manner the cell-body and proximal dendrites of special subsets of neurons. PNNs stabilize their incoming connections and restrict plasticity. Consequently, they have been proposed as a candidate mechanism for drug-induced learning and memory. In the cerebellum, PNNs surround Golgi inhibitory interneurons and both inhibitory and excitatory neurons in the deep cerebellar nuclei (DCN). Previous studies from the lab showed that cocaine-induced conditioned memory increased PNN expression in the granule cell layer of the posterior vermis. The present research aimed to investigate the role of cerebellar PNNs in cocaine-induced conditioned preference. For this purpose, we use the enzyme chondroitinase ABC (ChABC) to digest PNNs at different time points of the learning process to ascertain whether their removal can affect drug-induced memory. Our results show that PNN digestion using ChABC in the posterior vermis (Lobule VIII) did not affect the acquisition of cocaine-induced conditioned preference. However, the removal of PNNs in Lobule VIII -but not in the DCN- disrupted short-term memory of conditioned preference. Moreover, although PNN digestion facilitated the formation of extinction, reinstatement of cocaine-induced conditioned preference was encouraged under PNN digestion. The present findings suggests that PNNs around Golgi interneurons are needed to maintain cocaine-induced Pavlovian memory but also to stabilize extinction memory. Conversely, PNN degradation within the DCN did not affect stability of cocaine-induced memories. Therefore, degradation of PNNs in the vermis might be used as a promising tool to manipulate drug-induced memory.
Collapse
Affiliation(s)
- Julian Guarque-Chabrera
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Aitor Sanchez-Hernandez
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Patricia Ibáñez-Marín
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Ignasi Melchor-Eixea
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Marta Miquel
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain.
| |
Collapse
|
28
|
Baker EC, Earnhardt AL, Cilkiz KZ, Collins HC, Littlejohn BP, Cardoso RC, Ghaffari N, Long CR, Riggs PK, Randel RD, Welsh TH, Riley DG. DNA methylation patterns and gene expression from amygdala tissue of mature Brahman cows exposed to prenatal stress. Front Genet 2022; 13:949309. [PMID: 35991551 PMCID: PMC9389044 DOI: 10.3389/fgene.2022.949309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
Prenatal stress can alter postnatal performance and temperament of cattle. These phenotypic effects may result from changes in gene expression caused by stress-induced epigenetic alterations. Specifically, shifts in gene expression caused by DNA methylation within the brain’s amygdala can result in altered behavior because it regulates fear, stress response and aggression in mammals Thus, the objective of this experiment was to identify DNA methylation and gene expression differences in the amygdala tissue of 5-year-old prenatally stressed (PNS) Brahman cows compared to control cows. Pregnant Brahman cows (n = 48) were transported for 2-h periods at 60 ± 5, 80 ± 5, 100 ± 5, 120 ± 5, and 140 ± 5 days of gestation. A non-transported group (n = 48) were controls (Control). Amygdala tissue was harvested from 6 PNS and 8 Control cows at 5 years of age. Overall methylation of gene body regions, promoter regions, and cytosine-phosphate-guanine (CpG) islands were compared between the two groups. In total, 202 genes, 134 promoter regions, and 133 CpG islands exhibited differential methylation (FDR ≤ 0.15). Following comparison of gene expression in the amygdala between the PNS and Control cows, 2 differentially expressed genes were identified (FDR ≤ 0.15). The minimal differences observed could be the result of natural changes of DNA methylation and gene expression as an animal ages, or because this degree of transportation stress was not severe enough to cause lasting effects on the offspring. A younger age may be a more appropriate time to assess methylation and gene expression differences produced by prenatal stress.
Collapse
Affiliation(s)
- Emilie C. Baker
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Audrey L. Earnhardt
- Department of Animal Science, Texas A&M University, College Station, TX, United States
- Texas A&M AgriLife Research, College Station, TX, United States
- Texas A&M AgriLife Research, Overton, TX, United States
| | - Kubra Z. Cilkiz
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Haley C. Collins
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Brittni P. Littlejohn
- Department of Animal Science, Texas A&M University, College Station, TX, United States
- Texas A&M AgriLife Research, Overton, TX, United States
| | - Rodolfo C. Cardoso
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Noushin Ghaffari
- Department of Computer Science, Prairie View A&M University, Prairie View, TX, United States
| | - Charles R. Long
- Department of Animal Science, Texas A&M University, College Station, TX, United States
- Texas A&M AgriLife Research, Overton, TX, United States
| | - Penny K. Riggs
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Ronald D. Randel
- Department of Animal Science, Texas A&M University, College Station, TX, United States
- Texas A&M AgriLife Research, Overton, TX, United States
| | - Thomas H. Welsh
- Department of Animal Science, Texas A&M University, College Station, TX, United States
- Texas A&M AgriLife Research, College Station, TX, United States
| | - David G. Riley
- Department of Animal Science, Texas A&M University, College Station, TX, United States
- *Correspondence: David G. Riley,
| |
Collapse
|
29
|
Fawcett JW, Fyhn M, Jendelova P, Kwok JCF, Ruzicka J, Sorg BA. The extracellular matrix and perineuronal nets in memory. Mol Psychiatry 2022; 27:3192-3203. [PMID: 35760878 PMCID: PMC9708575 DOI: 10.1038/s41380-022-01634-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023]
Abstract
All components of the CNS are surrounded by a diffuse extracellular matrix (ECM) containing chondroitin sulphate proteoglycans (CSPGs), heparan sulphate proteoglycans (HSPGs), hyaluronan, various glycoproteins including tenascins and thrombospondin, and many other molecules that are secreted into the ECM and bind to ECM components. In addition, some neurons, particularly inhibitory GABAergic parvalbumin-positive (PV) interneurons, are surrounded by a more condensed cartilage-like ECM called perineuronal nets (PNNs). PNNs surround the soma and proximal dendrites as net-like structures that surround the synapses. Attention has focused on the role of PNNs in the control of plasticity, but it is now clear that PNNs also play an important part in the modulation of memory. In this review we summarize the role of the ECM, particularly the PNNs, in the control of various types of memory and their participation in memory pathology. PNNs are now being considered as a target for the treatment of impaired memory. There are many potential treatment targets in PNNs, mainly through modulation of the sulphation, binding, and production of the various CSPGs that they contain or through digestion of their sulphated glycosaminoglycans.
Collapse
Affiliation(s)
- James W Fawcett
- John van Geest Centre for Brain Repair, Department Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK.
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic.
| | - Marianne Fyhn
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Pavla Jendelova
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic
| | - Jessica C F Kwok
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jiri Ruzicka
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic
| | - Barbara A Sorg
- Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| |
Collapse
|
30
|
Ocklenburg S, Peterburs J, Mundorf A. Hemispheric asymmetries in the amygdala: a comparative primer. Prog Neurobiol 2022; 214:102283. [DOI: 10.1016/j.pneurobio.2022.102283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/18/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
|
31
|
Impact of stress on inhibitory neuronal circuits, our tribute to Bruce McEwen. Neurobiol Stress 2022; 19:100460. [PMID: 35734023 PMCID: PMC9207718 DOI: 10.1016/j.ynstr.2022.100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 12/03/2022] Open
Abstract
This manuscript is dedicated to the memory of Bruce S. McEwen, to commemorate the impact he had on how we understand stress and neuronal plasticity, and the profound influence he exerted on our scientific careers. The focus of this review is the impact of stressors on inhibitory circuits, particularly those of the limbic system, but we also consider other regions affected by these adverse experiences. We revise the effects of acute and chronic stress during different stages of development and lifespan, taking into account the influence of the sex of the animals. We review first the influence of stress on the physiology of inhibitory neurons and on the expression of molecules related directly to GABAergic neurotransmission, and then focus on specific interneuron subpopulations, particularly on parvalbumin and somatostatin expressing cells. Then we analyze the effects of stress on molecules and structures related to the plasticity of inhibitory neurons: the polysialylated form of the neural cell adhesion molecule and perineuronal nets. Finally, we review the potential of antidepressants or environmental manipulations to revert the effects of stress on inhibitory circuits.
Collapse
|
32
|
Chelini G, Pangrazzi L, Bozzi Y. At the Crossroad Between Resiliency and Fragility: A Neurodevelopmental Perspective on Early-Life Experiences. Front Cell Neurosci 2022; 16:863866. [PMID: 35465609 PMCID: PMC9023311 DOI: 10.3389/fncel.2022.863866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Postnatal development of the brain is characterized by sensitive windows during which, local circuitry are drastically reshaped by life experiences. These critical periods (CPs) occur at different time points for different brain functions, presenting redundant physiological changes in the underlying brain regions. Although circuits malleability during CPs provides a valuable window of opportunity for adaptive fine-tuning to the living environment, this aspect of neurodevelopment also represents a phase of increased vulnerability for the development of a variety of disorders. Consistently, accumulating epidemiological studies point to adverse childhood experience as a major risk factor for many medical conditions, especially stress- and anxiety-related conditions. Thanks to creative approaches to manipulate rodents’ rearing environment, neurobiologist have uncovered a pivotal interaction between CPs and early-life experiences, offering an interesting landscape to improve our understanding of brain disorders. In this short review, we discuss how early-life experience impacts cellular and molecular players involved in CPs of development, translating into long-lasting behavioral consequences in rodents. Bringing together findings from multiple laboratories, we delineate a unifying theory in which systemic factors dynamically target the maturation of brain functions based on adaptive needs, shifting the balance between resilience and vulnerability in response to the quality of the rearing environment.
Collapse
Affiliation(s)
- Gabriele Chelini
- CIMeC-Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- *Correspondence: Gabriele Chelini,
| | - Luca Pangrazzi
- CIMeC-Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Yuri Bozzi
- CIMeC-Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Consiglio Nazionale delle Ricerche (CNR) Neuroscience Institute, Pisa, Italy
| |
Collapse
|
33
|
Tanti A, Belliveau C, Nagy C, Maitra M, Denux F, Perlman K, Chen F, Mpai R, Canonne C, Théberge S, McFarquhar A, Davoli MA, Belzung C, Turecki G, Mechawar N. Child abuse associates with increased recruitment of perineuronal nets in the ventromedial prefrontal cortex: a possible implication of oligodendrocyte progenitor cells. Mol Psychiatry 2022; 27:1552-1561. [PMID: 34799691 PMCID: PMC9095471 DOI: 10.1038/s41380-021-01372-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022]
Abstract
Child abuse (CA) is a strong predictor of psychopathologies and suicide, altering normal trajectories of brain development in areas closely linked to emotional responses such as the prefrontal cortex (PFC). Yet, the cellular underpinnings of these enduring effects are unclear. Childhood and adolescence are marked by the protracted formation of perineuronal nets (PNNs), which orchestrate the closure of developmental windows of cortical plasticity by regulating the functional integration of parvalbumin interneurons into neuronal circuits. Using well-characterized post-mortem brain samples, we show that a history of CA is specifically associated with increased densities and morphological complexity of WFL-labeled PNNs in the ventromedial PFC (BA11/12), possibly suggesting increased recruitment and maturation of PNNs. Through single-nucleus sequencing and fluorescent in situ hybridization, we found that the expression of canonical components of PNNs is enriched in oligodendrocyte progenitor cells (OPCs), and that they are upregulated in CA victims. These correlational findings suggest that early-life adversity may lead to persistent patterns of maladaptive behaviors by reducing the neuroplasticity of cortical circuits through the enhancement of developmental OPC-mediated PNN formation.
Collapse
Affiliation(s)
- Arnaud Tanti
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
- UMR 1253, iBrain, Inserm, Université de Tours, Tours, France.
| | - Claudia Belliveau
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Malosree Maitra
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Fanny Denux
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Kelly Perlman
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Frank Chen
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Refilwe Mpai
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Candice Canonne
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Stéphanie Théberge
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Ashley McFarquhar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Maria Antonietta Davoli
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | | | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
- Department of Psychiatry, McGill University, Montréal, QC, Canada.
| |
Collapse
|
34
|
Guily P, Lassalle O, Chavis P, Manzoni OJ. Sex-specific divergent maturational trajectories in the postnatal rat basolateral amygdala. iScience 2022; 25:103815. [PMID: 35198880 PMCID: PMC8841815 DOI: 10.1016/j.isci.2022.103815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/21/2021] [Accepted: 01/20/2022] [Indexed: 01/22/2023] Open
Abstract
In rodents and humans, the basolateral amygdala (BLA), essential for emotional behaviors, is profoundly reorganized during adolescence. We compared in both sexes the morphology, neuronal, and synaptic properties of BLA neurons in rats at puberty and adulthood. BLA neurons were more excitable in males than in females at adulthood. At pubescence, male action potentials were smaller and shorter than females’ while fast afterhyperpolarizations were larger in males. During postnatal maturation, spine length increased and decreased in females and males, respectively, while there was a reduction in spine head size in females. Excitatory synaptic properties, estimated from stimuli-response relationships, spontaneous post-synaptic currents, and AMPA/NMDA ratio also displayed sex-specific maturational differences. Finally, the developmental courses of long-term potentiation and depression were sexually dimorphic. These data reveal divergent maturational trajectories in the BLA of male and female rats and suggest sex-specific substrates to the BLA linked behaviors at adolescence and adulthood. The BLA is immature at puberty and its development toward adulthood is sex-specific At adulthood, neuronal excitability is lower in females than in males The maturation of spine morphology is more pronounced in females The developmental courses of LTP and LTD are sexually divergent
Collapse
Affiliation(s)
- Pauline Guily
- INMED, INSERM U1249 Parc Scientifique de Luminy - BP 13 - 13273 Marseille Cedex 09 France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, IN, USA
| | - Olivier Lassalle
- INMED, INSERM U1249 Parc Scientifique de Luminy - BP 13 - 13273 Marseille Cedex 09 France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, IN, USA
| | - Pascale Chavis
- INMED, INSERM U1249 Parc Scientifique de Luminy - BP 13 - 13273 Marseille Cedex 09 France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, IN, USA
| | - Olivier J. Manzoni
- INMED, INSERM U1249 Parc Scientifique de Luminy - BP 13 - 13273 Marseille Cedex 09 France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, IN, USA
- Corresponding author
| |
Collapse
|
35
|
Laham BJ, Gould E. How Stress Influences the Dynamic Plasticity of the Brain’s Extracellular Matrix. Front Cell Neurosci 2022; 15:814287. [PMID: 35145379 PMCID: PMC8821883 DOI: 10.3389/fncel.2021.814287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Diffuse and structured extracellular matrix (ECM) comprise ∼20% of the brain’s volume and play important roles in development and adult plasticity. Perineuronal nets (PNNs), specialized ECM structures that surround certain types of neurons in the brain, emerge during the postnatal period, making their development and maintenance potentially sensitive to experience. Recent studies have shown that stress affects diffuse ECM as well as PNNs, and that such effects are dependent on life stage and brain region. Given that the ECM participates in synaptic plasticity, the generation of neuronal oscillations, and synchronous firing across brain regions, all of which have been linked to cognition and emotional regulation, ECM components may be candidate therapeutic targets for stress-induced neuropsychiatric disease. This review considers the influence of stress over diffuse and structured ECM during postnatal life with a focus on functional outcomes and the potential for translational relevance.
Collapse
|
36
|
Late-Onset Behavioral and Synaptic Consequences of L-Type Ca 2+ Channel Activation in the Basolateral Amygdala of Developing Rats. eNeuro 2022; 9:ENEURO.0282-21.2022. [PMID: 35064022 PMCID: PMC8868026 DOI: 10.1523/eneuro.0282-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
Postnatal CNS development is fine-tuned to drive the functional needs of succeeding life stages; accordingly, the emergence of sensory and motor functions, behavioral patterns and cognitive abilities relies on a complex interplay of signaling pathways. Strictly regulated Ca2+ signaling mediated by L-type channels (LTCCs) is crucial in neural circuit development and aberrant increases in neuronal LTCC activity are linked to neurodevelopmental and psychiatric disorders. In the amygdala, a brain region that integrates signals associated with aversive and rewarding stimuli, LTCCs contribute to NMDA-independent long-term potentiation (LTP) and are required for the consolidation and extinction of fear memory. In vitro studies have elucidated distinct electrophysiological and synaptic properties characterizing the transition from immature to functionally mature basolateral subdivision of the amygdala (BLA) principal neurons. Further, acute increase of LTCC activity selectively regulates excitability and spontaneous synaptic activity in immature BLA neurons, suggesting an age-dependent regulation of BLA circuitry by LTCCs. This study aimed to elucidate whether early life alterations in LTCC activity subsequently affect synaptic strength and amygdala-dependent behaviors in early adulthood. In vivo intra-amygdala injection of an LTCC agonist at a critical period of postnatal neurodevelopment in male rat pups was used to examine synaptic plasticity of BLA excitatory inputs, expression of immediate early genes (IEGs) and glutamate receptors, as well as anxiety and social affiliation behaviors at a juvenile age. Results indicate that enhanced LTCC activity in immature BLA principal neurons trigger persistent changes in the developmental trajectory to modify membrane properties and synaptic LTP at later stages, concomitant with alterations in amygdala-related behavioral patterns.
Collapse
|
37
|
Roubinov D, Meaney MJ, Boyce WT. Change of pace: How developmental tempo varies to accommodate failed provision of early needs. Neurosci Biobehav Rev 2021; 131:120-134. [PMID: 34547365 PMCID: PMC8648258 DOI: 10.1016/j.neubiorev.2021.09.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 07/30/2021] [Accepted: 09/16/2021] [Indexed: 01/13/2023]
Abstract
The interplay of genes and environments (GxE) is a fundamental source of variation in behavioral and developmental outcomes. Although the role of developmental time (T) in the unfolding of such interactions has yet to be fully considered, GxE operates within a temporal frame of reference across multiple timescales and degrees of biological complexity. Here, we consider GxExT interactions to understand adversity-induced developmental acceleration or deceleration whereby environmental conditions hasten or hinder children's development. To date, developmental pace changes have been largely explained through a focus on the individual: for example, how adversity "wears down" aging biological systems or how adversity accelerates or decelerates maturation to optimize reproductive fitness. We broaden such theories by positing shifts in developmental pace in response to the parent-child dyad's capacity or incapacity for meeting children's early, physiological and safety needs. We describe empirical evidence and potential neurobiological mechanisms supporting this new conceptualization of developmental acceleration and deceleration. We conclude with suggestions for future research on the developmental consequences of early adverse exposures.
Collapse
Affiliation(s)
- Danielle Roubinov
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, United States.
| | - Michael J Meaney
- Department of Psychiatry and Sackler Program for Epigenetics and Psychobiology, McGill University, Montreal, Quebec, H3H 1R4, Canada; Child and Brain Development Program, CIFAR, Toronto, Ontario, M5G 1M1, Canada; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A ⁎STAR), 117609, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
| | - W Thomas Boyce
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, United States; Child and Brain Development Program, CIFAR, Toronto, Ontario, M5G 1M1, Canada; Department of Pediatrics, University of California, San Francisco, United States
| |
Collapse
|
38
|
Woodward EM, Coutellier L. Age- and sex-specific effects of stress on parvalbumin interneurons in preclinical models: Relevance to sex differences in clinical neuropsychiatric and neurodevelopmental disorders. Neurosci Biobehav Rev 2021; 131:1228-1242. [PMID: 34718048 PMCID: PMC8642301 DOI: 10.1016/j.neubiorev.2021.10.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/06/2021] [Accepted: 10/23/2021] [Indexed: 01/06/2023]
Abstract
Stress is a major risk factor for neurodevelopmental and neuropsychiatric disorders, with the capacity to impact susceptibility to disease as well as long-term neurobiological and behavioral outcomes. Parvalbumin (PV) interneurons, the most prominent subtype of GABAergic interneurons in the cortex, are uniquely responsive to stress due to their protracted development throughout the highly plastic neonatal period and into puberty and adolescence. Additionally, PV + interneurons appear to respond to stress in a sex-specific manner. This review aims to discuss existing preclinical studies that support our overall hypothesis that the sex-and age-specific impacts of stress on PV + interneurons contribute to differences in individual vulnerability to stress across the lifespan, particularly in regard to sex differences in the diagnostic rate of neurodevelopmental and neuropsychiatric diseases in clinical populations. We also emphasize the importance of studying sex as a biological variable to fully understand the mechanistic and behavioral differences between males and females in models of neuropsychiatric disease.
Collapse
Affiliation(s)
- Emma M Woodward
- Department of Neuroscience, Ohio State University, 255 Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH, 43210, United States
| | - Laurence Coutellier
- Department of Neuroscience, Ohio State University, 255 Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH, 43210, United States; Department of Psychology, Ohio State University, 53 Psychology Building, 1835 Neil Avenue, Columbus, OH, 43210, United States.
| |
Collapse
|
39
|
Ellis SN, Honeycutt JA. Sex Differences in Affective Dysfunction and Alterations in Parvalbumin in Rodent Models of Early Life Adversity. Front Behav Neurosci 2021; 15:741454. [PMID: 34803622 PMCID: PMC8600234 DOI: 10.3389/fnbeh.2021.741454] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/13/2021] [Indexed: 01/08/2023] Open
Abstract
The early life environment markedly influences brain and behavioral development, with adverse experiences associated with increased risk of anxiety and depressive phenotypes, particularly in females. Indeed, early life adversity (ELA) in humans (i.e., caregiver deprivation, maltreatment) and rodents (i.e., maternal separation, resource scarcity) is associated with sex-specific emergence of anxious and depressive behaviors. Although these disorders show clear sex differences in humans, little attention has been paid toward evaluating sex as a biological variable in models of affective dysfunction; however, recent rodent work suggests sex-specific effects. Two widely used rodent models of ELA approximate caregiver deprivation (i.e., maternal separation) and resource scarcity (i.e., limited bedding). While these approaches model aspects of ELA experienced in humans, they span different portions of the pre-weaning developmental period and may therefore differentially contribute to underlying mechanistic risk. This is borne out in the literature, where evidence suggests differences in trajectories of behavior depending on the type of ELA and/or sex; however, the neural underpinning of these differences is not well understood. Because anxiety and depression are thought to involve dysregulation in the balance of excitatory and inhibitory signaling in ELA-vulnerable brain regions (e.g., prefrontal cortex, amygdala, hippocampus), outcomes are likely driven by alterations in local and/or circuit-specific inhibitory activity. The most abundant GABAergic subtypes in the brain, accounting for approximately 40% of inhibitory neurons, contain the calcium-binding protein Parvalbumin (PV). As PV-expressing neurons have perisomatic and proximal dendritic targets on pyramidal neurons, they are well-positioned to regulate excitatory/inhibitory balance. Recent evidence suggests that PV outcomes following ELA are sex, age, and region-specific and may be influenced by the type and timing of ELA. Here, we suggest the possibility of a combined role of PV and sex hormones driving differences in behavioral outcomes associated with affective dysfunction following ELA. This review evaluates the literature across models of ELA to characterize neural (PV) and behavioral (anxiety- and depressive-like) outcomes as a function of sex and age. Additionally, we detail a putative mechanistic role of PV on ELA-related outcomes and discuss evidence suggesting hormone influences on PV expression/function which may help to explain sex differences in ELA outcomes.
Collapse
Affiliation(s)
- Seneca N Ellis
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Jennifer A Honeycutt
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States.,Department of Psychology, Bowdoin College, Brunswick, ME, United States
| |
Collapse
|
40
|
Perlman G, Tanti A, Mechawar N. Parvalbumin interneuron alterations in stress-related mood disorders: A systematic review. Neurobiol Stress 2021; 15:100380. [PMID: 34557569 PMCID: PMC8446799 DOI: 10.1016/j.ynstr.2021.100380] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/23/2022] Open
Abstract
Stress-related psychiatric disorders including depression involve complex cellular and molecular changes in the brain, and GABAergic signaling dysfunction is increasingly implicated in the etiology of mood disorders. Parvalbumin (PV)-expressing neurons are fast-spiking interneurons that, among other roles, coordinate synchronous neuronal firing. Mounting evidence suggests that the PV neuron phenotype is altered by stress and in mood disorders. In this systematic review, we assessed PV interneuron alterations in psychiatric disorders as reported in human postmortem brain studies and animal models of environmental stress. This review aims to 1) comprehensively catalog evidence of PV cell function in mood disorders (humans) and stress models of mood disorders (animals); 2) analyze the strength of evidence of PV interneuron alterations in various brain regions in humans and rodents; 3) determine whether the modulating effect of antidepressant treatment, physical exercise, and environmental enrichment on stress in animals associates with particular effects on PV function; and 4) use this information to guide future research avenues. Its principal findings, derived mainly from rodent studies, are that stress-related changes in PV cells are only reported in a minority of studies, that positive findings are region-, age-, sex-, and stress recency-dependent, and that antidepressants protect from stress-induced apparent PV cell loss. These observations do not currently translate well to humans, although the postmortem literature on the topic remains limited.
Collapse
Affiliation(s)
| | - Arnaud Tanti
- Corresponding author. McGill Group for Suicide Studies, Department of Psychiaty, McGill University, Douglas Mental Health University Institute, 6875 LaSalle blvd, Verdun, Qc, H4H 1R3, Canada
| | - Naguib Mechawar
- Corresponding author. McGill Group for Suicide Studies, Department of Psychiaty, McGill University, Douglas Mental Health University Institute, 6875 LaSalle blvd, Verdun, Qc, H4H 1R3, Canada
| |
Collapse
|
41
|
Meftahi GH, Jangravi Z, Taghdir M, Sepandi M, Bahari Z. Micro-injection of propranolol within basolateral amygdala impaired fear and spatial memory and dysregulated evoked responses of CA1 neurons following foot shock stress in rats. Brain Res Bull 2021; 177:12-21. [PMID: 34534638 DOI: 10.1016/j.brainresbull.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/18/2022]
Abstract
The basolateral nucleus of the amygdala (BLA) is responsible for memory retrieval after stress. It regulates hippocampal long-term potentiation (LTP) during stress. Although β-adrenoceptors of the BLA have a critical role in memory, few studies have addressed this question in the BLA, and the results still have been contradictory. The present study was designed to investigate the involvement of β-adrenoceptors of the BLA on hippocampus memory, anxiety, and plasticity in intact and stressed rats. Male Wistar rats were submitted to the electrical foot-shock stress for four consecutive days. Over four consecutive days, animals received bilateral micro-injections of either vehicle or propranolol (4 µg in 1 µl/side) into the BLA (5 min before foot-shock stress). Behavioral (memory, as well as anxiety-like behaviors), electrophysiological, and histological (neural arborization in the hippocampal CA1 pyramidal neurons) studies were performed. Results showed that inhibition of β-adrenoceptors of BLA by propranolol significantly further impaired fear and spatial memory in stressed rats. Similarly, propranolol effectively impaired both memories in the intact animals. Propranolol significantly amplified the slope and amplitude of fEPSP in the CA1 area of the hippocampus only in stressed rats. Foot-shock stress significantly increased the number of dendritic branches in the hippocampus, and propranolol suppressed this effect of stress. It is suggested that β-adrenoceptors in the BLA promote memory and reduce anxiety-like behaviors under tonic and stress conditions. Propranolol dysregulated LTP parameters and reduced dendritic branches, resulting in memory impairment. Probably β-adrenoceptors of BLA regulate evoked responses of CA1 neurons only in stress- and not the tonic condition.
Collapse
Affiliation(s)
| | - Zohreh Jangravi
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Taghdir
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mojtaba Sepandi
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Bahari
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Guadagno A, Belliveau C, Mechawar N, Walker CD. Effects of Early Life Stress on the Developing Basolateral Amygdala-Prefrontal Cortex Circuit: The Emerging Role of Local Inhibition and Perineuronal Nets. Front Hum Neurosci 2021; 15:669120. [PMID: 34512291 PMCID: PMC8426628 DOI: 10.3389/fnhum.2021.669120] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023] Open
Abstract
The links between early life stress (ELS) and the emergence of psychopathology such as increased anxiety and depression are now well established, although the specific neurobiological and developmental mechanisms that translate ELS into poor health outcomes are still unclear. The consequences of ELS are complex because they depend on the form and severity of early stress, duration, and age of exposure as well as co-occurrence with other forms of physical or psychological trauma. The long term effects of ELS on the corticolimbic circuit underlying emotional and social behavior are particularly salient because ELS occurs during critical developmental periods in the establishment of this circuit, its local balance of inhibition:excitation and its connections with other neuronal pathways. Using examples drawn from the human and rodent literature, we review some of the consequences of ELS on the development of the corticolimbic circuit and how it might impact fear regulation in a sex- and hemispheric-dependent manner in both humans and rodents. We explore the effects of ELS on local inhibitory neurons and the formation of perineuronal nets (PNNs) that terminate critical periods of plasticity and promote the formation of stable local networks. Overall, the bulk of ELS studies report transient and/or long lasting alterations in both glutamatergic circuits and local inhibitory interneurons (INs) and their associated PNNs. Since the activity of INs plays a key role in the maturation of cortical regions and the formation of local field potentials, alterations in these INs triggered by ELS might critically participate in the development of psychiatric disorders in adulthood, including impaired fear extinction and anxiety behavior.
Collapse
Affiliation(s)
- Angela Guadagno
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Claudia Belliveau
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Claire-Dominique Walker
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
43
|
Roddy D, Kelly JR, Farrell C, Doolin K, Roman E, Nasa A, Frodl T, Harkin A, O'Mara S, O'Hanlon E, O'Keane V. Amygdala substructure volumes in Major Depressive Disorder. NEUROIMAGE-CLINICAL 2021; 31:102781. [PMID: 34384996 PMCID: PMC8361319 DOI: 10.1016/j.nicl.2021.102781] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/02/2021] [Accepted: 08/01/2021] [Indexed: 11/27/2022]
Abstract
The role of the amygdala in the experience of emotional states and stress is well established. Connections from the amygdala to the hypothalamus activate the hypothalamic-pituitaryadrenal (HPA) axis and the cortisol response. Previous studies have failed to find consistent whole amygdala volume changes in Major Depressive Disorder (MDD), but differences may exist at the smaller substructural level of the amygdala nuclei. High-resolution T1 and T2-weighted-fluid-attenuated inversion recovery MRIs were compared between 80 patients with MDD and 83 healthy controls (HC) using the automated amygdala substructure module in FreeSurfer 6.0. Volumetric assessments were performed for individual nuclei and three anatomico-functional composite groups of nuclei. Salivary cortisol awakening response (CAR), as a measure of HPA responsivity, was measured in a subset of patients. The right medial nucleus volume was larger in MDD compared to HC (p = 0.002). Increased right-left volume ratios were found in MDD for the whole amygdala (p = 0.004), the laterobasal composite (p = 0.009) and in the central (p = 0.003) and medial (p = 0.014) nuclei. The CAR was not significantly different between MDD and HC. Within the MDD group the left corticoamygdaloid transition area was inversely correlated with the CAR, as measured by area under the curve (AUCg) (p ≤ 0.0001). In conclusion, our study found larger right medial nuclei volumes in MDD compared to HC and relatively increased right compared to left whole and substructure volume ratios in MDD. The results suggest that amygdala substructure volumes may be involved in the pathophysiology of depression.
Collapse
Affiliation(s)
- Darren Roddy
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - John R Kelly
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland.
| | - Chloë Farrell
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Kelly Doolin
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Elena Roman
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Anurag Nasa
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Thomas Frodl
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Andrew Harkin
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Shane O'Mara
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Erik O'Hanlon
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Veronica O'Keane
- Trinity College Institute of Neuroscience, Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
44
|
Abstract
Childhood socio-economic status (SES), a measure of the availability of material and social resources, is one of the strongest predictors of lifelong well-being. Here we review evidence that experiences associated with childhood SES affect not only the outcome but also the pace of brain development. We argue that higher childhood SES is associated with protracted structural brain development and a prolonged trajectory of functional network segregation, ultimately leading to more efficient cortical networks in adulthood. We hypothesize that greater exposure to chronic stress accelerates brain maturation, whereas greater access to novel positive experiences decelerates maturation. We discuss the impact of variation in the pace of brain development on plasticity and learning. We provide a generative theoretical framework to catalyse future basic science and translational research on environmental influences on brain development.
Collapse
Affiliation(s)
- Ursula A Tooley
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Allyson P Mackey
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
45
|
Manns M, Basbasse YE, Freund N, Ocklenburg S. Paw preferences in mice and rats: Meta-analysis. Neurosci Biobehav Rev 2021; 127:593-606. [PMID: 34004244 DOI: 10.1016/j.neubiorev.2021.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Mice and rats are among the most common animal model species in both basic and clinical neuroscience. Despite their ubiquity as model species, many clinically relevant brain-behaviour relationships in rodents are not well understood. In particular, data on hemispheric asymmetries, an important organizational principle in the vertebrate brain, are conflicting as existing studies are often statistically underpowered due to small sample sizes. Paw preference is one of the most frequently investigated forms of hemispheric asymmetries on the behavioural level. Here, we used meta-analysis to statistically integrate findings on paw preferences in rats and mice. For both species, results indicate significant hemispheric asymmetries on the individual level. In mice, 81 % of animals showed a preference for either the left or the right paw, while 84 % of rats showed this preference. However, contrary to what has been reported in humans, population level asymmetries were not observed. These results are particularly significant as they point out that paying attention to potential individual hemispheric differences is important in both basic and clinical neuroscience.
Collapse
Affiliation(s)
- Martina Manns
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Germany.
| | - Yasmin El Basbasse
- Institute of Cognitive Neuroscience, Department Biopsychology, Faculty of Psychology, Ruhr University Bochum, Germany
| | - Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Germany
| | - Sebastian Ocklenburg
- Institute of Cognitive Neuroscience, Department Biopsychology, Faculty of Psychology, Ruhr University Bochum, Germany
| |
Collapse
|
46
|
Wingert JC, Sorg BA. Impact of Perineuronal Nets on Electrophysiology of Parvalbumin Interneurons, Principal Neurons, and Brain Oscillations: A Review. Front Synaptic Neurosci 2021; 13:673210. [PMID: 34040511 PMCID: PMC8141737 DOI: 10.3389/fnsyn.2021.673210] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022] Open
Abstract
Perineuronal nets (PNNs) are specialized extracellular matrix structures that surround specific neurons in the brain and spinal cord, appear during critical periods of development, and restrict plasticity during adulthood. Removal of PNNs can reinstate juvenile-like plasticity or, in cases of PNN removal during early developmental stages, PNN removal extends the critical plasticity period. PNNs surround mainly parvalbumin (PV)-containing, fast-spiking GABAergic interneurons in several brain regions. These inhibitory interneurons profoundly inhibit the network of surrounding neurons via their elaborate contacts with local pyramidal neurons, and they are key contributors to gamma oscillations generated across several brain regions. Among other functions, these gamma oscillations regulate plasticity associated with learning, decision making, attention, cognitive flexibility, and working memory. The detailed mechanisms by which PNN removal increases plasticity are only beginning to be understood. Here, we review the impact of PNN removal on several electrophysiological features of their underlying PV interneurons and nearby pyramidal neurons, including changes in intrinsic and synaptic membrane properties, brain oscillations, and how these changes may alter the integration of memory-related information. Additionally, we review how PNN removal affects plasticity-associated phenomena such as long-term potentiation (LTP), long-term depression (LTD), and paired-pulse ratio (PPR). The results are discussed in the context of the role of PV interneurons in circuit function and how PNN removal alters this function.
Collapse
Affiliation(s)
- Jereme C Wingert
- Program in Neuroscience, Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, United States
| | - Barbara A Sorg
- Program in Neuroscience, Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, United States
| |
Collapse
|
47
|
Postnatal Fluoxetine Treatment Alters Perineuronal Net Formation and Maintenance in the Hippocampus. eNeuro 2021; 8:ENEURO.0424-20.2021. [PMID: 33622703 PMCID: PMC8046023 DOI: 10.1523/eneuro.0424-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/20/2023] Open
Abstract
Elevation of serotonin via postnatal fluoxetine (PNFlx) treatment during critical temporal windows is hypothesized to perturb the development of limbic circuits thus establishing a substratum for persistent disruption of mood-related behavior. We examined the impact of PNFlx treatment on the formation and maintenance of perineuronal nets (PNNs), extracellular matrix (ECM) structures that deposit primarily around inhibitory interneurons, and mark the closure of critical period plasticity. PNFlx treatment evoked a significant decline in PNN number, with a robust reduction in PNNs deposited around parvalbumin (PV) interneurons, within the CA1 and CA3 hippocampal subfields at postnatal day (P)21 in Sprague Dawley rat pups. While the reduction in CA1 subfield PNN number was still observed in adulthood, we observed no change in colocalization of PV-positive interneurons with PNNs in the hippocampi of adult PNFlx animals. PNFlx treatment did not alter hippocampal PV, calretinin (CalR), or Reelin-positive neuron numbers in PNFlx animals at P21 or in adulthood. We did observe a small, but significant increase in somatostatin (SST)-positive interneurons in the DG subfield of PNFlx-treated animals in adulthood. This was accompanied by altered GABA-A receptor subunit composition, increased dendritic complexity of apical dendrites of CA1 pyramidal neurons, and enhanced neuronal activation revealed by increased c-Fos-positive cell numbers within hippocampi of PNFlx-treated animals in adulthood. These results indicate that PNFlx treatment alters the formation of PNNs within the hippocampus, raising the possibility of a disruption of excitation-inhibition (E/I) balance within this key limbic brain region.
Collapse
|
48
|
An Extracellular Perspective on CNS Maturation: Perineuronal Nets and the Control of Plasticity. Int J Mol Sci 2021; 22:ijms22052434. [PMID: 33670945 PMCID: PMC7957817 DOI: 10.3390/ijms22052434] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
During restricted time windows of postnatal life, called critical periods, neural circuits are highly plastic and are shaped by environmental stimuli. In several mammalian brain areas, from the cerebral cortex to the hippocampus and amygdala, the closure of the critical period is dependent on the formation of perineuronal nets. Perineuronal nets are a condensed form of an extracellular matrix, which surrounds the soma and proximal dendrites of subsets of neurons, enwrapping synaptic terminals. Experimentally disrupting perineuronal nets in adult animals induces the reactivation of critical period plasticity, pointing to a role of the perineuronal net as a molecular brake on plasticity as the critical period closes. Interestingly, in the adult brain, the expression of perineuronal nets is remarkably dynamic, changing its plasticity-associated conditions, including memory processes. In this review, we aimed to address how perineuronal nets contribute to the maturation of brain circuits and the regulation of adult brain plasticity and memory processes in physiological and pathological conditions.
Collapse
|
49
|
Richardson R, Bowers J, Callaghan BL, Baker KD. Does maternal separation accelerate maturation of perineuronal nets and parvalbumin-containing inhibitory interneurons in male and female rats? Dev Cogn Neurosci 2020; 47:100905. [PMID: 33385787 PMCID: PMC7786030 DOI: 10.1016/j.dcn.2020.100905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 11/22/2022] Open
Abstract
Maternal separation did not accelerate maturation of PNNs in amygdala or PFC. Maternal separation did not affect PV density in infant and juveniles. No sex differences were observed in effects of maternal separation on PNNs or PV. Impact of early adversity may be more easily seen with functional neural measures.
Early life adversity impacts on a range of emotional, cognitive, and psychological processes. A recent theoretical model suggests that at least some of these effects are due to accelerated maturation of specific physiological systems and/or neural circuits. For example, maternal separation (MS), a model of early life adversity in rodents, accelerates maturation of memory systems, and here we examined its impact on maturation of perineuronal nets (PNNs) and parvalbumin (PV)-containing inhibitory interneurons. PNNs are specialized extracellular matrix structures suggested to be involved in stabilizing long-term memories and in the closure of a sensitive period in memory development. PV-containing inhibitory interneurons are the type of cell that PNNs preferentially surround, and are also thought to be involved in memory. In Experiment 1, with male rats, there was an increase in PNNs in both the amygdala and prefrontal cortex with age from infancy to juvenility. Contrary to prediction, MS had no impact on either PNN or PV expression. The same pattern was observed in female rats in Experiment 2. Taken together, these data show that the early maturation of memory in MS infants is not due to an accelerated maturation of PNNs or PV-containing cells in either the amygdala or prefrontal cortex.
Collapse
Affiliation(s)
| | - Jeremy Bowers
- School of Psychology, UNSW Sydney, NSW, 2052, Australia
| | - Bridget L Callaghan
- Department of Psychology, University of California - Los Angeles, Los Angeles, CA, United States
| | | |
Collapse
|