1
|
Nishiyama H, Nishiyama N, Zemelman BV. Purkinje cell ablation and Purkinje cell-specific deletion of Tsc1 in the developing cerebellum strengthen cerebellothalamic synapses. J Physiol 2024; 602:6973-7001. [PMID: 39558452 DOI: 10.1113/jp285887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 10/22/2024] [Indexed: 11/20/2024] Open
Abstract
Cerebellar damage early in life often causes long-lasting motor, social and cognitive impairments, suggesting the roles of the cerebellum in developing a broad spectrum of behaviours. This recent finding has promoted research on how cerebellar damage affects the development of the cerebral cortex, the brain region responsible for higher-order control of all behaviours. However, the cerebral cortex is not directly connected to the cerebellum. The thalamus is a major direct target of the cerebellar nuclei, conveying cerebellar signals to the cerebral cortex. Despite its crucial position in cerebello-cerebral interaction, thalamic susceptibility to cerebellar damage remains largely unclear. Here, we studied the consequences of early cerebellar perturbation on thalamic development. Whole-cell patch-clamp recordings showed that the synaptic organization of the cerebellothlamic circuit is similar to that of the primary sensory thalamus, in which aberrant sensory activity alters synaptic circuit formation. The ablation of Purkinje cells in the developing cerebellum strengthened cerebellothalamic synapses and enhanced thalamic suprathreshold activities. Purkinje-cell specific deletion of tuberous sclerosis complex subunit 1 (Tsc1), an autism-associated gene for which the protein product negatively regulates the mammalian target of rapamycin, also strengthened cerebellothalamic synapses. However, this strengthening occurred only in homozygous deletion, whereas both homozygous and hemizygous deletion are known to cause autism-like behaviours. These results suggest that, although the cerebellothalamic projection is vulnerable to disturbances in the developing cerebellar cortex, other changes may also drive the behavioural consequences of early cerebellar perturbation. KEY POINTS: Cerebellar damage early in life often causes motor, social and cognitive impairments, suggesting the roles of the cerebellum in developing a broad spectrum of behaviours. Recent studies focus on how the developing cerebellum affects the formation and function of the cerebral cortex, the higher-order centre for all behaviours. However, the cerebellum does not directly connect to the cerebral cortex. Here, we studied the consequences of early cerebellar perturbation on the thalamus because it is a direct postsynaptic target of the cerebellum, sending cerebellar signals to the cerebral cortex. Loss of cerebellar Purkinje cells, which are commonly associated with various neurological disorders, strengthened cerebellothalamic synapses, suggesting the vulnerability of the thalamus to substantial disturbance in the developing cerebellum. Purkinje cell-specific loss of tuberous sclerosis complex-1, a negative regulator of mammalian target of rapamycin, is an established mouse model of autism. This mouse model also showed strengthened cerebellothalamic synapses.
Collapse
Affiliation(s)
- Hiroshi Nishiyama
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Naoko Nishiyama
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Boris V Zemelman
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
2
|
Dooley JC, van der Heijden ME. More Than a Small Brain: The Importance of Studying Neural Function during Development. J Neurosci 2024; 44:e1367242024. [PMID: 39603806 PMCID: PMC11604142 DOI: 10.1523/jneurosci.1367-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/17/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
The nervous system contains complex circuits comprising thousands of cell types and trillions of connections. Here, we discuss how the field of "developmental systems neuroscience" combines the molecular and genetic perspectives of developmental neuroscience with the (typically adult-focused) functional perspective of systems neuroscience. This combination of approaches is critical to understanding how a handful of cells eventually produce the wide range of behaviors necessary for survival. Functional circuit development typically lags behind neural connectivity, leading to intermediate stages of neural activity that are either not seen in adults or, if present, are considered pathophysiological. Developmental systems neuroscience examines these intermediate stages of neural activity, mapping out the critical phases and inflection points of neural circuit function to understand how neural activity and behavior emerge across development. Beyond understanding typical development, this approach provides invaluable insight into the pathophysiology of neurodevelopmental disorders by identifying when and how functional development diverges between health and disease. We argue that developmental systems neuroscience will identify important periods of neural development, reveal novel therapeutic windows for treatment, and set the stage to answer fundamental questions about the brain in health and disease.
Collapse
Affiliation(s)
- James C Dooley
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907
| | - Meike E van der Heijden
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- Center for Neurobiology Research, Roanoke, Virginia 24016
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia 24016
| |
Collapse
|
3
|
Wahl L, Karim A, Hassett AR, van der Doe M, Dijkhuizen S, Badura A. Multiparametric Assays Capture Sex- and Environment-Dependent Modifiers of Behavioral Phenotypes in Autism Mouse Models. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100366. [PMID: 39262819 PMCID: PMC11387692 DOI: 10.1016/j.bpsgos.2024.100366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 09/13/2024] Open
Abstract
Background Current phenotyping approaches for murine autism models often focus on one selected behavioral feature, making the translation onto a spectrum of autistic characteristics in humans challenging. Furthermore, sex and environmental factors are rarely considered. Here, we aimed to capture the full spectrum of behavioral manifestations in 3 autism mouse models to develop a "behavioral fingerprint" that takes environmental and sex influences under consideration. Methods To this end, we employed a wide range of classical standardized behavioral tests and 2 multiparametric behavioral assays-the Live Mouse Tracker and Motion Sequencing-on male and female Shank2, Tsc1, and Purkinje cell-specific Tsc1 mutant mice raised in standard or enriched environments. Our aim was to integrate our high dimensional data into one single platform to classify differences in all experimental groups along dimensions with maximum discriminative power. Results Multiparametric behavioral assays enabled a more accurate classification of experimental groups than classical tests, and dimensionality reduction analysis demonstrated significant additional gains in classification accuracy, highlighting the presence of sex, environmental, and genotype differences in our experimental groups. Conclusions Together, our results provide a complete phenotypic description of all tested groups, suggesting that multiparametric assays can capture the entire spectrum of the heterogeneous phenotype in autism mouse models.
Collapse
Affiliation(s)
- Lucas Wahl
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Arun Karim
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Amy R Hassett
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Max van der Doe
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | | |
Collapse
|
4
|
King C, Maze T, Plakke B. Altered prefrontal and cerebellar parvalbumin neuron counts are associated with cognitive changes in male rats. Exp Brain Res 2024; 242:2295-2308. [PMID: 39085433 DOI: 10.1007/s00221-024-06902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Exposure to valproic acid (VPA), a common anti-seizure medication, in utero is a risk factor for autism spectrum disorder (ASD). People with ASD often display changes in the cerebellum, including volume changes, altered circuitry, and changes in Purkinje cell populations. ASD is also characterized by changes in the medial prefrontal cortex (mPFC), where excitatory/inhibitory balance is often altered. This study exposed rats to a high dose of VPA during gestation and assessed cognition and anxiety-like behaviors during young adulthood using a set-shifting task and the elevated plus maze. Inhibitory parvalbumin-expressing (PV +) neuron counts were assessed in the mPFC and cerebellar lobules VI and VII (Purkinje cell layers), which are known to modulate cognition. VPA males had increased PV + counts in crus I and II of lobule VII. VPA males also had decreased parvalbumin-expressing neuron counts in the mPFC. It was also found that VPA-exposed rats, regardless of sex, had increased parvalbumin-expressing Purkinje cell counts in lobule VI. In males, this was associated with impaired intra-dimensional shifting on a set-shifting task. Purkinje cell over proliferation may be contributing to the previously observed increase in volume of Lobule VI. These findings suggest that altered inhibitory signaling in cerebellar-frontal circuits may contribute to the cognitive deficits that occur within ASD.
Collapse
Affiliation(s)
- Cole King
- Psychological Sciences, Kansas State University, 1114 Mid-Campus Dr., Manhattan, KS, 66506, USA
| | - Tessa Maze
- Psychological Sciences, Kansas State University, 1114 Mid-Campus Dr., Manhattan, KS, 66506, USA
| | - Bethany Plakke
- Psychological Sciences, Kansas State University, 1114 Mid-Campus Dr., Manhattan, KS, 66506, USA.
| |
Collapse
|
5
|
Mitoma H, Manto M, Shaikh AG. Alcohol Toxicity in the Developing Cerebellum. Diagnostics (Basel) 2024; 14:1415. [PMID: 39001305 PMCID: PMC11241390 DOI: 10.3390/diagnostics14131415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
The impact of ethanol on the fetus is a significant concern as an estimated 2-5% of live births may be affected by prenatal alcohol exposure. This exposure can lead to various functional and structural abnormalities in the cerebral cortex, basal ganglia, diencephalon, and cerebellum, resulting in region-specific symptoms. The deficits relate to the motor and cognitive domains, affecting, in particular, general intelligence, attention, executive functions, language, memory, visual perception, and social skills-collectively called the fetal alcohol spectrum disorder (FASD). Recent studies suggest that damage to the developing cerebellum (in form of alcohol exposure) can impair the cortical targets of the cerebello-thalamo-cortical tract. This malfunction in the cerebello-cerebral loop optimization may be due to disruptions in the formation of the foundational elements of the internal model within the developing cerebellum. Alcohol exposure targets multiple nodes in the reciprocal loops between the cerebellum and cerebral cortex. Here, we examine the possibility that prenatal alcohol exposure damages the developing cerebellum and disrupts the connectivity within the cerebello-cerebral neuronal circuits, exacerbating FASD-related cortical dysfunctions. We propose that malfunctions between cerebellar internal model (critically involved in predictions) and cerebral regions contribute to the deficits observed in FASD. Given the major role of the cerebellum in motor, cognitive, and affective functions, we suggest that therapies should target these malfunctions to mitigate the burden of FASD. We discuss the concept of therapies oriented towards malfunctioning cerebello-cerebral loops (TOMCCLs), emphasizing anti-inflammatory strategies and treatments aimed at modulating cerebellar myelination to restore optimal and predictive cerebello-cerebral functions.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Mario Manto
- Unité des Ataxies Cérébelleuses, Service de Neurologie, CHU-Charleroi, 6000 Charleroi, Belgium
- Service des Neurosciences, University of Mons, 7000 Mons, Belgium
| | - Aasef G Shaikh
- Louis Stokes Cleveland VA Medical Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Rudolph S, Badura A, Lutzu S, Pathak SS, Thieme A, Verpeut JL, Wagner MJ, Yang YM, Fioravante D. Cognitive-Affective Functions of the Cerebellum. J Neurosci 2023; 43:7554-7564. [PMID: 37940582 PMCID: PMC10634583 DOI: 10.1523/jneurosci.1451-23.2023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 11/10/2023] Open
Abstract
The cerebellum, traditionally associated with motor coordination and balance, also plays a crucial role in various aspects of higher-order function and dysfunction. Emerging research has shed light on the cerebellum's broader contributions to cognitive, emotional, and reward processes. The cerebellum's influence on autonomic function further highlights its significance in regulating motivational and emotional states. Perturbations in cerebellar development and function have been implicated in various neurodevelopmental disorders, including autism spectrum disorder and attention deficit hyperactivity disorder. An increasing appreciation for neuropsychiatric symptoms that arise from cerebellar dysfunction underscores the importance of elucidating the circuit mechanisms that underlie complex interactions between the cerebellum and other brain regions for a comprehensive understanding of complex behavior. By briefly discussing new advances in mapping cerebellar function in affective, cognitive, autonomic, and social processing and reviewing the role of the cerebellum in neuropathology beyond the motor domain, this Mini-Symposium review aims to provide a broad perspective of cerebellar intersections with the limbic brain in health and disease.
Collapse
Affiliation(s)
- Stephanie Rudolph
- Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York 10461
| | - Aleksandra Badura
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Stefano Lutzu
- Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York 10461
| | - Salil Saurav Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota 55812
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, D-45147, Germany
| | - Jessica L Verpeut
- Department of Psychology, Arizona State University, Tempe, Arizona 85287
| | - Mark J Wagner
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, Maryland 20814
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota 55812
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Diasynou Fioravante
- Center for Neuroscience, University of California-Davis, Davis, California 95618
- Department of Neurobiology, Physiology and Behavior, University of California-Davis, Davis, California 95618
| |
Collapse
|
7
|
Nishiyama H, Nishiyama N, Zemelman BV. Loss of Purkinje cells in the developing cerebellum strengthens the cerebellothalamic synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.564864. [PMID: 37961231 PMCID: PMC10635038 DOI: 10.1101/2023.11.01.564864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cerebellar damage early in life often causes long-lasting motor, social, and cognitive impairments, suggesting the roles of the cerebellum in developing a broad spectrum of behaviors. This recent finding has promoted research on how cerebellar damage affects the development of the cerebral cortex, the brain region responsible for higher-order control of all behaviors. However, the cerebral cortex is not directly connected to the cerebellum. The thalamus is the direct postsynaptic target of the cerebellum, sending cerebellar outputs to the cerebral cortex. Despite its crucial position in cerebello-cerebral interaction, thalamic susceptibility to cerebellar damage remains largely unclear. Here, we studied the consequences of early cerebellar perturbation on thalamic development. Whole-cell patch-clamp recordings showed that the synaptic organization of the cerebellothlamic circuit is similar to that of the primary sensory thalamus, in which aberrant sensory activity alters synaptic circuit formation. The hemizygous deletion of the tuberous sclerosis complex-1 ( Tsc1 ) gene in the Purkinje cell-known to cause Purkinje cell hypoactivity and autistic behaviors-did not alter cerebellothalamic synapses or intrinsic membrane properties of thalamic neurons. However, the ablation of Purkinje cells in the developing cerebellum strengthened the cerebellothalamic synapses and enhanced thalamic suprathreshold activities. These results suggest that the cerebellothalamic circuit is resistant to moderate perturbation in the developing cerebellum, such as the reduced firing rate of Purkinje cells, and that autistic behaviors are not necessarily linked to thalamic abnormality. Still, Purkinje cell loss alters the thalamic circuit, suggesting the vulnerability of the thalamus to substantial disturbance in the developing cerebellum.
Collapse
|
8
|
Matthiesen M, Khlaifia A, Steininger CFD, Dadabhoy M, Mumtaz U, Arruda-Carvalho M. Maturation of nucleus accumbens synaptic transmission signals a critical period for the rescue of social deficits in a mouse model of autism spectrum disorder. Mol Brain 2023; 16:46. [PMID: 37226266 DOI: 10.1186/s13041-023-01028-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/20/2023] [Indexed: 05/26/2023] Open
Abstract
Social behavior emerges early in development, a time marked by the onset of neurodevelopmental disorders featuring social deficits, including autism spectrum disorder (ASD). Although social deficits are at the core of the clinical diagnosis of ASD, very little is known about their neural correlates at the time of clinical onset. The nucleus accumbens (NAc), a brain region extensively implicated in social behavior, undergoes synaptic, cellular and molecular alterations in early life, and is particularly affected in ASD mouse models. To explore a link between the maturation of the NAc and neurodevelopmental deficits in social behavior, we compared spontaneous synaptic transmission in NAc shell medium spiny neurons (MSNs) between the highly social C57BL/6J and the idiopathic ASD mouse model BTBR T+Itpr3tf/J at postnatal day (P) 4, P6, P8, P12, P15, P21 and P30. BTBR NAc MSNs display increased spontaneous excitatory transmission during the first postnatal week, and increased inhibition across the first, second and fourth postnatal weeks, suggesting accelerated maturation of excitatory and inhibitory synaptic inputs compared to C57BL/6J mice. BTBR mice also show increased optically evoked medial prefrontal cortex-NAc paired pulse ratios at P15 and P30. These early changes in synaptic transmission are consistent with a potential critical period, which could maximize the efficacy of rescue interventions. To test this, we treated BTBR mice in either early life (P4-P8) or adulthood (P60-P64) with the mTORC1 antagonist rapamycin, a well-established intervention for ASD-like behavior. Rapamycin treatment rescued social interaction deficits in BTBR mice when injected in infancy, but did not affect social interaction in adulthood.
Collapse
Affiliation(s)
- Melina Matthiesen
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Abdessattar Khlaifia
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | | | - Maryam Dadabhoy
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Unza Mumtaz
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada.
| |
Collapse
|
9
|
Wang L, Wang B, Wu C, Wang J, Sun M. Autism Spectrum Disorder: Neurodevelopmental Risk Factors, Biological Mechanism, and Precision Therapy. Int J Mol Sci 2023; 24:ijms24031819. [PMID: 36768153 PMCID: PMC9915249 DOI: 10.3390/ijms24031819] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous, behaviorally defined neurodevelopmental disorder. Over the past two decades, the prevalence of autism spectrum disorders has progressively increased, however, no clear diagnostic markers and specifically targeted medications for autism have emerged. As a result, neurobehavioral abnormalities, neurobiological alterations in ASD, and the development of novel ASD pharmacological therapy necessitate multidisciplinary collaboration. In this review, we discuss the development of multiple animal models of ASD to contribute to the disease mechanisms of ASD, as well as new studies from multiple disciplines to assess the behavioral pathology of ASD. In addition, we summarize and highlight the mechanistic advances regarding gene transcription, RNA and non-coding RNA translation, abnormal synaptic signaling pathways, epigenetic post-translational modifications, brain-gut axis, immune inflammation and neural loop abnormalities in autism to provide a theoretical basis for the next step of precision therapy. Furthermore, we review existing autism therapy tactics and limits and present challenges and opportunities for translating multidisciplinary knowledge of ASD into clinical practice.
Collapse
|
10
|
Deficits in Cerebellum-Dependent Learning and Cerebellar Morphology in Male and Female BTBR Autism Model Mice. NEUROSCI 2022. [DOI: 10.3390/neurosci3040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recently, there has been increased interest in the role of the cerebellum in autism spectrum disorder (ASD). To better understand the pathophysiological role of the cerebellum in ASD, it is necessary to have a variety of mouse models that have face validity for cerebellar disruption in humans. Here, we add to the literature on the cerebellum in mouse models of autism with the characterization of the cerebellum in the idiopathic BTBR T + Itpr3tf/J (BTBR) inbred mouse strain, which has behavioral phenotypes that are reminiscent of ASD in patients. When we examined both male and female BTBR mice in comparison to C57BL/6J (C57) controls, we noted that both sexes of BTBR mice showed motor coordination deficits characteristic of cerebellar dysfunction, but only the male mice showed differences in delay eyeblink conditioning, a cerebellum-dependent learning task that is known to be disrupted in ASD patients. Both male and female BTBR mice showed considerable expansion of, and abnormal foliation in, the cerebellum vermis—including a significant expansion of specific lobules in the anterior cerebellum. In addition, we found a slight but significant decrease in Purkinje cell density in both male and female BTBR mice, irrespective of the lobule. Finally, there was a marked reduction of Purkinje cell dendritic spine density in both male and female BTBR mice. These findings suggest that, for the most part, the BTBR mouse model phenocopies many of the characteristics of the subpopulation of ASD patients that have a hypertrophic cerebellum. We discuss the significance of strain differences in the cerebellum as well as the importance of this first effort to identify both similarities and differences between male and female BTBR mice with regard to the cerebellum.
Collapse
|