1
|
Deng Q, Li Y, Sun Z, Gao X, Zhou J, Ma G, Qu WM, Li R. Sleep disturbance in rodent models and its sex-specific implications. Neurosci Biobehav Rev 2024; 164:105810. [PMID: 39009293 DOI: 10.1016/j.neubiorev.2024.105810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Sleep disturbances, encompassing altered sleep physiology or disorders like insomnia and sleep apnea, profoundly impact physiological functions and elevate disease risk. Despite extensive research, the underlying mechanisms and sex-specific differences in sleep disorders remain elusive. While polysomnography serves as a cornerstone for human sleep studies, animal models provide invaluable insights into sleep mechanisms. However, the availability of animal models of sleep disorders is limited, with each model often representing a specific sleep issue or mechanism. Therefore, selecting appropriate animal models for sleep research is critical. Given the significant sex differences in sleep patterns and disorders, incorporating both male and female subjects in studies is essential for uncovering sex-specific mechanisms with clinical relevance. This review provides a comprehensive overview of various rodent models of sleep disturbance, including sleep deprivation, sleep fragmentation, and circadian rhythm dysfunction. We evaluate the advantages and disadvantages of each model and discuss sex differences in sleep and sleep disorders, along with potential mechanisms. We aim to advance our understanding of sleep disorders and facilitate sex-specific interventions.
Collapse
Affiliation(s)
- Qi Deng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yuhong Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xiang Gao
- Shanxi Bethune Hospital, Shanxi, China
| | | | - Guangwei Ma
- Peking University Sixth Hospital, Beijing, China
| | - Wei-Min Qu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China; Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Rena Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Zhang W, Chen X, Du Z, Mao X, Gao R, Chen Z, Wang H, Zhang G, Zhang N, Li H, Song Y, Chang L, Wu Y. Knockdown of astrocytic Grin2a exacerbated sleep deprivation-induced cognitive impairments and elevation of amyloid-beta. Sleep Med 2022; 100:280-290. [PMID: 36148760 DOI: 10.1016/j.sleep.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/19/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023]
Abstract
Sleep disorders are associated with cognitive impairments, greater amyloid-β (Aβ) burden and increased risk of developing Alzheimer's disease, while the underlying mechanism is unclear. N-methyl-d-aspartate receptors (NMDARs), as vital modulators of cognition, are sensitive to sleep disturbance. Sleep deprivation (SD) could induce the alterations of neuronal NMDAR subunits expression, however the alterations of astrocytic NMDARs in SD have not been reported. Our previous study has demonstrated knockdown of astrocytic Grin2a (gene encoding NMDAR subunit GluN2A) could aggravate Aβ-induced cognitive impairments, but what role astrocytic GluN2A may play in SD is unknown. Here we focused on the changes and roles of hippocampal astrocytic GluN2A in SD. Our results showed SD increased the expression of astrocytic GluN2A. Specific knockdown of hippocampal astrocytic Grin2a aggravated SD-induced cognitive decline, elevated Aβ, and attenuated the SD-induced increase in autophagy flux. Our finding, for the first time, revealed a novel neuroprotective role for astrocytic GluN2A in SD, which may be helpful for developing new preventive and therapeutic targets to sleep disorders.
Collapse
Affiliation(s)
- Wanning Zhang
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Xinyue Chen
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Zunshu Du
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Xin Mao
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Ruiqi Gao
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Ziyan Chen
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Hongqi Wang
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Guitao Zhang
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hui Li
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Yizhi Song
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Lirong Chang
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
| | - Yan Wu
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Keloglan SM, Sahin L, Cevik OS. Chronic caffeine consumption improves the acute REM sleep deprivation-induced spatial memory impairment while altering NMDA receptor subunit expression in male rats. Int J Dev Neurosci 2022; 82:596-605. [PMID: 35830151 DOI: 10.1002/jdn.10212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/08/2022] [Accepted: 07/04/2022] [Indexed: 11/07/2022] Open
Abstract
Caffeine is a psychostimulant substance that is mostly used to prevent fatigue, increase alertness, and ameliorate sleep loss situations. In this study, we aimed to investigate the effect of chronic caffeine consumption on learning and memory functions and related genes in REM (rapid-eye-movement) sleep-deprived rats. During the neonatal period [postnatal day (PND) 28] Wistar albino male rats (n=32) were randomly assigned into four groups: control (C), caffeine application (Cf), acute REM sleep-deprivation (RD), and caffeine application+acute RD (Cf+RD). The 48 hours of RD was executed when caffeine administration was completed. The learning and memory performance was evaluated by the Morris Water Maze Test (MWMT). Following this, the rats were decapitated to isolate hippocampus tissues. In MWMT, time spent in the targeted quadrant decreased significantly in the RD group compared to the C and Cf+RD group. NR2A expression level increased in the RD group compared to C, Cf, and Cf+RD groups (p<0.05). NR2B expression level increased in RD and Cf +RD groups compared to C and Cf groups (p<0.05). BDNF and c-Fos expression levels did not differ significantly between the groups. RD impaired hippocampal spatial memory performance in the MWMT test. Our results indicated that chronic caffeine consumption has a therapeutic effect on spatial memory deterioration impairment caused by RD. Furthermore, it seems that the effect of caffeine RD on the hippocampus may be mediated by NR2A.
Collapse
Affiliation(s)
| | - Leyla Sahin
- Physiology Department, Faculty of Medicine Mersin University, Mersin, Turkey
| | - Ozge Selin Cevik
- Physiology Department, Faculty of Medicine Mersin University, Mersin, Turkey
| |
Collapse
|
4
|
Effects of Treadmill Exercise on Social Behavior in Rats Exposed to Thimerosal with Respect to the Hippocampal Level of GluN1, GluN2A, and GluN2B. J Mol Neurosci 2022; 72:1345-1357. [PMID: 35597884 DOI: 10.1007/s12031-022-02027-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
Thimerosal (THIM) kills brain neurons via induction of apoptosis and necrosis and induces the pathological features of autism spectrum disorder (ASD) in rats. THIM also affects the function of glutamatergic receptors. On the other hand, exercise induces both improvement and impairment effects on memory, depending on intensity, type, and duration. Treadmill exercise can also alter the expression of glutamatergic receptors. In this study, we aimed to investigate the effect of THIM and three protocols of treadmill exercise on social interaction memory and hippocampal expression of GluN1, GluN2A, and GluN2B in rats. THIM was injected intramuscularly at the dose of 300 µg/kg. The three-chamber apparatus was used to evaluate social interaction memory, and western blotting was used to assess protein expression. The results showed that THIM impaired social memory. Exercise 1 impaired social affiliation in controls. Social memory was impaired in all exercise groups of controls. Exercise 1 + 2 impaired social affiliation in THIM rats. Social memory was impaired in all groups of THIM rats. Exercises 2 and 1 + 2 decreased the expression of GluN1, and exercise 1 increased the expression of GluN2A and GluN2B in controls. THIM increased the expression of GluN2B, while exercise 1 reversed this effect. All exercise protocols increased the expression of GluN2A, and exercises 2 and 1 + 2 increased the expression of GluN1 in THIM rats. In conclusion, both THIM and exercise impaired social memory. Of note, the results did not show a separate and influential role for glutamatergic subunits in modulating memory processes following THIM injection or exercise.
Collapse
|
5
|
Sphingolipid control of cognitive functions in health and disease. Prog Lipid Res 2022; 86:101162. [DOI: 10.1016/j.plipres.2022.101162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 12/14/2022]
|
6
|
Synaptic GluN2A-Containing NMDA Receptors: From Physiology to Pathological Synaptic Plasticity. Int J Mol Sci 2020; 21:ijms21041538. [PMID: 32102377 PMCID: PMC7073220 DOI: 10.3390/ijms21041538] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
N-Methyl-d-Aspartate Receptors (NMDARs) are ionotropic glutamate-gated receptors. NMDARs are tetramers composed by several homologous subunits of GluN1-, GluN2-, or GluN3-type, leading to the existence in the central nervous system of a high variety of receptor subtypes with different pharmacological and signaling properties. NMDAR subunit composition is strictly regulated during development and by activity-dependent synaptic plasticity. Given the differences between GluN2 regulatory subunits of NMDAR in several functions, here we will focus on the synaptic pool of NMDARs containing the GluN2A subunit, addressing its role in both physiology and pathological synaptic plasticity as well as the contribution in these events of different types of GluN2A-interacting proteins.
Collapse
|
7
|
Abstract
Sleep is a highly conserved phenomenon in endotherms, and therefore it must serve at least one basic function across this wide range of species. What that function is remains one of the biggest mysteries in neurobiology. By using the word neurobiology, we do not mean to exclude possible non-neural functions of sleep, but it is difficult to imagine why the brain must be taken offline if the basic function of sleep did not involve the nervous system. In this chapter we discuss several current hypotheses about sleep function. We divide these hypotheses into two categories: ones that propose higher-order cognitive functions and ones that focus on housekeeping or restorative processes. We also pose four aspects of sleep that any successful functional hypothesis has to account for: why do the properties of sleep change across the life span? Why and how is sleep homeostatically regulated? Why must the brain be taken offline to accomplish the proposed function? And, why are there two radically different stages of sleep?The higher-order cognitive function hypotheses we discuss are essential mechanisms of learning and memory and synaptic plasticity. These are not mutually exclusive hypotheses. Each focuses on specific mechanistic aspects of sleep, and higher-order cognitive processes are likely to involve components of all of these mechanisms. The restorative hypotheses are maintenance of brain energy metabolism, macromolecular biosynthesis, and removal of metabolic waste. Although these three hypotheses seem more different than those related to higher cognitive function, they may each contribute important components to a basic sleep function. Any sleep function will involve specific gene expression and macromolecular biosynthesis, and as we explain there may be important connections between brain energy metabolism and the need to remove metabolic wastes.A deeper understanding of sleep functions in endotherms will enable us to answer whether or not rest behaviors in species other than endotherms are homologous with mammalian and avian sleep. Currently comparisons across the animal kingdom depend on superficial and phenomenological features of rest states and sleep, but investigations of sleep functions would provide more insight into the evolutionary relationships between EEG-defined sleep in endotherms and rest states in ectotherms.
Collapse
Affiliation(s)
- Marcos G Frank
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University Spokane, Spokane, WA, USA
| | - H Craig Heller
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Long-Term Depression Is Independent of GluN2 Subunit Composition. J Neurosci 2018; 38:4462-4470. [PMID: 29593052 DOI: 10.1523/jneurosci.0394-18.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 11/21/2022] Open
Abstract
NMDA receptors (NMDARs) mediate both long-term potentiation and long-term depression (LTD) and understanding how a single receptor can initiate both phenomena remains a major question in neuroscience. A prominent hypothesis implicates the NMDAR subunit composition, specifically GluN2A and GluN2B, in dictating the rules of synaptic plasticity. However, studies testing this hypothesis have yielded inconsistent and often contradictory results, especially for LTD. These inconsistent results may be due to challenges in the interpretation of subunit-selective pharmacology and in dissecting out the contributions of differential channel properties versus the interacting proteins unique to GluN2A or GluN2B. In this study, we address the pharmacological and biochemical challenges by using a single-neuron genetic approach to delete NMDAR subunits in conditional knock-out mice. In addition, the recently discovered non-ionotropic nature of NMDAR-dependent LTD allowed the rigorous assessment of unique subunit contributions to NMDAR-dependent LTD while eliminating the variable of differential charge transfer. Here we find that neither the GluN2A nor the GluN2B subunit is strictly necessary for either non-ionotropic or ionotropic LTD.SIGNIFICANCE STATEMENT NMDA receptors are key regulators of bidirectional synaptic plasticity. Understanding the mechanisms regulating bidirectional plasticity will guide development of therapeutic strategies to treat the dysfunctional synaptic plasticity in multiple neuropsychiatric disorders. Because of the unique properties of the NMDA receptor GluN2 subunits, they have been postulated to differentially affect synaptic plasticity. However, there has been significant controversy regarding the roles of the GluN2 subunits in synaptic long term depression (LTD). Using single-neuron knock-out of the GluN2 subunits, we show that LTD requires neither GluN2A nor GluN2B.
Collapse
|
9
|
Zhang MQ, Li R, Wang YQ, Huang ZL. Neural Plasticity Is Involved in Physiological Sleep, Depressive Sleep Disturbances, and Antidepressant Treatments. Neural Plast 2017; 2017:5870735. [PMID: 29181202 PMCID: PMC5664320 DOI: 10.1155/2017/5870735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/27/2017] [Accepted: 07/13/2017] [Indexed: 12/28/2022] Open
Abstract
Depression, which is characterized by a pervasive and persistent low mood and anhedonia, greatly impacts patients, their families, and society. The associated and recurring sleep disturbances further reduce patient's quality of life. However, therapeutic sleep deprivation has been regarded as a rapid and robust antidepressant treatment for several decades, which suggests a complicated role of sleep in development of depression. Changes in neural plasticity are observed during physiological sleep, therapeutic sleep deprivation, and depression. This correlation might help us to understand better the mechanism underlying development of depression and the role of sleep. In this review, we first introduce the structure of sleep and the facilitated neural plasticity caused by physiological sleep. Then, we introduce sleep disturbances and changes in plasticity in patients with depression. Finally, the effects and mechanisms of antidepressants and therapeutic sleep deprivation on neural plasticity are discussed.
Collapse
Affiliation(s)
- Meng-Qi Zhang
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Rui Li
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yi-Qun Wang
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Zhi-Li Huang
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
10
|
Steullet P, Cabungcal JH, Coyle J, Didriksen M, Gill K, Grace AA, Hensch TK, LaMantia AS, Lindemann L, Maynard TM, Meyer U, Morishita H, O'Donnell P, Puhl M, Cuenod M, Do KQ. Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Mol Psychiatry 2017; 22:936-943. [PMID: 28322275 PMCID: PMC5491690 DOI: 10.1038/mp.2017.47] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/21/2016] [Accepted: 01/17/2017] [Indexed: 02/08/2023]
Abstract
Parvalbumin inhibitory interneurons (PVIs) are crucial for maintaining proper excitatory/inhibitory balance and high-frequency neuronal synchronization. Their activity supports critical developmental trajectories, sensory and cognitive processing, and social behavior. Despite heterogeneity in the etiology across schizophrenia and autism spectrum disorder, PVI circuits are altered in these psychiatric disorders. Identifying mechanism(s) underlying PVI deficits is essential to establish treatments targeting in particular cognition. On the basis of published and new data, we propose oxidative stress as a common pathological mechanism leading to PVI impairment in schizophrenia and some forms of autism. A series of animal models carrying genetic and/or environmental risks relevant to diverse etiological aspects of these disorders show PVI deficits to be all accompanied by oxidative stress in the anterior cingulate cortex. Specifically, oxidative stress is negatively correlated with the integrity of PVIs and the extracellular perineuronal net enwrapping these interneurons. Oxidative stress may result from dysregulation of systems typically affected in schizophrenia, including glutamatergic, dopaminergic, immune and antioxidant signaling. As convergent end point, redox dysregulation has successfully been targeted to protect PVIs with antioxidants/redox regulators across several animal models. This opens up new perspectives for the use of antioxidant treatments to be applied to at-risk individuals, in close temporal proximity to environmental impacts known to induce oxidative stress.
Collapse
Affiliation(s)
- P Steullet
- Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Prilly-Lausanne, Switzerland
| | - J-H Cabungcal
- Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Prilly-Lausanne, Switzerland
| | - J Coyle
- Laboratory for Psychiatric and Molecular Neuroscience, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - M Didriksen
- Synaptic transmission H. Lundbeck A/S, Valby, Denmark
| | - K Gill
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - A A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - T K Hensch
- Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, Cambridge, MA USA
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - A-S LaMantia
- George Washington Institute for Neuroscience, The George Washington University, Washington, DC, USA
| | - L Lindemann
- F. Hoffmann-La Roche, Roche Pharmaceutical and Early Development, Neuroscience, Opthalmology & Rare Disease (NORD) DTA, Discovery Neuroscience, Roche Innovation Center Basel, Basel, Switzerland
| | - T M Maynard
- George Washington Institute for Neuroscience, The George Washington University, Washington, DC, USA
| | - U Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - H Morishita
- Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, Cambridge, MA USA
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Neuroscience, and Ophthalmology, Friedman Brain Institute, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| | - P O'Donnell
- Neuroscience and Pain Research Unit, BioTherapeutics Research and Development, Pfizer, Cambridge, MA, USA
| | - M Puhl
- Laboratory for Psychiatric and Molecular Neuroscience, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - M Cuenod
- Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Prilly-Lausanne, Switzerland
| | - K Q Do
- Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Prilly-Lausanne, Switzerland
| |
Collapse
|
11
|
Sun Y, Zhan L, Cheng X, Zhang L, Hu J, Gao Z. The Regulation of GluN2A by Endogenous and Exogenous Regulators in the Central Nervous System. Cell Mol Neurobiol 2017; 37:389-403. [PMID: 27255970 DOI: 10.1007/s10571-016-0388-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 05/25/2016] [Indexed: 12/25/2022]
Abstract
The NMDA receptor is the most widely studied ionotropic glutamate receptor, and it is central to many physiological and pathophysiological processes in the central nervous system. GluN2A is one of the two main types of GluN2 NMDA receptor subunits in the forebrain. The proper activity of GluN2A is important to brain function, as the abnormal regulation of GluN2A may induce some neuropsychiatric disorders. This review will examine the regulation of GluN2A by endogenous and exogenous regulators in the central nervous system.
Collapse
Affiliation(s)
- Yongjun Sun
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Liying Zhan
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, People's Republic of China
| | - Xiaokun Cheng
- North China Pharmaceutical Group New Drug Research and Development Co., Ltd, Shijiazhuang, 050015, People's Republic of China
| | - Linan Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Jie Hu
- School of Nursing, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Zibin Gao
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, People's Republic of China.
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China.
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, 050018, People's Republic of China.
| |
Collapse
|
12
|
Kreutzmann JC, Havekes R, Abel T, Meerlo P. Sleep deprivation and hippocampal vulnerability: changes in neuronal plasticity, neurogenesis and cognitive function. Neuroscience 2015; 309:173-90. [PMID: 25937398 DOI: 10.1016/j.neuroscience.2015.04.053] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/31/2015] [Accepted: 04/21/2015] [Indexed: 01/19/2023]
Abstract
Despite the ongoing fundamental controversy about the physiological function of sleep, there is general consensus that sleep benefits neuronal plasticity, which ultimately supports brain function and cognition. In agreement with this are numerous studies showing that sleep deprivation (SD) results in learning and memory impairments. Interestingly, such impairments appear to occur particularly when these learning and memory processes require the hippocampus, suggesting that this brain region may be particularly sensitive to the consequences of sleep loss. Although the molecular mechanisms underlying sleep and memory formation remain to be investigated, available evidence suggests that SD may impair hippocampal neuronal plasticity and memory processes by attenuating intracellular cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling which may lead to alterations in cAMP response element binding protein (CREB)-mediated gene transcription, neurotrophic signaling, and glutamate receptor expression. When restricted sleep becomes a chronic condition, it causes a reduction of hippocampal cell proliferation and neurogenesis, which may eventually lead to a reduction in hippocampal volume. Ultimately, by impairing hippocampal plasticity and function, chronically restricted and disrupted sleep contributes to cognitive disorders and psychiatric diseases.
Collapse
Affiliation(s)
- J C Kreutzmann
- Center for Behavior and Neurosciences, University of Groningen, The Netherlands; Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - R Havekes
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - T Abel
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - P Meerlo
- Center for Behavior and Neurosciences, University of Groningen, The Netherlands.
| |
Collapse
|
13
|
Cline BH, Costa-Nunes JP, Cespuglio R, Markova N, Santos AI, Bukhman YV, Kubatiev A, Steinbusch HWM, Lesch KP, Strekalova T. Dicholine succinate, the neuronal insulin sensitizer, normalizes behavior, REM sleep, hippocampal pGSK3 beta and mRNAs of NMDA receptor subunits in mouse models of depression. Front Behav Neurosci 2015; 9:37. [PMID: 25767439 PMCID: PMC4341562 DOI: 10.3389/fnbeh.2015.00037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/01/2015] [Indexed: 11/13/2022] Open
Abstract
Central insulin receptor-mediated signaling is attracting the growing attention of researchers because of rapidly accumulating evidence implicating it in the mechanisms of plasticity, stress response, and neuropsychiatric disorders including depression. Dicholine succinate (DS), a mitochondrial complex II substrate, was shown to enhance insulin-receptor mediated signaling in neurons and is regarded as a sensitizer of the neuronal insulin receptor. Compounds enhancing neuronal insulin receptor-mediated transmission exert an antidepressant-like effect in several pre-clinical paradigms of depression; similarly, such properties for DS were found with a stress-induced anhedonia model. Here, we additionally studied the effects of DS on several variables which were ameliorated by other insulin receptor sensitizers in mice. Pre-treatment with DS of chronically stressed C57BL6 mice rescued normal contextual fear conditioning, hippocampal gene expression of NMDA receptor subunit NR2A, the NR2A/NR2B ratio and increased REM sleep rebound after acute predation. In 18-month-old C57BL6 mice, a model of elderly depression, DS restored normal sucrose preference and activated the expression of neural plasticity factors in the hippocampus as shown by Illumina microarray. Finally, young naïve DS-treated C57BL6 mice had reduced depressive- and anxiety-like behaviors and, similarly to imipramine-treated mice, preserved hippocampal levels of the phosphorylated (inactive) form of GSK3 beta that was lowered by forced swimming in pharmacologically naïve animals. Thus, DS can ameliorate behavioral and molecular outcomes under a variety of stress- and depression-related conditions. This further highlights neuronal insulin signaling as a new factor of pathogenesis and a potential pharmacotherapy of affective pathologies.
Collapse
Affiliation(s)
- Brandon H Cline
- Faculté de Médecine, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg Strasbourg, France
| | - Joao P Costa-Nunes
- Department of Neuroscience, Maastricht University Maastricht, Netherlands ; Group of Behavioural Neuroscience and Pharmacology, Institute for Hygiene and Tropical Medicine, New University of Lisbon Lisbon, Portugal
| | - Raymond Cespuglio
- Faculty of Medicine, Neuroscience Research Center of Lyon, INSERM U1028, C. Bernard University Lyon, France
| | - Natalyia Markova
- Laboratory of Biomolecular Screening, Institute of Physiologically Active Compounds, Russian Academy of Sciences Moscow, Russia ; Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences Moscow, Russia
| | - Ana I Santos
- Faculdade de Ciências Médicas, NOVA Medical School, Universidade Nova de Lisboa Lisboa, Portugal
| | - Yury V Bukhman
- Great Lakes Bioenergy Research Center, Computational Biology, Wisconsin Energy Institute, University of Wisconsin Madison, WI, USA
| | - Aslan Kubatiev
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences Moscow, Russia
| | | | - Klaus-Peter Lesch
- Department of Neuroscience, Maastricht University Maastricht, Netherlands ; Laboratory of Translational Neuroscience, Division of Molecular Psychiatry, Centre of Mental Health, University of Wuerzburg Wuerzburg, Germany
| | - Tatyana Strekalova
- Department of Neuroscience, Maastricht University Maastricht, Netherlands ; Group of Behavioural Neuroscience and Pharmacology, Institute for Hygiene and Tropical Medicine, New University of Lisbon Lisbon, Portugal ; Laboratory of Biomolecular Screening, Institute of Physiologically Active Compounds, Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
14
|
Abstract
Sleep is hypothesized to play an integral role in brain plasticity. This has traditionally been investigated using behavioral assays. In the last 10-15 years, studies combining sleep measurements with in vitro and in vivo models of synaptic plasticity have provided exciting new insights into how sleep alters synaptic strength. In addition, new theories have been proposed that integrate older ideas about sleep function and recent discoveries in the field of synaptic plasticity. There remain, however, important challenges and unanswered questions. For example, sleep does not appear to have a single effect on synaptic strength. An unbiased review of the literature indicates that the effects of sleep vary widely depending on ontogenetic stage, the type of waking experience (or stimulation protocols) that precede sleep and the type of neuronal synapse under examination. In this review, I discuss these key findings in the context of current theories that posit different roles for sleep in synaptic plasticity.
Collapse
Affiliation(s)
- Marcos G Frank
- Department of Neuroscience, School of Medicine, University of Pennsylvania, 215 Stemmler Hall, 35th and Hamilton Walk, Philadelphia, PA, 19104-6074, USA,
| |
Collapse
|
15
|
Havekes R, Meerlo P, Abel T. Animal studies on the role of sleep in memory: from behavioral performance to molecular mechanisms. Curr Top Behav Neurosci 2015; 25:183-206. [PMID: 25680961 DOI: 10.1007/7854_2015_369] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Although the exact functions of sleep remain a topic of debate, several hypotheses propose that sleep benefits neuronal plasticity, which ultimately supports brain function and cognition . For over a century, researchers have applied a wide variety of behavioral, electrophysiological, biochemical, and molecular approaches to study how memory processes are promoted by sleep and perturbed by sleep loss. Interestingly, experimental studies indicate that cognitive impairments as a consequence of sleep deprivation appear to be most severe with learning and memory processes that require the hippocampus , which suggests that this brain region is particularly sensitive to the consequences of sleep loss. Moreover, recent studies in laboratory rodents indicate that sleep deprivation impairs hippocampal neuronal plasticity and memory processes by attenuating intracellular cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling. Attenuated cAMP-PKA signaling can lead to a reduced activity of the transcription factor cAMP response element binding protein (CREB) and ultimately affect the expression of genes and proteins involved in neuronal plasticity and memory formation. Pharmacogenetic experiments in mice show that memory deficits following sleep deprivation can be prevented by specifically boosting cAMP signaling in excitatory neurons of the hippocampus. Given the high incidence of sleep disturbance and sleep restriction in our 24/7 society, understanding the consequences of sleep loss and unraveling the underlying molecular mechanisms is of great importance.
Collapse
Affiliation(s)
- Robbert Havekes
- Department of Biology, 10-170 Smilow Center for Translational Research, University of Pennsylvania, 3400 Civic Center Blvd Bldg 421, Philadelphia, PA, 19104-5158, USA,
| | | | | |
Collapse
|
16
|
Perin M, Longordo F, Massonnet C, Welker E, Lüthi A. Diurnal inhibition of NMDA-EPSCs at rat hippocampal mossy fibre synapses through orexin-2 receptors. J Physiol 2014; 592:4277-95. [PMID: 25085886 DOI: 10.1113/jphysiol.2014.272757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Diurnal release of the orexin neuropeptides orexin-A (Ox-A, hypocretin-1) and orexin-B (Ox-B, hypocretin-2) stabilises arousal, regulates energy homeostasis and contributes to cognition and learning. However, whether cellular correlates of brain plasticity are regulated through orexins, and whether they do so in a time-of-day-dependent manner, has never been assessed. Immunohistochemically we found sparse but widespread innervation of hippocampal subfields through Ox-A- and Ox-B-containing fibres in young adult rats. The actions of Ox-A were studied on NMDA receptor (NMDAR)-mediated excitatory synaptic transmission in acute hippocampal slices prepared around the trough (Zeitgeber time (ZT) 4-8, corresponding to 4-8 h into the resting phase) and peak (ZT 23) of intracerebroventricular orexin levels. At ZT 4-8, exogenous Ox-A (100 nm in bath) inhibited NMDA receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) at mossy fibre (MF)-CA3 (to 55.6 ± 6.8% of control, P = 0.0003) and at Schaffer collateral-CA1 synapses (70.8 ± 6.3%, P = 0.013), whereas it remained ineffective at non-MF excitatory synapses in CA3. Ox-A actions were mediated postsynaptically and blocked by the orexin-2 receptor (OX2R) antagonist JNJ10397049 (1 μm), but not by orexin-1 receptor inhibition (SB334867, 1 μm) or by adrenergic and cholinergic antagonists. At ZT 23, inhibitory effects of exogenous Ox-A were absent (97.6 ± 2.9%, P = 0.42), but reinstated (87.2 ± 3.3%, P = 0.002) when endogenous orexin signalling was attenuated for 5 h through i.p. injections of almorexant (100 mg kg(-1)), a dual orexin receptor antagonist. In conclusion, endogenous orexins modulate hippocampal NMDAR function in a time-of-day-dependent manner, suggesting that they may influence cellular plasticity and consequent variations in memory performance across the sleep-wake cycle.
Collapse
Affiliation(s)
- Martina Perin
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Fabio Longordo
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Christine Massonnet
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Egbert Welker
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| |
Collapse
|
17
|
Recent progress in understanding subtype specific regulation of NMDA receptors by G Protein Coupled Receptors (GPCRs). Int J Mol Sci 2014; 15:3003-24. [PMID: 24562329 PMCID: PMC3958896 DOI: 10.3390/ijms15023003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 12/30/2013] [Accepted: 02/12/2014] [Indexed: 12/24/2022] Open
Abstract
G Protein Coupled Receptors (GPCRs) are the largest family of receptors whose ligands constitute nearly a third of prescription drugs in the market. They are widely involved in diverse physiological functions including learning and memory. NMDA receptors (NMDARs), which belong to the ionotropic glutamate receptor family, are likewise ubiquitously expressed in the central nervous system (CNS) and play a pivotal role in learning and memory. Despite its critical contribution to physiological and pathophysiological processes, few pharmacological interventions aimed directly at regulating NMDAR function have been developed to date. However, it is well established that NMDAR function is precisely regulated by cellular signalling cascades recruited downstream of G protein coupled receptor (GPCR) stimulation. Accordingly, the downstream regulation of NMDARs likely represents an important determinant of outcome following treatment with neuropsychiatric agents that target selected GPCRs. Importantly, the functional consequence of such regulation on NMDAR function varies, based not only on the identity of the GPCR, but also on the cell type in which relevant receptors are expressed. Indeed, the mechanisms responsible for regulating NMDARs by GPCRs involve numerous intracellular signalling molecules and regulatory proteins that vary from one cell type to another. In the present article, we highlight recent findings from studies that have uncovered novel mechanisms by which selected GPCRs regulate NMDAR function and consequently NMDAR-dependent plasticity.
Collapse
|
18
|
Kannangara TS, Eadie BD, Bostrom CA, Morch K, Brocardo PS, Christie BR. GluN2A-/- Mice Lack Bidirectional Synaptic Plasticity in the Dentate Gyrus and Perform Poorly on Spatial Pattern Separation Tasks. Cereb Cortex 2014; 25:2102-13. [PMID: 24554729 DOI: 10.1093/cercor/bhu017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The different secondary subunits of the N-methyl-d-aspartate (NMDA) receptor each convey unique biophysical properties to the receptor complex, and may be key in determining the functional role played by NMDA receptors. In the hippocampus, the GluN2A and GluN2B subunits are particularly abundant; however, their exact roles in synaptic plasticity and behavior remain controversial. Here, we show that mice carrying a deletion for the GluN2A subunit (GluN2A(-/-)) demonstrate a severely compromised NMDA to AMPA receptor current ratio in granule cells from the dentate gyrus (DG), while granule cell morphology is unaltered. This deficit is accompanied by significant impairments in both LTP and LTD in the DG, whereas only minor impairments are observed in the CA1. In accordance with these hippocampal region-specific deficits, GluN2A(-/-) mice show impaired performance on the DG-associated task of spatial pattern separation. In contrast, GluN2A(-/-) mice show no deficit in temporal pattern separation, a process associated with CA1 functioning. Thus, our results establish the GluN2A subunit as a significant contributor to both bidirectional synaptic plasticity and spatial pattern separation in the DG.
Collapse
Affiliation(s)
- Timal S Kannangara
- Division of Medical Sciences Department of Cellular and Physiological Sciences Graduate Programs of Neuroscience and the Brain Research Centre, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Brennan D Eadie
- Division of Medical Sciences Department of Cellular and Physiological Sciences Graduate Programs of Neuroscience and the Brain Research Centre, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Crystal A Bostrom
- Division of Medical Sciences Department of Biology, University of Victoria, BC, Canada, V8P 5C2 and
| | | | | | - Brian R Christie
- Division of Medical Sciences Department of Biology, University of Victoria, BC, Canada, V8P 5C2 and Department of Cellular and Physiological Sciences Graduate Programs of Neuroscience and the Brain Research Centre, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| |
Collapse
|
19
|
Shipton OA, Paulsen O. GluN2A and GluN2B subunit-containing NMDA receptors in hippocampal plasticity. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130163. [PMID: 24298164 PMCID: PMC3843894 DOI: 10.1098/rstb.2013.0163] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
N-Methyl-d-aspartate receptor (NMDAR)-dependent synaptic plasticity is a strong candidate to mediate learning and memory processes that require the hippocampus. This plasticity is bidirectional, and how the same receptor can mediate opposite changes in synaptic weights remains a conundrum. It has been suggested that the NMDAR subunit composition could be involved. Specifically, one subunit composition of NMDARs would be responsible for the induction of long-term potentiation (LTP), whereas NMDARs with a different subunit composition would be engaged in the induction of long-term depression (LTD). Unfortunately, the results from studies that have investigated this hypothesis are contradictory, particularly in relation to LTD. Nevertheless, current evidence does suggest that the GluN2B subunit might be particularly important for plasticity and may make a synapse bidirectionally malleable. In particular, we conclude that the presence of GluN2B subunit-containing NMDARs at the postsynaptic density might be a necessary, though not a sufficient, condition for the strengthening of individual synapses. This is owing to the interaction of GluN2B with calcium/calmodulin-dependent protein kinase II (CaMKII) and is distinct from its contribution as an ion channel.
Collapse
Affiliation(s)
- Olivia A. Shipton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| |
Collapse
|
20
|
Costa-Nunes J, Zubareva O, Araújo-Correia M, Valença A, Schroeter CA, Pawluski JL, Vignisse J, Steinbusch H, Hermes D, Phillipines M, Steinbusch HMW, Strekalova T. Altered emotionality, hippocampus-dependent performance and expression of NMDA receptor subunit mRNAs in chronically stressed mice. Stress 2014; 17:108-16. [PMID: 24308441 DOI: 10.3109/10253890.2013.872619] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
N-Methyl-D-aspartate receptor (NMDAR)-mediated neurotransmission in the hippocampus is implicated in cognitive and emotional disturbances during stress-related disorders. Here, using quantitative RT-PCR, we investigated the hippocampal expression of NR2A, NR2B and NR1 subunit mRNAs in a mouse stress paradigm that mimics clinically relevant conditions of simultaneously affected emotionality and hippocampus-dependent functions. A 2-week stress procedure, which comprised ethologically valid stressors, exposure to a rat and social defeat, was applied to male C57BL/6J mice. For predation stress, mice were introduced into transparent containers that were placed in a rat home cage during the night; social defeat was applied during the daytime using aggressive CD1 mice. This treatment impaired hippocampus-dependent performance during contextual fear conditioning. A correlation between this behavior and food displacement performance was demonstrated, suggesting that burrowing behavior is affected by the stress procedure and is hippocampus-dependent. Stressed mice (n = 22) showed behavioral invigoration and anomalous anxiolytic-like profiles in the O-maze and brightly illuminated open field, unaltered short-term memory in the step-down avoidance task and enhanced aggressive traits, as compared to non-stressed mice (n = 10). Stressed mice showed increased basal serum corticosterone concentrations, hippocampal mRNA expression for the NR2A subunit of the NMDAR and in the NR2A/NR2B ratio; mRNA expression of NR2B and NR1 was unchanged. Thus, stress-induced aberrations in both hippocampal-dependent performance and emotional abnormalities are associated with alterations in hippocampal mRNA NR2A levels and the NR2A/NR2B ratio and not with mRNA expression of NR2B or NR1.
Collapse
Affiliation(s)
- João Costa-Nunes
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University , Maastricht , the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Hippocampal cellular and molecular processes critical for memory consolidation are affected by the amount and quality of sleep attained. Questions remain with regard to how sleep enhances memory, what parameters of sleep after learning are optimal for memory consolidation, and what underlying hippocampal molecular players are targeted by sleep deprivation to impair memory consolidation and plasticity. In this review, we address these topics with a focus on the detrimental effects of post-learning sleep deprivation on memory consolidation. Obtaining adequate sleep is challenging in a society that values "work around the clock." Therefore, the development of interventions to combat the negative cognitive effects of sleep deprivation is key. However, there are a limited number of therapeutics that are able to enhance cognition in the face of insufficient sleep. The identification of molecular pathways implicated in the deleterious effects of sleep deprivation on memory could potentially yield new targets for the development of more effective drugs.
Collapse
Affiliation(s)
- Toni-Moi Prince
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
22
|
Neurophysiological and Neurochemical Mechanisms of Behavioral Disorders in Rats with Chronic Inflammation of Back Tissues. NEUROPHYSIOLOGY+ 2013. [DOI: 10.1007/s11062-013-9357-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Synaptic plasticity at intrathalamic connections via CaV3.3 T-type Ca2+ channels and GluN2B-containing NMDA receptors. J Neurosci 2013; 33:624-30. [PMID: 23303941 DOI: 10.1523/jneurosci.3185-12.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The T-type Ca(2+) channels encoded by the Ca(V)3 genes are well established electrogenic drivers for burst discharge. Here, using Ca(V)3.3(-/-) mice we found that Ca(V)3.3 channels trigger synaptic plasticity in reticular thalamic neurons. Burst discharge via Ca(V)3.3 channels induced long-term potentiation at thalamoreticular inputs when coactivated with GluN2B-containing NMDA receptors, which are the dominant subtype at these synapses. Notably, oscillatory burst discharge of reticular neurons is typical for sleep-related rhythms, suggesting that sleep contributes to strengthening intrathalamic circuits.
Collapse
|
24
|
Henneberger C, Bard L, King C, Jennings A, Rusakov DA. NMDA Receptor Activation: Two Targets for Two Co-Agonists. Neurochem Res 2013; 38:1156-62. [DOI: 10.1007/s11064-013-0987-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 01/27/2013] [Accepted: 01/28/2013] [Indexed: 12/01/2022]
|
25
|
Sustaining sleep spindles through enhanced SK2-channel activity consolidates sleep and elevates arousal threshold. J Neurosci 2013; 32:13917-28. [PMID: 23035101 DOI: 10.1523/jneurosci.2313-12.2012] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sleep spindles are synchronized 11-15 Hz electroencephalographic (EEG) oscillations predominant during nonrapid-eye-movement sleep (NREMS). Rhythmic bursting in the reticular thalamic nucleus (nRt), arising from interplay between Ca(v)3.3-type Ca(2+) channels and Ca(2+)-dependent small-conductance-type 2 (SK2) K(+) channels, underlies spindle generation. Correlative evidence indicates that spindles contribute to memory consolidation and protection against environmental noise in human NREMS. Here, we describe a molecular mechanism through which spindle power is selectively extended and we probed the actions of intensified spindling in the naturally sleeping mouse. Using electrophysiological recordings in acute brain slices from SK2 channel-overexpressing (SK2-OE) mice, we found that nRt bursting was potentiated and thalamic circuit oscillations were prolonged. Moreover, nRt cells showed greater resilience to transit from burst to tonic discharge in response to gradual depolarization, mimicking transitions out of NREMS. Compared with wild-type littermates, chronic EEG recordings of SK2-OE mice contained less fragmented NREMS, while the NREMS EEG power spectrum was conserved. Furthermore, EEG spindle activity was prolonged at NREMS exit. Finally, when exposed to white noise, SK2-OE mice needed stronger stimuli to arouse. Increased nRt bursting thus strengthens spindles and improves sleep quality through mechanisms independent of EEG slow waves (<4 Hz), suggesting SK2 signaling as a new potential therapeutic target for sleep disorders and for neuropsychiatric diseases accompanied by weakened sleep spindles.
Collapse
|
26
|
Abstract
This review summarizes the brain mechanisms controlling sleep and wakefulness. Wakefulness promoting systems cause low-voltage, fast activity in the electroencephalogram (EEG). Multiple interacting neurotransmitter systems in the brain stem, hypothalamus, and basal forebrain converge onto common effector systems in the thalamus and cortex. Sleep results from the inhibition of wake-promoting systems by homeostatic sleep factors such as adenosine and nitric oxide and GABAergic neurons in the preoptic area of the hypothalamus, resulting in large-amplitude, slow EEG oscillations. Local, activity-dependent factors modulate the amplitude and frequency of cortical slow oscillations. Non-rapid-eye-movement (NREM) sleep results in conservation of brain energy and facilitates memory consolidation through the modulation of synaptic weights. Rapid-eye-movement (REM) sleep results from the interaction of brain stem cholinergic, aminergic, and GABAergic neurons which control the activity of glutamatergic reticular formation neurons leading to REM sleep phenomena such as muscle atonia, REMs, dreaming, and cortical activation. Strong activation of limbic regions during REM sleep suggests a role in regulation of emotion. Genetic studies suggest that brain mechanisms controlling waking and NREM sleep are strongly conserved throughout evolution, underscoring their enormous importance for brain function. Sleep disruption interferes with the normal restorative functions of NREM and REM sleep, resulting in disruptions of breathing and cardiovascular function, changes in emotional reactivity, and cognitive impairments in attention, memory, and decision making.
Collapse
Affiliation(s)
- Ritchie E Brown
- Laboratory of Neuroscience, VA Boston Healthcare System and Harvard Medical School, Brockton, Massachusetts 02301, USA
| | | | | | | | | |
Collapse
|
27
|
Tse YC, Bagot RC, Hutter JA, Wong AS, Wong TP. Modulation of synaptic plasticity by stress hormone associates with plastic alteration of synaptic NMDA receptor in the adult hippocampus. PLoS One 2011; 6:e27215. [PMID: 22069501 PMCID: PMC3206081 DOI: 10.1371/journal.pone.0027215] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 10/12/2011] [Indexed: 01/22/2023] Open
Abstract
Stress exerts a profound impact on learning and memory, in part, through the actions of adrenal corticosterone (CORT) on synaptic plasticity, a cellular model of learning and memory. Increasing findings suggest that CORT exerts its impact on synaptic plasticity by altering the functional properties of glutamate receptors, which include changes in the motility and function of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype of glutamate receptor (AMPAR) that are responsible for the expression of synaptic plasticity. Here we provide evidence that CORT could also regulate synaptic plasticity by modulating the function of synaptic N-methyl-D-aspartate receptors (NMDARs), which mediate the induction of synaptic plasticity. We found that stress level CORT applied to adult rat hippocampal slices potentiated evoked NMDAR-mediated synaptic responses within 30 min. Surprisingly, following this fast-onset change, we observed a slow-onset (>1 hour after termination of CORT exposure) increase in synaptic expression of GluN2A-containing NMDARs. To investigate the consequences of the distinct fast- and slow-onset modulation of NMDARs for synaptic plasticity, we examined the formation of long-term potentiation (LTP) and long-term depression (LTD) within relevant time windows. Paralleling the increased NMDAR function, both LTP and LTD were facilitated during CORT treatment. However, 1–2 hours after CORT treatment when synaptic expression of GluN2A-containing NMDARs is increased, bidirectional plasticity was no longer facilitated. Our findings reveal the remarkable plasticity of NMDARs in the adult hippocampus in response to CORT. CORT-mediated slow-onset increase in GluN2A in hippocampal synapses could be a homeostatic mechanism to normalize synaptic plasticity following fast-onset stress-induced facilitation.
Collapse
Affiliation(s)
- Yiu Chung Tse
- Neuroscience Division, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Rosemary C. Bagot
- Neuroscience Division, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Juliana A. Hutter
- Neuroscience Division, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Alice S. Wong
- Neuroscience Division, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Tak Pan Wong
- Neuroscience Division, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
28
|
Deng Q, Terunuma M, Fellin T, Moss SJ, Haydon PG. Astrocytic activation of A1 receptors regulates the surface expression of NMDA receptors through a Src kinase dependent pathway. Glia 2011; 59:1084-93. [PMID: 21544869 DOI: 10.1002/glia.21181] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 03/29/2011] [Indexed: 11/06/2022]
Abstract
Chemical transmitters released from astrocytes, termed gliotransmitters, modulate synaptic transmission and neuronal function. Using astrocyte-specific inducible transgenicmice (dnSNARE mice), we have demonstrated that inhibiting gliotransmission leads to reduced activation of adenosine A1 receptors (A1R) and impaired sleep homeostasis (Halassa et al. (2009) Neuron 61:213-219); Pascual et al. (2005) Science 310:113-116). Additionally, synaptic N-methyl-D-aspartate receptor (NMDAR) currents are reduced in these astrocyte-specific transgenic animals (Fellin et al. (2009) Proc Natl Acad Sci USA 106:15037-15042). Because of the importance of adenosine and NMDA receptors to sleep processes we asked whether there is a causal linkage between changes in A1R activation and synaptic NMDA receptors. We show that astrocytic dnSNARE expression leads to reduced tyrosine phosphorylation of Srckinase and NR2 subunits concomitant with the decreased surface expression of the NR2 subunits. To test the role of A1R signaling in mediating these actions, we show that incubation of wildtype (WT) slices with an A1R antagonist reduces tyrosine phosphorylation of Src kinase and NR2B, decreases the surface expression of the NR2B subunits and leads to smaller NMDA component of miniature EPSCs. In dnSNARE mice we could rescue WT phenotype by incubation in an A1R agonist:activation of A1 receptor led to increased tyrosine phosphorylation of Src kinase and NR2B subunits as well as increased the surface expression of the NR2B subunit and increased NMDA component of the synaptic mEPSC. These results provide the first demonstration that astrocytes can affect neuronal excitability on a long time scale by regulating the surface expression of NMDA receptors through the activation of specific intracellular signaling pathways.
Collapse
Affiliation(s)
- Qiudong Deng
- Department of Neuroscience, Tufts University, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
29
|
Longordo F, Fan J, Steimer T, Kopp C, Lüthi A. Do mice habituate to "gentle handling?" A comparison of resting behavior, corticosterone levels and synaptic function in handled and undisturbed C57BL/6J mice. Sleep 2011; 34:679-81. [PMID: 21532962 DOI: 10.1093/sleep/34.5.679] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES "Gentle handling" has become a method of choice for 4-6 h sleep deprivation in mice, with repeated brief handling applied before sleep deprivation to induce habituation. To verify whether mice do indeed habituate, we assess how 6 days of repeated brief handling impact on resting behavior, on stress, and on the subunit content of N-methyl-D-aspartate receptors (NMDARs) at hippocampal synapses, which is altered by sleep loss. We discuss whether repeated handling biases the outcome of subsequent sleep deprivation. DESIGN Adult C57BL/6J mice, maintained on a 12 h-12 h light-dark cycle, were left undisturbed for 3 days, then handled during 3 min daily for 6 days in the middle of the light phase. Mice were continuously monitored for their resting time. Serum corticosterone levels and synaptic NMDAR subunit composition were quantified. RESULTS Handling caused a ∼25% reduction of resting time throughout all handling days. After six, but not after one day of handling, mice had elevated serum corticosterone levels. Six-day handling augmented the presence of the NR2A subunit of NMDARs at hippocampal synapses. CONCLUSION Repeated handling induces behavioral and neurochemical alterations that are absent in undisturbed animals. The persistently reduced resting time and the delayed increase in corticosterone levels indicate that mice do not habituate to handling over a 1-week period. Handling-induced modifications bias effects of gentle handling-induced sleep deprivation on sleep homeostasis, stress, glutamate receptor composition and signaling. A standardization of sleep deprivation procedures involving gentle handling will be important for unequivocally specifying how acute sleep loss affects brain function.
Collapse
Affiliation(s)
- Fabio Longordo
- Department of Cell Biology and Morphology, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
30
|
Nelson AB, Faraguna U, Tononi G, Cirelli C. Effects of anesthesia on the response to sleep deprivation. Sleep 2011; 33:1659-67. [PMID: 21120128 DOI: 10.1093/sleep/33.12.1659] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
STUDY OBJECTIVE Slow wave activity (SWA) during NREM sleep is the best characterized marker of sleep homeostasis, and the occurrence of sleep slow waves is necessary to reduce sleep need. Recent evidence suggests that sleep slow waves may mediate several beneficial effects of sleep on performance, from the prevention of cognitive impairments to memory consolidation. However, slow waves are also triggered by low doses of many anesthetics, but very few reports have examined whether anesthesia-mediated slow waves affect the homeostatic regulation of sleep. Moreover, no study has examined how sleep is affected by higher doses of anesthetics, which lead to a predominantly "isoelectric" EEG tracing without slow waves. DESIGN We studied in rats whether 1 hour of a dose of isoflurane or desflurane able to induce almost continuous slow waves (ISO-sw, DES-sw), and of a dose of desflurane resulting in a predominantly isoelectric EEG (DES-iso) reduces the sleep pressure caused by 4 h of sleep deprivation. Anesthesia was compared to a mock condition in which rats were only anesthetized for 2-3 min. SETTING Basic sleep research laboratory. PATIENTS OR PARTICIPANTS Male WKY rats (n=31). INTERVENTIONS Total sleep deprivation by exposure to novel objects starting at light onset, followed by one hour of anesthesia or mock anesthesia. MEASUREMENTS AND RESULTS One hour of anesthesia (sw or iso) did not affect either sleep duration or the overall sleep pattern. Anesthesia with ISO-sw or DES-sw, both associated with the occurrence of almost continuous slow waves, reduced the SWA rebound expected following 4 h of sleep deprivation. One hour of anesthesia with DES-iso, associated with isoelectric EEG and few slow waves, also reduced the SWA rebound after sleep deprivation, and did so to an extent similar to that observed after DES-sw. However, in contrast to DES-sw, SWA after DES-iso remained chronically lower than in baseline, resulting in reduced slow wave energy (SWE, SWA × time) for at least 2 days. CONCLUSION The blunted SWA rebound after ISO-sw and DES-sw suggests that anesthesia slow waves may substitute for sleep slow waves. The reduced SWA rebound after DES-iso may reflect a pathological condition that results in a chronic decrease in SWA, or may suggest that anesthesia slow waves are not an absolute requirement to discharge sleep pressure.
Collapse
Affiliation(s)
- Aaron B Nelson
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA
| | | | | | | |
Collapse
|
31
|
Greene RW, Frank MG. Slow wave activity during sleep: functional and therapeutic implications. Neuroscientist 2010; 16:618-33. [PMID: 20921564 DOI: 10.1177/1073858410377064] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Electroencephalographic slow-wave activity (EEG SWA) is an electrophysiological signature of slow (0.5 to 4.0 Hz), synchronized, oscillatory neocortical activity. In healthy individuals, EEG SWA is maximally expressed during non-rapid-eye-movement (non-REM) sleep, and intensifies as a function of prior wake duration. Many of the cellular and network mechanisms generating EEG SWA have been identified, but a number of questions remain unanswered. For example, although EEG SWA is a marker of sleep need, its precise relationship with sleep homeostasis and its roles in the brain are unknown. In this review, the authors discuss their current understanding of the neural mechanisms and possible functions of EEG SWA.
Collapse
Affiliation(s)
- Robert W Greene
- Department of Psychiatry, UTSW Medical Center, Dallas VA, Dallas, Texas 75390, USA.
| | | |
Collapse
|
32
|
Enhancing plasticity through repeated rTMS sessions: the benefits of a night of sleep. Clin Neurophysiol 2010; 121:2159-64. [PMID: 20541968 DOI: 10.1016/j.clinph.2010.05.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 05/10/2010] [Accepted: 05/18/2010] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Previous work has demonstrated that corticospinal facilitation from 20Hz repetitive transcranial magnetic stimulation (rTMS) was greater during a second rTMS session 24h after the first. We sought to determine whether such metaplasticity is dependent on a particular phase of the normal sleep-wake/circadian cycle. METHODS Twenty healthy participants received two sessions of 20Hz rTMS over the hand motor cortex (M1) spaced 12h apart, either over-day or overnight. RESULTS Baseline corticospinal excitability did not differ by group or session. The time-of-day of Session 1 did not influence the relative increase in excitability following rTMS. However, the increase in excitability from the second rTMS session was 2-fold greater in the overnight group. CONCLUSIONS When a night with sleep follows rTMS to M1, the capacity to induce subsequent plasticity in M1 is enhanced, suggesting sleep-wake and/or circadian-dependent modulation of processes of metaplasticity. SIGNIFICANCE TMS treatment of neuropsychiatric disorders entails repeated sessions of rTMS. Our findings suggest that the timing of sessions relative to the sleep-wake/circadian cycle may be a critical factor in the cumulative effect of treatment. Future studies using this paradigm may provide mechanistic insights into human metaplasticity, leading to refined strategies to enhance non-invasive stimulation therapies.
Collapse
|
33
|
Tartar JL, McKenna JT, Ward CP, McCarley RW, Strecker RE, Brown RE. Sleep fragmentation reduces hippocampal CA1 pyramidal cell excitability and response to adenosine. Neurosci Lett 2009; 469:1-5. [PMID: 19914331 DOI: 10.1016/j.neulet.2009.11.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 10/22/2009] [Accepted: 11/09/2009] [Indexed: 11/29/2022]
Abstract
Sleep fragmentation (SF) impairs the restorative/cognitive benefits of sleep via as yet unidentified alterations in neural physiology. Previously, we found that hippocampal synaptic plasticity and spatial learning are impaired in a rat model of SF which utilizes a treadmill to awaken the animals every 2 min, mimicking the frequency of awakenings observed in human sleep apnea patients. Here, we investigated the cellular mechanisms responsible for these effects, using whole-cell patch-clamp recordings. 24h of SF decreased the excitability of hippocampal CA1 pyramidal neurons via decreased input resistance, without alterations in other intrinsic membrane or action potential properties (when compared to cage controls, or to exercise controls that experienced the same total amount of treadmill movement as SF rats). Contrary to our initial prediction, the hyperpolarizing response to bath applied adenosine (30 microM) was reduced in the CA1 neurons of SF treated rats. Our initial prediction was based on the evidence that sleep loss upregulates cortical adenosine A1 receptors; however, the present findings are consistent with a very recent report that hippocampal A1 receptors are not elevated by sleep loss. Thus, increased adenosinergic inhibition is unlikely to be responsible for reduced hippocampal long-term potentiation in SF rats. Instead, the reduced excitability of CA1 pyramidal neurons observed here may contribute to the loss of hippocampal long-term potentiation and hippocampus-dependent cognitive impairments associated with sleep disruption.
Collapse
Affiliation(s)
- Jaime L Tartar
- VA Boston Healthcare System and Harvard Medical School, Research 151-C, 940 Belmont Street, Brockton, MA 02301, USA
| | | | | | | | | | | |
Collapse
|