1
|
Freitas C, Hunt BAE, Wong SM, Ristic L, Fragiadakis S, Chow S, Iaboni A, Brian J, Soorya L, Chen JL, Schachar R, Dunkley BT, Taylor MJ, Lerch JP, Anagnostou E. Atypical Functional Connectivity During Unfamiliar Music Listening in Children With Autism. Front Neurosci 2022; 16:829415. [PMID: 35516796 PMCID: PMC9063167 DOI: 10.3389/fnins.2022.829415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/10/2022] [Indexed: 12/30/2022] Open
Abstract
Background Atypical processing of unfamiliar, but less so familiar, stimuli has been described in Autism Spectrum Disorder (ASD), in particular in relation to face processing. We examined the construct of familiarity in ASD using familiar and unfamiliar songs, to investigate the link between familiarity and autism symptoms, such as repetitive behavior. Methods Forty-eight children, 24 with ASD (21 males, mean age = 9.96 years ± 1.54) and 24 typically developing (TD) controls (21 males, mean age = 10.17 ± 1.90) completed a music familiarity task using individually identified familiar compared to unfamiliar songs, while magnetoencephalography (MEG) was recorded. Each song was presented for 30 s. We used both amplitude envelope correlation (AEC) and the weighted phase lag index (wPLI) to assess functional connectivity between specific regions of interest (ROI) and non-ROI parcels, as well as at the whole brain level, to understand what is preserved and what is impaired in familiar music listening in this population. Results Increased wPLI synchronization for familiar vs. unfamiliar music was found for typically developing children in the gamma frequency. There were no significant differences within the ASD group for this comparison. During the processing of unfamiliar music, we demonstrated left lateralized increased theta and beta band connectivity in children with ASD compared to controls. An interaction effect found greater alpha band connectivity in the TD group compared to ASD to unfamiliar music only, anchored in the left insula. Conclusion Our results revealed atypical processing of unfamiliar songs in children with ASD, consistent with previous studies in other modalities reporting that processing novelty is a challenge for ASD. Relatively typical processing of familiar stimuli may represent a strength and may be of interest to strength-based intervention planning.
Collapse
Affiliation(s)
- Carina Freitas
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Benjamin A. E. Hunt
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Simeon M. Wong
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Leanne Ristic
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Susan Fragiadakis
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Stephanie Chow
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Alana Iaboni
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Jessica Brian
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Latha Soorya
- Department of Psychiatry, Rush University Medical Center, Chicago, IL, United States
| | - Joyce L. Chen
- Faculty of Kinesiology and Physical Education and Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Russell Schachar
- Department of Psychiatry Research, Hospital for Sick Children, Toronto, ON, Canada
| | - Benjamin T. Dunkley
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Margot J. Taylor
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Departments of Psychology and Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Jason P. Lerch
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Evdokia Anagnostou
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Samuelsson JG, Sundaram P, Khan S, Sereno MI, Hämäläinen MS. Detectability of cerebellar activity with magnetoencephalography and electroencephalography. Hum Brain Mapp 2020; 41:2357-2372. [PMID: 32115870 PMCID: PMC7244390 DOI: 10.1002/hbm.24951] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/15/2019] [Accepted: 02/01/2020] [Indexed: 12/31/2022] Open
Abstract
Electrophysiological signals from the cerebellum have traditionally been viewed as inaccessible to magnetoencephalography (MEG) and electroencephalography (EEG). Here, we challenge this position by investigating the ability of MEG and EEG to detect cerebellar activity using a model that employs a high‐resolution tessellation of the cerebellar cortex. The tessellation was constructed from repetitive high‐field (9.4T) structural magnetic resonance imaging (MRI) of an ex vivo human cerebellum. A boundary‐element forward model was then used to simulate the M/EEG signals resulting from neural activity in the cerebellar cortex. Despite significant signal cancelation due to the highly convoluted cerebellar cortex, we found that the cerebellar signal was on average only 30–60% weaker than the cortical signal. We also made detailed M/EEG sensitivity maps and found that MEG and EEG have highly complementary sensitivity distributions over the cerebellar cortex. Based on previous fMRI studies combined with our M/EEG sensitivity maps, we discuss experimental paradigms that are likely to offer high M/EEG sensitivity to cerebellar activity. Taken together, these results show that cerebellar activity should be clearly detectable by current M/EEG systems with an appropriate experimental setup.
Collapse
Affiliation(s)
- John G Samuelsson
- Harvard-MIT Division of Health Sciences and Technology (HST), Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Padmavathi Sundaram
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Sheraz Khan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Martin I Sereno
- Department of Psychology and Neuroimaging Center, San Diego State University, San Diego, California, USA.,Experimental Psychology, University College London, London, UK
| | - Matti S Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Ioannides AA, Liu L, Poghosyan V, Kostopoulos GK. Using MEG to Understand the Progression of Light Sleep and the Emergence and Functional Roles of Spindles and K-Complexes. Front Hum Neurosci 2017; 11:313. [PMID: 28670270 PMCID: PMC5472839 DOI: 10.3389/fnhum.2017.00313] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 05/31/2017] [Indexed: 12/20/2022] Open
Abstract
We used tomographic analysis of MEG signals to characterize regional spectral changes in the brain at sleep onset and during light sleep. We identified two key processes that may causally link to loss of consciousness during the quiet or "core" periods of NREM1. First, active inhibition in the frontal lobe leads to delta and theta spectral power increases. Second, activation suppression leads to sharp drop of spectral power in alpha and higher frequencies in posterior parietal cortex. During NREM2 core periods, the changes identified in NREM1 become more widespread, but focal increases also emerge in alpha and low sigma band power in frontal midline cortical structures, suggesting reemergence of some monitoring of internal and external environment. Just before spindles and K-complexes (KCs), the hallmarks of NREM2, we identified focal spectral power changes in pre-frontal cortex, mid cingulate, and areas involved in environmental and internal monitoring, i.e., the rostral and sub-genual anterior cingulate. During both spindles and KCs, alpha and low sigma bands increases. Spindles emerge after further active inhibition (increase in delta power) of the frontal areas responsible for environmental monitoring, while in posterior parietal cortex, power increases in low and high sigma bands. KCs are correlated with increase in alpha power in the monitoring areas. These specific regional changes suggest strong and varied vigilance changes for KCs, but vigilance suppression and sharpening of cognitive processing for spindles. This is consistent with processes designed to ensure accurate and uncorrupted memory consolidation. The changes during KCs suggest a sentinel role: evaluation of the salience of provoking events to decide whether to increase processing and possibly wake up, or to actively inhibit further processing of intruding influences. The regional spectral patterns of NREM1, NREM2, and their dynamic changes just before spindles and KCs reveal an edge effect facilitating the emergence of spindles and KCs and defining the precise loci where they might emerge. In the time domain, the spindles are seen in widespread areas of the cortex just as reported from analysis of intracranial data, consistent with the emerging consensus of a differential topography that depends on the kind of memory stored.
Collapse
Affiliation(s)
- Andreas A. Ioannides
- Laboratory for Human Brain Dynamics, AAI Scientific Cultural Services Ltd.Nicosia, Cyprus
| | - Lichan Liu
- Laboratory for Human Brain Dynamics, AAI Scientific Cultural Services Ltd.Nicosia, Cyprus
| | - Vahe Poghosyan
- Laboratory for Human Brain Dynamics, AAI Scientific Cultural Services Ltd.Nicosia, Cyprus
- MEG Unit, Department of Neurophysiology, King Fahad Medical CityRiyadh, Saudi Arabia
| | - George K. Kostopoulos
- Neurophysiology Unit, Department of Physiology, Medical School, University of PatrasRion, Greece
| |
Collapse
|
4
|
Vvedensky VL, Prokofyev AO. Timing of Cortical Events Preceding Voluntary Movement. Neural Comput 2015; 28:286-304. [PMID: 26654207 DOI: 10.1162/neco_a_00802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We studied magnetic signals from the human brain recorded during a second before a self-paced finger movement. Sharp triangular peaks were observed in the averaged signals about 0.7 second before the finger movement. The amplitude of the peaks varied considerably from trial to trial, which indicated that the peaks were concurrent with much longer oscillatory processes. One can cluster trials into distinct groups with characteristic sequences of events. Prominent short trains of pulses in the beta frequency band were identified in the premovement period. This observation suggests that during preparation of the intended movement, cortical activity is well organized in time but differs from trial to trial. Magnetoencephalography can capture these processes with high temporal resolution and allows their study in fine detail.
Collapse
Affiliation(s)
- Victor L Vvedensky
- MEG Center, Moscow State University of Psychology and Education, Moscow, Russian Federation, 107045, and Kurchatov Institute, Moscow, Russian Federation, 123182
| | - Andrey O Prokofyev
- MEG Center, Moscow State University of Psychology and Education, Kurchatov University, Moscow, Russian Federation, 107045
| |
Collapse
|
5
|
Neely KA, Morris LJ. Non-target stimuli in the visual field influence movement preparation in upper-limb reaching. Neurosci Lett 2015. [PMID: 26222255 DOI: 10.1016/j.neulet.2015.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present work provides an empirical test of the Dynamic Field Theory of visuospatial cognition. The Dynamic Field Theory is a bi-stable neural network model applied to explain how visual information is integrated during the preparation of reaching responses (Erlhagen and Schöner). The dynamic field theory posits that motor cortices develop peaks of activation for each possible target in the visual field. Targets that are close in space produce neural peaks with overlapping distributions, whereas targets that are far apart produce distinct peaks with non-overlapping distributions. As such, the Dynamic Field Theory predicts reaction times to potential targets that are close in space will be faster than those to targets that are far apart. The present work examined how proximal and distal distractors impact reaction time in an upper-limb reaching task. The results demonstrated that distal distractors result in prolonged reaction times compared to proximal distractors. We suggest that reaction time represents the time required to inhibit neural activity representing the location of the distractor. Thus, prolonged reaction times observed for distal distractors reflect the temporal demands associated with the competition of two non-overlapping distributions of activity in the brain. These findings support the tenets of the Dynamic Field Theory and demonstrate that non-target stimuli in the visual field can influence movement preparation.
Collapse
Affiliation(s)
- Kristina A Neely
- Department of Kinesiology, The Pennsylvania State University, USA.
| | - Laura J Morris
- Department of Kinesiology, The Pennsylvania State University, USA
| |
Collapse
|
6
|
Neumann WJ, Jha A, Bock A, Huebl J, Horn A, Schneider GH, Sander TH, Litvak V, Kühn AA. Cortico-pallidal oscillatory connectivity in patients with dystonia. Brain 2015; 138:1894-906. [PMID: 25935723 DOI: 10.1093/brain/awv109] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/26/2015] [Indexed: 12/12/2022] Open
Abstract
Primary dystonia has been associated with an underlying dysfunction of a wide network of brain regions including the motor cortex, basal ganglia, cerebellum, brainstem and spinal cord. Dystonia can be effectively treated by pallidal deep brain stimulation although the mechanism of this effect is not well understood. Here, we sought to characterize cortico-basal ganglia functional connectivity using a frequency-specific measure of connectivity-coherence. We recorded direct local field potentials from the human pallidum simultaneously with whole head magnetoencephalography to characterize functional connectivity in the cortico-pallidal oscillatory network in nine patients with idiopathic dystonia. Three-dimensional cortico-pallidal coherence images were compared to surrogate images of phase shuffled data across patients to reveal clusters of significant coherence (family-wise error P < 0.01, voxel extent 1000). Three frequency-specific, spatially-distinct cortico-pallidal networks have been identified: a pallido-temporal source of theta band (4-8 Hz) coherence, a pallido-cerebellar source of alpha band (7-13 Hz) coherence and a cortico-pallidal source of beta band (13-30 Hz) coherence over sensorimotor areas. Granger-based directionality analysis revealed directional coupling with the pallidal local field potentials leading in the theta and alpha band and the magnetoencephalographic cortical source leading in the beta band. The degree of pallido-cerebellar coupling showed an inverse correlation with dystonic symptom severity. Our data extend previous findings in patients with Parkinson's disease describing motor cortex-basal ganglia oscillatory connectivity in the beta band to patients with dystonia. Source coherence analysis revealed two additional frequency-specific networks involving the temporal cortex and the cerebellum. Pallido-cerebellar oscillatory connectivity and its association with dystonic symptoms provides further confirmation of cerebellar involvement in dystonia that has been recently reported using functional magnetic resonance imaging and fibre tracking.
Collapse
Affiliation(s)
- Wolf-Julian Neumann
- 1 Department of Neurology, Campus Virchow Klinikum, Charité-University Medicine Berlin, Augustenburger Platz 1,13353 Berlin, Germany 2 The Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, 12 Queen Square, London WC1N 3BG, UK
| | - Ashwani Jha
- 3 Sobell Department of Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Antje Bock
- 1 Department of Neurology, Campus Virchow Klinikum, Charité-University Medicine Berlin, Augustenburger Platz 1,13353 Berlin, Germany
| | - Julius Huebl
- 1 Department of Neurology, Campus Virchow Klinikum, Charité-University Medicine Berlin, Augustenburger Platz 1,13353 Berlin, Germany
| | - Andreas Horn
- 1 Department of Neurology, Campus Virchow Klinikum, Charité-University Medicine Berlin, Augustenburger Platz 1,13353 Berlin, Germany
| | - Gerd-Helge Schneider
- 4 Department of Neurosurgery, Campus Virchow Klinikum, Charité-University Medicine Berlin, Augustenburger Platz 1,13353 Berlin, Germany
| | - Tillmann H Sander
- 5 Physikalisch-Technische Bundesanstalt, Institut Berlin, Abbestr. 2-12, 10587 Berlin, Germany
| | - Vladimir Litvak
- 2 The Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, 12 Queen Square, London WC1N 3BG, UK
| | - Andrea A Kühn
- 1 Department of Neurology, Campus Virchow Klinikum, Charité-University Medicine Berlin, Augustenburger Platz 1,13353 Berlin, Germany 6 Berlin School of Mind and Brain, Charité - University Medicine Berlin, Unter den Linden 6, 10099 Berlin,Germany Berlin, Germany 7 NeuroCure, Charité - University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
7
|
Styliadis C, Ioannides AA, Bamidis PD, Papadelis C. Distinct cerebellar lobules process arousal, valence and their interaction in parallel following a temporal hierarchy. Neuroimage 2015; 110:149-61. [DOI: 10.1016/j.neuroimage.2015.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/15/2015] [Accepted: 02/03/2015] [Indexed: 01/27/2023] Open
|
8
|
Vernet M, Quentin R, Chanes L, Mitsumasu A, Valero-Cabré A. Frontal eye field, where art thou? Anatomy, function, and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations. Front Integr Neurosci 2014; 8:66. [PMID: 25202241 PMCID: PMC4141567 DOI: 10.3389/fnint.2014.00066] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/01/2014] [Indexed: 01/06/2023] Open
Abstract
The planning, control and execution of eye movements in 3D space relies on a distributed system of cortical and subcortical brain regions. Within this network, the Eye Fields have been described in animals as cortical regions in which electrical stimulation is able to trigger eye movements and influence their latency or accuracy. This review focuses on the Frontal Eye Field (FEF) a “hub” region located in Humans in the vicinity of the pre-central sulcus and the dorsal-most portion of the superior frontal sulcus. The straightforward localization of the FEF through electrical stimulation in animals is difficult to translate to the healthy human brain, particularly with non-invasive neuroimaging techniques. Hence, in the first part of this review, we describe attempts made to characterize the anatomical localization of this area in the human brain. The outcome of functional Magnetic Resonance Imaging (fMRI), Magneto-encephalography (MEG) and particularly, non-invasive mapping methods such a Transcranial Magnetic Stimulation (TMS) are described and the variability of FEF localization across individuals and mapping techniques are discussed. In the second part of this review, we will address the role of the FEF. We explore its involvement both in the physiology of fixation, saccade, pursuit, and vergence movements and in associated cognitive processes such as attentional orienting, visual awareness and perceptual modulation. Finally in the third part, we review recent evidence suggesting the high level of malleability and plasticity of these regions and associated networks to non-invasive stimulation. The exploratory, diagnostic, and therapeutic interest of such interventions for the modulation and improvement of perception in 3D space are discussed.
Collapse
Affiliation(s)
- Marine Vernet
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, INSERM UMRS 975 and Université Pierre et Marie Curie Paris, France
| | - Romain Quentin
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, INSERM UMRS 975 and Université Pierre et Marie Curie Paris, France
| | - Lorena Chanes
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, INSERM UMRS 975 and Université Pierre et Marie Curie Paris, France
| | - Andres Mitsumasu
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, INSERM UMRS 975 and Université Pierre et Marie Curie Paris, France
| | - Antoni Valero-Cabré
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, CNRS UMR 7225, INSERM UMRS 975 and Université Pierre et Marie Curie Paris, France ; Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, School of Medicine, Boston University Boston, MA, USA ; Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia Barcelona, Spain
| |
Collapse
|
9
|
Ioannides AA, Liu L, Poghosyan V, Saridis GA, Gjedde A, Ptito M, Kupers R. MEG reveals a fast pathway from somatosensory cortex to occipital areas via posterior parietal cortex in a blind subject. Front Hum Neurosci 2013; 7:429. [PMID: 23935576 PMCID: PMC3733019 DOI: 10.3389/fnhum.2013.00429] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/15/2013] [Indexed: 11/13/2022] Open
Abstract
Cross-modal activity in visual cortex of blind subjects has been reported during performance of variety of non-visual tasks. A key unanswered question is through which pathways non-visual inputs are funneled to the visual cortex. Here we used tomographic analysis of single trial magnetoencephalography (MEG) data recorded from one congenitally blind and two sighted subjects after stimulation of the left and right median nerves at three intensities: below sensory threshold, above sensory threshold and above motor threshold; the last sufficient to produce thumb twitching. We identified reproducible brain responses in the primary somatosensory (S1) and motor (M1) cortices at around 20 ms post-stimulus, which were very similar in sighted and blind subjects. Time-frequency analysis revealed strong 45-70 Hz activity at latencies of 20-50 ms in S1 and M1, and posterior parietal cortex Brodmann areas (BA) 7 and 40, which compared to lower frequencies, were substantially more pronounced in the blind than the sighted subjects. Critically, at frequencies from α-band up to 100 Hz we found clear, strong, and widespread responses in the visual cortex of the blind subject, which increased with the intensity of the somatosensory stimuli. Time-delayed mutual information (MI) revealed that in blind subject the stimulus information is funneled from the early somatosensory to visual cortex through posterior parietal BA 7 and 40, projecting first to visual areas V5 and V3, and eventually V1. The flow of information through this pathway occurred in stages characterized by convergence of activations into specific cortical regions. In sighted subjects, no linked activity was found that led from the somatosensory to the visual cortex through any of the studied brain regions. These results provide the first evidence from MEG that in blind subjects, tactile information is routed from primary somatosensory to occipital cortex via the posterior parietal cortex.
Collapse
Affiliation(s)
- Andreas A Ioannides
- Laboratory for Human Brain Dynamics, AAI Scientific Cultural Services Ltd. Nicosia, Cyprus
| | | | | | | | | | | | | |
Collapse
|
10
|
Dalal SS, Osipova D, Bertrand O, Jerbi K. Oscillatory activity of the human cerebellum: the intracranial electrocerebellogram revisited. Neurosci Biobehav Rev 2013; 37:585-93. [PMID: 23415812 DOI: 10.1016/j.neubiorev.2013.02.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/19/2013] [Accepted: 02/05/2013] [Indexed: 01/27/2023]
Abstract
The functional electrophysiology of the human cerebellum remains poorly characterized. Existing knowledge originates primarily from lesion studies and increasingly from hemodynamic measures such as functional magnetic resonance imaging, along with some evidence in recent years from transcranial magnetic stimulation. In this context, we revisit the few existing records of intracranial recordings from the human cerebellum, and uncover additional little-known reports - three from the Soviet Union, published in Russian between 1949 and 1951, and one from Belgium, published in French in 1964. These studies together demonstrate electrical rhythms of the human cerebellar cortex at frequencies as high as 250 Hz, including task-related modulations. A reanalysis of their electrode traces with state-of-the-art spectral analysis techniques confirm the reported frequency bands, and showed that these modulations were sustained for 100-200 ms. These remarkable observations from the early ages of intracranial mapping of the human brain are in line with recent electrophysiological studies of oscillations in the rodent cerebellum as well as magnetoencephalographic findings in humans. Time-frequency analyses have provided valuable insight into the function of cerebral cortex, and may prove even more critical for the differing neurophysiology of the cerebellum. We contend that these insights will be invaluable to bridge the role of oscillatory networks in the cerebellum with those of cerebral cortex in mediating perception, action, and cognition and to investigate possible cerebellar involvement in neurological dysfunction.
Collapse
Affiliation(s)
- Sarang S Dalal
- Zukunftskolleg & Department of Psychology, University of Konstanz, Germany.
| | | | | | | |
Collapse
|
11
|
Primary motor cortex and cerebellum are coupled with the kinematics of observed hand movements. Neuroimage 2012; 66:500-7. [PMID: 23108269 DOI: 10.1016/j.neuroimage.2012.10.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 10/09/2012] [Accepted: 10/14/2012] [Indexed: 11/22/2022] Open
Abstract
To find out in which detail the kinematics of observed movements is represented in the viewer's brain, we searched for brain areas displaying coherent magnetoencephalographic (MEG) activity with observed repetitive hand movements. Whole-scalp MEG signals were recorded from 10 right-handed young adults who observed repetitive 3-Hz right-hand flexion-extension movements performed by the experimenter. The coherence between the subject's MEG signals and the experimenter's index-finger acceleration was computed to index the level of actor-observer coupling. The underlying cortical activity was identified with Dynamic Imaging of Coherent Sources. In all subjects, coherence spectra showed statistically significant peaks at movement frequency (F0) and its first harmonic (F1), strongest at visual areas. At F0, additional significant local coherence maxima, clearly distinct from the coherent visual areas, occurred in the primary motor (M1) cortices of both hemispheres and in the cerebellum (posterior vermis and hemispheres). Our results highlight the time-sensitive involvement of the M1 cortices and cerebellum in the kinematic representation of observed repetitive, non-goal directed motor actions.
Collapse
|
12
|
Source space analysis of event-related dynamic reorganization of brain networks. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2012; 2012:452503. [PMID: 23097678 PMCID: PMC3477559 DOI: 10.1155/2012/452503] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/05/2012] [Accepted: 08/10/2012] [Indexed: 01/21/2023]
Abstract
How the brain works is nowadays synonymous with how different parts of the brain work together and the derivation of mathematical descriptions for the functional connectivity patterns that can be objectively derived from data of different neuroimaging techniques. In most cases static networks are studied, often relying on resting state recordings. Here, we present a quantitative study of dynamic reconfiguration of connectivity for event-related experiments. Our motivation is the development of a methodology that can be used for personalized monitoring of brain activity. In line with this motivation, we use data with visual stimuli from a typical subject that participated in different experiments that were previously analyzed with traditional methods. The earlier studies identified well-defined changes in specific brain areas at specific latencies related to attention, properties of stimuli, and tasks demands. Using a recently introduced methodology, we track the event-related changes in network organization, at source space level, thus providing a more global and complete view of the stages of processing associated with the regional changes in activity. The results suggest the time evolving modularity as an additional brain code that is accessible with noninvasive means and hence available for personalized monitoring and clinical applications.
Collapse
|
13
|
Ioannides AA, Poghosyan V, Liu L, Saridis GA, Tamietto M, Op de Beeck M, De Tiège X, Weiskrantz L, de Gelder B. Spatiotemporal profiles of visual processing with and without primary visual cortex. Neuroimage 2012; 63:1464-77. [PMID: 22877580 DOI: 10.1016/j.neuroimage.2012.07.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 11/19/2022] Open
Abstract
The spatiotemporal profiles of visual processing are normally distributed in two temporal phases, each lasting about 100 ms. Within each phase, cortical processing begins in V1 and traverses the visual cortical hierarchy. However, the causal role of V1 in starting each of these two phases is unknown. Here we used magnetoencephalography to study the spatiotemporal profiles of visual processing and the causal contribution of V1 in three neurologically intact participants and in a rare patient (GY) with unilateral destruction of V1, in whom residual visual functions mediated by the extra-geniculostriate pathways have been reported. In healthy subjects, visual processing in the first 200 ms post-stimulus onset proceeded in the two usual phases. Normally perceived stimuli in the left hemifield of GY elicited a spatiotemporal profile in the intact right hemisphere that closely matched that of healthy subjects. However, stimuli presented in the cortically blind hemifield produced no detectable response during the first phase of processing, indicating that the responses in extrastriate visual areas during this phase are determined by the feedforward progression of activity initiated in V1. The first responses occurred during the second processing phase, in the ipsilesional high-level visual areas. The activity then spread forward toward higher-level areas and backward toward lower-level areas. However, in contrast to responses in the intact hemisphere, the back-propagated activity in the early visual cortex did not exhibit the classic retinotopic organization and did not have well-defined response peaks.
Collapse
Affiliation(s)
- Andreas A Ioannides
- Laboratory for Human Brain Dynamics, AAI Scientific Cultural Services Ltd., Office 501 Galaxias Center, 33 Arch. Makarios III Avenue, Nicosia 1065, Cyprus.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Spatiotemporal dynamics of early spatial and category-specific attentional modulations. Neuroimage 2012; 60:1638-51. [DOI: 10.1016/j.neuroimage.2012.01.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/09/2012] [Accepted: 01/27/2012] [Indexed: 11/19/2022] Open
|
15
|
Papadelis C, Leonardelli E, Staudt M, Braun C. Can magnetoencephalography track the afferent information flow along white matter thalamo-cortical fibers? Neuroimage 2012; 60:1092-105. [PMID: 22266410 DOI: 10.1016/j.neuroimage.2012.01.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 11/27/2011] [Accepted: 01/05/2012] [Indexed: 11/19/2022] Open
Abstract
White matter thalamo-cortical fibers allow the communication of distant brain regions by carrying neuronal signals. Mapping non-invasively the information flow within white matter fibers is regarded so far as impossible. We investigated here whether information flow propagating along thalamo-cortical fibers can be detected using magnetoencephalography (MEG). Somatosensory evoked fields (SEFs) were recorded from healthy subjects and a patient with a unilateral, prenatally acquired, white matter lesion, which had induced the development of an abnormal trajectory of thalamo-cortical fibers. Equivalent current dipole (ECD) was used to model sources of SEFs. ECD at ~15 ms after stimulus onset was located within or close to the contralateral thalamus at the proximity of a hemodynamic response detected during a similar fMRI experiment. At the M20 peak latency, ECD was localized within the hand area of the contralateral primary somatosensory cortex (Brodmann area 3b (BA3b)). In healthy subjects, ECD changed dynamically position from thalamus to BA3b following a curved path, which was partially overlapping the thalamo-cortical fibers reconstructed by tractography. In the patient, ECD followed a similar path only in the intact hemisphere. In the affected hemisphere, the dipole trajectory circumnavigated the extended lesion on its way to the preserved primary somatosensory cortex--similar to the trajectory findings. Evidence from different methodological approaches converges on the conclusion that MEG can track the afferent information flow along thalamo-cortical fibers and in contrast to the traditional view can localize under presuppositions deep thalamic sources.
Collapse
Affiliation(s)
- Christos Papadelis
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Via delle Regole 101, I-38100 Mattarello, Italy.
| | | | | | | |
Collapse
|
16
|
Visuomotor mental rotation: Reaction time is determined by the complexity of the sensorimotor transformations mediating the response. Brain Res 2010; 1366:129-40. [DOI: 10.1016/j.brainres.2010.09.096] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 08/19/2010] [Accepted: 09/25/2010] [Indexed: 11/19/2022]
|
17
|
Maruyama M, Ioannides AA. Modulus and direction of the neural current vector identify distinct functional connectivity modes between human MT+ areas. J Neurosci Methods 2010; 192:34-48. [PMID: 20654651 DOI: 10.1016/j.jneumeth.2010.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Revised: 07/07/2010] [Accepted: 07/10/2010] [Indexed: 11/30/2022]
Abstract
Reconstruction of neural current sources from magnetoencephalography (MEG) data provides two independent estimates of the instantaneous current modulus and its direction. Here, we explore how different information on the modulus and direction affects the inter-hemisphere connectivity of the human medial temporal complex (hMT+). Connectivity was quantified by mutual information values of paired time series of current moduli or directions, with the joint probability distribution estimated with an optimized Gaussian kernel. These time series were obtained from tomographic analysis of single-trial MEG responses to a visual motion stimulus. With a high-contrast stimulus, connectivity measures based on the modulus were relatively strong in the prestimulus period, continuing until 100 ms after stimulus onset. The strongest modulus connectivity was produced with a long lag (19 ms) of the right hMT+ after the left hMT+. On the other hand, connectivity measures based on direction were relatively strong after 100 ms, with a short delay of less than 6 ms. These results suggest that nonspecific and probably indirect communication between the homologous areas is turned, by the stimulus arrival, into more precise and direct communication through the corpus callosum. The orientation of the estimated current vector for the strong connectivity can be explained by the curvature of the active cortical sheet. The temporal patterns of modulus and directional connectivity were different at low contrast, but similar to those at high contrast. We conclude that the modulus and direction indicate distinct functional connectivity modes.
Collapse
Affiliation(s)
- Masaki Maruyama
- Laboratory for Human Brain Dynamics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wakoshi, Saitama 351-0198, Japan.
| | | |
Collapse
|
18
|
Maruyama M, Fenwick PBC, Ioannides AA. Interocular yoking in human saccades examined by mutual information analysis. NONLINEAR BIOMEDICAL PHYSICS 2010; 4 Suppl 1:S10. [PMID: 20522260 PMCID: PMC2880796 DOI: 10.1186/1753-4631-4-s1-s10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
BACKGROUND Saccadic eye movements align the two eyes precisely to foveate a target. Trial-by-trial variance of eye movement is always observed within an identical experimental condition. This has often been treated as experimental error without addressing its significance. The present study examined statistical linkages between the two eyes' movements, namely interocular yoking, for the variance of eye position and velocity. METHODS Horizontal saccadic movements were recorded from twelve right-eye-dominant subjects while they decided on saccade direction in Go-Only sessions and on both saccade execution and direction in Go/NoGo sessions. We used infrared corneal reflection to record simultaneously and independently the movement of each eye. Quantitative measures of yoking were provided by mutual information analysis of eye position or velocity, which is sensitive to both linear and non-linear relationships between the eyes' movements. Our mutual information analysis relied on the variance of the eyes movements in each experimental condition. The range of movements for each eye varies for different conditions so yoking was further studied by comparing GO-Only vs. Go/NoGo sessions, leftward vs. rightward saccades. RESULTS Mutual information analysis showed that velocity yoking preceded positional yoking. Cognitive load increased trial variances of velocity with no increase in velocity yoking, suggesting that cognitive load may alter neural processes in areas to which oculomotor control is not tightly linked. The comparison between experimental conditions showed that interocular linkage in velocity variance of the right eye lagged that of the left eye during saccades. CONCLUSIONS We conclude quantitative measure of interocular yoking based on trial-to-trial variance within a condition, as well as variance between conditions, provides a powerful tool for studying the binocular movement mechanism.
Collapse
Affiliation(s)
- Masaki Maruyama
- Laboratory for Human Brain Dynamics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wakoshi, Saitama 351-0198, Japan
- Present address: CEA/DSV/I2BM / NeuroSpin, INSERM U992 - Cognitive Neuroimaging Unit, Bât 145 - Point Courrier 156, Gif sur Yvette F-91191, France
| | - Peter BC Fenwick
- Laboratory for Human Brain Dynamics. AAI Scientific Cultural Services Ltd., 33, Arch. Makarios III Avenue, Nicosia, 1065, Cyprus
| | - Andreas A Ioannides
- Laboratory for Human Brain Dynamics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wakoshi, Saitama 351-0198, Japan
- Laboratory for Human Brain Dynamics. AAI Scientific Cultural Services Ltd., 33, Arch. Makarios III Avenue, Nicosia, 1065, Cyprus
| |
Collapse
|
19
|
Ioannides AA, Fenwick PBC, Pitri E, Liu L. A step towards non-invasive characterization of the human frontal eye fields of individual subjects. NONLINEAR BIOMEDICAL PHYSICS 2010; 4 Suppl 1:S11. [PMID: 20522261 PMCID: PMC2880797 DOI: 10.1186/1753-4631-4-s1-s11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
BACKGROUND Identifying eye movement related areas in the frontal lobe has a long history, with microstimulation in monkeys producing the most clear-cut results. For humans, however, there is still no consensus about the location and the extent of the frontal eye field (FEF). There is also no simple non-invasive method for unambiguously defining the FEF in individual subjects, a prerequisite for clinical applications. Here we explore the use of magnetoencephalography (MEG) for the non-invasive identification and characterization of FEF activity in an individual subject. METHODS We mapped human brain activity before, during and after saccades by applying tomographic analysis to MEG data. Statistical parametric maps and circular statistics produced plausible FEF loci, but no unambiguous definition for individual subjects. Here we first computed the spectral decomposition and correlation with electrooculogram (EOG) of the tomographic brain activations. For each of these two measures statistical comparisons were made between different saccades. RESULTS In this paper, we first review the frontal cortex activations identified in earlier animal and human studies and place the putative human FEFs in a well-defined anatomical framework. This framework is then used as reference for describing the results of new Fourier analysis of the tomographic solutions comparing active saccade tasks and their controls. The most consistent change in the dorsal frontal cortex was at the putative left FEF, for both saccades to the left and right. The asymmetric result is consistent with the 1-way callosal traffic theory. We also showed that the new correlation analysis had its most consistent change in the contralateral putative FEF. This result was obtained for EOG latencies before saccade onset with delays of a few hundreds of milliseconds (FEF activity leading the EOG) and only for visual cues signaling the execution of a saccade in a previously defined saccade direction. CONCLUSIONS The FEF definition derived from microstimulation describes only one of the areas in the dorsal lateral frontal lobe that act together to plan, prepare and execute a saccade. The definition and characterization of these areas in an individual subject can be obtained from non-invasive MEG measurements.
Collapse
Affiliation(s)
- Andreas A Ioannides
- Laboratory for Human Brain Dynamics, AAI Scientific Cultural Services Ltd., Nicosia, Cyprus
| | - Peter BC Fenwick
- Laboratory for Human Brain Dynamics, AAI Scientific Cultural Services Ltd., Nicosia, Cyprus
- Kings College Institute of Psychiatry, London, UK
| | - Elina Pitri
- Laboratory for Human Brain Dynamics, AAI Scientific Cultural Services Ltd., Nicosia, Cyprus
| | - Lichan Liu
- Laboratory for Human Brain Dynamics, AAI Scientific Cultural Services Ltd., Nicosia, Cyprus
| |
Collapse
|
20
|
Antisaccades exhibit diminished online control relative to prosaccades. Exp Brain Res 2010; 203:743-52. [PMID: 20490784 DOI: 10.1007/s00221-010-2290-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Accepted: 05/01/2010] [Indexed: 10/19/2022]
Abstract
Convergent evidence suggests that stimulus-driven saccades (i.e., prosaccades) are mediated via online trajectory modifications (e.g., Gaveau et al. 2003). The goal of the present investigation was to determine whether manipulating the cognitive demands of a saccade influences the extent to which the response's trajectory is structured online. To that end, participants completed pro- and antisaccades (i.e., 180 degrees mirror-symmetrical transformation) to target stimuli that were continuously visible (Experiment 1) or occluded (Experiment 2) during the response. To index trajectory modifications, we computed the proportion of variance (R (2) values) explained by the spatial location of the eye at 10% increments of normalized movement time [i.e., 10, 20, ... 80, 90% of movement time (MT)] relative to the saccade's ultimate movement endpoint. The basis for this analysis is that between-task differences in the magnitude of R (2) values reflect differences in the use of feedback for online trajectory amendments. Results indicated that antisaccades produced larger R (2) values (from 40 to 80% of MT) as well as less accurate and more variable endpoints than their prosaccade counterparts. Such a pattern of results indicates that antisaccades were not controlled online to the same degree as prosaccades. In particular, we propose that the cognitive nature of the antisaccade task disrupts the normally online operation of saccade networks and renders a mode of control that is not optimized for feedback-based trajectory amendments.
Collapse
|
21
|
Liu L, Ioannides AA. Emotion separation is completed early and it depends on visual field presentation. PLoS One 2010; 5:e9790. [PMID: 20339549 PMCID: PMC2842434 DOI: 10.1371/journal.pone.0009790] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 02/27/2010] [Indexed: 11/19/2022] Open
Abstract
It is now apparent that the visual system reacts to stimuli very fast, with many brain areas activated within 100 ms. It is, however, unclear how much detail is extracted about stimulus properties in the early stages of visual processing. Here, using magnetoencephalography we show that the visual system separates different facial expressions of emotion well within 100 ms after image onset, and that this separation is processed differently depending on where in the visual field the stimulus is presented. Seven right-handed males participated in a face affect recognition experiment in which they viewed happy, fearful and neutral faces. Blocks of images were shown either at the center or in one of the four quadrants of the visual field. For centrally presented faces, the emotions were separated fast, first in the right superior temporal sulcus (STS; 35-48 ms), followed by the right amygdala (57-64 ms) and medial pre-frontal cortex (83-96 ms). For faces presented in the periphery, the emotions were separated first in the ipsilateral amygdala and contralateral STS. We conclude that amygdala and STS likely play a different role in early visual processing, recruiting distinct neural networks for action: the amygdala alerts sub-cortical centers for appropriate autonomic system response for fight or flight decisions, while the STS facilitates more cognitive appraisal of situations and links appropriate cortical sites together. It is then likely that different problems may arise when either network fails to initiate or function properly.
Collapse
Affiliation(s)
- Lichan Liu
- Lab for Human Brain Dynamics, RIKEN Brain Science Institute, Wakoshi, Saitama, Japan.
| | | |
Collapse
|
22
|
Plomp G, Leeuwen CV, Ioannides AA. Functional specialization and dynamic resource allocation in visual cortex. Hum Brain Mapp 2010; 31:1-13. [PMID: 19621367 DOI: 10.1002/hbm.20840] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We studied the spatiotemporal characteristics of cortical activity in early visual areas and the fusiform gyri (FG) by means of magnetoencephalography (MEG). Subjects performed a visual classification task, in which letters and visually similar pseudoletters were presented in different surrounds and under different task demands. The stimuli appeared in a cued half of the visual field (VF). We observed prestimulus effects on amplitudes in V1 and Cuneus relating to VF and task demands, suggesting a combination of active anticipation and specialized routing of activity in visual processing. Amplitudes in the right FG between 150 and 350 ms after stimulus onset reflected task demands, while those in the left FG between 300 and 400 ms showed selectivity for graphemes. The contrasting stimulus-evoked effects in the right and left FG show that the former area is sensitive to task demands irrespective of stimulus content, whereas the left FG is sensitive to stimulus content irrespectively of task demand.
Collapse
Affiliation(s)
- Gijs Plomp
- Brain Science Institute, RIKEN, Wako-shi, Japan.
| | | | | |
Collapse
|
23
|
Iida T, Kawara M, Hironaga N, Ioannides AA. Cerebellar activity before teeth-clenching using magnetoencephalography. J Prosthodont Res 2010; 54:48-52. [DOI: 10.1016/j.jpor.2009.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 08/31/2009] [Accepted: 09/15/2009] [Indexed: 11/28/2022]
|
24
|
Okazaki Y, Abrahamyan A, Stevens CJ, Ioannides AA. Wired for her face? Male attentional bias for female faces. Brain Topogr 2009; 23:14-26. [PMID: 19809873 PMCID: PMC2887505 DOI: 10.1007/s10548-009-0112-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 09/18/2009] [Indexed: 11/24/2022]
Abstract
Under conditions of inattention or deficits in orienting attention, special classes of stimuli (e.g. faces, bodies) are more likely to be perceived than other stimuli. This suggests that biologically salient visual stimuli automatically recruit attention, even when they are task-irrelevant or ignored. Here we report results from a behavioral experiment with female and male subjects and two magnetoencephalography (MEG) experiments with male subjects only, in which we investigated attentional capture with face and hand stimuli. In both the behavioral and MEG experiments, subjects were required to count the number of gender-specific targets from either face or hand categories within a block of stimuli. In the behavioral experiment, we found that male subjects were significantly more accurate in response to female than male face target blocks. There was no corresponding effect found in response to hand target blocks. Female subjects did not show a gender-based difference in response to face or hand target blocks. MEG results indicated that the male subjects' responses to face stimuli in primary visual cortex (V1) and the face-selective part of the fusiform gyrus (FG) were reduced when male face stimuli were not relevant to the task, whereas female faces maintained a strong response in these areas in both task-relevant and task-irrelevant conditions. These results suggest that within the male brain, female face stimuli are more resilient to suppression than male faces, once attention is drawn to the part of the visual field where the face appears.
Collapse
Affiliation(s)
- Yuka Okazaki
- Brain Science Institute, Wako-shi, Saitama, Japan.
| | | | | | | |
Collapse
|
25
|
Abu Bakar A, Liu L, Conci M, Elliott MA, Ioannides AA. Visual field and task influence illusory figure responses. Hum Brain Mapp 2008; 29:1313-26. [PMID: 17948884 DOI: 10.1002/hbm.20464] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In normal viewing conditions, many objects are often hidden or occluded by others, therefore restricting the information that enters the eye. One ability that the human visual system has developed to compensate for this visual limitation is to relate the surrounding elements to globally interpret the whole scene. The appearance of illusory figures (IF) based on surrounding elements also relies on this similar function. In the present study, we hypothesized that different mechanisms may be used by the brain to process IF from the center and periphery of the visual field. We compared magnetoencephalographic responses to IFs presented at different parts of the visual field under three task loads. For central presentation, IF specific responses peaked first in V1/V2 (96-101 ms), and then in the lateral occipital complex (LOC; 132-141 ms), independent of task. For peripheral presentation, the relative modulation towards IF was markedly reduced in V1/V2 and LOC while prominent activation peaks now shifted to the Fusiform Gyrus (from 200 ms onwards). Additionally, the type of task influenced processing at early stages beginning in V1/V2 (87 ms). Our results show that retinal eccentricity plays a crucial role in IF processing: figural completion at the center of the visual field is achieved in an 'automatic' and seemingly effortless fashion whereas peripheral stimulus locations necessitate higher-order object completion stages which rely more heavily on attentional demands.
Collapse
Affiliation(s)
- Afiza Abu Bakar
- Department of Brain Science and Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kyushu, Japan.
| | | | | | | | | |
Collapse
|
26
|
Ioannides AA. Magnetoencephalography (MEG). METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008; 489:167-88. [PMID: 18839092 DOI: 10.1007/978-1-59745-543-5_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Magnetoencephalography (MEG) encompasses a family of non-contact, non-invasive techniques for detecting the magnetic field generated by the electrical activity of the brain, for analyzing this MEG signal and for using the results to study brain function. The overall purpose of MEG is to extract estimates of the spatiotemporal patterns of electrical activity in the brain from the measured magnetic field outside the head. The electrical activity in the brain is a manifestation of collective neuronal activity and, to a large extent, the currency of brain function. The estimates of brain activity derived from MEG can therefore be used to study mechanisms and processes that support normal brain function in humans and help us understand why, when and how they fail.
Collapse
Affiliation(s)
- Andreas A Ioannides
- Laboratory for Human Brain Dynamics, RIKEN Brain Science Institute, Saitama, Japan
| |
Collapse
|
27
|
Poghosyan V, Ioannides AA. Attention modulates earliest responses in the primary auditory and visual cortices. Neuron 2008; 58:802-13. [PMID: 18549790 DOI: 10.1016/j.neuron.2008.04.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 03/13/2008] [Accepted: 04/11/2008] [Indexed: 10/22/2022]
Abstract
A fundamental question about the neural correlates of attention concerns the earliest sensory processing stage that it can affect. We addressed this issue by recording magnetoencephalography (MEG) signals while subjects performed detection tasks, which required employment of spatial or nonspatial attention, in auditory or visual modality. Using distributed source analysis of MEG signals, we found that, contrary to previous studies that used equivalent current dipole (ECD) analysis, spatial attention enhanced the initial feedforward response in the primary visual cortex (V1) at 55-90 ms. We also found attentional modulation of the putative primary auditory cortex (A1) activity at 30-50 ms. Furthermore, we reproduced our findings using ECD modeling guided by the results of distributed source analysis and suggest a reason why earlier studies using ECD analysis failed to identify the modulation of earliest V1 activity.
Collapse
Affiliation(s)
- Vahe Poghosyan
- Laboratory for Human Brain Dynamics, AAI Scientific Cultural Services Ltd., Office 501, Galaxias Building Block A, 33 Arch. Makarios III Avenue, 1065 Nicosia, Cyprus
| | | |
Collapse
|
28
|
The timing of face selectivity and attentional modulation in visual processing. Neuroscience 2008; 152:1130-44. [DOI: 10.1016/j.neuroscience.2008.01.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 01/17/2008] [Accepted: 02/05/2008] [Indexed: 11/21/2022]
|
29
|
Koutras A, Kostopoulos GK, Ioannides AA. Exploring the variability of single trials in somatosensory evoked responses using constrained source extraction and RMT. IEEE Trans Biomed Eng 2008; 55:957-69. [PMID: 18334387 DOI: 10.1109/tbme.2008.915708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This paper describes the theoretical background of a new data-driven approach to encephalographic single-trial (ST) data analysis. Temporal constrained source extraction using sparse decomposition identifies signal topographies that closely match the shape characteristics of a reference signal, one response for each ST. The correlations between these ST topographies are computed for formal Correlation Matrix Analysis (CMA) based on Random Matrix Theory (RMT). The RMT-CMA provides clusters of similar ST topologies in a completely unsupervised manner. These patterns are then classified into deterministic set and noise using well established RMT results. The efficacy of the method is applied to EEG and MEG data of somatosensory evoked responses (SERs). The results demonstrate that the method can recover brain signals with time course resembling the reference signal and follow changes in strength and/or topography in time by simply stepping the reference signal through time.
Collapse
Affiliation(s)
- A Koutras
- NeuroPhysiology Unit, Department of Physiology, Medical School, University of Patras, 26100 Patras, Greece.
| | | | | |
Collapse
|
30
|
Okazaki Y, Ioannides AA. Specific components of face perception in the human fusiform gyrus studied by tomographic estimates of magnetoencephalographic signals: a tool for the evaluation of non-verbal communication in psychosomatic paradigms. Biopsychosoc Med 2007; 1:23. [PMID: 18053195 PMCID: PMC2222590 DOI: 10.1186/1751-0759-1-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 12/04/2007] [Indexed: 12/04/2022] Open
Abstract
Aims The aim of this study was to determine the specific spatiotemporal activation patterns of face perception in the fusiform gyrus (FG). The FG is a key area in the specialized brain system that makes possible the recognition of face with ease and speed in our daily life. Characterization of FG response provides a quantitative method for evaluating the fundamental functions that contribute to non-verbal communication in various psychosomatic paradigms. Methods The MEG signal was recorded during passive visual stimulus presentation with three stimulus types – Faces, Hands and Shoes. The stimuli were presented separately to the central and peripheral visual fields. We performed statistical parametric mapping (SPM) analysis of tomographic estimates of activity to compare activity between a pre- and post-stimulus period in the same object (baseline test), and activity between objects (active test). The time course of regional activation curves was analyzed for each stimulus condition. Results The SPM baseline test revealed a response to each stimulus type, which was very compact at the initial segment of main MFG170. For hands and shoes the area of significant change remains compact. For faces the area expanded widely within a few milliseconds and its boundaries engulfed the other object areas. The active test demonstrated that activity for faces was significantly larger than the activity for hands. The same face specific compact area as in the baseline test was identified, and then again expanded widely. For each stimulus type and presentation in each one of the visual fields locations, the analysis of the time course of FG activity identified three components in the FG: MFG100, MFG170, and MFG200 – all showed preference for faces. Conclusion Early compact face-specific activity in the FG expands widely along the occipito-ventral brain within a few milliseconds. The significant difference between faces and the other object stimuli in MFG100 shows that processing of faces is already differentiated from processing of other objects within 100 ms. Standardization of the three face-specific MEG components could have diagnostic value for the integrity of the initial process of non-verbal communication in various psychosomatic paradigms.
Collapse
Affiliation(s)
- Yuka Okazaki
- Department of Brain Science and Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu-shi, Japan.
| | | |
Collapse
|
31
|
Papadelis C, Ioannides AA. Localization accuracy and temporal resolution of MEG: A phantom experiment. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.ics.2007.01.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Ioannides AA. Dynamic functional connectivity. Curr Opin Neurobiol 2007; 17:161-70. [PMID: 17379500 DOI: 10.1016/j.conb.2007.03.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 03/13/2007] [Indexed: 12/31/2022]
Abstract
Recent studies show that anatomical and functional brain networks exhibit similar small-world properties. However, the networks that are compared often differ in what the nodes represent (e.g. sensors or brain areas), what kind of connectivity is measured, and what temporal and spatial scales are probed. Here, I review studies of large-scale connectivity and recent results from a variety of real-time recording techniques, which together suggest that an adequate description of brain organization requires a hierarchy of networks rather than the single, binary networks that are currently in vogue. Pattern analysis methods now offer a principled way for constructing such network hierarchies. As shown at the end of this review, a correspondence principle can be formulated to guide the interpretation across network levels and to relate nodes to well defined anatomical entities.
Collapse
Affiliation(s)
- Andreas A Ioannides
- Laboratory for Human Brain Dynamics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wakoshi, Saitama, Japan 351-0198.
| |
Collapse
|
33
|
Abstract
Magnetoencephalography (MEG) is a noninvasive neuroimaging method for detecting, analyzing, and interpreting the magnetic field generated by the electrical activity in the brain. Modern hardware can capture the MEG signal at hundreds of points around the head in a snapshot lasting only a fraction of a millisecond. The sensitivity of modern hardware is high enough to permit the extraction of a clean signal generated by the brain well above the noise level of the MEG hardware. It is possible to identify signatures of superficial and often deep generators in the raw MEG signal, even in snapshots of data. In a more quantitative way, tomographic images of the electrical current density in the brain can be extracted from each snapshot of MEG signal, providing a direct correlate of coherent collective neuronal activity. A number of recent studies have scrutinized brain function in the new spatiotemporal window that real-time tomographic analysis of MEG signals has opened. The results have allowed the variability in a single area to be seen in the context of activity in other areas and background rhythmic activity. In this view, normal brain function is seen as a cascade of extremely fast events and the unfolding of specialized processes, segregated in space and time and organized into well-defined stages of processing.
Collapse
Affiliation(s)
- Andreas A Ioannides
- Laboratory for Human Brain Dynamics, RIKEN Brain Science Institute, Saitama, Japan.
| |
Collapse
|
34
|
Poghosyan V, Ioannides AA. Precise mapping of early visual responses in space and time. Neuroimage 2007; 35:759-70. [PMID: 17275339 DOI: 10.1016/j.neuroimage.2006.11.052] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 11/17/2006] [Accepted: 11/27/2006] [Indexed: 11/22/2022] Open
Abstract
We used magnetoencephalography (MEG) to record brain activity while subjects passively viewed stimuli presented at eight different locations in the parafoveal and peripheral visual fields (VF). For each subject, the experiment was repeated on 3 different days. The generators of the early MEG signal components were localized using tomographic source analysis together with statistical parametric mapping. We identified activations throughout visual cortex in the first 100 ms of stimulus onset. The earliest stimulus-evoked responses were registered in V1. Then, activity with largely overlapping latencies spread rapidly to V2, V3 and throughout the whole visual system. Unambiguous and focal activations with precise onset, peak latencies, and peak amplitudes for each subject and day were identified in V1, in one ventral and three dorsal stream areas. Activations in all areas were consistent in location and timing across subjects and for each subject they were highly reproducible across 3 experimental days. Localization precision was typically within 2 mm in all areas. Retinotopic organizations of the identified areas were in good agreement with other neuroimaging and animal studies. The localization accuracy, as evidenced by computer simulations, was in line with our earlier fMRI/MEG study. On average, it was around 2 mm. Here we report, with very high reproducibility, the dynamics of early visual area activations and their dependence on the stimulated location of the VF. These results show for the first time in humans, significantly shorter onset latencies in V1 for peripheral than parafoveal VF stimulations.
Collapse
Affiliation(s)
- Vahe Poghosyan
- Laboratory for Human Brain Dynamics, BSI, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| | | |
Collapse
|
35
|
Hironaga N, Ioannides AA. Localization of individual area neuronal activity. Neuroimage 2006; 34:1519-34. [PMID: 17187995 DOI: 10.1016/j.neuroimage.2006.10.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 09/26/2006] [Accepted: 10/17/2006] [Indexed: 10/23/2022] Open
Abstract
A family of methods, collectively known as independent component analysis (ICA), has recently been added to the array of methods designed to decompose a multi-channel signal into components. ICA methods have been applied to raw magnetoencephalography (MEG) and electroencephalography (EEG) signals to remove artifacts, especially when sources such as power line or cardiac activity generate strong components that dominate the signal. More recently, successful ICA extraction of stimulus-evoked responses has been reported from single-trial raw MEG and EEG signals. The extraction of weak components has often been erratic, depending on which ICA method is employed and even on what parameters are used. In this work, we show that if the emphasis is placed on individual "independent components," as is usually the case with standard ICA applications, differences in the results obtained for different components are exaggerated. We propose instead the reconstruction of regional brain activations by combining tomographic estimates of individual independent components that have been selected by appropriate spatial and temporal criteria. Such localization of individual area neuronal activity (LIANA) allows reliable semi-automatic extraction of single-trial regional activations from raw MEG data. We demonstrate the new method with three different ICA algorithms applied to both computer-generated signals and real data. We show that LIANA provides almost identical results with each ICA method despite the fact that each method yields different individual components.
Collapse
Affiliation(s)
- N Hironaga
- Laboratory for Human Brain Dynamics, RIKEN Brain Science Institute (BSI), Wako-shi, Saitama 351-0198, Japan.
| | | |
Collapse
|
36
|
Liu L, Ioannides AA. Spatiotemporal dynamics and connectivity pattern differences between centrally and peripherally presented faces. Neuroimage 2006; 31:1726-40. [PMID: 16564185 DOI: 10.1016/j.neuroimage.2006.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 01/26/2006] [Accepted: 02/06/2006] [Indexed: 10/24/2022] Open
Abstract
Most neuroimaging studies on face processing used centrally presented images with a relatively large visual field. Images presented in this way activate widespread striate and extrastriate areas and make it difficult to study spatiotemporal dynamics and connectivity pattern differences from various parts of the visual field. Here we studied magnetoencephalographic responses in humans to centrally and peripherally presented faces for testing the hypothesis that processing of visual stimuli with facial expressions of emotions depends on where the stimuli are presented in the visual field. Using our tomographic and statistical parametric mapping analyses, we identified occipitotemporal areas activated by face stimuli more than by control conditions. V1/V2 activity was significantly stronger for lower than central and upper visual field presentation. Fusiform activity, however, was significantly stronger for central than for peripheral presentation. Both the V1/V2 and fusiform areas activated earlier for peripheral than for central presentation. Fast responses in the fusiform were found at 70-80 ms after image onset, as well as a response at 130-160 ms. For peripheral presentation, contralateral V1/V2 and fusiform activated earlier (10 ms and 23 ms, respectively) and significantly stronger than their ipsilateral counterparts. Mutual information analysis further showed linked activity from bilateral V1/V2 to fusiform for central presentation and from contralateral V1/V2 to fusiform for lower visual field presentation. In the upper visual field, the linkage was from fusiform to V1/V2. Our results showed that face stimuli are processed predominantly in the hemisphere contralateral to the stimulation and demonstrated for the first time early fusiform activation leading V1/V2 activation for upper visual field stimulation.
Collapse
Affiliation(s)
- Lichan Liu
- Laboratory for Human Brain Dynamics, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Wakoshi, Saitama, 351-0198, Japan
| | | |
Collapse
|
37
|
Liu LC, Plomp G, van Leeuwen C, Ioannides AA. Neural correlates of priming on occluded figure interpretation in human fusiform cortex. Neuroscience 2006; 141:1585-97. [PMID: 16753265 DOI: 10.1016/j.neuroscience.2006.04.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 04/25/2006] [Accepted: 04/26/2006] [Indexed: 11/25/2022]
Abstract
The visual system rapidly completes a partially occluded figure. We probed the completion process by using priming in combination with neuroimaging techniques. Priming leads to more efficient visual processing and thus a reduction in neural activity in relevant brain areas. These areas were studied with high spatial resolution and temporal accuracy with focus on early perceptual processing. We recorded magnetoencephalographic responses from 10 human volunteers in a primed same-different task for test figures. The test figures were preceded by a sequence of two figures, a prime or control figure followed by an occluded figure. The prime figures were one of three possible interpretations of the occluded figures: global and local completions and mosaic interpretation. A significant priming effect was evident: in primed trials as compared with control trials, subjects responded faster and the latency was shorter in the magnetoencephalographic signal for the largest peak between 50 and 300 ms after the occluded figure onset. Tomographic and statistical parametric mapping analyses revealed stages of activation in occipitotemporal areas during occluded figure processing. Notably, we found significantly reduced activation in the right fusiform cortex between 120 and 200 ms after occluded figure onset for primed trials as compared with control trials. We also found significant spatiotemporal differences of local, global and mosaic interpretations for individual subjects but not across subjects. We conclude that modulation of activity in the right fusiform cortex may be a neural correlate of priming in the interpretation of an occluded figure, and that this area acts as a hub for different occluded figure interpretations in this early stage of perception.
Collapse
Affiliation(s)
- L C Liu
- Laboratory for Human Brain Dynamics, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Wakoshi, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|