1
|
Prasad H. Genes for endosomal pH regulators NHE6 and NHE9 are dysregulated in the substantia nigra in Parkinson's disease. Gene 2024; 927:148737. [PMID: 38945311 DOI: 10.1016/j.gene.2024.148737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Endosomal acid base balance functions as a master orchestrator within the cell, engaging with many cellular pathways to maintain homeostasis. Mutations in the endosomal pH regulator Na+/H+ exchanger NHE6 may disrupt this delicate balancing act and cause monogenic Parkinsonism. Here, gene expression studies in post-mortem substantia nigra of Parkinson's disease (PD) patients and normal controls were performed to investigate whether NHE6 represents a pathophysiological link between monogenic and sporadic PD. The substantia nigra in PD displayed down-regulation of NHE6, coincident with a loss of expression of several SNARE signalling pathway members, suggesting impaired membrane fusion and vesicle-recycling. Increased abundance of related NHE9 was also identified in the parkinsonian nigra that could reflect compensatory changes or be a consequence of neuronal dysfunction. The current model suggests the possibility that neurons expressing low levels of NHE6 are more susceptible to injury in PD, potentially directly contributing to the loss of nigral dopaminergic neurons and the genesis of the disease. These results have important implications for disease-modifying therapies as they suggest that endosomal pH correctors, including epigenetic modifiers that regulate NHE6 expression, may be beneficial for PD. Thus, aberrant endosomal acidification in the nigrostriatal pathway is a possible unifying pathomechanism in both monogenic and sporadic PD, with implications for understanding and treating this disorder. Replication of these observations in the post-mortem brains of Alzheimer's disease and frontotemporal dementia patients supports a model of conserved mechanisms underlying injury and death of neurons.
Collapse
Affiliation(s)
- Hari Prasad
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
2
|
Imtiaz A, Shimonaka S, Uddin MN, Elahi M, Ishiguro K, Hasegawa M, Hattori N, Motoi Y. Selection of lansoprazole from an FDA-approved drug library to inhibit the Alzheimer's disease seed-dependent formation of tau aggregates. Front Aging Neurosci 2024; 16:1368291. [PMID: 38633982 PMCID: PMC11022852 DOI: 10.3389/fnagi.2024.1368291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
The efficacy of current treatments is still insufficient for Alzheimer's disease (AD), the most common cause of Dementia. Out of the two pathological hallmarks of AD amyloid-β plaques and neurofibrillary tangles, comprising of tau protein, tau pathology strongly correlates with the symptoms of AD. Previously, screening for inhibitors of tau aggregation that target recombinant tau aggregates have been attempted. Since a recent cryo-EM analysis revealed distinct differences in the folding patterns of heparin-induced recombinant tau filaments and AD tau filaments, this study focused on AD seed-dependent tau aggregation in drug repositioning for AD. We screened 763 compounds from an FDA-approved drug library using an AD seed-induced tau aggregation in SH-SY5Y cell-based assay. In the first screening, 180 compounds were selected, 72 of which were excluded based on the results of lactate dehydrogenase assay. In the third screening with evaluations of soluble and insoluble tau, 38 compounds were selected. In the fourth screening with 3 different AD seeds, 4 compounds, lansoprazole, calcipotriene, desogestrel, and pentamidine isethionate, were selected. After AD seed-induced real-time quaking-induced conversion, lansoprazole was selected as the most suitable drug for repositioning. The intranasal administration of lansoprazole for 4 months to AD seed-injected mice improved locomotor activity and reduced both the amount of insoluble tau and the extent of phosphorylated tau-positive areas. Alanine replacement of the predicted binding site to an AD filament indicated the involvement of Q351, H362, and K369 in lansoprazole and C-shaped tau filaments. These results suggest the potential of lansoprazole as a candidate for drug repositioning to an inhibitor of tau aggregate formation in AD.
Collapse
Affiliation(s)
- Ahmed Imtiaz
- Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
- Department of Neurology, Juntendo University School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shotaro Shimonaka
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Mohammad Nasir Uddin
- Department of Biochemistry & Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science & Technology University, Tangail, Bangladesh
| | - Montasir Elahi
- Center for Birth Defect Research, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Koichi Ishiguro
- Department of Neurology, Juntendo University School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Masato Hasegawa
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yumiko Motoi
- Medical Center for Dementia, Juntendo University Hospital, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
3
|
Del Rosario Hernández T, Gore SV, Kreiling JA, Creton R. Drug repurposing for neurodegenerative diseases using Zebrafish behavioral profiles. Biomed Pharmacother 2024; 171:116096. [PMID: 38185043 PMCID: PMC10922774 DOI: 10.1016/j.biopha.2023.116096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024] Open
Abstract
Drug repurposing can accelerate drug development while reducing the cost and risk of toxicity typically associated with de novo drug design. Several disorders lacking pharmacological solutions and exhibiting poor results in clinical trials - such as Alzheimer's disease (AD) - could benefit from a cost-effective approach to finding new therapeutics. We previously developed a neural network model, Z-LaP Tracker, capable of quantifying behaviors in zebrafish larvae relevant to cognitive function, including activity, reactivity, swimming patterns, and optomotor response in the presence of visual and acoustic stimuli. Using this model, we performed a high-throughput screening of FDA-approved drugs to identify compounds that affect zebrafish larval behavior in a manner consistent with the distinct behavior induced by calcineurin inhibitors. Cyclosporine (CsA) and other calcineurin inhibitors have garnered interest for their potential role in the prevention of AD. We generated behavioral profiles suitable for cluster analysis, through which we identified 64 candidate therapeutics for neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Sayali V Gore
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| |
Collapse
|
4
|
Hernández TDR, Gore SV, Kreiling JA, Creton R. Finding Drug Repurposing Candidates for Neurodegenerative Diseases using Zebrafish Behavioral Profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557235. [PMID: 37745452 PMCID: PMC10515830 DOI: 10.1101/2023.09.12.557235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Drug repurposing can accelerate drug development while reducing the cost and risk of toxicity typically associated with de novo drug design. Several disorders lacking pharmacological solutions and exhibiting poor results in clinical trials - such as Alzheimer's disease (AD) - could benefit from a cost-effective approach to finding new therapeutics. We previously developed a neural network model, Z-LaP Tracker, capable of quantifying behaviors in zebrafish larvae relevant to cognitive function, including activity, reactivity, swimming patterns, and optomotor response in the presence of visual and acoustic stimuli. Using this model, we performed a high-throughput screening of FDA-approved drugs to identify compounds that affect zebrafish larval behavior in a manner consistent with the distinct behavior induced by calcineurin inhibitors. Cyclosporine (CsA) and other calcineurin inhibitors have garnered interest for their potential role in the prevention of AD. We generated behavioral profiles suitable for cluster analysis, through which we identified 64 candidate therapeutics for neurodegenerative disorders.
Collapse
Affiliation(s)
- Thaís Del Rosario Hernández
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Sayali V Gore
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Jill A Kreiling
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
5
|
Müller SA, Shmueli MD, Feng X, Tüshaus J, Schumacher N, Clark R, Smith BE, Chi A, Rose-John S, Kennedy ME, Lichtenthaler SF. The Alzheimer's disease-linked protease BACE1 modulates neuronal IL-6 signaling through shedding of the receptor gp130. Mol Neurodegener 2023; 18:13. [PMID: 36810097 PMCID: PMC9942414 DOI: 10.1186/s13024-023-00596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/11/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND The protease BACE1 is a major drug target for Alzheimer's disease, but chronic BACE1 inhibition is associated with non-progressive cognitive worsening that may be caused by modulation of unknown physiological BACE1 substrates. METHODS To identify in vivo-relevant BACE1 substrates, we applied pharmacoproteomics to non-human-primate cerebrospinal fluid (CSF) after acute treatment with BACE inhibitors. RESULTS Besides SEZ6, the strongest, dose-dependent reduction was observed for the pro-inflammatory cytokine receptor gp130/IL6ST, which we establish as an in vivo BACE1 substrate. Gp130 was also reduced in human CSF from a clinical trial with a BACE inhibitor and in plasma of BACE1-deficient mice. Mechanistically, we demonstrate that BACE1 directly cleaves gp130, thereby attenuating membrane-bound gp130 and increasing soluble gp130 abundance and controlling gp130 function in neuronal IL-6 signaling and neuronal survival upon growth-factor withdrawal. CONCLUSION BACE1 is a new modulator of gp130 function. The BACE1-cleaved, soluble gp130 may serve as a pharmacodynamic BACE1 activity marker to reduce the occurrence of side effects of chronic BACE1 inhibition in humans.
Collapse
Affiliation(s)
- Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Merav D Shmueli
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Xiao Feng
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Ryan Clark
- Neuroscience, Merck & Co. Inc., Boston, MA, USA
| | - Brad E Smith
- Laboratory Animal Resources, Merck & Co. Inc., West Point, PA, USA
| | - An Chi
- Chemical Biology, Merck & Co. Inc., Boston, MA, USA
| | | | | | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany. .,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
6
|
Wei YL, Lei YQ, Ye ZJ, Zhuang XD, Zhu LP, Wang XR, Cao H. Effects of bepridil on early cardiac development of zebrafish. Cell Tissue Res 2023; 391:375-391. [PMID: 36422735 PMCID: PMC9686465 DOI: 10.1007/s00441-022-03706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/06/2022] [Indexed: 11/27/2022]
Abstract
Bepridil is a commonly used medication for arrhythmia and heart failure. It primarily exerts hemodynamic effects by inhibiting Na+/K+ movement and regulating the Na+/Ca2+ exchange. In comparison to other Ca2+ inhibitors, bepridil has a long half-life and a complex pharmacology. Additionally, it is widely used in antiviral research and the treatment of various diseases. However, the toxicity of this compound and its other possible effects on embryonic development are unknown. In this study, we investigated the toxicity of bepridil on rat myocardial H9c2 cells. After treatment with bepridil, the cells became overloaded with Ca2+ and entered a state of cytoplasmic vacuolization and nuclear abnormality. Bepridil treatment resulted in several morphological abnormalities in zebrafish embryo models, including pericardium enlargement, yolk sac swelling, and growth stunting. The hemodynamic effects on fetal development resulted in abnormal cardiovascular circulation and myocardial weakness. After inhibiting the Ca2+ transmembrane, the liver of zebrafish larvae also displayed an ectopic and deficient spatial location. Additionally, the results of the RNA-seq analysis revealed the detailed gene expression profiles and metabolic responses to bepridil treatment in zebrafish embryonic development. Taken together, our study provides an important evaluation of antiarrhythmic agents for clinical use in prenatal heart patients.
Collapse
Affiliation(s)
- Ya-Lan Wei
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350013, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350122, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China
| | - Yu-Qing Lei
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350013, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350122, China
| | - Zhou-Jie Ye
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350013, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350122, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China
| | - Xu-Dong Zhuang
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350013, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350122, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China
| | - Li-Ping Zhu
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350013, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350122, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China
| | - Xin-Rui Wang
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350013, China.
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350122, China.
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China.
| | - Hua Cao
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350013, China.
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350122, China.
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
7
|
Vatansever EC, Yang KS, Drelich AK, Kratch KC, Cho CC, Kempaiah KR, Hsu JC, Mellott DM, Xu S, Tseng CTK, Liu WR. Bepridil is potent against SARS-CoV-2 in vitro. Proc Natl Acad Sci U S A 2021; 118:e2012201118. [PMID: 33597253 PMCID: PMC7958448 DOI: 10.1073/pnas.2012201118] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Guided by a computational docking analysis, about 30 Food and Drug Administration/European Medicines Agency (FDA/EMA)-approved small-molecule medicines were characterized on their inhibition of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro). Of these small molecules tested, six displayed a concentration that inhibits response by 50% (IC50) value below 100 μM in inhibiting Mpro, and, importantly, three, that is, pimozide, ebastine, and bepridil, are basic molecules that potentiate dual functions by both raising endosomal pH to interfere with SARS-CoV-2 entry into the human cell host and inhibiting Mpro in infected cells. A live virus-based modified microneutralization assay revealed that bepridil possesses significant anti-SARS-CoV-2 activity in both Vero E6 and A459/ACE2 cells in a dose-dependent manner with low micromolar effective concentration, 50% (EC50) values. Therefore, the current study urges serious considerations of using bepridil in COVID-19 clinical tests.
Collapse
Affiliation(s)
- Erol C Vatansever
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Kai S Yang
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Aleksandra K Drelich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Kaci C Kratch
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Chia-Chuan Cho
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843
| | | | - Jason C Hsu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Drake M Mellott
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Shiqing Xu
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Chien-Te K Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555;
- Center of Biodefense and Emerging Disease, University of Texas Medical Branch, Galveston, TX 77555
| | - Wenshe Ray Liu
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843;
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843
| |
Collapse
|
8
|
Abstract
Extracellular acidification is a well-known driver of tumorigenesis that has been extensively studied. In contrast, the role of endosomal pH is novel and relatively unexplored. There is emerging evidence from a growing number of studies showing that the pH of endosomal compartments controls proliferation, migration, stemness, and sensitivity to chemoradiation therapy in a variety of tumors. Endosomes are a crucial hub, mediating cellular communication with the external environment. By finely regulating the sorting and trafficking of vesicular cargo for degradation or recycling, endosomal pH determines the fate of plasma membrane proteins, lipids, and extracellular signals including growth factor receptors and their ligands. Several critical regulators of endosomal pH have been identified, including multiple isoforms of the family of electroneutral Na+/H+ exchangers (NHE) such as NHE6 and NHE9. Recent studies have shed light on molecular mechanisms linking endosomal pH to cancer malignancy. Manipulating endosomal pH by epigenetic reprogramming, small molecules, or nanoparticles may offer promising new options in cancer therapy. In this review, we summarize evidence linking endosomal pH to cancer, with a focus on the role of endosomal Na+/H+ exchangers and how they affect the prognosis of cancer patients, and also suggest how regulation of endosomal pH may be exploited to develop new cancer therapies.
Collapse
|
9
|
Olajide OJ, Gbadamosi IT, Yawson EO, Arogundade T, Lewu FS, Ogunrinola KY, Adigun OO, Bamisi O, Lambe E, Arietarhire LO, Oluyomi OO, Idowu OK, Kareem R, Asogwa NT, Adeniyi PA. Hippocampal Degeneration and Behavioral Impairment During Alzheimer-Like Pathogenesis Involves Glutamate Excitotoxicity. J Mol Neurosci 2021; 71:1205-1220. [PMID: 33420680 DOI: 10.1007/s12031-020-01747-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022]
Abstract
The hallmarks of Alzheimer's disease (AD) pathology include senile plaques accumulation and neurofibrillary tangles, which is thought to underlie synaptic failure. Recent evidence however supports that synaptic failure in AD may instead be instigated by enhanced N-methyl-D-aspartate (NMDA) activity, via a reciprocal relationship between soluble amyloid-β (Aβ) accumulation and increased glutamate agonist. While previous studies have shown Aβ-mediated alterations to the glutamatergic system during AD, the underlying etiology of excitotoxic glutamate-induced changes has not been explored. Here, we investigated the acute effects of stereotaxic dentate gyrus (DG) glutamate injection on behavior and molecular expression of specific proteins and neurochemicals modulating hippocampal functions. Dependence of glutamate-mediated effects on NMDA receptor (NMDAR) hyperactivation was tested using NMDARs antagonist memantine. DG of Wistar rats (12-weeks-old) were bilaterally microinjected with glutamate (500 mM) with or without daily intraperitoneal (i.p.) memantine injection (20 mg/kg) for 14 days, while controls received either intrahippocampal/i.p. PBS or i.p. memantine. Behavioral characterization in open field and Y-maze revealed that glutamate evoked anxiogenic responses and perturbed spatial memory were inhibited by memantine. In glutamate-treated rats, increased NO expression was accompanied by marked reduction in profiles of glutathione-s-transferase and glutathione peroxidase. Similarly, glutamate-mediated increase in acetylcholinesterase expression corroborated downregulation of synaptophysin and PSD-95, coupled with initiation of reactive astrogliosis (GFAP). While neurofilament immunolocalization/immunoexpression was unperturbed, we found glutamate-mediated reduction in neurogenic markers Ki67 and PCNA immunoexpression, with a decrease in NR2B protein expression, whereas mGluR1 remains unchanged. In addition, increased expression of apoptotic regulatory proteins p53 and Bax was seen in glutamate infused rats, corroborating chromatolytic degeneration of granule neurons in the DG. Interestingly, memantine abrogated most of the degenerative changes associated with glutamate excitotoxicity in this study. Taken together, our findings causally link acute glutamate dyshomeostasis in the DG with development of AD-related behavioral impairment and molecular neurodegeneration.
Collapse
Affiliation(s)
- Olayemi Joseph Olajide
- Department of Anatomy, Division of Neurobiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria. .,Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Canada.
| | - Ismail Tayo Gbadamosi
- Department of Anatomy, Division of Neurobiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.,Central Research Laboratories Ltd, 132b University Road, Ilorin, Nigeria
| | - Emmanuel Olusola Yawson
- Department of Anatomy, Division of Neurobiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.,Department of Anatomy, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Nigeria
| | - Tolulope Arogundade
- Department of Anatomy, Division of Neurobiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.,Department of Anatomy, Faculty of Basic Medical Sciences, Adeleke University, Ede, Nigeria
| | - Folashade Susan Lewu
- Department of Anatomy, Division of Neurobiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Kehinde Yomi Ogunrinola
- Department of Anatomy, Division of Neurobiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.,Department of Anatomy, School of Post-Basic Nursing, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Oluwaseun Olaniyi Adigun
- Department of Anatomy, Division of Neurobiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Olawande Bamisi
- Department of Anatomy, Division of Neurobiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.,Department of Anatomy, Faculty of Basic Medical Sciences, Ekiti State University, Ado Ekiti, Nigeria
| | - Ezra Lambe
- Department of Anatomy, Division of Neurobiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Leviticus Ogbenevurinrin Arietarhire
- Department of Anatomy, Division of Neurobiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Olushola Oladapo Oluyomi
- Department of Anatomy, Division of Neurobiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Olumayowa Kolawole Idowu
- Department of Anatomy, Division of Neurobiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Rukayat Kareem
- Department of Anatomy, Division of Neurobiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Nnaemeka Tobechukwu Asogwa
- Central Research Laboratories Ltd, 132b University Road, Ilorin, Nigeria.,Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - Philip Adeyemi Adeniyi
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
10
|
Prasad H, Rao R. Endosomal Acid-Base Homeostasis in Neurodegenerative Diseases. Rev Physiol Biochem Pharmacol 2020; 185:195-231. [PMID: 32737755 PMCID: PMC7614123 DOI: 10.1007/112_2020_25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neurodegenerative disorders are debilitating and largely untreatable conditions that pose a significant burden to affected individuals and caregivers. Overwhelming evidence supports a crucial preclinical role for endosomal dysfunction as an upstream pathogenic hub and driver in Alzheimer's disease (AD) and related neurodegenerative disorders. We present recent advances on the role of endosomal acid-base homeostasis in neurodegeneration and discuss evidence for converging mechanisms. The strongest genetic risk factor in sporadic AD is the ε4 allele of Apolipoprotein E (ApoE4), which potentiates pre-symptomatic endosomal dysfunction and prominent amyloid beta (Aβ) pathology, although how these pathways are linked mechanistically has remained unclear. There is emerging evidence that the Christianson syndrome protein NHE6 is a prominent ApoE4 effector linking endosomal function to Aβ pathologies. By functioning as a dominant leak pathway for protons, the Na+/H+ exchanger activity of NHE6 limits endosomal acidification and regulates β-secretase (BACE)-mediated Aβ production and LRP1 receptor-mediated Aβ clearance. Pathological endosomal acidification may impact both Aβ generation and clearance mechanisms and emerges as a promising therapeutic target in AD. We also offer our perspective on the complex role of endosomal acid-base homeostasis in the pathogenesis of neurodegeneration and its therapeutic implications for neuronal rescue and repair strategies.
Collapse
Affiliation(s)
- Hari Prasad
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India, Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rajini Rao
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Vatansever EC, Yang K, Kratch KC, Drelich A, Cho CC, Mellott DM, Xu S, Tseng CTK, Liu WR. Bepridil is potent against SARS-CoV-2 In Vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511370 PMCID: PMC7263498 DOI: 10.1101/2020.05.23.112235] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Guided by a computational docking analysis, about 30 FDA/EMA-approved small molecule medicines were characterized on their inhibition of the SARS-CoV-2 main protease (MPro). Of these tested small molecule medicines, six displayed an IC50 value in inhibiting MPro below 100 μM. Three medicines pimozide, ebastine, and bepridil are basic small molecules. Their uses in COVID-19 patients potentiate dual functions by both raising endosomal pH to slow SARS-CoV-2 entry into the human cell host and inhibiting MPro in infected cells. A live virus-based microneutralization assay showed that bepridil inhibited cytopathogenic effect induced by SARS-CoV-2 in Vero E6 cells completely at and dose-dependently below 5 μM and in A549 cells completely at and dose-dependently below 6.25 μM. Therefore, the current study urges serious considerations of using bepridil in COVID-19 clinical tests.
Collapse
Affiliation(s)
- Erol C Vatansever
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Kai Yang
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Kaci C Kratch
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Aleksandra Drelich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Chia-Chuan Cho
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Drake M Mellott
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Shiqing Xu
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Chien-Te K Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Wenshe Ray Liu
- The Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.,Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
12
|
Brummer T, Müller SA, Pan-Montojo F, Yoshida F, Fellgiebel A, Tomita T, Endres K, Lichtenthaler SF. NrCAM is a marker for substrate-selective activation of ADAM10 in Alzheimer's disease. EMBO Mol Med 2020; 11:emmm.201809695. [PMID: 30833305 PMCID: PMC6460357 DOI: 10.15252/emmm.201809695] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The metalloprotease ADAM10 is a drug target in Alzheimer's disease, where it cleaves the amyloid precursor protein (APP) and lowers amyloid‐beta. Yet, ADAM10 has additional substrates, which may cause mechanism‐based side effects upon therapeutic ADAM10 activation. However, they may also serve—in addition to APP—as biomarkers to monitor ADAM10 activity in patients and to develop APP‐selective ADAM10 activators. Our study demonstrates that one such substrate is the neuronal cell adhesion protein NrCAM. ADAM10 controlled NrCAM surface levels and regulated neurite outgrowth in vitro in an NrCAM‐dependent manner. However, ADAM10 cleavage of NrCAM, in contrast to APP, was not stimulated by the ADAM10 activator acitretin, suggesting that substrate‐selective ADAM10 activation may be feasible. Indeed, a whole proteome analysis of human CSF from a phase II clinical trial showed that acitretin, which enhanced APP cleavage by ADAM10, spared most other ADAM10 substrates in brain, including NrCAM. Taken together, this study demonstrates an NrCAM‐dependent function for ADAM10 in neurite outgrowth and reveals that a substrate‐selective, therapeutic ADAM10 activation is possible and may be monitored with NrCAM.
Collapse
Affiliation(s)
- Tobias Brummer
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stephan A Müller
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Munich, Germany
| | - Francisco Pan-Montojo
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Fumiaki Yoshida
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Andreas Fellgiebel
- Department of Psychiatry and Psychotherapy, University Medical Center JGU, Mainz, Germany
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center JGU, Mainz, Germany
| | - Stefan F Lichtenthaler
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Munich, Germany .,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Institute for Advanced Study, Technische Universität München, Garching, Germany
| |
Collapse
|
13
|
Rudan Njavro J, Klotz J, Dislich B, Wanngren J, Shmueli MD, Herber J, Kuhn PH, Kumar R, Koeglsperger T, Conrad M, Wurst W, Feederle R, Vlachos A, Michalakis S, Jedlicka P, Müller SA, Lichtenthaler SF. Mouse brain proteomics establishes MDGA1 and CACHD1 as in vivo substrates of the Alzheimer protease BACE1. FASEB J 2019; 34:2465-2482. [PMID: 31908000 DOI: 10.1096/fj.201902347r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 01/18/2023]
Abstract
The protease beta-site APP cleaving enzyme 1 (BACE1) has fundamental functions in the nervous system. Its inhibition is a major therapeutic approach in Alzheimer's disease, because BACE1 cleaves the amyloid precursor protein (APP), thereby catalyzing the first step in the generation of the pathogenic amyloid beta (Aβ) peptide. Yet, BACE1 cleaves numerous additional membrane proteins besides APP. Most of these substrates have been identified in vitro, but only few were further validated or characterized in vivo. To identify BACE1 substrates with in vivo relevance, we used isotope label-based quantitative proteomics of wild type and BACE1-deficient (BACE1 KO) mouse brains. This approach identified known BACE1 substrates, including Close homolog of L1 and contactin-2, which were found to be enriched in the membrane fraction of BACE1 KO brains. VWFA and cache domain-containing protein 1 (CACHD)1 and MAM domain-containing glycosylphosphatidylinositol anchor protein 1 (MDGA1), which have functions in synaptic transmission, were identified and validated as new BACE1 substrates in vivo by immunoblots using primary neurons and mouse brains. Inhibition or deletion of BACE1 from primary neurons resulted in a pronounced inhibition of substrate cleavage and a concomitant increase in full-length protein levels of CACHD1 and MDGA1. The BACE1 cleavage site in both proteins was determined to be located within the juxtamembrane domain. In summary, this study identifies and validates CACHD1 and MDGA1 as novel in vivo substrates for BACE1, suggesting that cleavage of both proteins may contribute to the numerous functions of BACE1 in the nervous system.
Collapse
Affiliation(s)
- Jasenka Rudan Njavro
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jakob Klotz
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bastian Dislich
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute of Pathology, University of Bern, Switzerland
| | - Johanna Wanngren
- Division of Neurogeriatrics, Department of NVS, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Merav D Shmueli
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Julia Herber
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Peer-Hendrik Kuhn
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Rohit Kumar
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Thomas Koeglsperger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Neurology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Genome Engineering, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Developmental Genetics, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Regina Feederle
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,German Research Center for Environmental Health, Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Helmholtz Zentrum München, Neuherberg, Germany.,Core Facility Monoclonal Antibodies, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Germany.,Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Peter Jedlicka
- Faculty of Medicine, ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Justus-Liebig-University, Giessen, Germany.,Neuroscience Center, Institute of Clinical Neuroanatomy, Goethe University, Frankfurt am Main, Germany.,Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
14
|
Kelicen-Ugur P, Cincioğlu-Palabıyık M, Çelik H, Karahan H. Interactions of Aromatase and Seladin-1: A Neurosteroidogenic and Gender Perspective. Transl Neurosci 2019; 10:264-279. [PMID: 31737354 PMCID: PMC6843488 DOI: 10.1515/tnsci-2019-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/03/2019] [Indexed: 12/16/2022] Open
Abstract
Aromatase and seladin-1 are enzymes that have major roles in estrogen synthesis and are important in both brain physiology and pathology. Aromatase is the key enzyme that catalyzes estrogen biosynthesis from androgen precursors and regulates the brain’s neurosteroidogenic activity. Seladin-1 is the enzyme that catalyzes the last step in the biosynthesis of cholesterol, the precursor of all hormones, from desmosterol. Studies indicated that seladin-1 is a downstream mediator of the neuroprotective activity of estrogen. Recently, we also showed that there is an interaction between aromatase and seladin-1 in the brain. Therefore, the expression of local brain aromatase and seladin-1 is important, as they produce neuroactive steroids in the brain for the protection of neuronal damage. Increasing steroid biosynthesis specifically in the central nervous system (CNS) without affecting peripheral hormone levels may be possible by manipulating brain-specific promoters of steroidogenic enzymes. This review emphasizes that local estrogen, rather than plasma estrogen, may be responsible for estrogens’ protective effects in the brain. Therefore, the roles of aromatase and seladin-1 and their interactions in neurodegenerative events such as Alzheimer’s disease (AD), ischemia/reperfusion injury (stroke), and epilepsy are also discussed in this review.
Collapse
Affiliation(s)
- Pelin Kelicen-Ugur
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sıhhiye Ankara Turkey
| | - Mehtap Cincioğlu-Palabıyık
- Turkish Medicines and Medical Devices Agency (TITCK), Department of Regulatory Affairs, Division of Pharmacological Assessment, Ankara, Turkey
| | - Hande Çelik
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sıhhiye Ankara Turkey
| | - Hande Karahan
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
15
|
Hu HJ, Wang SS, Wang YX, Liu Y, Feng XM, Shen Y, Zhu L, Chen HZ, Song M. Blockade of the forward Na + /Ca 2+ exchanger suppresses the growth of glioblastoma cells through Ca 2+ -mediated cell death. Br J Pharmacol 2019; 176:2691-2707. [PMID: 31034096 PMCID: PMC6609550 DOI: 10.1111/bph.14692] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 01/13/2023] Open
Abstract
Background and Purpose The Na+/Ca2+ exchanger (NCX) working in either forward or reverse mode participates in maintaining intracellular Ca2+ ([Ca2+]i) homeostasis, which is essential for determining cell fate. Previously, numerous blockers targeting reverse or forward NCX have been developed and studied in ischaemic tissue injury but barely examined in glioblastoma for the purpose of anti‐tumour therapy. We assessed the effect of NCX blockers on glioblastoma growth and whether NCX can become a therapeutic target. Experimental Approach Patch‐clamp recording, Ca2+ imaging, flow cytometry, and Western blot were used to study the effects of specific and non‐specific NCX blockers on cultured glioblastoma cells. In vivo bioluminescent imaging was used to measure effects on grafted glioblastoma. Key Results Selectively blocking the reverse NCX with SEA0400, SN‐6, and YM‐244769 did not affect tumour cell viability. Blocking the forward NCX with bepridil, CB‐DMB, or KB‐R7943 elevated [Ca2+]i and killed glioblastoma cells. Bepridil and CB‐DMB caused Ca2+‐dependent cell cycle arrest together with apoptosis, which were all attenuated by a Ca2+ chelator BAPTA‐AM. Systemic administration of bepridil inhibited growth of brain‐grafted glioblastoma. Bepridil did not appear to have a cytotoxic effect on human astrocytes, which have higher functional expression of NCX than glioblastoma cells. Conclusions and Implications Low expression of the NCX makes glioblastoma cells sensitive to disturbance of [Ca2+]i. Interventions designed to block the forward NCX can cause Ca2+‐mediated injury to glioblastoma thus having therapeutic potential. Bepridil could be a lead compound for developing new anti‐tumour drugs.
Collapse
Affiliation(s)
- Hui-Jie Hu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan-Shan Wang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Xia Wang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Liu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue-Mei Feng
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Shen
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Zhu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Zhuan Chen
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingke Song
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
DeWald LE, Dyall J, Sword JM, Torzewski L, Zhou H, Postnikova E, Kollins E, Alexander I, Gross R, Cong Y, Gerhardt DM, Johnson RF, Olinger GG, Holbrook MR, Hensley LE, Jahrling PB. The Calcium Channel Blocker Bepridil Demonstrates Efficacy in the Murine Model of Marburg Virus Disease. J Infect Dis 2018; 218:S588-S591. [PMID: 29982632 PMCID: PMC6249584 DOI: 10.1093/infdis/jiy332] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/27/2018] [Indexed: 11/14/2022] Open
Abstract
No therapeutics are approved for the treatment of filovirus infections. Bepridil, a calcium channel blocker developed for treating angina, was identified as a potent inhibitor of filoviruses in vitro, including Ebola and Marburg viruses, and Ebola virus in vivo. We evaluated the efficacy of bepridil in a lethal mouse model of Marburg virus disease. A dose of 12 mg/kg bepridil once or twice daily resulted in 80% or 90% survival, respectively. These data confirm bepridil's broad-spectrum anti-filovirus activity warranting further investigation of bepridil, or improved compounds with a similar mechanism, as a pan-filovirus therapeutic agent.
Collapse
Affiliation(s)
- Lisa Evans DeWald
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Julie Dyall
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Jennifer M Sword
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Lisa Torzewski
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Huanying Zhou
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Elena Postnikova
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Erin Kollins
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Isis Alexander
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Robin Gross
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Yu Cong
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Dawn M Gerhardt
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Reed F Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Gene G Olinger
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Michael R Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Lisa E Hensley
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Peter B Jahrling
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| |
Collapse
|
17
|
Scholz D, Chernyshova Y, Ückert AK, Leist M. Reduced Aβ secretion by human neurons under conditions of strongly increased BACE activity. J Neurochem 2018; 147:256-274. [PMID: 29804308 DOI: 10.1111/jnc.14467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/06/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
Abstract
The initial step in the amyloidogenic cascade of amyloid precursor protein (APP) processing is catalyzed by beta-site APP-cleaving enzyme (BACE), and this protease has increased activities in affected areas of Alzheimer's disease brains. We hypothesized that altered APP processing, because of augmented BACE activity, would affect the actions of direct and indirect BACE inhibitors. We therefore compared post-mitotic human neurons (LUHMES) with their BACE-overexpressing counterparts (BLUHMES). Although β-cleavage of APP was strongly increased in BLUHMES, they produced less full-length and truncated amyloid beta (Aβ) than LUHMES. Moreover, low concentrations of BACE inhibitors decreased cellular BACE activity as expected, but increased Aβ1-40 levels. Several other approaches to modulate BACE activity led to a similar, apparently paradoxical, behavior. For instance, reduction in intracellular acidification by bepridil increased Aβ production in parallel with decreased BACE activity. In contrast to BLUHMES, the respective control cells (LUHMES or BLUHMES with catalytically inactive BACE) showed conventional pharmacological responses. Other non-canonical neurochemical responses (so-called 'rebound effects') are well-documented for the Aβ pathway, especially for γ-secretase: a partial block of its activity leads to an increased Aβ secretion by some cell types. We therefore compared LUHMES and BLUHMES regarding rebound effects of γ-secretase inhibitors and found an Aβ rise in LUHMES but not in BLUHMES. Thus, different cellular factors are responsible for the γ-secretase- versus BACE-related Aβ rebound. We conclude that increased BACE activity, possibly accompanied by an altered cellular localization pattern, can dramatically influence Aβ generation in human neurons and affect pharmacological responses to secretase inhibitors. OPEN PRACTICES: Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Diana Scholz
- Chair for in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Yana Chernyshova
- Chair for in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Anna-Katharina Ückert
- Chair for in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Marcel Leist
- Chair for in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| |
Collapse
|
18
|
Lichtenthaler SF, Lemberg MK, Fluhrer R. Proteolytic ectodomain shedding of membrane proteins in mammals-hardware, concepts, and recent developments. EMBO J 2018; 37:e99456. [PMID: 29976761 PMCID: PMC6068445 DOI: 10.15252/embj.201899456] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/05/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Proteolytic removal of membrane protein ectodomains (ectodomain shedding) is a post-translational modification that controls levels and function of hundreds of membrane proteins. The contributing proteases, referred to as sheddases, act as important molecular switches in processes ranging from signaling to cell adhesion. When deregulated, ectodomain shedding is linked to pathologies such as inflammation and Alzheimer's disease. While proteases of the "a disintegrin and metalloprotease" (ADAM) and "beta-site APP cleaving enzyme" (BACE) families are widely considered as sheddases, in recent years a much broader range of proteases, including intramembrane and soluble proteases, were shown to catalyze similar cleavage reactions. This review demonstrates that shedding is a fundamental process in cell biology and discusses the current understanding of sheddases and their substrates, molecular mechanisms and cellular localizations, as well as physiological functions of protein ectodomain shedding. Moreover, we provide an operational definition of shedding and highlight recent conceptual advances in the field. While new developments in proteomics facilitate substrate discovery, we expect that shedding is not a rare exception, but rather the rule for many membrane proteins, and that many more interesting shedding functions await discovery.
Collapse
Affiliation(s)
- Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, Klinikum rechts der Isar, School of Medicine, and Institute for Advanced Study, Technical University Munich, Munich, Germany
- Munich Center for Systems Neurology (SyNergy), Munich, Germany
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Regina Fluhrer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Biomedizinisches Centrum (BMC), Ludwig-Maximilians University of Munich, Munich, Germany
| |
Collapse
|
19
|
Pierzynowska K, Gaffke L, Cyske Z, Puchalski M, Rintz E, Bartkowski M, Osiadły M, Pierzynowski M, Mantej J, Piotrowska E, Węgrzyn G. Autophagy stimulation as a promising approach in treatment of neurodegenerative diseases. Metab Brain Dis 2018; 33:989-1008. [PMID: 29542037 PMCID: PMC6060747 DOI: 10.1007/s11011-018-0214-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/08/2018] [Indexed: 12/19/2022]
Abstract
Autophagy is a process of degradation of macromolecules in the cytoplasm, particularly proteins of a long half-life, as well as whole organelles, in eukaryotic cells. Lysosomes play crucial roles during this degradation. Autophagy is a phylogenetically old, and evolutionarily conserved phenomenon which occurs in all eukaryotic cells. It can be found in yeast Saccharomyces cerevisiae, insect Drosophila melanogaster, and mammals, including humans. Its high importance for cell physiology has been recognized, and in fact, dysfunctions causing impaired autophagy are associated with many severe disorders, including cancer and metabolic brain diseases. The types and molecular mechanisms of autophagy have been reviewed recently by others, and in this paper they will be summarized only briefly. Regulatory networks controlling the autophagy process are usually described as negative regulations. In contrast, here, we focus on different ways by which autophagy can be stimulated. In fact, activation of this process by different factors or processes can be considered as a therapeutic strategy in metabolic neurodegenerative diseases. These aspects are reviewed and discussed in this article.
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Zuzanna Cyske
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Michał Puchalski
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Michał Bartkowski
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Marta Osiadły
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Michał Pierzynowski
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Ewa Piotrowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
20
|
Amyloid clearance defect in ApoE4 astrocytes is reversed by epigenetic correction of endosomal pH. Proc Natl Acad Sci U S A 2018; 115:E6640-E6649. [PMID: 29946028 DOI: 10.1073/pnas.1801612115] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Endosomes have emerged as a central hub and pathogenic driver of Alzheimer's disease (AD). The earliest brain cytopathology in neurodegeneration, occurring decades before amyloid plaques and cognitive decline, is an expansion in the size and number of endosomal compartments. The strongest genetic risk factor for sporadic AD is the ε4 allele of Apolipoprotein E (ApoE4). Previous studies have shown that ApoE4 potentiates presymptomatic endosomal dysfunction and defective endocytic clearance of amyloid beta (Aβ), although how these two pathways are linked at a cellular and mechanistic level has been unclear. Here, we show that aberrant endosomal acidification in ApoE4 astrocytes traps the low-density lipoprotein receptor-related protein (LRP1) within intracellular compartments, leading to loss of surface expression and Aβ clearance. Pathological endosome acidification is caused by ε4 risk allele-selective down-regulation of the Na+/H+ exchanger isoform NHE6, which functions as a critical leak pathway for endosomal protons. In vivo, the NHE6 knockout (NHE6KO) mouse model showed elevated Aβ in the brain, consistent with a causal effect. Increased nuclear translocation of histone deacetylase 4 (HDAC4) in ApoE4 astrocytes, compared with the nonpathogenic ApoE3 allele, suggested a mechanistic basis for transcriptional down-regulation of NHE6. HDAC inhibitors that restored NHE6 expression normalized ApoE4-specific defects in endosomal pH, LRP1 trafficking, and amyloid clearance. Thus, NHE6 is a downstream effector of ApoE4 and emerges as a promising therapeutic target in AD. These observations have prognostic implications for patients who have Christianson syndrome with loss of function mutations in NHE6 and exhibit prominent glial pathology and progressive hallmarks of neurodegeneration.
Collapse
|
21
|
Goyal D, Kaur A, Goyal B. Benzofuran and Indole: Promising Scaffolds for Drug Development in Alzheimer's Disease. ChemMedChem 2018; 13:1275-1299. [DOI: 10.1002/cmdc.201800156] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/27/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Deepti Goyal
- Department of Chemistry, Faculty of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib 140406 Punjab India
| | - Amandeep Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib 140406 Punjab India
| | - Bhupesh Goyal
- School of Chemistry and Biochemistry; Thapar Institute of Engineering & Technology; Patiala 147004 Punjab India
| |
Collapse
|
22
|
Prasad H, Rao R. Histone deacetylase-mediated regulation of endolysosomal pH. J Biol Chem 2018; 293:6721-6735. [PMID: 29567836 DOI: 10.1074/jbc.ra118.002025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/19/2018] [Indexed: 11/06/2022] Open
Abstract
The pH of the endolysosomal system is tightly regulated by a balance of proton pump and leak mechanisms that are critical for storage, recycling, turnover, and signaling functions in the cell. Dysregulation of endolysosomal pH has been linked to aging, amyloidogenesis, synaptic dysfunction, and various neurodegenerative disorders, including Alzheimer's disease. Therefore, understanding the mechanisms that regulate luminal pH may be key to identifying new targets for managing these disorders. Meta-analysis of yeast microarray databases revealed that nutrient-limiting conditions inhibited the histone deacetylase (HDAC) Rpd3 and thereby up-regulated transcription of the endosomal Na+/H+ exchanger Nhx1, resulting in vacuolar alkalinization. Consistent with these findings, Rpd3 inhibition by the HDAC inhibitor and antifungal drug trichostatin A induced Nhx1 expression and vacuolar alkalinization. Bioinformatics analysis of Drosophila and mouse databases revealed that caloric control of the Nhx1 orthologs DmNHE3 and NHE6, respectively, is also mediated by HDACs. We show that NHE6 is a target of the transcription factor cAMP-response element-binding protein (CREB), a known regulator of cellular responses to low-nutrient conditions, providing a molecular mechanism for nutrient- and HDAC-dependent regulation of endosomal pH. Of note, pharmacological targeting of the CREB pathway to increase NHE6 expression helped regulate endosomal pH and correct defective clearance of amyloid Aβ in an apoE4 astrocyte model of Alzheimer's disease. These observations from yeast, fly, mouse, and cell culture models point to an evolutionarily conserved mechanism for HDAC-mediated regulation of endosomal NHE expression. Our insights offer new therapeutic strategies for modulation of endolysosomal pH in fungal infection and human disease.
Collapse
Affiliation(s)
- Hari Prasad
- From the Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Rajini Rao
- From the Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
23
|
Salata C, Calistri A, Parolin C, Baritussio A, Palù G. Antiviral activity of cationic amphiphilic drugs. Expert Rev Anti Infect Ther 2017; 15:483-492. [PMID: 28286997 PMCID: PMC7103695 DOI: 10.1080/14787210.2017.1305888] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Introduction: Emerging and reemerging viral infections represent a major concern for human and veterinary public health and there is an urgent need for the development of broad-spectrum antivirals. Areas covered: A recent strategy in antiviral research is based on the identification of molecules targeting host functions required for infection of multiple viruses. A number of FDA-approved drugs used to treat several human diseases are cationic amphiphilic drugs (CADs) that have the ability to accumulate inside cells affecting several structures/functions hijacked by viruses during infection. In this review we summarized the CADs’ chemical properties and effects on the cells and reported the main FDA-approved CADs that have been identified so far as potential antivirals in drug repurposing studies. Expert commentary: Although there have been concerns regarding the efficacy and the possible side effects of the off-label use of CADs as antivirals, they seem to represent a promising starting point for the development of broad-spectrum antiviral strategies. Further knowledge about their mechanism of action is required to improve their antiviral activity and to reduce the risk of side effects.
Collapse
Affiliation(s)
- Cristiano Salata
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| | - Arianna Calistri
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| | - Cristina Parolin
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| | - Aldo Baritussio
- b Clinica Medica 1, Department of Medicine , University of Padova , Padova , Italy
| | - Giorgio Palù
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| |
Collapse
|
24
|
Mujahid M, Subramanian J, Nalla V, Sasikumar M, Kunte SS, Muthukrishnan M. A new and efficient enantioselective synthesis of both enantiomers of the calcium channel blocker bepridil. NEW J CHEM 2017. [DOI: 10.1039/c6nj02928k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We report a simple enantioselective synthesis of bepridil enantiomers employing hydrolytic kinetic resolution and the Mitsunobu reaction as key steps.
Collapse
Affiliation(s)
- Mohammad Mujahid
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
- P.G. Department of Chemistry
| | - Jambu Subramanian
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | - Viswanadh Nalla
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | - Murugesan Sasikumar
- Department of Chemistry
- School of Basic Sciences
- Vels University
- Chennai-600117
- India
| | | | | |
Collapse
|
25
|
Pigoni M, Wanngren J, Kuhn PH, Munro KM, Gunnersen JM, Takeshima H, Feederle R, Voytyuk I, De Strooper B, Levasseur MD, Hrupka BJ, Müller SA, Lichtenthaler SF. Seizure protein 6 and its homolog seizure 6-like protein are physiological substrates of BACE1 in neurons. Mol Neurodegener 2016; 11:67. [PMID: 27716410 PMCID: PMC5053352 DOI: 10.1186/s13024-016-0134-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 09/28/2016] [Indexed: 01/22/2023] Open
Abstract
Background The protease BACE1 (beta-site APP cleaving enzyme) is a major drug target in Alzheimer’s disease. However, BACE1 therapeutic inhibition may cause unwanted adverse effects due to its additional functions in the nervous system, such as in myelination and neuronal connectivity. Additionally, recent proteomic studies investigating BACE1 inhibition in cell lines and cultured murine neurons identified a wider range of neuronal membrane proteins as potential BACE1 substrates, including seizure protein 6 (SEZ6) and its homolog SEZ6L. Methods and results We generated antibodies against SEZ6 and SEZ6L and validated these proteins as BACE1 substrates in vitro and in vivo. Levels of the soluble, BACE1-cleaved ectodomain of both proteins (sSEZ6, sSEZ6L) were strongly reduced upon BACE1 inhibition in primary neurons and also in vivo in brains of BACE1-deficient mice. BACE1 inhibition increased neuronal surface levels of SEZ6 and SEZ6L as shown by cell surface biotinylation, demonstrating that BACE1 controls surface expression of both proteins. Moreover, mass spectrometric analysis revealed that the BACE1 cleavage site in SEZ6 is located in close proximity to the membrane, similar to the corresponding cleavage site in SEZ6L. Finally, an improved method was developed for the proteomic analysis of murine cerebrospinal fluid (CSF) and was applied to CSF from BACE-deficient mice. Hereby, SEZ6 and SEZ6L were validated as BACE1 substrates in vivo by strongly reduced levels in the CSF of BACE1-deficient mice. Conclusions This study demonstrates that SEZ6 and SEZ6L are physiological BACE1 substrates in the murine brain and suggests that sSEZ6 and sSEZ6L levels in CSF are suitable markers to monitor BACE1 inhibition in mice. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0134-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martina Pigoni
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Johanna Wanngren
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Peer-Hendrik Kuhn
- Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Institute for Advanced Study, Technische Universität München, Munich, Germany.,Institute for Pathology und Pathological Anatomy, Technische Universität München, Munich, Germany
| | - Kathryn M Munro
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria, Australia
| | - Jenny M Gunnersen
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Hiroshi Takeshima
- Division of Pharmaceutical Sciences, Graduate School and Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Regina Feederle
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute for Diabetes and Obesity, Monoclonal Antibody Research Group, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Iryna Voytyuk
- VIB Center for the Biology of Disease, Leuven, Belgium
| | - Bart De Strooper
- VIB Center for the Biology of Disease, Leuven, Belgium.,Center for Human Genetics, and Leuven Institute for Neurodegenerative Diseases (LIND), University of Leuven (KU Leuven), Leuven, Belgium.,Institute of Neurology, University College London, London, UK
| | | | - Brian J Hrupka
- Department of Neuroscience, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany. .,Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany. .,Institute for Advanced Study, Technische Universität München, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
26
|
Höfling C, Morawski M, Zeitschel U, Zanier ER, Moschke K, Serdaroglu A, Canneva F, von Hörsten S, De Simoni M, Forloni G, Jäger C, Kremmer E, Roßner S, Lichtenthaler SF, Kuhn P. Differential transgene expression patterns in Alzheimer mouse models revealed by novel human amyloid precursor protein-specific antibodies. Aging Cell 2016; 15:953-63. [PMID: 27470171 PMCID: PMC5013031 DOI: 10.1111/acel.12508] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2016] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD) is histopathologically characterized by neurodegeneration, the formation of intracellular neurofibrillary tangles and extracellular Aβ deposits that derive from proteolytic processing of the amyloid precursor protein (APP). As rodents do not normally develop Aβ pathology, various transgenic animal models of AD were designed to overexpress human APP with mutations favouring its amyloidogenic processing. However, these mouse models display tremendous differences in the spatial and temporal appearance of Aβ deposits, synaptic dysfunction, neurodegeneration and the manifestation of learning deficits which may be caused by age-related and brain region-specific differences in APP transgene levels. Consequentially, a comparative temporal and regional analysis of the pathological effects of Aβ in mouse brains is difficult complicating the validation of therapeutic AD treatment strategies in different mouse models. To date, no antibodies are available that properly discriminate endogenous rodent and transgenic human APP in brains of APP-transgenic animals. Here, we developed and characterized rat monoclonal antibodies by immunohistochemistry and Western blot that detect human but not murine APP in brains of three APP-transgenic mouse and one APP-transgenic rat model. We observed remarkable differences in expression levels and brain region-specific expression of human APP among the investigated transgenic mouse lines. This may explain the differences between APP-transgenic models mentioned above. Furthermore, we provide compelling evidence that our new antibodies specifically detect endogenous human APP in immunocytochemistry, FACS and immunoprecipitation. Hence, we propose these antibodies as standard tool for monitoring expression of endogenous or transfected APP in human cells and APP expression in transgenic animals.
Collapse
Affiliation(s)
- Corinna Höfling
- Paul Flechsig Institute for Brain ResearchUniversity of LeipzigLeipzigGermany
| | - Markus Morawski
- Paul Flechsig Institute for Brain ResearchUniversity of LeipzigLeipzigGermany
| | - Ulrike Zeitschel
- Paul Flechsig Institute for Brain ResearchUniversity of LeipzigLeipzigGermany
| | - Elisa R. Zanier
- Department of NeuroscienceIRCCSIstituto di Ricerche Farmacologiche Mario NegriMilanoItaly
| | - Katrin Moschke
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
| | - Alperen Serdaroglu
- Institute for Advanced StudyTechnische Universität MünchenGarchingGermany
- Institut für Pathologie und Pathologische AnatomieTechnische Universität MünchenMunichGermany
| | - Fabio Canneva
- Department of Experimental TherapyPräklinisches Experimentelles Tierzentrum (PETZ)Universitätsklinikum ErlangenErlangenGermany
| | - Stephan von Hörsten
- Department of Experimental TherapyPräklinisches Experimentelles Tierzentrum (PETZ)Universitätsklinikum ErlangenErlangenGermany
| | - Maria‐Grazia De Simoni
- Department of NeuroscienceIRCCSIstituto di Ricerche Farmacologiche Mario NegriMilanoItaly
| | - Gianluigi Forloni
- Department of NeuroscienceIRCCSIstituto di Ricerche Farmacologiche Mario NegriMilanoItaly
| | - Carsten Jäger
- Paul Flechsig Institute for Brain ResearchUniversity of LeipzigLeipzigGermany
| | - Elisabeth Kremmer
- Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthInstitute of Molecular ImmunologyMunichGermany
| | - Steffen Roßner
- Paul Flechsig Institute for Brain ResearchUniversity of LeipzigLeipzigGermany
| | - Stefan F. Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Institute for Advanced StudyTechnische Universität MünchenGarchingGermany
- Neuroproteomics, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Peer‐Hendrik Kuhn
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Institute for Advanced StudyTechnische Universität MünchenGarchingGermany
- Institut für Pathologie und Pathologische AnatomieTechnische Universität MünchenMunichGermany
- Neuroproteomics, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
| |
Collapse
|
27
|
Functions of the Alzheimer's Disease Protease BACE1 at the Synapse in the Central Nervous System. J Mol Neurosci 2016; 60:305-315. [PMID: 27456313 PMCID: PMC5059407 DOI: 10.1007/s12031-016-0800-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 07/07/2016] [Indexed: 02/06/2023]
Abstract
Inhibition of the protease β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) is a promising treatment strategy for Alzheimer's disease, and a number of BACE inhibitors are currently progressing through clinical trials. The strategy aims to decrease production of amyloid-β (Aβ) peptide from the amyloid precursor protein (APP), thus reducing or preventing Aβ toxicity. Over the last decade, it has become clear that BACE1 proteolytically cleaves a number of substrates in addition to APP. These substrates are not known to be involved in the pathogenesis of Alzheimer's disease but have other roles in the developing and/or mature central nervous system. Consequently, BACE inhibition and knockout in mice results in synaptic and other neuronal dysfunctions and the key substrates responsible for these deficits are still being elucidated. Of the BACE1 substrates that have been validated to date, a number may contribute to the synaptic deficits seen with BACE blockade, including neuregulin 1, close homologue of L1 and seizure-related gene 6. It is important to understand the impact that BACE blockade may have on these substrates and other proteins detected in substrate screens and, if necessary, develop substrate-selective BACE inhibitors.
Collapse
|
28
|
γ-Secretase directly sheds the survival receptor BCMA from plasma cells. Nat Commun 2015; 6:7333. [PMID: 26065893 PMCID: PMC4490565 DOI: 10.1038/ncomms8333] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/28/2015] [Indexed: 12/26/2022] Open
Abstract
Survival of plasma cells is regulated by B-cell maturation antigen (BCMA), a membrane-bound receptor activated by its agonist ligands BAFF and APRIL. Here we report that γ-secretase directly cleaves BCMA, without prior truncation by another protease. This direct shedding is facilitated by the short length of BCMA's extracellular domain. In vitro, γ-secretase reduces BCMA-mediated NF-κB activation. In addition, γ-secretase releases soluble BCMA (sBCMA) that acts as a decoy neutralizing APRIL. In vivo, inhibition of γ-secretase enhances BCMA surface expression in plasma cells and increases their number in the bone marrow. Furthermore, in multiple sclerosis, sBCMA levels in spinal fluid are elevated and associated with intracerebral IgG production; in systemic lupus erythematosus, sBCMA levels in serum are elevated and correlate with disease activity. Together, shedding of BCMA by γ-secretase controls plasma cells in the bone marrow and yields a potential biomarker for B-cell involvement in human autoimmune diseases. B-cell maturation antigen (BCMA) regulates the survival of B cells and is essential for the maintenance of long-lived plasma cells. Here, the authors show that γ-secretase directly sheds BCMA from the cell surface and therefore regulates the number of plasma cells.
Collapse
|
29
|
Salata C, Baritussio A, Munegato D, Calistri A, Ha HR, Bigler L, Fabris F, Parolin C, Palù G, Mirazimi A. Amiodarone and metabolite MDEA inhibit Ebola virus infection by interfering with the viral entry process. Pathog Dis 2015; 73:ftv032. [PMID: 25933611 PMCID: PMC7108539 DOI: 10.1093/femspd/ftv032] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2015] [Indexed: 12/15/2022] Open
Abstract
Ebola virus disease (EVD) is one of the most lethal transmissible infections characterized by a high fatality rate, and a treatment has not been developed yet. Recently, it has been shown that cationic amphiphiles, among them the antiarrhythmic drug amiodarone, inhibit filovirus infection. In the present work, we investigated how amiodarone interferes with Ebola virus infection. Wild-type Sudan ebolavirus and recombinant vesicular stomatitis virus, pseudotyped with the Zaire ebolavirus glycoprotein, were used to gain further insight into the ability of amiodarone to affect Ebola virus infection. We show that amiodarone decreases Ebola virus infection at concentrations close to those found in the sera of patients treated for arrhythmias. The drug acts by interfering with the fusion of the viral envelope with the endosomal membrane. We also show that MDEA, the main amiodarone metabolite, contributes to the antiviral activity. Finally, studies with amiodarone analogues indicate that the antiviral activity is correlated with drug ability to accumulate into and interfere with the endocytic pathway. Considering that it is well tolerated, especially in the acute setting, amiodarone appears to deserve consideration for clinical use in EVD. The anti-arrhythmic drug amiodarone, and one of its active metabolites interfere with the early steps of Ebola virus life cycle by blocking the fusion step between the viral envelope and the endosomal membrane.
Collapse
Affiliation(s)
- Cristiano Salata
- Department of Molecular Medicine, University of Padova, Padova 35121, Italy Department of Microbiology, The Public Health Agency of Sweden, Solna 171 82, Sweden
| | - Aldo Baritussio
- Clinica Medica 1, Department of Medicine, University of Padova, Padova 35128, Italy
| | - Denis Munegato
- Department of Molecular Medicine, University of Padova, Padova 35121, Italy
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padova, Padova 35121, Italy
| | - Huy Riem Ha
- Cardiovascular Therapy Research Laboratory, Clinical Research Center, University Hospital, Zurich 8091, Switzerland
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - Fabrizio Fabris
- Clinica Medica 1, Department of Medicine, University of Padova, Padova 35128, Italy
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padova, Padova 35121, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova 35121, Italy
| | - Ali Mirazimi
- Department of Microbiology, The Public Health Agency of Sweden, Solna 171 82, Sweden Department for Laboratory Medicine, Karolinska Institute, Huddinge/Stockholm 141 83, Sweden National Veterinary Institute, Uppsala 751 89, Sweden
| |
Collapse
|
30
|
Prasad H, Rao R. The Na+/H+ exchanger NHE6 modulates endosomal pH to control processing of amyloid precursor protein in a cell culture model of Alzheimer disease. J Biol Chem 2015; 290:5311-27. [PMID: 25561733 DOI: 10.1074/jbc.m114.602219] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Early intervention may be key to safe and effective therapies in patients with Alzheimer disease. Endosomal dysfunction is an early step in neurodegeneration. Endosomes are a major site of production of Aβ peptide from the processing of amyloid precursor protein (APP) by clipping enzymes (β- and γ-secretases). The β-secretase enzyme BACE1 requires acidic lumen pH for optimum function, and acid pH promotes Aβ aggregation. The Na(+)/H(+) exchanger NHE6 provides a leak pathway for protons, limiting luminal acidification by proton pumps. Like APP, NHE6 expression was induced upon differentiation of SH-SY5Y neuroblastoma cells and localized to an endosomal compartment. Therefore, we investigated whether NHE6 expression altered APP localization and processing in a stably transfected cell culture model of human APP expression. We show that co-expression with NHE6 or treatment with the Na(+)/H(+) ionophore monensin shifted APP away from the trans-Golgi network into early and recycling endosomes in HEK293 cells. NHE6 alkalinized the endosomal lumen, similar to monensin, and significantly attenuated APP processing and Aβ secretion. In contrast, Aβ production was elevated upon NHE6 knockdown. We show that NHE6 transcript and protein levels are lowered in Alzheimer brains relative to control. These findings, taken together with emerging genetic evidence linking endosomal Na(+)/H(+) exchangers with Alzheimer disease, suggest that proton leak pathways may regulate Aβ generation and contribute to disease etiology.
Collapse
Affiliation(s)
- Hari Prasad
- From the Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Rajini Rao
- From the Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
31
|
Identification of tetrahydrocarbazoles as novel multifactorial drug candidates for treatment of Alzheimer's disease. Transl Psychiatry 2014; 4:e489. [PMID: 25514752 PMCID: PMC4270312 DOI: 10.1038/tp.2014.132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/12/2014] [Accepted: 11/17/2014] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder and the most frequent cause of dementia. To date, there are only a few approved drugs for AD, which show little or no effect on disease progression. Impaired intracellular calcium homeostasis is believed to occur early in the cascade of events leading to AD. Here, we examined the possibility of normalizing the disrupted calcium homeostasis in the endoplasmic reticulum (ER) store as an innovative approach for AD drug discovery. High-throughput screening of a small-molecule compound library led to the identification of tetrahydrocarbazoles, a novel multifactorial class of compounds that can normalize the impaired ER calcium homeostasis. We found that the tetrahydrocarbazole lead structure, first, dampens the enhanced calcium release from ER in HEK293 cells expressing familial Alzheimer's disease (FAD)-linked presenilin 1 mutations. Second, the lead structure also improves mitochondrial function, measured by increased mitochondrial membrane potential. Third, the same lead structure also attenuates the production of amyloid-beta (Aβ) peptides by decreasing the cleavage of amyloid precursor protein (APP) by β-secretase, without notably affecting α- and γ-secretase cleavage activities. Considering the beneficial effects of tetrahydrocarbazoles addressing three key pathological aspects of AD, these compounds hold promise for the development of potentially effective AD drug candidates.
Collapse
|
32
|
Lipsanen A, Parkkinen S, Khabbal J, Mäkinen P, Peräniemi S, Hiltunen M, Jolkkonen J. KB-R7943, an inhibitor of the reverse Na+/Ca2+ exchanger, does not modify secondary pathology in the thalamus following focal cerebral stroke in rats. Neurosci Lett 2014; 580:173-7. [DOI: 10.1016/j.neulet.2014.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 06/17/2014] [Accepted: 08/04/2014] [Indexed: 11/29/2022]
|
33
|
Vassar R, Kuhn PH, Haass C, Kennedy ME, Rajendran L, Wong PC, Lichtenthaler SF. Function, therapeutic potential and cell biology of BACE proteases: current status and future prospects. J Neurochem 2014; 130:4-28. [PMID: 24646365 PMCID: PMC4086641 DOI: 10.1111/jnc.12715] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 01/18/2023]
Abstract
The β-site APP cleaving enzymes 1 and 2 (BACE1 and BACE2) were initially identified as transmembrane aspartyl proteases cleaving the amyloid precursor protein (APP). BACE1 is a major drug target for Alzheimer's disease because BACE1-mediated cleavage of APP is the first step in the generation of the pathogenic amyloid-β peptides. BACE1, which is highly expressed in the nervous system, is also required for myelination by cleaving neuregulin 1. Several recent proteomic and in vivo studies using BACE1- and BACE2-deficient mice demonstrate a much wider range of physiological substrates and functions for both proteases within and outside of the nervous system. For BACE1 this includes axon guidance, neurogenesis, muscle spindle formation, and neuronal network functions, whereas BACE2 was shown to be involved in pigmentation and pancreatic β-cell function. This review highlights the recent progress in understanding cell biology, substrates, and functions of BACE proteases and discusses the therapeutic options and potential mechanism-based liabilities, in particular for BACE inhibitors in Alzheimer's disease. The protease BACE1 is a major drug target in Alzheimer disease. Together with its homolog BACE2, both proteases have an increasing number of functions within and outside of the nervous system. This review highlights recent progress in understanding cell biology, substrates, and functions of BACE proteases and discusses the therapeutic options and potential mechanism-based liabilities, in particular for BACE inhibitors in Alzheimer disease.
Collapse
Affiliation(s)
- Robert Vassar
- Department of Cell and Molecular Biology, Feinberg University School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Peer-Hendrik Kuhn
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Institute for Advanced Study, Technische Universität München, Garching, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Adolf-Butenandt Institute, Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany
| | - Matthew E. Kennedy
- Neurosciences, Merck Research Labs, Boston, Massachusetts, USA
- Division of Psychiatry Research, University of Zurich, Zurich, Switzerland
| | - Lawrence Rajendran
- Systems and Cell Biology of Neurodegeneration, Division of Psychiatry Research, University of Zurich, Zurich, Switzerland
- Graduate programs of the Zurich Center for Integrative Human Physiology and Zurich Neuroscience Center, University of Zurich, Zurich, Switzerland
| | - Philip C. Wong
- Departments of Pathology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stefan F. Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Institute for Advanced Study, Technische Universität München, Garching, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
34
|
Honarnejad K, Daschner A, Giese A, Zall A, Schmidt B, Szybinska A, Kuznicki J, Herms J. Development and implementation of a high-throughput compound screening assay for targeting disrupted ER calcium homeostasis in Alzheimer's disease. PLoS One 2013; 8:e80645. [PMID: 24260442 PMCID: PMC3829862 DOI: 10.1371/journal.pone.0080645] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 10/12/2013] [Indexed: 11/25/2022] Open
Abstract
Disrupted intracellular calcium homeostasis is believed to occur early in the cascade of events leading to Alzheimer's disease (AD) pathology. Particularly familial AD mutations linked to Presenilins result in exaggerated agonist-evoked calcium release from endoplasmic reticulum (ER). Here we report the development of a fully automated high-throughput calcium imaging assay utilizing a genetically-encoded FRET-based calcium indicator at single cell resolution for compound screening. The established high-throughput screening assay offers several advantages over conventional high-throughput calcium imaging technologies. We employed this assay for drug discovery in AD by screening compound libraries consisting of over 20,000 small molecules followed by structure-activity-relationship analysis. This led to the identification of Bepridil, a calcium channel antagonist drug in addition to four further lead structures capable of normalizing the potentiated FAD-PS1-induced calcium release from ER. Interestingly, it has recently been reported that Bepridil can reduce Aβ production by lowering BACE1 activity. Indeed, we also detected lowered Aβ, increased sAPPα and decreased sAPPβ fragment levels upon Bepridil treatment. The latter findings suggest that Bepridil may provide a multifactorial therapeutic modality for AD by simultaneously addressing multiple aspects of the disease.
Collapse
Affiliation(s)
- Kamran Honarnejad
- Department of Translational Brain Research, DZNE – German Center for Neurodegenerative Diseases, Munich, Germany
- Center for Neuropathology and Prion Research; Ludwig Maximilian University, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University, Munich, Germany
| | - Alexander Daschner
- Department of Translational Brain Research, DZNE – German Center for Neurodegenerative Diseases, Munich, Germany
- Center for Neuropathology and Prion Research; Ludwig Maximilian University, Munich, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research; Ludwig Maximilian University, Munich, Germany
| | - Andrea Zall
- Clemens Schöpf Institute of Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Boris Schmidt
- Clemens Schöpf Institute of Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Aleksandra Szybinska
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Jacek Kuznicki
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Jochen Herms
- Department of Translational Brain Research, DZNE – German Center for Neurodegenerative Diseases, Munich, Germany
- Center for Neuropathology and Prion Research; Ludwig Maximilian University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- * E-mail:
| |
Collapse
|
35
|
Cataldi M. The changing landscape of voltage-gated calcium channels in neurovascular disorders and in neurodegenerative diseases. Curr Neuropharmacol 2013; 11:276-97. [PMID: 24179464 PMCID: PMC3648780 DOI: 10.2174/1570159x11311030004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/02/2013] [Accepted: 02/14/2013] [Indexed: 12/12/2022] Open
Abstract
It is a common belief that voltage-gated calcium channels (VGCC) cannot carry toxic amounts of Ca2+ in neurons. Also, some of them as L-type channels are essential for Ca2+-dependent regulation of prosurvival gene-programs. However, a wealth of data show a beneficial effect of drugs acting on VGCCs in several neurodegenerative and neurovascular diseases. In the present review, we explore several mechanisms by which the “harmless” VGCCs may become “toxic” for neurons. These mechanisms could explain how, though usually required for neuronal survival, VGCCs may take part in neurodegeneration. We will present evidence showing that VGCCs can carry toxic Ca2+ when: a) their density or activity increases because of aging, chronic hypoxia or exposure to β-amyloid peptides or b) Ca2+-dependent action potentials carry high Ca2+ loads in pacemaker neurons. Besides, we will examine conditions in which VGCCs promote neuronal cell death without carrying excess Ca2+. This can happen, for instance, when they carry metal ions into the neuronal cytoplasm or when a pathological decrease in their activity weakens Ca2+-dependent prosurvival gene programs. Finally, we will explore the role of VGCCs in the control of nonneuronal cells that take part to neurodegeneration like those of the neurovascular unit or of microglia.
Collapse
Affiliation(s)
- Mauro Cataldi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, Federico II University of Naples, Italy
| |
Collapse
|
36
|
Sharman MJ, Moussavi Nik SH, Chen MM, Ong D, Wijaya L, Laws SM, Taddei K, Newman M, Lardelli M, Martins RN, Verdile G. The Guinea Pig as a Model for Sporadic Alzheimer's Disease (AD): The Impact of Cholesterol Intake on Expression of AD-Related Genes. PLoS One 2013; 8:e66235. [PMID: 23805206 PMCID: PMC3689723 DOI: 10.1371/journal.pone.0066235] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/02/2013] [Indexed: 11/25/2022] Open
Abstract
We investigated the guinea pig, Cavia porcellus, as a model for Alzheimer’s disease (AD), both in terms of the conservation of genes involved in AD and the regulatory responses of these to a known AD risk factor - high cholesterol intake. Unlike rats and mice, guinea pigs possess an Aβ peptide sequence identical to human Aβ. Consistent with the commonality between cardiovascular and AD risk factors in humans, we saw that a high cholesterol diet leads to up-regulation of BACE1 (β-secretase) transcription and down-regulation of ADAM10 (α-secretase) transcription which should increase release of Aβ from APP. Significantly, guinea pigs possess isoforms of AD-related genes found in humans but not present in mice or rats. For example, we discovered that the truncated PS2V isoform of human PSEN2, that is found at raised levels in AD brains and that increases γ-secretase activity and Aβ synthesis, is not uniquely human or aberrant as previously believed. We show that PS2V formation is up-regulated by hypoxia and a high-cholesterol diet while, consistent with observations in humans, Aβ concentrations are raised in some brain regions but not others. Also like humans, but unlike mice, the guinea pig gene encoding tau, MAPT, encodes isoforms with both three and four microtubule binding domains, and cholesterol alters the ratio of these isoforms. We conclude that AD-related genes are highly conserved and more similar to human than the rat or mouse. Guinea pigs represent a superior rodent model for analysis of the impact of dietary factors such as cholesterol on the regulation of AD-related genes.
Collapse
Affiliation(s)
- Mathew J. Sharman
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
- School of Human Life Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Seyyed H. Moussavi Nik
- Discipline of Genetics, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, Australia
| | - Mengqi M. Chen
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | - Daniel Ong
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | - Linda Wijaya
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | - Simon M. Laws
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | - Kevin Taddei
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
- Sir James McCusker Alzheimer’s Disease Research Unit, Hollywood Private Hospital, Nedlands, WA, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
| | - Morgan Newman
- Discipline of Genetics, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, Australia
| | - Michael Lardelli
- Discipline of Genetics, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, Australia
| | - Ralph N. Martins
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
- Sir James McCusker Alzheimer’s Disease Research Unit, Hollywood Private Hospital, Nedlands, WA, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
| | - Giuseppe Verdile
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
- Sir James McCusker Alzheimer’s Disease Research Unit, Hollywood Private Hospital, Nedlands, WA, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
- * E-mail:
| |
Collapse
|
37
|
Sarajärvi T, Lipsanen A, Mäkinen P, Peräniemi S, Soininen H, Haapasalo A, Jolkkonen J, Hiltunen M. Bepridil decreases Aβ and calcium levels in the thalamus after middle cerebral artery occlusion in rats. J Cell Mol Med 2012; 16:2754-67. [PMID: 22805236 PMCID: PMC4118244 DOI: 10.1111/j.1582-4934.2012.01599.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/09/2012] [Indexed: 11/27/2022] Open
Abstract
Alzheimer's disease (AD) and cerebral ischaemia share similar features in terms of altered amyloid precursor protein (APP) processing and β-amyloid (Aβ) accumulation. We have previously shown that Aβ and calcium deposition, and β-secretase activity, are robustly increased in the ipsilateral thalamus after transient middle cerebral artery occlusion (MCAO) in rats. Here, we investigated whether the non-selective calcium channel blocker bepridil, which also inhibits β-secretase cleavage of APP, affects thalamic accumulation of Aβ and calcium and in turn influences functional recovery in rats subjected to MCAO. A 27-day bepridil treatment (50 mg/kg, p.o.) initiated 2 days after MCAO significantly decreased the levels of soluble Aβ40, Aβ42 and calcium in the ipsilateral thalamus, as compared with vehicle-treated MCAO rats. Expression of seladin-1/DHCR24 protein, which is a potential protective factor against neuronal damage, was decreased at both mRNA and protein levels in the ipsilateral thalamus of MCAO rats. Conversely, bepridil treatment restored seladin-1/DHCR24 expression in the ipsilateral thalamus. Bepridil treatment did not significantly affect heme oxygenase-1- or NAD(P)H quinone oxidoreductase-1-mediated oxidative stress or inflammatory responses in the ipsilateral thalamus of MCAO rats. Finally, bepridil treatment mitigated MCAO-induced alterations in APP processing in the ipsilateral thalamus and improved contralateral forelimb use in MCAO rats. These findings suggest that bepridil is a plausible therapeutic candidate in AD or stroke owing to its multifunctional role in key cellular events that are relevant for the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Timo Sarajärvi
- Institute of Clinical Medicine – Neurology, University of Eastern FinlandKuopio, Finland
| | - Anu Lipsanen
- Institute of Clinical Medicine – Neurology, University of Eastern FinlandKuopio, Finland
| | - Petra Mäkinen
- Institute of Clinical Medicine – Neurology, University of Eastern FinlandKuopio, Finland
| | - Sirpa Peräniemi
- School of Pharmacy, Biocenter Kuopio, University of Eastern FinlandKuopio, Finland
| | - Hilkka Soininen
- Institute of Clinical Medicine – Neurology, University of Eastern FinlandKuopio, Finland
- Department of Neurology, Kuopio University HospitalKuopio, Finland
| | - Annakaisa Haapasalo
- Institute of Clinical Medicine – Neurology, University of Eastern FinlandKuopio, Finland
| | - Jukka Jolkkonen
- Institute of Clinical Medicine – Neurology, University of Eastern FinlandKuopio, Finland
| | - Mikko Hiltunen
- Institute of Clinical Medicine – Neurology, University of Eastern FinlandKuopio, Finland
| |
Collapse
|
38
|
Constitutive α- and β-secretase cleavages of the amyloid precursor protein are partially coupled in neurons, but not in frequently used cell lines. Neurobiol Dis 2012; 49:137-47. [PMID: 22940630 DOI: 10.1016/j.nbd.2012.08.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 07/20/2012] [Accepted: 08/16/2012] [Indexed: 11/21/2022] Open
Abstract
Proteolytic cleavage of the amyloid precursor protein (APP) by the two proteases α- and β-secretases controls the generation of the amyloid β peptide (Aβ), a key player in Alzheimer's disease pathogenesis. The α-secretase ADAM10 and the β-secretase BACE1 have opposite effects on Aβ generation and are assumed to compete for APP as a substrate, such that their cleavages are inversely coupled. This concept was mainly demonstrated in studies using activation or overexpression of α- and β-secretases. Here, we report that this inverse coupling is not seen to the same extent upon inhibition of the endogenous proteases. Genetic and pharmacological inhibition of ADAM10 and BACE1 revealed that the endogenous, constitutive α-secretase cleavage of APP is largely uncoupled from β-secretase cleavage and Aβ generation in neuroglioma H4 cells and in neuronally differentiated SH-SY5Y cells. In contrast, inverse coupling was observed in primary cortical neurons. However, this coupling was not bidirectional. Inhibition of BACE1 increased ADAM10 cleavage of APP, but a reduction of ADAM10 activity did not increase the BACE1 cleavage of APP in the neurons. Our analysis shows that the inverse coupling of the endogenous α- and β-secretase cleavages depends on the cellular model and suggests that a reduction of ADAM10 activity is unlikely to increase the AD risk through increased β-secretase cleavage.
Collapse
|
39
|
Secretome protein enrichment identifies physiological BACE1 protease substrates in neurons. EMBO J 2012; 31:3157-68. [PMID: 22728825 DOI: 10.1038/emboj.2012.173] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/05/2012] [Indexed: 12/23/2022] Open
Abstract
Cell surface proteolysis is essential for communication between cells and results in the shedding of membrane-protein ectodomains. However, physiological substrates of the contributing proteases are largely unknown. We developed the secretome protein enrichment with click sugars (SPECS) method, which allows proteome-wide identification of shedding substrates and secreted proteins from primary cells, even in the presence of serum proteins. SPECS combines metabolic glycan labelling and click chemistry-mediated biotinylation and distinguishes between cellular and serum proteins. SPECS identified 34, mostly novel substrates of the Alzheimer protease BACE1 in primary neurons, making BACE1 a major sheddase in the nervous system. Selected BACE1 substrates-seizure-protein 6, L1, CHL1 and contactin-2-were validated in brains of BACE1 inhibitor-treated and BACE1 knock-out mice. For some substrates, BACE1 was the major sheddase, whereas for other substrates additional proteases contributed to total substrate shedding. The new substrates point to a central function of BACE1 in neurite outgrowth and synapse formation. SPECS is also suitable for quantitative secretome analyses of primary cells and may be used for the discovery of biomarkers secreted from tumour or stem cells.
Collapse
|
40
|
Pakulska MM, Ballios BG, Shoichet MS. Injectable hydrogels for central nervous system therapy. Biomed Mater 2012; 7:024101. [PMID: 22456684 DOI: 10.1088/1748-6041/7/2/024101] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diseases and injuries of the central nervous system (CNS) including those in the brain, spinal cord and retina are devastating because the CNS has limited intrinsic regenerative capacity and currently available therapies are unable to provide significant functional recovery. Several promising therapies have been identified with the goal of restoring at least some of this lost function and include neuroprotective agents to stop or slow cellular degeneration, neurotrophic factors to stimulate cellular growth, neutralizing molecules to overcome the inhibitory environment at the site of injury, and stem cell transplant strategies to replace lost tissue. The delivery of these therapies to the CNS is a challenge because the blood-brain barrier limits the diffusion of molecules into the brain by traditional oral or intravenous routes. Injectable hydrogels have the capacity to overcome the challenges associated with drug delivery to the CNS, by providing a minimally invasive, localized, void-filling platform for therapeutic use. Small molecule or protein drugs can be distributed throughout the hydrogel which then acts as a depot for their sustained release at the injury site. For cell delivery, the hydrogel can reduce cell aggregation and provide an adhesive matrix for improved cell survival and integration. Additionally, by choosing a biodegradable or bioresorbable hydrogel material, the system will eventually be eliminated from the body. This review discusses both natural and synthetic injectable hydrogel materials that have been used for drug or cell delivery to the CNS including hyaluronan, methylcellulose, chitosan, poly(N-isopropylacrylamide) and Matrigel.
Collapse
Affiliation(s)
- Malgosia M Pakulska
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | | | | |
Collapse
|
41
|
Dislich B, Lichtenthaler SF. The Membrane-Bound Aspartyl Protease BACE1: Molecular and Functional Properties in Alzheimer's Disease and Beyond. Front Physiol 2012; 3:8. [PMID: 22363289 PMCID: PMC3281277 DOI: 10.3389/fphys.2012.00008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 01/11/2012] [Indexed: 12/31/2022] Open
Abstract
The β-site APP cleaving enzyme 1 (BACE1) is a transmembrane aspartyl protease involved in Alzheimer’s disease (AD) pathogenesis and in myelination. BACE1 initiates the generation of the pathogenic amyloid β-peptide, which makes BACE1 a major drug target for AD. BACE1 also cleaves and activates neuregulin 1, thereby contributing to postnatal myelination, in particular in the peripheral nervous system. Additional proteins are also cleaved by BACE1, but less is known about the physiological consequences of their cleavage. Recently, new phenotypes were described in BACE1-deficient mice. Although it remains unclear through which BACE1 substrates they are mediated, the phenotypes suggest a versatile role of this protease for diverse physiological processes. This review summarizes the enzymatic and cellular properties of BACE1 as well as its regulation by lipids, by transcriptional, and by translational mechanisms. The main focus will be on the recent progress in understanding BACE1 function and its implication for potential mechanism-based side effects upon therapeutic inhibition.
Collapse
Affiliation(s)
- Bastian Dislich
- German Center for Neurodegenerative Diseases (DZNE) Munich, Germany
| | | |
Collapse
|
42
|
Rajendran L, Annaert W. Membrane Trafficking Pathways in Alzheimer's Disease. Traffic 2012; 13:759-70. [DOI: 10.1111/j.1600-0854.2012.01332.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Lawrence Rajendran
- Systems and Cell Biology of Neurodegeneration; Division of Psychiatry Research; University of Zurich; August-Forel Str. 1; Zurich; 8008; Switzerland
| | - Wim Annaert
- Laboratory for Membrane Trafficking; Center for Human Genetics (KULeuven) & VIB-Center for the Biology of Disease; Gasthuisberg O&N4, Herestraat 49; Leuven; B-3000; Belgium
| |
Collapse
|
43
|
Costa R, Speretta E, Crowther DC, Cardoso I. Testing the therapeutic potential of doxycycline in a Drosophila melanogaster model of Alzheimer disease. J Biol Chem 2011; 286:41647-41655. [PMID: 21998304 DOI: 10.1074/jbc.m111.274548] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Therapies for Alzheimer disease that reduce the production of pathogenic amyloid β (Aβ) peptides have been associated with a range of unwanted effects. For this reason, alternative strategies that promote the clearance of the peptide by preventing its aggregation and deposition in the brain have been favored. In this context we have studied doxycycline, a member of the tetracycline family of antibiotics that has shown neuroprotective effects in a number of models of neurodegenerative disease. We investigated the neuroprotective potential of doxycycline in a Drosophila model of Aβ toxicity and sought to correlate any effects with the aggregation state of the peptide. We found that administration of doxycycline to Aβ42-expressing flies did not improve their lifespan but was able to slow the progression of their locomotor deficits. We also measured the rough eye phenotype of transgenic flies expressing the E22G variant of Aβ42 and showed that doxycycline administration partially rescued the toxicity of Aβ in the developing eye. We correlated these in vivo effects with in vitro observations using transmission electron microscopy, dynamic light scattering, and thioflavin T binding. We found that doxycycline prevents Aβ fibrillization and favors the generation of smaller, non-amyloid structures that were non-toxic as determined by the lack of caspase 3 activation in a neuroblastoma cell line. Our confirmation that doxycycline can prevent amyloid β toxicity both in vitro and in vivo supports its therapeutic potential in AD.
Collapse
Affiliation(s)
- Rita Costa
- Molecular Neurobiology Unit, Instituto de Biologia Molecular e Celular (IBMC), Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Elena Speretta
- University of Cambridge, Department of Genetics, Downing Street, CB2 3EH, United Kingdom, and the Cambridge Institute for Medical Research, Hills Road, CB2 0XY, United Kingdom
| | - Damian C Crowther
- University of Cambridge, Department of Genetics, Downing Street, CB2 3EH, United Kingdom, and the Cambridge Institute for Medical Research, Hills Road, CB2 0XY, United Kingdom
| | - Isabel Cardoso
- Molecular Neurobiology Unit, Instituto de Biologia Molecular e Celular (IBMC), Rua do Campo Alegre 823, 4150-180 Porto, Portugal; Escola Superior de Tecnologia da Saúde do Porto, Instituto Politécnico do Porto, Rua Valente Perfeito 322, 4400-330 Vila Nova de Gaia, Portugal.
| |
Collapse
|
44
|
Hogl S, Kuhn PH, Colombo A, Lichtenthaler SF. Determination of the proteolytic cleavage sites of the amyloid precursor-like protein 2 by the proteases ADAM10, BACE1 and γ-secretase. PLoS One 2011; 6:e21337. [PMID: 21695060 PMCID: PMC3117885 DOI: 10.1371/journal.pone.0021337] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 05/25/2011] [Indexed: 11/18/2022] Open
Abstract
Regulated intramembrane proteolysis of the amyloid precursor protein (APP) by the protease activities α-, β- and γ-secretase controls the generation of the neurotoxic amyloid β peptide. APLP2, the amyloid precursor-like protein 2, is a homolog of APP, which shows functional overlap with APP, but lacks an amyloid β domain. Compared to APP, less is known about the proteolytic processing of APLP2, in particular in neurons, and the cleavage sites have not yet been determined. APLP2 is cleaved by the β-secretase BACE1 and additionally by an α-secretase activity. The two metalloproteases ADAM10 and ADAM17 have been suggested as candidate APLP2 α-secretases in cell lines. Here, we used RNA interference and found that ADAM10, but not ADAM17, is required for the constitutive α-secretase cleavage of APLP2 in HEK293 and SH-SY5Y cells. Likewise, in primary murine neurons knock-down of ADAM10 suppressed APLP2 α-secretase cleavage. Using mass spectrometry we determined the proteolytic cleavage sites in the APLP2 sequence. ADAM10 was found to cleave APLP2 after arginine 670, whereas BACE1 cleaves after leucine 659. Both cleavage sites are located in close proximity to the membrane. γ-secretase cleavage was found to occur at different peptide bonds between alanine 694 and valine 700, which is close to the N-terminus of the predicted APLP2 transmembrane domain. Determination of the APLP2 cleavage sites enables functional studies of the different APLP2 ectodomain fragments and the production of cleavage-site specific antibodies for APLP2, which may be used for biomarker development.
Collapse
Affiliation(s)
- Sebastian Hogl
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Adolf-Butenandt-Institute, Biochemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Peer-Hendrik Kuhn
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Adolf-Butenandt-Institute, Biochemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Alessio Colombo
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Adolf-Butenandt-Institute, Biochemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Stefan F. Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Adolf-Butenandt-Institute, Biochemistry, Ludwig-Maximilians-University, Munich, Germany
- * E-mail:
| |
Collapse
|
45
|
Lichtenthaler SF, Haass C, Steiner H. Regulated intramembrane proteolysis--lessons from amyloid precursor protein processing. J Neurochem 2011; 117:779-96. [PMID: 21413990 DOI: 10.1111/j.1471-4159.2011.07248.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Regulated intramembrane proteolysis (RIP) controls the communication between cells and the extracellular environment. RIP is essential in the nervous system, but also in other tissues. In the RIP process, a membrane protein typically undergoes two consecutive cleavages. The first one results in the shedding of its ectodomain. The second one occurs within its transmembrane domain, resulting in secretion of a small peptide and the release of the intracellular domain into the cytosol. The proteolytic cleavage fragments act as versatile signaling molecules or are further degraded. An increasing number of membrane proteins undergo RIP. These include growth factors, cytokines, cell adhesion proteins, receptors, viral proteins and signal peptides. A dysregulation of RIP is found in diseases, such as leukemia and Alzheimer's disease. One of the first RIP substrates discovered was the amyloid precursor protein (APP). RIP processing of APP controls the generation of the amyloid β-peptide, which is believed to cause Alzheimer's disease. Focusing on APP as the best-studied RIP substrate, this review describes the function and mechanism of the APP RIP proteases with the goal to elucidate cellular mechanisms and common principles of the RIP process in general.
Collapse
Affiliation(s)
- Stefan F Lichtenthaler
- DZNE-German Center for Neurodegenerative Diseases, Adolf-Butenandt-Institute, Biochemistry, Ludwig-Maximilians-University, Munich, Germany
| | | | | |
Collapse
|
46
|
Rescue of progranulin deficiency associated with frontotemporal lobar degeneration by alkalizing reagents and inhibition of vacuolar ATPase. J Neurosci 2011; 31:1885-94. [PMID: 21289198 DOI: 10.1523/jneurosci.5757-10.2011] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Numerous loss-of-function mutations in the progranulin (GRN) gene cause frontotemporal lobar degeneration with ubiquitin and TAR-DNA binding protein 43-positive inclusions by reduced production and secretion of GRN. Consistent with the observation that GRN has neurotrophic properties, pharmacological stimulation of GRN production is a promising approach to rescue GRN haploinsufficiency and prevent disease progression. We therefore searched for compounds capable of selectively increasing GRN levels. Here, we demonstrate that four independent and highly selective inhibitors of vacuolar ATPase (bafilomycin A1, concanamycin A, archazolid B, and apicularen A) significantly elevate intracellular and secreted GRN. Furthermore, clinically used alkalizing drugs, including chloroquine, bepridil, and amiodarone, similarly stimulate GRN production. Elevation of GRN levels occurs via a translational mechanism independent of lysosomal degradation, autophagy, or endocytosis. Importantly, alkalizing reagents rescue GRN deficiency in organotypic cortical slice cultures from a mouse model for GRN deficiency and in primary cells derived from human patients with GRN loss-of-function mutations. Thus, alkalizing reagents, specifically those already used in humans for other applications, and vacuolar ATPase inhibitors may be therapeutically used to prevent GRN-dependent neurodegeneration.
Collapse
|
47
|
Chua SM, Ng BY, Lee TS. Genetic and Genomic Aspects of Alzheimer's Disease. PROCEEDINGS OF SINGAPORE HEALTHCARE 2010. [DOI: 10.1177/201010581001900408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Alzheimer's disease (AD) is the most common chronic neurodegenerative disease today, afflicting 35 million people worldwide. Age is the major risk factor. The heritability of AD is estimated to be around 60%. Less than 5% of AD cases are familial with early-onset of disease caused by specific gene mutations. Genetic studies over the past 2 decades have provided invaluable insights into this complex disease. Here we review AD from the latest genome-wide association studies (GWAS), and a brief review of the transcriptomics, proteomics, metabolomics and epigenetics. Ultimately, a system-wide approach is essential to integrating the diverse and complicated findings into a meaningful understanding of AD.
Collapse
Affiliation(s)
- Sze-Ming Chua
- Department of Psychiatry, Singapore General Hospital, Singapore
| | - Beng-Yeong Ng
- Department of Psychiatry, Singapore General Hospital, Singapore
| | - Tih-Shih Lee
- Department of Psychiatry, Singapore General Hospital, Singapore
- Duke University Medical School, Durham, North Carolina, USA
| |
Collapse
|