1
|
Luan Y, Deng Z, Zhu Y, Dai L, Yang Y, Xia Z. Decoupling actin assembly from microtubule disassembly by TBC1D3C-mediated direct GEF-H1 activation. Life Sci Alliance 2025; 8:e202402585. [PMID: 39467635 PMCID: PMC11519374 DOI: 10.26508/lsa.202402585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Actin and microtubules are essential cytoskeletal components and coordinate their dynamics through multiple coupling and decoupling mechanisms. However, how actin and microtubule dynamics are decoupled remains incompletely understood. Here, we identified TBC1D3C as a new regulator that can decouple actin filament assembly from microtubule disassembly. We showed that TBC1D3C induces the release of GEF-H1 from microtubules into the cytosol without perturbing microtubule arrays, leading to RhoA activation and actin filament assembly. Mechanistically, we found that TBC1D3C directly binds to GEF-H1, disrupting its interaction with the Tctex-DIC-14-3-3 complex and thereby displacing GEF-H1 from microtubules independently of microtubule disassembly. Super-resolution microscopy and live-cell imaging further confirmed that TBC1D3C triggers GEF-H1 release and actin filament assembly while maintaining microtubule integrity. Therefore, our findings demonstrated that TBC1D3C functions as a direct GEF activator and a novel regulator in decoupling actin assembly from microtubule disassembly, providing new insights into cytoskeletal regulation.
Collapse
Affiliation(s)
- Yi Luan
- https://ror.org/056swr059 Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, China
- https://ror.org/056swr059 Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- https://ror.org/056swr059 NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhifeng Deng
- https://ror.org/056swr059 Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, China
- https://ror.org/056swr059 Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- https://ror.org/056swr059 NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yutong Zhu
- Research and Development Center, Beijing, China
| | - Lisi Dai
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Yang Yang
- https://ror.org/056swr059 Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongping Xia
- https://ror.org/056swr059 Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, China
- https://ror.org/056swr059 Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- https://ror.org/056swr059 NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Liu T, Liu Y, Peng M, Liu Q, Si G. Slain2 attenuates brain injury following subarachnoid hemorrhage by controlling axonal microtubule structure in mice. Neurosci Lett 2023; 816:137495. [PMID: 37741612 DOI: 10.1016/j.neulet.2023.137495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023]
Abstract
Neuronal injury is accountable for the poor outcome of SAH patients. In this study, oxyhemoglobin (oxyHb) was used to treat cultured primary neurons to simulate SAH, while the SAH model was established by vascular puncture in mice. First, proteomics analysis and western blot assays showed Slain2 as an increased factor in neurons exposed to oxyHb treatment, which has been reported to play an important role in axonal development by regulating microtubule stability. Upregulation of neuronal Slain2 was also detected in the murine SAH model compared with sham surgery. In addition, there was no sex difference in the protein level of Slain2 in either the sham-operated or SAH groups. Furthermore, Slain2 overexpression rescued SAH-induced sensorimotor impairments in mice, while Slain2 knockdown had the opposite effect. Finally, Slain2 overexpression rescued SAH-induced axonal injury both in vivo and in vitro, which was exacerbated by Slain2 knockdown. Thus, we demonstrate here that Slain2 acts as an endogenous protective factor of neuronal axonal microtubule structure, which plays a key role in the protection against SAH-induced neuronal axonal injury. Facilitated axonal microtubule structure by Slain2 overexpression may reduce SAH-induced axonal injury and neurobehavioral dysfunction.
Collapse
Affiliation(s)
- Ting Liu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Huaiyin District, Jinan City, Shandong Province, China; Shandong University of Traditional Chinese Medicine, China
| | - Yuan Liu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Huaiyin District, Jinan City, Shandong Province, China
| | - Min Peng
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Huaiyin District, Jinan City, Shandong Province, China
| | - Qianqian Liu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Huaiyin District, Jinan City, Shandong Province, China
| | - Guomin Si
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Huaiyin District, Jinan City, Shandong Province, China.
| |
Collapse
|
3
|
Cronin SJF, Tejada MA, Song R, Laval K, Cikes D, Ji M, Brai A, Stadlmann J, Novatchikova M, Perlot T, Ali OH, Botta L, Decker T, Lazovic J, Hagelkruys A, Enquist L, Rao S, Koyuncu OO, Penninger JM. Pseudorabies virus hijacks DDX3X, initiating an addictive "mad itch" and immune suppression, to facilitate viral spread. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.539956. [PMID: 37214906 PMCID: PMC10197578 DOI: 10.1101/2023.05.09.539956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Infections with defined Herpesviruses, such as Pseudorabies virus (PRV) and Varicella zoster virus (VZV) can cause neuropathic itch, referred to as "mad itch" in multiple species. The underlying mechanisms involved in neuropathic "mad itch" are poorly understood. Here, we show that PRV infections hijack the RNA helicase DDX3X in sensory neurons to facilitate anterograde transport of the virus along axons. PRV induces re-localization of DDX3X from the cell body to the axons which ultimately leads to death of the infected sensory neurons. Inducible genetic ablation of Ddx3x in sensory neurons results in neuronal death and "mad itch" in mice. This neuropathic "mad itch" is propagated through activation of the opioid system making the animals "addicted to itch". Moreover, we show that PRV co-opts and diverts T cell development in the thymus via a sensory neuron-IL-6-hypothalamus-corticosterone stress pathway. Our data reveal how PRV, through regulation of DDX3X in sensory neurons, travels along axons and triggers neuropathic itch and immune deviations to initiate pathophysiological programs which facilitate its spread to enhance infectivity.
Collapse
Affiliation(s)
- Shane J F Cronin
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | - Miguel A Tejada
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | - Ren Song
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Kathlyn Laval
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Domagoj Cikes
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | - Ming Ji
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Annalaura Brai
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, I-53100 Siena, Italy
| | - Johannes Stadlmann
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | - Maria Novatchikova
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | - Thomas Perlot
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | - Omar Hasan Ali
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
- Institute of Immunobiology, Cantonal Hospital St. Gallen, Rorschacher Strasse 95, 9007 St. Gallen, Switzerland
- Department of Dermatology, University of Zurich, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Lorenzo Botta
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, I-53100 Siena, Italy
| | - Thomas Decker
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Jelena Lazovic
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | - Astrid Hagelkruys
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | - Lynn Enquist
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Shuan Rao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Orkide O Koyuncu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697-4025, USA
| | - Josef M Penninger
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, A-1030 Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
4
|
Gcap14 is a microtubule plus-end-tracking protein coordinating microtubule-actin crosstalk during neurodevelopment. Proc Natl Acad Sci U S A 2023; 120:e2214507120. [PMID: 36795749 PMCID: PMC9974511 DOI: 10.1073/pnas.2214507120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Regulation of microtubule dynamics is required to properly control various steps of neurodevelopment. In this study, we identified granule cell antiserum-positive 14 (Gcap14) as a microtubule plus-end-tracking protein and as a regulator of microtubule dynamics during neurodevelopment. Gcap14 knockout mice exhibited impaired cortical lamination. Gcap14 deficiency resulted in defective neuronal migration. Moreover, nuclear distribution element nudE-like 1 (Ndel1), an interacting partner of Gcap14, effectively corrected the downregulation of microtubule dynamics and the defects in neuronal migration caused by Gcap14 deficiency. Finally, we found that the Gcap14-Ndel1 complex participates in the functional link between microtubule and actin filament, thereby regulating their crosstalks in the growth cones of cortical neurons. Taken together, we propose that the Gcap14-Ndel1 complex is fundamental for cytoskeletal remodeling during neurodevelopmental processes such as neuronal processes elongation and neuronal migration.
Collapse
|
5
|
Meier SM, Farcas AM, Kumar A, Ijavi M, Bill RT, Stelling J, Dufresne ER, Steinmetz MO, Barral Y. Multivalency ensures persistence of a +TIP body at specialized microtubule ends. Nat Cell Biol 2023; 25:56-67. [PMID: 36536177 PMCID: PMC9859758 DOI: 10.1038/s41556-022-01035-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/21/2022] [Indexed: 12/24/2022]
Abstract
Microtubule plus-end tracking proteins (+TIPs) control microtubule specialization and are as such essential for cell division and morphogenesis. Here we investigated interactions and functions of the budding yeast Kar9 network consisting of the core +TIP proteins Kar9 (functional homologue of APC, MACF and SLAIN), Bim1 (orthologous to EB1) and Bik1 (orthologous to CLIP-170). A multivalent web of redundant interactions links the three +TIPs together to form a '+TIP body' at the end of chosen microtubules. This body behaves as a liquid condensate that allows it to persist on both growing and shrinking microtubule ends, and to function as a mechanical coupling device between microtubules and actin cables. Our study identifies nanometre-scale condensates as effective cellular structures and underlines the power of dissecting the web of low-affinity interactions driving liquid-liquid phase separation in order to establish how condensation processes support cell function.
Collapse
Affiliation(s)
- Sandro M Meier
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
- Department of Biology, Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
- Bringing Materials to Life Initiative, ETH Zürich, Zürich, Switzerland
| | - Ana-Maria Farcas
- Department of Biology, Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
- Bringing Materials to Life Initiative, ETH Zürich, Zürich, Switzerland
| | - Anil Kumar
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
- ImmunOs Therapeutics AG, Schlieren, Switzerland
| | - Mahdiye Ijavi
- Bringing Materials to Life Initiative, ETH Zürich, Zürich, Switzerland
- Department of Materials, ETH Zürich, Zürich, Switzerland
| | - Robert T Bill
- Department of Biology, Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Jörg Stelling
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zürich, Basel, Switzerland
| | - Eric R Dufresne
- Bringing Materials to Life Initiative, ETH Zürich, Zürich, Switzerland
- Department of Materials, ETH Zürich, Zürich, Switzerland
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland.
- University of Basel, Biozentrum, Basel, Switzerland.
| | - Yves Barral
- Department of Biology, Institute of Biochemistry, ETH Zürich, Zürich, Switzerland.
- Bringing Materials to Life Initiative, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
6
|
Yurduseven K, Babal YK, Celik E, Kerman BE, Kurnaz IA. Multiple Sclerosis Biomarker Candidates Revealed by Cell-Type-Specific Interactome Analysis. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:305-317. [PMID: 35483054 DOI: 10.1089/omi.2022.0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multiple sclerosis (MS) is a demyelinating disorder that affects multiple regions of the central nervous system such as the brain, spinal cord, and optic nerves. Susceptibility to MS, as well as disease progression rates, displays marked patient-to-patient variability. To date, biomarkers that forecast differences in clinical phenotypes and outcomes have been limited. In this context, cell-type-specific interactome analyses offer important prospects and hope for novel diagnostics and therapeutics. We report here an original study using bioinformatic analysis of MS data sets that revealed interaction profiles as well as specific hub proteins in white matter (WM) and gray matter (GM) that appear critical for disease mechanisms. First, cell-type-specific interactome analyses suggested that while interactions within the WM were focused on oligodendrocytes, interactions within the GM were mostly neuron centric. Second, hub proteins such as APP, EGLN3, PTEN, and LRRK2 were identified to be differentially regulated in MS data sets. Lastly, a comparison of the brain and peripheral blood samples identified biomarker candidates such as NRGN, CRTC1, CDC42, and IFITM3 to be differentially expressed in different types of MS. These findings offer a unique cell-type-specific cell-to-cell interaction network in MS and identify potential biomarkers by comparative analysis of the brain and the blood transcriptomics. From a study design and methodology perspective, we suggest that the cell-type-specific interactome analysis is an important systems science frontier that might offer new insights on other neurodegenerative and brain disorders as well.
Collapse
Affiliation(s)
- Kübra Yurduseven
- Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkey
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Yigit Koray Babal
- Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkey
| | - Esref Celik
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Bilal Ersen Kerman
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Işıl Aksan Kurnaz
- Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
7
|
D’Anca M, Buccellato FR, Fenoglio C, Galimberti D. Circular RNAs: Emblematic Players of Neurogenesis and Neurodegeneration. Int J Mol Sci 2022; 23:ijms23084134. [PMID: 35456950 PMCID: PMC9032451 DOI: 10.3390/ijms23084134] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/06/2022] [Indexed: 12/13/2022] Open
Abstract
In the fascinating landscape of non-coding RNAs (ncRNAs), circular RNAs (circRNAs) are peeping out as a new promising and appreciated class of molecules with great potential as diagnostic and prognostic biomarkers. They come from circularization of single-stranded RNA molecules covalently closed and generated through alternative mRNA splicing. Dismissed for many years, similar to aberrant splicing by-products, nowadays, their role has been regained. They are able to regulate the expression of linear mRNA transcripts at different levels acting as miRNA sponges, interacting with ribonucleoproteins or exerting a control on gene expression. On the other hand, being extremely conserved across phyla and stable, cell and tissue specific, mostly abundant than the linear RNAs, it is not surprising that they should have critical biological functions. Curiously, circRNAs are particularly expressed in brain and they build up during aging and age-related diseases. These extraordinary peculiarities make circRNAs potentially suitable as promising molecular biomarkers, especially of aging and neurodegenerative diseases. This review aims to explore new evidence on circRNAs, emphasizing their role in aging and pathogenesis of major neurodegenerative disorders, Alzheimer's disease, frontotemporal dementia, and Parkinson's diseases with a look toward their potential usefulness in biomarker searching.
Collapse
Affiliation(s)
- Marianna D’Anca
- Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.B.); or (C.F.); or (D.G.)
- Correspondence:
| | - Francesca R. Buccellato
- Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.B.); or (C.F.); or (D.G.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Chiara Fenoglio
- Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.B.); or (C.F.); or (D.G.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Daniela Galimberti
- Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.B.); or (C.F.); or (D.G.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| |
Collapse
|
8
|
Pastore SF, Ko SY, Frankland PW, Hamel PA, Vincent JB. PTCHD1: Identification and Neurodevelopmental Contributions of an Autism Spectrum Disorder and Intellectual Disability Susceptibility Gene. Genes (Basel) 2022; 13:527. [PMID: 35328080 PMCID: PMC8953913 DOI: 10.3390/genes13030527] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/24/2022] Open
Abstract
Over the last one and a half decades, copy number variation and whole-genome sequencing studies have illuminated the considerable genetic heterogeneity that underlies the etiologies of autism spectrum disorder (ASD) and intellectual disability (ID). These investigations support the idea that ASD may result from complex interactions between susceptibility-related genetic variants (single nucleotide variants or copy number variants) and the environment. This review outlines the identification and neurobiological characterization of two such genes located in Xp22.11, Patched domain-containing 1 (PTCHD1), and its antisense lncRNA PTCHD1-AS. Animal models of Ptchd1 disruption have recapitulated a subset of clinical symptoms related to ASD as well as to ID. Furthermore, these Ptchd1 mouse knockout studies implicate the expression of Ptchd1 in both the thalamic and the hippocampal brain regions as being crucial for proper neurodevelopment and cognitive function. Altered kynurenine metabolic signalling has been postulated as a disease mechanism in one of these animal studies. Additionally, ASD patient-derived induced pluripotent stem cells (iPSCs) carrying a copy number loss impacting the antisense non-coding RNA PTCHD1-AS have been used to generate 2D neuronal cultures. While copy number loss of PTCHD1-AS does not affect the transcription of PTCHD1, the neurons exhibit diminished miniature excitatory postsynaptic current frequency, supporting its role in ASD etiology. A more thorough understanding of risk factor genes, such as PTCHD1 and PTCHD1-AS, will help to clarify the intricate genetic and biological mechanisms that underlie ASD and ID, providing a foundation for meaningful therapeutic interventions to enhance the quality of life of individuals who experience these conditions.
Collapse
Affiliation(s)
- Stephen F. Pastore
- Molecular Neuropsychiatry and Development (MiND) Lab, Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1RS, Canada;
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Sangyoon Y. Ko
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Paul W. Frankland
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Paul A. Hamel
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - John B. Vincent
- Molecular Neuropsychiatry and Development (MiND) Lab, Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1RS, Canada;
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
9
|
Wang C, Liu WR, Tan S, Zhou JK, Xu X, Ming Y, Cheng J, Li J, Zeng Z, Zuo Y, He J, Peng Y, Li W. Characterization of distinct circular RNA signatures in solid tumors. Mol Cancer 2022; 21:63. [PMID: 35236349 PMCID: PMC8889743 DOI: 10.1186/s12943-022-01546-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/21/2022] [Indexed: 02/08/2023] Open
Abstract
Background Circular RNAs (circRNAs) are differentially expressed between normal and cancerous tissues, contributing to tumor initiation and progression. However, comprehensive landscape of dysregulated circRNAs across cancer types remains unclear. Methods In this study, we conducted Ribo-Zero transcriptome sequencing on tumor tissues and their adjacent normal samples including glioblastoma, esophageal squamous cell carcinoma, lung adenocarcinoma, thyroid cancer, colorectal cancer, gastric cancer and hepatocellular carcinoma. CIRCexplorer2 was employed to identify circRNAs and dysregulated circRNAs and genes were determined by DESeq2 package. The expression of hsa_circ_0072309 (circLIFR) was measured by reverse transcription and quantitative real-time PCR, and its effect on cell migration was examined by Transwell and wound healing assays. The role of circLIFR in tumor metastasis was evaluated via mouse models of tail-vein injection and spleen injection for lung and liver metastasis, respectively. Results Distinct circRNA expression signatures were identified among seven types of solid tumors, and the dysregulated circRNAs exhibited cancer-specific expression or shared common expression signatures across cancers. Bioinformatics analyses indicated that aberrant expression of host genes and/or RNA-binding proteins contributed to circRNA dysregulation in cancer. Finally, circLIFR was experimentally validated to be downregulated in six solid tumors and to significantly inhibit cell migration in vitro and tumor metastasis in vivo. Conclusions Our results provide a comprehensive landscape of differentially expressed circRNAs in solid tumors and highlight that circRNAs are extensively involved in cancer pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01546-4.
Collapse
Affiliation(s)
- Chengdi Wang
- Department of Respiratory and Critical Care Medicine, Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Med-X Center for Manufacturing, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wen-Rong Liu
- Department of Respiratory and Critical Care Medicine, Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Med-X Center for Manufacturing, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuangyan Tan
- Department of Respiratory and Critical Care Medicine, Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Med-X Center for Manufacturing, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jian-Kang Zhou
- Department of Respiratory and Critical Care Medicine, Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Med-X Center for Manufacturing, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaomin Xu
- Department of Respiratory and Critical Care Medicine, Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Med-X Center for Manufacturing, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Ming
- Department of Respiratory and Critical Care Medicine, Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Med-X Center for Manufacturing, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jian Cheng
- Department of Respiratory and Critical Care Medicine, Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Med-X Center for Manufacturing, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Li
- Department of Respiratory and Critical Care Medicine, Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Med-X Center for Manufacturing, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhen Zeng
- Department of Respiratory and Critical Care Medicine, Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Med-X Center for Manufacturing, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuanli Zuo
- Department of Respiratory and Critical Care Medicine, Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Med-X Center for Manufacturing, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Juan He
- Department of Respiratory and Critical Care Medicine, Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Med-X Center for Manufacturing, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Peng
- Department of Respiratory and Critical Care Medicine, Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Med-X Center for Manufacturing, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Med-X Center for Manufacturing, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Sánchez-Huertas C, Herrera E. With the Permission of Microtubules: An Updated Overview on Microtubule Function During Axon Pathfinding. Front Mol Neurosci 2021; 14:759404. [PMID: 34924953 PMCID: PMC8675249 DOI: 10.3389/fnmol.2021.759404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/01/2021] [Indexed: 01/27/2023] Open
Abstract
During the establishment of neural circuitry axons often need to cover long distances to reach remote targets. The stereotyped navigation of these axons defines the connectivity between brain regions and cellular subtypes. This chemotrophic guidance process mostly relies on the spatio-temporal expression patterns of extracellular proteins and the selective expression of their receptors in projection neurons. Axon guidance is stimulated by guidance proteins and implemented by neuronal traction forces at the growth cones, which engage local cytoskeleton regulators and cell adhesion proteins. Different layers of guidance signaling regulation, such as the cleavage and processing of receptors, the expression of co-receptors and a wide variety of intracellular cascades downstream of receptors activation, have been progressively unveiled. Also, in the last decades, the regulation of microtubule (MT) assembly, stability and interactions with the submembranous actin network in the growth cone have emerged as crucial effector mechanisms in axon pathfinding. In this review, we will delve into the intracellular signaling cascades downstream of guidance receptors that converge on the MT cytoskeleton of the growing axon. In particular, we will focus on the microtubule-associated proteins (MAPs) network responsible of MT dynamics in the axon and growth cone. Complementarily, we will discuss new evidences that connect defects in MT scaffold proteins, MAPs or MT-based motors and axon misrouting during brain development.
Collapse
Affiliation(s)
- Carlos Sánchez-Huertas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | | |
Collapse
|
11
|
Hahn I, Voelzmann A, Parkin J, Fülle JB, Slater PG, Lowery LA, Sanchez-Soriano N, Prokop A. Tau, XMAP215/Msps and Eb1 co-operate interdependently to regulate microtubule polymerisation and bundle formation in axons. PLoS Genet 2021; 17:e1009647. [PMID: 34228717 PMCID: PMC8284659 DOI: 10.1371/journal.pgen.1009647] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/16/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
The formation and maintenance of microtubules requires their polymerisation, but little is known about how this polymerisation is regulated in cells. Focussing on the essential microtubule bundles in axons of Drosophila and Xenopus neurons, we show that the plus-end scaffold Eb1, the polymerase XMAP215/Msps and the lattice-binder Tau co-operate interdependently to promote microtubule polymerisation and bundle organisation during axon development and maintenance. Eb1 and XMAP215/Msps promote each other's localisation at polymerising microtubule plus-ends. Tau outcompetes Eb1-binding along microtubule lattices, thus preventing depletion of Eb1 tip pools. The three factors genetically interact and show shared mutant phenotypes: reductions in axon growth, comet sizes, comet numbers and comet velocities, as well as prominent deterioration of parallel microtubule bundles into disorganised curled conformations. This microtubule curling is caused by Eb1 plus-end depletion which impairs spectraplakin-mediated guidance of extending microtubules into parallel bundles. Our demonstration that Eb1, XMAP215/Msps and Tau co-operate during the regulation of microtubule polymerisation and bundle organisation, offers new conceptual explanations for developmental and degenerative axon pathologies.
Collapse
Affiliation(s)
- Ines Hahn
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
| | - Andre Voelzmann
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
| | - Jill Parkin
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
| | - Judith B. Fülle
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
| | - Paula G. Slater
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Laura Anne Lowery
- Department of Medicine, Boston University Medical Center, Boston, Massachusetts, United States of America
| | - Natalia Sanchez-Soriano
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Andreas Prokop
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
| |
Collapse
|
12
|
Structure and regulation of the microtubule plus-end tracking protein Kar9. Structure 2021; 29:1266-1278.e4. [PMID: 34237274 DOI: 10.1016/j.str.2021.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/26/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022]
Abstract
In many eukaryotes, coordination of chromosome segregation with cell cleavage relies on the patterned interaction of specific microtubules with actin filaments through dedicated microtubule plus-end tracking proteins (+TIPs). However, how these +TIPs are spatially controlled is unclear. The yeast +TIP Kar9 drives one of the spindle aster microtubules along actin cables to align the mitotic spindle with the axis of cell division. Here, we report the crystal structure of Kar9's folded domain, revealing spectrin repeats reminiscent of the +TIPs MACF/ACF7/Shot and PRC1/Ase1. Point mutations abrogating spectrin-repeat-mediated dimerization of Kar9 reduced and randomized Kar9 distribution to microtubule tips, and impaired spindle positioning. Six Cdk1 sites surround the Kar9 dimerization interface. Their phosphomimetic substitution inhibited Kar9 dimerization, displaced Kar9 from microtubules, and affected its interaction with the myosin motor Myo2. Our results provide molecular-level understanding on how diverse cell types may regulate and pattern microtubule-actin interactions to orchestrate their divisions.
Collapse
|
13
|
Ravanidis S, Bougea A, Karampatsi D, Papagiannakis N, Maniati M, Stefanis L, Doxakis E. Differentially Expressed Circular RNAs in Peripheral Blood Mononuclear Cells of Patients with Parkinson's Disease. Mov Disord 2021; 36:1170-1179. [PMID: 33433033 PMCID: PMC8248110 DOI: 10.1002/mds.28467] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background New noninvasive and affordable molecular approaches that will complement current practices and increase the accuracy of Parkinson's disease (PD) diagnosis are urgently needed. Circular RNAs (circRNAs) are stable noncoding RNAs that accumulate with aging in neurons and are increasingly shown to regulate all aspects of neuronal development and function. Objectives Τhe aims of this study were to identify differentially expressed circRNAs in blood mononuclear cells of patients with idiopathic PD and explore the competing endogenous RNA networks affected. Methods Eighty‐seven circRNAs were initially selected based on relatively high gene expression in the human brain. More than half of these were readily detectable in blood mononuclear cells using real‐time reverse transcription‐polymerase chain reaction. Comparative expression analysis was then performed in blood mononuclear cells from 60 control subjects and 60 idiopathic subjects with PD. Results Six circRNAs were significantly down‐regulated in patients with PD. The classifier that best distinguished PD consisted of four circRNAs with an area under the curve of 0.84. Cross‐linking immunoprecipitation‐sequencing data revealed that the RNA‐binding proteins bound by most of the deregulated circRNAs include the neurodegeneration‐associated FUS, TDP43, FMR1, and ATXN2. MicroRNAs predicted to be sequestered by most deregulated circRNAs have the Gene Ontology categories “protein modification” and “transcription factor activity” mostly enriched. Conclusions This is the first study that identifies specific circRNAs that may serve as diagnostic biomarkers for PD. Because they are highly expressed in the brain and are derived from genes with essential brain functions, they may also hint on the PD pathways affected. © 2021 Biomedical Research Foundation, Academy of Athens. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Stylianos Ravanidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Anastasia Bougea
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece.,Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece.,First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Dimitra Karampatsi
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Nikolaos Papagiannakis
- Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece.,First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Matina Maniati
- Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Leonidas Stefanis
- Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece.,First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Epaminondas Doxakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
14
|
Mahmood T, El-Asrag ME, Poulter JA, Cardno AG, Tomlinson A, Ahmed S, Al-Amri A, Nazari J, Neill J, Chamali RS, Kiwan N, Ghuloum S, Alhaj HA, Randerson Moor J, Khan S, Al-Amin H, Johnson CA, Woodruff P, Wilkinson ID, Ali M, Clapcote SJ, Inglehearn CF. A Recessively Inherited Risk Locus on Chromosome 13q22-31 Conferring Susceptibility to Schizophrenia. Schizophr Bull 2020; 47:796-802. [PMID: 33159203 PMCID: PMC8084434 DOI: 10.1093/schbul/sbaa161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report a consanguineous family in which schizophrenia segregates in a manner consistent with recessive inheritance of a rare, partial-penetrance susceptibility allele. From 4 marriages between 2 sets of siblings who are half first cousins, 6 offspring have diagnoses of psychotic disorder. Homozygosity mapping revealed a 6.1-Mb homozygous region on chromosome 13q22.2-31.1 shared by all affected individuals, containing 13 protein-coding genes. Microsatellite analysis confirmed homozygosity for the affected haplotype in 12 further apparently unaffected members of the family. Psychiatric reports suggested an endophenotype of milder psychiatric illness in 4 of these individuals. Exome and genome sequencing revealed no potentially pathogenic coding or structural variants within the risk haplotype. Filtering for noncoding variants with a minor allele frequency of <0.05 identified 17 variants predicted to have significant effects, the 2 most significant being within or adjacent to the SCEL gene. RNA sequencing of blood from an affected homozygote showed the upregulation of transcription from NDFIP2 and SCEL. NDFIP2 is highly expressed in brain, unlike SCEL, and is involved in determining T helper (Th) cell type 1 and Th2 phenotypes, which have previously been implicated with schizophrenia.
Collapse
Affiliation(s)
- Tariq Mahmood
- Becklin Centre, Leeds and York Partnership NHS Foundation Trust, Leeds, UK
| | - Mohammed E El-Asrag
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Department of Zoology, Faculty of Science, Benha University, Benha, Egypt
- Division of Cardiovascular Sciences, School of Medicine, University of Manchester, Manchester, UK
| | - James A Poulter
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | | | - Anneka Tomlinson
- Becklin Centre, Leeds and York Partnership NHS Foundation Trust, Leeds, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Sophia Ahmed
- NIHR-Sheffield Biomedical Research Centre, University of Sheffield, Sheffield, UK
| | - Ahmed Al-Amri
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- National Genetic Centre, Royal Hospital, Muscat, Oman
| | - Jamshid Nazari
- Becklin Centre, Leeds and York Partnership NHS Foundation Trust, Leeds, UK
| | - Joanna Neill
- Division of Pharmacy and Optometry, University of Manchester, Manchester, UK
| | - Rifka S Chamali
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Nancy Kiwan
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Suhaila Ghuloum
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
- Psychiatry Department, Hamad Medical Corporation, Doha, Qatar
| | - Hamid A Alhaj
- Sheffield Health and Social Care NHS Foundation Trust, Sheffield, UK
| | | | - Shabana Khan
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Hassen Al-Amin
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Colin A Johnson
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Peter Woodruff
- NIHR-Sheffield Biomedical Research Centre, University of Sheffield, Sheffield, UK
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
- Psychiatry Department, Hamad Medical Corporation, Doha, Qatar
- Sheffield Health and Social Care NHS Foundation Trust, Sheffield, UK
| | - Iain D Wilkinson
- NIHR-Sheffield Biomedical Research Centre, University of Sheffield, Sheffield, UK
| | - Manir Ali
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | | | - Chris F Inglehearn
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- To whom correspondence should be addressed; Beckett Street, Leeds, LS9 7TF, UK; tel: 44-(0)113-343-8646, e-mail:
| |
Collapse
|
15
|
Shi Y, Cai EL, Yang C, Ye CY, Zeng P, Wang XM, Fang YY, Cheng ZK, Wang Q, Cao FY, Zhou XW, Tian Q. Protection of melatonin against acidosis-induced neuronal injuries. J Cell Mol Med 2020; 24:6928-6942. [PMID: 32364678 PMCID: PMC7299701 DOI: 10.1111/jcmm.15351] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 01/13/2020] [Accepted: 04/12/2020] [Indexed: 12/23/2022] Open
Abstract
Acidosis, a common feature of cerebral ischaemia and hypoxia, plays a key role in these pathological processes by aggravating the ischaemic and hypoxic injuries. To explore the mechanisms, in this research, we cultured primary neurons in an acidic environment (potential of hydrogen [pH]6.2, 24 hours) to mimic the acidosis. By proteomic analysis, 69 differentially expressed proteins in the acidic neurons were found, mainly related to stress and cell death, synaptic plasticity and gene transcription. And, the acidotic neurons developed obvious alterations including increased neuronal death, reduced dendritic length and complexity, reduced synaptic proteins, tau hyperphosphorylation, endoplasmic reticulum (ER) stress activation, abnormal lysosome‐related signals, imbalanced oxidative stress/anti‐oxidative stress and decreased Golgi matrix proteins. Then, melatonin (1 × 10−4 mol/L) was used to pre‐treat the cultured primary neurons before acidic treatment (pH6.2). The results showed that melatonin partially reversed the acidosis‐induced neuronal death, abnormal dendritic complexity, reductions of synaptic proteins, tau hyperphosphorylation and imbalance of kinase/phosphatase. In addition, acidosis related the activations of glycogen synthase kinase‐3β and nuclear factor‐κB signals, ER stress and Golgi stress, and the abnormal autophagy‐lysosome signals were completely reversed by melatonin. These data indicate that melatonin is beneficial for neurons against acidosis‐induced injuries.
Collapse
Affiliation(s)
- Yan Shi
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China.,School of Medicine, Hunan Normal University, Changsha, China
| | - Er-Li Cai
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Can Yang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China.,Department of Emergency Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chao-Yuan Ye
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zeng
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Ming Wang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Ying-Yan Fang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Kang Cheng
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Wang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Fu-Yuan Cao
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-Wen Zhou
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Tang Q, Rui M, Bu S, Wang Y, Chew LY, Yu F. A microtubule polymerase is required for microtubule orientation and dendrite pruning in Drosophila. EMBO J 2020; 39:e103549. [PMID: 32267553 DOI: 10.15252/embj.2019103549] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 01/12/2023] Open
Abstract
Drosophila class IV ddaC neurons selectively prune all larval dendrites to refine the nervous system during metamorphosis. During dendrite pruning, severing of proximal dendrites is preceded by local microtubule (MT) disassembly. Here, we identify an unexpected role of Mini spindles (Msps), a conserved MT polymerase, in governing dendrite pruning. Msps associates with another MT-associated protein TACC, and both stabilize each other in ddaC neurons. Moreover, Msps and TACC are required to orient minus-end-out MTs in dendrites. We further show that the functions of msps in dendritic MT orientation and dendrite pruning are antagonized by the kinesin-13 MT depolymerase Klp10A. Excessive MT depolymerization, which is induced by pharmacological treatment and katanin overexpression, also perturbs dendritic MT orientation and dendrite pruning, phenocopying msps mutants. Thus, we demonstrate that the MT polymerase Msps is required to form dendritic minus-end-out MTs and thereby promotes dendrite pruning in Drosophila sensory neurons.
Collapse
Affiliation(s)
- Quan Tang
- Temasek Life Sciences Laboratory, Singapore City, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore City, Singapore
| | - Menglong Rui
- Temasek Life Sciences Laboratory, Singapore City, Singapore
| | - Shufeng Bu
- Temasek Life Sciences Laboratory, Singapore City, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore City, Singapore
| | - Yan Wang
- Temasek Life Sciences Laboratory, Singapore City, Singapore
| | - Liang Yuh Chew
- Temasek Life Sciences Laboratory, Singapore City, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore City, Singapore
| | - Fengwei Yu
- Temasek Life Sciences Laboratory, Singapore City, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore City, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore City, Singapore.,Neuroscience and Behavioral Disorder Program, Duke-NUS Graduate Medical School Singapore, Singapore City, Singapore
| |
Collapse
|
17
|
Firat-Karalar EN. Proximity mapping of the microtubule plus-end tracking protein SLAIN2 using the BioID approach. ACTA ACUST UNITED AC 2020; 44:61-72. [PMID: 32256142 PMCID: PMC7129064 DOI: 10.3906/biy-2002-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The centrosome is the main microtubule-organizing center of animal cells, which plays key roles in critical cellular processes ranging from cell division to cellular signaling. Accordingly, defects in the structure and function of centrosomes cause various human diseases such as cancer and primary microcephaly. To elucidate the molecular defects underlying these diseases, the biogenesis and functions of the centrosomes have to be fully understood. An essential step towards addressing these questions is the identification and functional dissection of the full repertoire of centrosome proteins. Here, we used high-resolution imaging and showed that the microtubule plus-end tracking protein SLAIN2 localizes to the pericentriolar material at the proximal end of centrioles. To gain insight into its cellular functions and mechanisms, we applied in vivo proximity-dependent biotin identification to SLAIN2 and generated its proximity interaction map. Gene ontology analysis of the SLAIN2 interactome revealed extensive interactions with centriole duplication, ciliogenesis, and microtubule-associated proteins, including previously characterized and uncharacterized interactions. Collectively, our results define SLAIN2 as a component of pericentriolar material and provide an important resource for future studies aimed at elucidating SLAIN2 functions at the centrosome.
Collapse
Affiliation(s)
- Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, İstanbul Turkey
| |
Collapse
|
18
|
Mir YR, Kuchay RAH. Advances in identification of genes involved in autosomal recessive intellectual disability: a brief review. J Med Genet 2019; 56:567-573. [PMID: 30842223 DOI: 10.1136/jmedgenet-2018-105821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/01/2019] [Accepted: 02/11/2019] [Indexed: 12/28/2022]
Abstract
Intellectual disability (ID) is a clinically and genetically heterogeneous disorder, affecting 1%-3% of the general population. The number of ID-causing genes is high. Many X-linked genes have been implicated in ID. Autosomal dominant genes have recently been the focus of several large-scale studies. The total number of autosomal recessive ID (ARID) genes is estimated to be very high, and most are still unknown. Although research into the genetic causes of ID has recently gained momentum, identification of pathogenic mutations that cause ARID has lagged behind, predominantly due to non-availability of sizeable families. A commonly used approach to identify genetic loci for recessive disorders in consanguineous families is autozygosity mapping and whole-exome sequencing. Combination of these two approaches has recently led to identification of many genes involved in ID. These genes have diverse function and control various biological processes. In this review, we will present an update regarding genes that have been recently implicated in ID with focus on ARID.
Collapse
Affiliation(s)
- Yaser Rafiq Mir
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India
| | - Raja Amir Hassan Kuchay
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India
| |
Collapse
|
19
|
Tvorogova A, Saidova A, Smirnova T, Vorobjev I. Dynamic microtubules drive fibroblast spreading. Biol Open 2018; 7:7/12/bio038968. [PMID: 30545950 PMCID: PMC6310885 DOI: 10.1242/bio.038968] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When cells with a mesenchymal type of motility come into contact with an adhesive substrate they adhere and start spreading by the formation of lamellipodia. Using a label-free approach and virtual synchronization approach we analyzed spreading in fibroblasts and cancer cells. In all cell lines spreading is a non-linear process undergoing isotropic or anisotropic modes with first fast (5–20 min) and then slow (30–120 min) phases. In the first 10 min cell area increases 2–4 times, while the absolute rate of initial spreading decreases 2–8 times. Fast spreading depends on actin polymerization and dynamic microtubules. Inhibition of microtubule growth was sufficient for a slowdown of initial spreading. Inhibition of myosin II in the presence of stable microtubules restored fast spreading. Inhibition of actin polymerization or complete depolymerization of microtubules slowed down fast spreading. However, in these cases inhibition of myosin II only partially restored spreading kinetics. We conclude that rapid growth of microtubules towards cell margins at the first stage of cell spreading temporarily inhibits phosphorylation of myosin II and is essential for the fast isotropic spreading. Comparison of the fibroblasts with cancer cells shows that fast spreading in different cell types shares similar kinetics and mechanisms, and strongly depends on dynamic microtubules. Summary: Cell spreading is a non-linear process. The fast spreading phase depends on dynamic microtubules (MTs). Rapid growth of MTs towards the cell membrane promotes the temporal relaxation of acto-myosin contractility.
Collapse
Affiliation(s)
- Anna Tvorogova
- Department of Electron Microscopy, A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov State University, 1-40 Leninskie Gory, Moscow 119991, Russia
| | - Aleena Saidova
- Biological Faculty, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow 119991, Russia
| | - Tatiana Smirnova
- Biological Faculty, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow 119991, Russia
| | - Ivan Vorobjev
- Department of Electron Microscopy, A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov State University, 1-40 Leninskie Gory, Moscow 119991, Russia .,Biological Faculty, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow 119991, Russia.,Department of Biology, School of Science and Technology, Nazarbayev University, Kabanbay Batyr ave. 53, Astana 010000, Kazakhstan
| |
Collapse
|
20
|
A Computational Method for Classifying Different Human Tissues with Quantitatively Tissue-Specific Expressed Genes. Genes (Basel) 2018; 9:genes9090449. [PMID: 30205473 PMCID: PMC6162521 DOI: 10.3390/genes9090449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 02/06/2023] Open
Abstract
Tissue-specific gene expression has long been recognized as a crucial key for understanding tissue development and function. Efforts have been made in the past decade to identify tissue-specific expression profiles, such as the Human Proteome Atlas and FANTOM5. However, these studies mainly focused on "qualitatively tissue-specific expressed genes" which are highly enriched in one or a group of tissues but paid less attention to "quantitatively tissue-specific expressed genes", which are expressed in all or most tissues but with differential expression levels. In this study, we applied machine learning algorithms to build a computational method for identifying "quantitatively tissue-specific expressed genes" capable of distinguishing 25 human tissues from their expression patterns. Our results uncovered the expression of 432 genes as optimal features for tissue classification, which were obtained with a Matthews Correlation Coefficient (MCC) of more than 0.99 yielded by a support vector machine (SVM). This constructed model was superior to the SVM model using tissue enriched genes and yielded MCC of 0.985 on an independent test dataset, indicating its good generalization ability. These 432 genes were proven to be widely expressed in multiple tissues and a literature review of the top 23 genes found that most of them support their discriminating powers. As a complement to previous studies, our discovery of these quantitatively tissue-specific genes provides insights into the detailed understanding of tissue development and function.
Collapse
|
21
|
NEK7 regulates dendrite morphogenesis in neurons via Eg5-dependent microtubule stabilization. Nat Commun 2018; 9:2330. [PMID: 29899413 PMCID: PMC5997995 DOI: 10.1038/s41467-018-04706-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/15/2018] [Indexed: 01/22/2023] Open
Abstract
Organization of microtubules into ordered arrays is best understood in mitotic systems, but remains poorly characterized in postmitotic cells such as neurons. By analyzing the cycling cell microtubule cytoskeleton proteome through expression profiling and targeted RNAi screening for candidates with roles in neurons, we have identified the mitotic kinase NEK7. We show that NEK7 regulates dendrite morphogenesis in vitro and in vivo. NEK7 kinase activity is required for dendrite growth and branching, as well as spine formation and morphology. NEK7 regulates these processes in part through phosphorylation of the kinesin Eg5/KIF11, promoting its accumulation on microtubules in distal dendrites. Here, Eg5 limits retrograde microtubule polymerization, which is inhibitory to dendrite growth and branching. Eg5 exerts this effect through microtubule stabilization, independent of its motor activity. This work establishes NEK7 as a general regulator of the microtubule cytoskeleton, controlling essential processes in both mitotic cells and postmitotic neurons. NEK7 is a kinase known for its role in mitotic spindle assembly, driving centrosome separation in prophase through regulation of the kinesin Eg5. Here, the authors show that NEK7 and Eg5 also control dendrite morphogenesis in postmitotic neurons.
Collapse
|
22
|
Mapping autosomal recessive intellectual disability: combined microarray and exome sequencing identifies 26 novel candidate genes in 192 consanguineous families. Mol Psychiatry 2018; 23:973-984. [PMID: 28397838 DOI: 10.1038/mp.2017.60] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/06/2017] [Accepted: 02/10/2017] [Indexed: 12/14/2022]
Abstract
Approximately 1% of the global population is affected by intellectual disability (ID), and the majority receive no molecular diagnosis. Previous studies have indicated high levels of genetic heterogeneity, with estimates of more than 2500 autosomal ID genes, the majority of which are autosomal recessive (AR). Here, we combined microarray genotyping, homozygosity-by-descent (HBD) mapping, copy number variation (CNV) analysis, and whole exome sequencing (WES) to identify disease genes/mutations in 192 multiplex Pakistani and Iranian consanguineous families with non-syndromic ID. We identified definite or candidate mutations (or CNVs) in 51% of families in 72 different genes, including 26 not previously reported for ARID. The new ARID genes include nine with loss-of-function mutations (ABI2, MAPK8, MPDZ, PIDD1, SLAIN1, TBC1D23, TRAPPC6B, UBA7 and USP44), and missense mutations include the first reports of variants in BDNF or TET1 associated with ID. The genes identified also showed overlap with de novo gene sets for other neuropsychiatric disorders. Transcriptional studies showed prominent expression in the prenatal brain. The high yield of AR mutations for ID indicated that this approach has excellent clinical potential and should inform clinical diagnostics, including clinical whole exome and genome sequencing, for populations in which consanguinity is common. As with other AR disorders, the relevance will also apply to outbred populations.
Collapse
|
23
|
Lu A, Zhou CJ, Wang DH, Han Z, Kong XW, Ma YZ, Yun ZZ, Liang CG. Cytoskeleton-associated protein 5 and clathrin heavy chain binding regulates spindle assembly in mouse oocytes. Oncotarget 2017; 8:17491-17503. [PMID: 28177917 PMCID: PMC5392264 DOI: 10.18632/oncotarget.15097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/24/2017] [Indexed: 11/25/2022] Open
Abstract
Mammalian oocyte meiotic maturation is the precondition of early embryo development. Lots of microtubules (MT)-associated proteins participate in oocyte maturation process. Cytoskeleton-associated protein 5 (CKAP5) is a member of the XMAP215 family that regulates microtubule dynamics during mitosis. However, its role in meiosis has not been fully studied. Here, we investigated the function of CKAP5 in mouse oocyte meiotic maturation and early embryo development. Western blot showed that CKAP5 expression increased from GVBD, maintaining at high level at metaphase, and decreased after late 1-cell stage. Confocal microscopy showed there is no specific accumulation of CKAP5 at interphase (GV, PN or 2-cell stage). However, once cells enter into meiotic or mitotic division, CKAP5 was localized at the whole spindle apparatus. Treatment of oocytes with the tubulin-disturbing reagents nocodazole (induces MTs depolymerization) or taxol (prevents MTs depolymerization) did not affect CKAP5 expression but led to a rearrangement of CKAP5. Further, knock-down of CKAP5 resulted in a failure of first polar body extrusion, serious defects in spindle assembly, and failure of chromosome alignment. Loss of CKAP5 also decreased early embryo development potential. Furthermore, co-immunoprecipitation showed that CKAP5 bound to clathrin heavy chain 1 (CLTC). Taken together, our results demonstrate that CKAP5 is important in oocyte maturation and early embryo development, and CKAP5 might work together with CLTC in mouse oocyte maturation.
Collapse
Affiliation(s)
- Angeleem Lu
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Cheng-Jie Zhou
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Dong-Hui Wang
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Zhe Han
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Xiang-Wei Kong
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| | - Yu-Zhen Ma
- Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, People's Republic of China
| | - Zhi-Zhong Yun
- Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, People's Republic of China
| | - Cheng-Guang Liang
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Inner Mongolia, People's Republic of China
| |
Collapse
|
24
|
Lemonidis K, MacLeod R, Baillie GS, Chamberlain LH. Peptide array-based screening reveals a large number of proteins interacting with the ankyrin-repeat domain of the zDHHC17 S-acyltransferase. J Biol Chem 2017; 292:17190-17202. [PMID: 28882895 PMCID: PMC5655499 DOI: 10.1074/jbc.m117.799650] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/29/2017] [Indexed: 01/08/2023] Open
Abstract
zDHHC S-acyltransferases are enzymes catalyzing protein S-acylation, a common post-translational modification on proteins frequently affecting their membrane targeting and trafficking. The ankyrin repeat (AR) domain of zDHHC17 (HIP14) and zDHHC13 (HIP14L) S-acyltransferases, which is involved in both substrate recruitment and S-acylation-independent functions, was recently shown to bind at least six proteins, by specific recognition of a consensus sequence in them. To further refine the rules governing binding to the AR of zDHHC17, we employed peptide arrays based on zDHHC AR-binding motif (zDABM) sequences of synaptosomal-associated protein 25 (SNAP25) and cysteine string protein α (CSPα). Quantitative comparisons of the binding preferences of 400 peptides allowed us to construct a position-specific scoring matrix (PSSM) for zDHHC17 AR binding, with which we predicted and subsequently validated many putative zDHHC17 interactors. We identified 95 human zDABM sequences with unexpected versatility in amino acid usage; these sequences were distributed among 90 proteins, of which 62 have not been previously implicated in zDHHC17/13 binding. These zDABM-containing proteins included all family members of the SNAP25, sprouty, cornifelin, ankyrin, and SLAIN-motif containing families; seven endogenous Gag polyproteins sharing the same binding sequence; and several proteins involved in cytoskeletal organization, cell communication, and regulation of signaling. A dozen of the zDABM-containing proteins had more than one zDABM sequence, whereas isoform-specific binding to the AR of zDHHC17 was identified for the Ena/VASP-like protein. The large number of zDABM sequences within the human proteome suggests that zDHHC17 may be an interaction hub regulating many cellular processes.
Collapse
Affiliation(s)
- Kimon Lemonidis
- From The Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, University of Strathclyde, Glasgow G4 0RE and
| | - Ruth MacLeod
- the Institute of Cardiovascular and Medical Sciences, University of Glasgow, Wolfson Link Building, Glasgow G12 8QQ, Scotland, United Kingdom
| | - George S Baillie
- the Institute of Cardiovascular and Medical Sciences, University of Glasgow, Wolfson Link Building, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Luke H Chamberlain
- From The Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, University of Strathclyde, Glasgow G4 0RE and
| |
Collapse
|
25
|
Chanez B, Gonçalves A, Badache A, Verdier-Pinard P. Eribulin targets a ch-TOG-dependent directed migration of cancer cells. Oncotarget 2016; 6:41667-78. [PMID: 26497677 PMCID: PMC4747180 DOI: 10.18632/oncotarget.6147] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/30/2015] [Indexed: 11/25/2022] Open
Abstract
Non-cytotoxic concentrations of microtubule targeting agents (MTAs) interfere with the dynamics of interphase microtubules and affect cell migration, which could impair tumor angiogenesis and metastasis. The underlying mechanisms however are still ill-defined. We previously established that directed cell migration is dependent on stabilization of microtubules at the cell leading edge, which is controlled by microtubule +end interacting proteins (+TIPs). In the present study, we found that eribulin, a recently approved MTA interacting with a new class of binding site on β-tubulin, decreased microtubule growth speed, impaired their cortical stabilization and prevented directed migration of cancer cells. These effects were reminiscent of those observed when +TIP expression or cortical localization was altered. Actually, eribulin induced a dose-dependent depletion of EB1, CLIP-170 and the tubulin polymerase ch-TOG from microtubule +ends. Interestingly, eribulin doses that disturbed ch-TOG localization without significant effect on EB1 and CLIP-170 comets, had an impact on microtubule dynamics and directed migration. Moreover, knockdown of ch-TOG led to a similar inhibition of microtubule growth speed, microtubule capture and chemotaxis. Our data suggest that eribulin binding to the tip of microtubules and subsequent loss of ch-TOG is a priming event leading to alterations in microtubule dynamics and cancer cell migration.
Collapse
Affiliation(s)
- Brice Chanez
- Centre de Recherche en Cancérologie de Marseille, Inserm, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Aix-Marseille Université, Marseille, France.,CNRS, UMR7258, F-13009, Marseille, France
| | - Anthony Gonçalves
- Centre de Recherche en Cancérologie de Marseille, Inserm, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Aix-Marseille Université, Marseille, France.,CNRS, UMR7258, F-13009, Marseille, France
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille, Inserm, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Aix-Marseille Université, Marseille, France.,CNRS, UMR7258, F-13009, Marseille, France
| | - Pascal Verdier-Pinard
- Centre de Recherche en Cancérologie de Marseille, Inserm, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Aix-Marseille Université, Marseille, France.,CNRS, UMR7258, F-13009, Marseille, France
| |
Collapse
|
26
|
Voelzmann A, Hahn I, Pearce SP, Sánchez-Soriano N, Prokop A. A conceptual view at microtubule plus end dynamics in neuronal axons. Brain Res Bull 2016; 126:226-237. [PMID: 27530065 PMCID: PMC5090033 DOI: 10.1016/j.brainresbull.2016.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 12/02/2022]
Abstract
Axons are the cable-like protrusions of neurons which wire up the nervous system. Polar bundles of microtubules (MTs) constitute their structural backbones and are highways for life-sustaining transport between proximal cell bodies and distal synapses. Any morphogenetic changes of axons during development, plastic rearrangement, regeneration or degeneration depend on dynamic changes of these MT bundles. A key mechanism for implementing such changes is the coordinated polymerisation and depolymerisation at the plus ends of MTs within these bundles. To gain an understanding of how such regulation can be achieved at the cellular level, we provide here an integrated overview of the extensive knowledge we have about the molecular mechanisms regulating MT de/polymerisation. We first summarise insights gained from work in vitro, then describe the machinery which supplies the essential tubulin building blocks, the protein complexes associating with MT plus ends, and MT shaft-based mechanisms that influence plus end dynamics. We briefly summarise the contribution of MT plus end dynamics to important cellular functions in axons, and conclude by discussing the challenges and potential strategies of integrating the existing molecular knowledge into conceptual understanding at the level of axons.
Collapse
Affiliation(s)
- André Voelzmann
- The University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Ines Hahn
- The University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Simon P Pearce
- The University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK; The University of Manchester, School of Mathematics, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
| | - Natalia Sánchez-Soriano
- University of Liverpool, Institute of Translational Medicine, Department of Cellular and Molecular Physiology, Crown Street, Liverpool, L69 3BX, UK
| | - Andreas Prokop
- The University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
27
|
van de Willige D, Hoogenraad CC, Akhmanova A. Microtubule plus-end tracking proteins in neuronal development. Cell Mol Life Sci 2016; 73:2053-77. [PMID: 26969328 PMCID: PMC4834103 DOI: 10.1007/s00018-016-2168-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/04/2016] [Accepted: 02/22/2016] [Indexed: 11/28/2022]
Abstract
Regulation of the microtubule cytoskeleton is of pivotal importance for neuronal development and function. One such regulatory mechanism centers on microtubule plus-end tracking proteins (+TIPs): structurally and functionally diverse regulatory factors, which can form complex macromolecular assemblies at the growing microtubule plus-ends. +TIPs modulate important properties of microtubules including their dynamics and their ability to control cell polarity, membrane transport and signaling. Several neurodevelopmental and neurodegenerative diseases are associated with mutations in +TIPs or with misregulation of these proteins. In this review, we focus on the role and regulation of +TIPs in neuronal development and associated disorders.
Collapse
Affiliation(s)
- Dieudonnée van de Willige
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Anna Akhmanova
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
28
|
Cammarata GM, Bearce EA, Lowery LA. Cytoskeletal social networking in the growth cone: How +TIPs mediate microtubule-actin cross-linking to drive axon outgrowth and guidance. Cytoskeleton (Hoboken) 2016; 73:461-76. [PMID: 26783725 DOI: 10.1002/cm.21272] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 11/08/2022]
Abstract
The growth cone is a unique structure capable of guiding axons to their proper destinations. Within the growth cone, extracellular guidance cues are interpreted and then transduced into physical changes in the actin filament (F-actin) and microtubule cytoskeletons, providing direction and movement. While both cytoskeletal networks individually possess important growth cone-specific functions, recent data over the past several years point towards a more cooperative role between the two systems. Facilitating this interaction between F-actin and microtubules, microtubule plus-end tracking proteins (+TIPs) have been shown to link the two cytoskeletons together. Evidence suggests that many +TIPs can couple microtubules to F-actin dynamics, supporting both microtubule advance and retraction in the growth cone periphery. In addition, growing in vitro and in vivo data support a secondary role for +TIPs in which they may participate as F-actin nucleators, thus directly influencing F-actin dynamics and organization. This review focuses on how +TIPs may link F-actin and microtubules together in the growth cone, and how these interactions may influence axon guidance. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | - Laura Anne Lowery
- Department of Biology, Boston College, Chestnut Hill, Massachusetts.
| |
Collapse
|
29
|
Fujita Y, Kojima T, Kawakami K, Mizutani K, Kato T, Deguchi T, Ito M. miR-130a activates apoptotic signaling through activation of caspase-8 in taxane-resistant prostate cancer cells. Prostate 2015; 75:1568-78. [PMID: 26074357 DOI: 10.1002/pros.23031] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/12/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND The acquisition of drug resistance is one of the most malignant phenotypes of cancer and identification of its therapeutic target is a prerequisite for the development of novel therapy. MicroRNAs (miRNAs) have been implicated in various types of cancer and proposed as potential therapeutic targets for patients. In the present study, we aimed to identify miRNA that could serve as a therapeutic target for taxane-resistant prostate cancer. METHODS In order to identify miRNAs related to taxane-resistance, miRNA profiling was performed using prostate cancer PC-3 cells and paclitaxel-resistant PC-3 cell lines established from PC-3 cells. Microarray analysis of mRNA expression was also conducted to search for potential target genes of miRNA. Luciferase reporter assay was performed to examine miRNA binding to the 3'-UTR of target genes. The effects of ectopic expression of miRNA on cell growth, tubulin polymerization, drug sensitivity, and apoptotic signaling pathway were investigated in a paclitaxel-resistant PC-3 cell line. RESULTS The expression of miR-130a was down-regulated in all paclitaxel-resistant cell lines compared with parental PC-3 cells. Based on mRNA microarray analysis and luciferase reporter assay, we identified SLAIN1 as a direct target gene for miR-130a. Transfection of a miR-130a precursor into a paclitaxel-resistant cell line suppressed cell growth and increased the sensitivity to paclitaxel. Lastly, ectopic expression of miR-130a did not affect the polymerized tubulin level, but activated apoptotic signaling through activation of caspase-8. CONCLUSIONS Our results suggested that reduced expression of miR-130a may be involved in the paclitaxel-resistance and that miR-130a could be a therapeutic target for taxane-resistant prostate cancer patients.
Collapse
Affiliation(s)
- Yasunori Fujita
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Japan
| | - Toshio Kojima
- Health Care Center, Toyohashi University of Technology, Toyohashi, Japan
| | - Kyojiro Kawakami
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Japan
| | - Kosuke Mizutani
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Taku Kato
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takashi Deguchi
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masafumi Ito
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Japan
| |
Collapse
|
30
|
Bearce EA, Erdogan B, Lowery LA. TIPsy tour guides: how microtubule plus-end tracking proteins (+TIPs) facilitate axon guidance. Front Cell Neurosci 2015; 9:241. [PMID: 26175669 PMCID: PMC4485311 DOI: 10.3389/fncel.2015.00241] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/15/2015] [Indexed: 01/01/2023] Open
Abstract
The growth cone is a dynamic cytoskeletal vehicle, which drives the end of a developing axon. It serves to interpret and navigate through the complex landscape and guidance cues of the early nervous system. The growth cone’s distinctive cytoskeletal organization offers a fascinating platform to study how extracellular cues can be translated into mechanical outgrowth and turning behaviors. While many studies of cell motility highlight the importance of actin networks in signaling, adhesion, and propulsion, both seminal and emerging works in the field have highlighted a unique and necessary role for microtubules (MTs) in growth cone navigation. Here, we focus on the role of singular pioneer MTs, which extend into the growth cone periphery and are regulated by a diverse family of microtubule plus-end tracking proteins (+TIPs). These +TIPs accumulate at the dynamic ends of MTs, where they are well-positioned to encounter and respond to key signaling events downstream of guidance receptors, catalyzing immediate changes in microtubule stability and actin cross-talk, that facilitate both axonal outgrowth and turning events.
Collapse
Affiliation(s)
| | - Burcu Erdogan
- Department of Biology, Boston College Chestnut Hill, MA, USA
| | | |
Collapse
|
31
|
Abstract
The microtubule (MT) cytoskeleton gives cells their shape, organizes the cellular interior, and segregates chromosomes. These functions rely on the precise arrangement of MTs, which is achieved by the coordinated action of MT-associated proteins (MAPs). We highlight the first and most important examples of how different MAP activities are combined in vitro to create an ensemble function that exceeds the simple addition of their individual activities, and how the Xenopus laevis egg extract system has been utilized as a powerful intermediate between cellular and purified systems to uncover the design principles of self-organized MT networks in the cell.
Collapse
Affiliation(s)
- Ray Alfaro-Aco
- From the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Sabine Petry
- From the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
32
|
Sakakibara A, Hatanaka Y. Neuronal polarization in the developing cerebral cortex. Front Neurosci 2015; 9:116. [PMID: 25904841 PMCID: PMC4389351 DOI: 10.3389/fnins.2015.00116] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/22/2015] [Indexed: 12/17/2022] Open
Abstract
Cortical neurons consist of excitatory projection neurons and inhibitory GABAergic interneurons, whose connections construct highly organized neuronal circuits that control higher order information processing. Recent progress in live imaging has allowed us to examine how these neurons differentiate during development in vivo or in in vivo-like conditions. These analyses have revealed how the initial steps of polarization, in which neurons establish an axon, occur. Interestingly, both excitatory and inhibitory cortical neurons establish neuronal polarity de novo by undergoing a multipolar stage reminiscent of the manner in which polarity formation occurs in hippocampal neurons in dissociated culture. In this review, we focus on polarity formation in cortical neurons and describe their typical morphology and dynamic behavior during the polarization period. We also discuss cellular and molecular mechanisms underlying polarization, with reference to polarity formation in dissociated hippocampal neurons in vitro.
Collapse
Affiliation(s)
- Akira Sakakibara
- College of Life and Health Sciences, Chubu University Kasugai, Japan
| | - Yumiko Hatanaka
- Division of Cerebral Circuitry, National Institute for Physiological Sciences Okazaki, Japan ; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology Tokyo, Japan
| |
Collapse
|
33
|
Braun A, Dang K, Buslig F, Baird MA, Davidson MW, Waterman CM, Myers KA. Rac1 and Aurora A regulate MCAK to polarize microtubule growth in migrating endothelial cells. ACTA ACUST UNITED AC 2014; 206:97-112. [PMID: 25002679 PMCID: PMC4085700 DOI: 10.1083/jcb.201401063] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A Rac1–Aurora A–MCAK signaling pathway mediates endothelial cell polarization and directional migration by promoting regional differences in microtubule dynamics in the leading and trailing cell edges. Endothelial cells (ECs) migrate directionally during angiogenesis and wound healing by polarizing to extracellular cues to guide directional movement. EC polarization is controlled by microtubule (MT) growth dynamics, which are regulated by MT-associated proteins (MAPs) that alter MT stability. Mitotic centromere-associated kinesin (MCAK) is a MAP that promotes MT disassembly within the mitotic spindle, yet its function in regulating MT dynamics to promote EC polarity and migration has not been investigated. We used high-resolution fluorescence microscopy coupled with computational image analysis to elucidate the role of MCAK in regulating MT growth dynamics, morphology, and directional migration of ECs. Our results show that MCAK-mediated depolymerization of MTs is specifically targeted to the trailing edge of polarized wound-edge ECs. Regulation of MCAK function is dependent on Aurora A kinase, which is regionally enhanced by signaling from the small guanosine triphosphatase, Rac1. Thus, a Rac1–Aurora A–MCAK signaling pathway mediates EC polarization and directional migration by promoting regional differences in MT dynamics in the leading and trailing cell edges.
Collapse
Affiliation(s)
- Alexander Braun
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA 19104
| | - Kyvan Dang
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA 19104
| | - Felinah Buslig
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA 19104
| | - Michelle A Baird
- National High Magnetic Field Laboratory and Department of Biological Science, The Florida State University, Tallahassee, FL 32310 National High Magnetic Field Laboratory and Department of Biological Science, The Florida State University, Tallahassee, FL 32310
| | - Michael W Davidson
- National High Magnetic Field Laboratory and Department of Biological Science, The Florida State University, Tallahassee, FL 32310 National High Magnetic Field Laboratory and Department of Biological Science, The Florida State University, Tallahassee, FL 32310
| | - Clare M Waterman
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kenneth A Myers
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA 19104 Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
34
|
Nwagbara BU, Faris AE, Bearce EA, Erdogan B, Ebbert PT, Evans MF, Rutherford EL, Enzenbacher TB, Lowery LA. TACC3 is a microtubule plus end-tracking protein that promotes axon elongation and also regulates microtubule plus end dynamics in multiple embryonic cell types. Mol Biol Cell 2014; 25:3350-62. [PMID: 25187649 PMCID: PMC4214782 DOI: 10.1091/mbc.e14-06-1121] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
TACC3 is a microtubule plus end–tracking protein in vertebrates. TACC3 localizes to the extreme microtubule plus end, where it interacts with XMAP215 to regulate microtubule polymerization. TACC3 is also required to promote normal axon outgrowth, likely through its regulation of microtubule dynamics within the growth cone. Microtubule plus end dynamics are regulated by a conserved family of proteins called plus end–tracking proteins (+TIPs). It is unclear how various +TIPs interact with each other and with plus ends to control microtubule behavior. The centrosome-associated protein TACC3, a member of the transforming acidic coiled-coil (TACC) domain family, has been implicated in regulating several aspects of microtubule dynamics. However, TACC3 has not been shown to function as a +TIP in vertebrates. Here we show that TACC3 promotes axon outgrowth and regulates microtubule dynamics by increasing microtubule plus end velocities in vivo. We also demonstrate that TACC3 acts as a +TIP in multiple embryonic cell types and that this requires the conserved C-terminal TACC domain. Using high-resolution live-imaging data on tagged +TIPs, we show that TACC3 localizes to the extreme microtubule plus end, where it lies distal to the microtubule polymerization marker EB1 and directly overlaps with the microtubule polymerase XMAP215. TACC3 also plays a role in regulating XMAP215 stability and localizing XMAP215 to microtubule plus ends. Taken together, our results implicate TACC3 as a +TIP that functions with XMAP215 to regulate microtubule plus end dynamics.
Collapse
Affiliation(s)
| | - Anna E Faris
- Department of Biology, Boston College, Chestnut Hill, MA 02467
| | | | - Burcu Erdogan
- Department of Biology, Boston College, Chestnut Hill, MA 02467
| | | | - Matthew F Evans
- Department of Biology, Boston College, Chestnut Hill, MA 02467
| | | | | | | |
Collapse
|
35
|
Growth cone-specific functions of XMAP215 in restricting microtubule dynamics and promoting axonal outgrowth. Neural Dev 2013; 8:22. [PMID: 24289819 PMCID: PMC3907036 DOI: 10.1186/1749-8104-8-22] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 11/21/2013] [Indexed: 11/26/2022] Open
Abstract
Background Microtubule (MT) regulators play essential roles in multiple aspects of neural development. In vitro reconstitution assays have established that the XMAP215/Dis1/TOG family of MT regulators function as MT ‘plus-end-tracking proteins’ (+TIPs) that act as processive polymerases to drive MT growth in all eukaryotes, but few studies have examined their functions in vivo. In this study, we use quantitative analysis of high-resolution live imaging to examine the function of XMAP215 in embryonic Xenopus laevis neurons. Results Here, we show that XMAP215 is required for persistent axon outgrowth in vivo and ex vivo by preventing actomyosin-mediated axon retraction. Moreover, we discover that the effect of XMAP215 function on MT behavior depends on cell type and context. While partial knockdown leads to slower MT plus-end velocities in most cell types, it results in a surprising increase in MT plus-end velocities selective to growth cones. We investigate this further by using MT speckle microscopy to determine that differences in overall MT translocation are a major contributor of the velocity change within the growth cone. We also find that growth cone MT trajectories in the XMAP215 knockdown (KD) lack the constrained co-linearity that normally results from MT-F-actin interactions. Conclusions Collectively, our findings reveal unexpected functions for XMAP215 in axon outgrowth and growth cone MT dynamics. Not only does XMAP215 balance actomyosin-mediated axon retraction, but it also affects growth cone MT translocation rates and MT trajectory colinearity, all of which depend on regulated linkages to F-actin. Thus, our analysis suggests that XMAP215 functions as more than a simple MT polymerase, and that in both axon and growth cone, XMAP215 contributes to the coupling between MTs and F-actin. This indicates that the function and regulation of XMAP215 may be significantly more complicated than previously appreciated, and points to the importance of future investigations of XMAP215 function during MT and F-actin interactions.
Collapse
|
36
|
Prokop A, Beaven R, Qu Y, Sánchez-Soriano N. Using fly genetics to dissect the cytoskeletal machinery of neurons during axonal growth and maintenance. J Cell Sci 2013; 126:2331-41. [PMID: 23729743 DOI: 10.1242/jcs.126912] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The extension of long slender axons is a key process of neuronal circuit formation, both during brain development and regeneration. For this, growth cones at the tips of axons are guided towards their correct target cells by signals. Growth cone behaviour downstream of these signals is implemented by their actin and microtubule cytoskeleton. In the first part of this Commentary, we discuss the fundamental roles of the cytoskeleton during axon growth. We present the various classes of actin- and microtubule-binding proteins that regulate the cytoskeleton, and highlight the important gaps in our understanding of how these proteins functionally integrate into the complex machinery that implements growth cone behaviour. Deciphering such machinery requires multidisciplinary approaches, including genetics and the use of simple model organisms. In the second part of this Commentary, we discuss how the application of combinatorial genetics in the versatile genetic model organism Drosophila melanogaster has started to contribute to the understanding of actin and microtubule regulation during axon growth. Using the example of dystonin-linked neuron degeneration, we explain how knowledge acquired by studying axonal growth in flies can also deliver new understanding in other aspects of neuron biology, such as axon maintenance in higher animals and humans.
Collapse
Affiliation(s)
- Andreas Prokop
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | |
Collapse
|