1
|
Manley GA. Conditions Underlying the Appearance of Spontaneous Otoacoustic Emissions in Mammals. J Assoc Res Otolaryngol 2024; 25:303-311. [PMID: 38760548 PMCID: PMC11349964 DOI: 10.1007/s10162-024-00950-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/28/2024] [Indexed: 05/19/2024] Open
Abstract
Across the wide range of land vertebrate species, spontaneous otoacoustic emissions (SOAE) are common, but not always found. The reasons for the differences between species of the various groups in their emission patterns are often not well understood, particularly within mammals. This review examines the question as to what determines in mammals whether SOAE are emitted or not, and suggests that the coupling between hair-cell regions diminishes when the space constant of frequency distribution becomes larger. The reduced coupling is assumed to result in a greater likelihood of SOAE being emitted.
Collapse
Affiliation(s)
- Geoffrey A Manley
- Cochlear and Auditory Brainstem Physiology, Department of Neuroscience, School of Medicine and Health Sciences, Cluster of Excellence "Hearing4all", Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany.
| |
Collapse
|
2
|
Takahashi S, Zhou Y, Cheatham MA, Homma K. The frequency dependence of prestin-mediated fast electromotility for mammalian cochlear amplification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595389. [PMID: 38826260 PMCID: PMC11142200 DOI: 10.1101/2024.05.22.595389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Prestin's voltage-driven motor activity confers sound-elicited somatic electromotility in auditory outer hair cells (OHCs) and is essential for the exquisite sensitivity and frequency selectivity of mammalian hearing. Lack of prestin results in hearing threshold shifts across frequency, supporting the causal association of variants in the prestin-coding gene, SLC26A5 , with human hearing loss, DFNB61. However, cochlear function can tolerate reductions in prestin-mediated OHC electromotility. We found that two deafness-associated prestin variants, p.A100T and p.P119S, do not deprive prestin of its fast motor function but significantly reduce membrane expression, leading to large reductions in OHC electromotility that were only ∼30% of wildtype (WT). Mice harboring these missense variants suffered congenital hearing loss that was worse at high frequencies; however, they retained WT-like auditory brainstem response thresholds at 8 kHz, which is processed at the apex of the mouse cochlea. This observation suggests the increasing importance of prestin-driven cochlear amplification at higher frequencies relevant to mammalian hearing. The observation also suggests the promising clinical possibility that small enhancements of OHC electromotility could significantly ameliorate DFNB61 hearing loss in human patients. SIGNIFICANCE Prestin is abundantly expressed in the auditory outer hair cells and is essential for normal cochlear operation. Hence, reduction of prestin expression is often taken as indicative of reduced cochlear function in diseased or aged ears. However, this assumption overlooks the fact that cochlear function can tolerate large reductions in prestin motor activity. DFNB61 mouse models generated and characterized in this study provide an opportunity to gauge the amount of prestin motor activity needed to sustain normal hearing sensitivity. This knowledge is crucial not only for understanding the pathogenic roles of deafness-associated variants that impair OHC electromotility but also for unraveling how prestin contributes to cochlear amplification.
Collapse
|
3
|
Markova TG, Alekseeva NN, Ryzhkova OP, Shatokhina OL, Orlova AA, Zabnenkova VV, Groznova OS, Sagaydak OV, Chibisova SS, Polyakov AV, Tavartkiladze GA. Auditory Phenotype of a Novel Missense Variant in the CEACAM16 Gene in a Large Russian Family With Autosomal Dominant Nonsyndromic Hearing Loss. J Int Adv Otol 2024; 20:119-126. [PMID: 39157884 PMCID: PMC11114206 DOI: 10.5152/iao.2024.231252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/03/2023] [Indexed: 08/20/2024] Open
Abstract
Autosomal dominant hearing loss is represented by a large number of genetically determined forms. Over 50 genes associated with dominant nonsyndromic hearing impairments were described. Pathogenic variants in the CEACAM16 gene lead to the development of DFNA4B hearing loss. Currently, 8 pathogenic variants in this gene have been described. The objective of this study was to study the audiological and molecular genetic characteristics of a large family with CEACAM16-associated autosomal dominant nonsyndromic hearing loss. A detailed anamnesis was collected, and a comprehensive audiological examination was performed for 21 family members. Genetic testing was performed, including whole-genome sequencing for the proband's son and Sanger sequence analysis for the proband and for all available family members. In a large Russian family, including 5 generations, an autosomal dominant type of slowly progressing nonsyndromic late-onset hearing loss was observed. Eleven family members suffer from hearing impairment, which starts with tinnitus and threshold increase at high frequencies, since the age of 5-20 years. Hearing loss slowly progresses with age in each person and is similar to age-related hearing loss. We have detected the novel likely pathogenic variant с.419С>T (p.(Thr140Ile)) in exon 3 of the CEACAM16 gene, which segregates with late-onset nonsyndromic hearing loss in this family. The clinical data obtained in the examined family correspond with the phenotype in previously described cases. In general, the study widened the mutation spectrum of the gene, allowing to carry out medical genetic counseling and to answer the questions about the hearing impairment prognosis for future generations.
Collapse
Affiliation(s)
- Tatiana G. Markova
- Department of Audiology, Russian Medical Academy of Continuing Professional Education, Moscow, Russia
| | - Natalia N. Alekseeva
- Department of Audiology, Russian Medical Academy of Continuing Professional Education, Moscow, Russia
| | - Oxana P. Ryzhkova
- The Shared Resource Centre (SRC) “Genome”, Research Centre for Medical Genetics, Moscow, Russia
| | - Olga L. Shatokhina
- The Shared Resource Centre (SRC) “Genome”, Research Centre for Medical Genetics, Moscow, Russia
| | - Anna A. Orlova
- The Shared Resource Centre (SRC) “Genome”, Research Centre for Medical Genetics, Moscow, Russia
| | - Viktoriia V. Zabnenkova
- The Shared Resource Centre (SRC) “Genome”, Research Centre for Medical Genetics, Moscow, Russia
| | - Olga S. Groznova
- Charitable Foundation for Medical and Social Genetic Assistance Projects “Genome of Life”, Moscow, Russia
| | | | - Svetlana S. Chibisova
- Department of Audiology, Russian Medical Academy of Continuing Professional Education, Moscow, Russia
| | | | - George A. Tavartkiladze
- Department of Audiology, Russian Medical Academy of Continuing Professional Education, Moscow, Russia
| |
Collapse
|
4
|
Takahashi S, Zhou Y, Cheatham MA, Homma K. The pathogenic roles of the p.R130S prestin variant in DFNB61 hearing loss. J Physiol 2024; 602:1199-1210. [PMID: 38431907 PMCID: PMC10942758 DOI: 10.1113/jp285599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
DFNB61 is a recessively inherited nonsyndromic hearing loss caused by mutations in SLC26A5, the gene that encodes the voltage-driven motor protein, prestin. Prestin is abundantly expressed in the auditory outer hair cells that mediate cochlear amplification. Two DFNB61-associated SLC26A5 variants, p.W70X and p.R130S, were identified in patients who are compound heterozygous for these nonsense and missense changes (SLC26A5W70X/R130S ). Our recent study showed that mice homozygous for p.R130S (Slc26a5R130S/R130S ) suffer from hearing loss that is ascribed to significantly reduced motor kinetics of prestin. Given that W70X-prestin is nonfunctional, compound heterozygous Slc26a5R130S/- mice were used as a model for human SLC26A5W70X/R130S . By examining the pathophysiological consequences of p.R130S prestin when it is the sole allele for prestin protein production, we determined that this missense change results in progressive outer hair cell loss in addition to its effects on prestin's motor action. Thus, this study defines the pathogenic roles of p.R130S prestin and identifies a limited time window for potential clinical intervention. KEY POINTS: The voltage-driven motor protein, prestin, is encoded by SLC26A5 and expressed abundantly in cochlear outer hair cells (OHCs). The importance of prestin for normal hearing was demonstrated in mice lacking prestin; however, none of the specific SLC26A5 variants identified to date in human patients has been experimentally demonstrated to be pathogenic. In this study we used both cell lines and a mouse model to define the pathogenic role of compound heterozygous p.W70X (c.209G>A) and p.R130S (c.390A>C) SLC26A5 variants identified in patients with moderate to profound hearing loss. As in patients, mice carrying one copy of p.R130S Slc26a5 showed OHC dysfunction and progressive degeneration, which results in congenital progressive hearing loss. This is the first functional study reporting pathogenic SLC26A5 variants and pointing to the presence of a therapeutic time window for potential clinical interventions targeting the affected OHCs before they are lost.
Collapse
Affiliation(s)
- Satoe Takahashi
- Department of Otolaryngology – Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yingjie Zhou
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA
| | - Mary Ann Cheatham
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders
| | - Kazuaki Homma
- Department of Otolaryngology – Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders
| |
Collapse
|
5
|
Main M, Skoe E. Heightened OAEs in young adult musicians: Influence of current noise exposure and training recency. Hear Res 2024; 442:108925. [PMID: 38141520 PMCID: PMC10843712 DOI: 10.1016/j.heares.2023.108925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/26/2023] [Accepted: 12/03/2023] [Indexed: 12/25/2023]
Abstract
Otoacoustic emissions (OAEs) are a non-invasive metric of cochlear function. Studies of OAEs in musicians have yielded mixed results, ranging from evidence of diminished OAEs in musicians-suggesting noise-induced hearing loss-to no difference when compared to non-musicians, or even a trend for stronger OAEs in musicians. The goal of this study was to use a large sample of college students with normal hearing (n = 160) to compare OAE SNRs in musicians and non-musicians and to explore potential effects of training recency and noise exposure on OAEs in these cohorts. The musician cohort included both active musicians (who at the time of enrollment practiced at least weekly) and past musicians (who had at least 6 years of training). All participants completed a questionnaire about recent noise exposure (previous 12 months), and a subset of participants (71 musicians and 15 non-musicians) wore a personal noise dosimeter for one week to obtain a more nuanced and objective measure of exposure to assess how different exposure levels may affect OAEs before the emergence of a clinically significant hearing loss. OAEs were tested using both transient-evoked OAEs (TEOAEs) and distortion-product OAEs (DPOAEs). As predicted from the literature, musicians experienced significantly higher noise levels than non-musicians based on both subjective (self-reported) and objective measures. Yet we found stronger TEOAEs and DPOAEs in musicians compared to non-musicians in the ∼1-5 kHz range. Comparisons between past and active musicians suggest that enhanced cochlear function in young adult musicians does not require active, ongoing musical practice. Although there were no significant relations between OAEs and noise exposure as measured by dosimetry or questionnaire, active musicians had weaker DPOAEs than past musicians when the entire DPOAE frequency range was considered (up to ∼16 kHz), consistent with a subclinical noise-induced hearing loss that only becomes apparent when active musicians are contrasted with a cohort of individuals with comparable training but without the ongoing risks of noise exposure. Our findings suggest, therefore, that separate norms should be developed for musicians for earlier detection of incipient hearing loss. Potential explanations for enhanced cochlear function in musicians include pre-existing (inborn or demographic) differences, training-related enhancements of cochlear function (e.g., upregulation of prestin, stronger efferent feedback mechanisms), or a combination thereof. Further studies are needed to determine if OAE enhancements offer musicians protection against damage caused by noise exposure.
Collapse
Affiliation(s)
- Morgan Main
- Department of Speech, Language, and Hearing Sciences, United States; Department of Physiology and Neurobiology, United States; University of Connecticut, Storrs, CT 06269, United States; University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Erika Skoe
- Department of Speech, Language, and Hearing Sciences, United States; Department of Psychological Sciences, Cognitive Sciences Program, Connecticut Institute for Brain and Cognitive Sciences, United States; University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
6
|
Pressé MT, Malgrange B, Delacroix L. The cochlear matrisome: Importance in hearing and deafness. Matrix Biol 2024; 125:40-58. [PMID: 38070832 DOI: 10.1016/j.matbio.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 02/12/2024]
Abstract
The extracellular matrix (ECM) consists in a complex meshwork of collagens, glycoproteins, and proteoglycans, which serves a scaffolding function and provides viscoelastic properties to the tissues. ECM acts as a biomechanical support, and actively participates in cell signaling to induce tissular changes in response to environmental forces and soluble cues. Given the remarkable complexity of the inner ear architecture, its exquisite structure-function relationship, and the importance of vibration-induced stimulation of its sensory cells, ECM is instrumental to hearing. Many factors of the matrisome are involved in cochlea development, function and maintenance, as evidenced by the variety of ECM proteins associated with hereditary deafness. This review describes the structural and functional ECM components in the auditory organ and how they are modulated over time and following injury.
Collapse
Affiliation(s)
- Mary T Pressé
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Laurence Delacroix
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium.
| |
Collapse
|
7
|
Stiepan S, Shera CA, Abdala C. Characterizing a Joint Reflection-Distortion OAE Profile in Humans With Endolymphatic Hydrops. Ear Hear 2023; 44:1437-1450. [PMID: 37450653 PMCID: PMC10593104 DOI: 10.1097/aud.0000000000001387] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
OBJECTIVES Endolymphatic hydrops (EH), a hallmark of Meniere disease, is an inner-ear disorder where the membranes bounding the scala media are distended outward due to an abnormally increased volume of endolymph. In this study, we characterize the joint-otoacoustic emission (OAE) profile, a results profile including both distortion- and reflection-class emissions from the same ear, in individuals with EH and speculate on its potential utility in clinical assessment and monitoring. DESIGN Subjects were 16 adults with diagnosed EH and 18 adults with normal hearing (N) matched for age. Both the cubic distortion product (DP) OAE, a distortion-type emission, and the stimulus-frequency (SF) OAE, a reflection-type emission, were measured and analyzed as a joint OAE profile. OAE level, level growth (input/output functions), and phase-gradient delays were measured at frequencies corresponding to the apical half of the human cochlea and compared between groups. RESULTS Normal hearers and individuals with EH shared some common OAE patterns, such as the reflection emissions being generally higher in level than distortion emissions and showing more linear growth than the more strongly compressed distortion emissions. However, significant differences were noted between the EH and N groups as well. OAE source strength (a metric based on OAE amplitude re: stimulus level) was significantly reduced, as was OAE level, at low frequencies in the EH group. These reductions were more marked for distortion than reflection emissions. Furthermore, two significant changes in the configuration of OAE input/output functions were observed in ears with EH: a steepened growth slope for reflection emissions and an elevated compression knee for distortion emissions. SFOAE phase-gradient delays at 40 dB forward-pressure level were slightly shorter in the group with EH compared with the normal group. CONCLUSIONS The underlying pathology associated with EH impacts the generation of both emission types, reflection and distortion, as shown by significant group differences in OAE level, growth, and delay. However, hydrops impacts reflection and distortion emissions differently. Most notably, DPOAEs were more reduced by EH than were SFOAEs, suggesting that pathologies associated with the hydropic state do not act identically on the generation of nonlinear distortion at the hair bundle and intracochlear reflection emissions near the peak of the traveling wave. This differential effect underscores the value of applying a joint OAE approach to access both intracochlear generation processes concurrently.
Collapse
Affiliation(s)
- Samantha Stiepan
- Auditory Research Center, Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA 90033, USA
| | - Christopher A Shera
- Auditory Research Center, Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA 90033, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| | - Carolina Abdala
- Auditory Research Center, Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
8
|
Shera CA, Altoè A. Otoacoustic emissions reveal the micromechanical role of organ-of-Corti cytoarchitecture in cochlear amplification. Proc Natl Acad Sci U S A 2023; 120:e2305921120. [PMID: 37796989 PMCID: PMC10576130 DOI: 10.1073/pnas.2305921120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
The intricate, crystalline cytoarchitecture of the mammalian organ of Corti presumably plays an important role in cochlear amplification. As currently understood, the oblique, Y-shaped arrangement of the outer hair cells (OHCs) and phalangeal processes of the Deiters cells serves to create differential "push-pull" forces that drive the motion of the basilar membrane via the spatial feedforward and/or feedbackward of OHC forces. In concert with the cochlear traveling wave, the longitudinal separation between OHC sensing and forcing creates phase shifts that yield a form of negative damping, amplifying waves as they propagate. Unlike active forces that arise and act locally, push-pull forces are inherently directional-whereas forward-traveling waves are boosted, reverse-traveling waves are squelched. Despite their attractions, models based on push-pull amplification must contend with otoacoustic emissions (OAEs), whose existence implies that amplified energy escapes from the inner ear via mechanisms involving reverse traveling waves. We analyze hybrid local/push-pull models to determine the constraints that reflection-source OAEs place on the directionality of cochlear wave propagation. By implementing a special force-mixing control knob, we vary the mix of local and push-pull forces while leaving the forward-traveling wave unchanged. Consistency with stimulus-frequency OAEs requires that the active forces underlying cochlear wave amplification be primarily local in character, contradicting the prevailing view. By requiring that the oblique cytoarchitecture produce predominantly local forces, we reinterpret the functional role of the Y-shaped geometry, proposing that it serves not as a push-pull amplifier, but as a mechanical funnel that spatially integrates local OHC forces.
Collapse
Affiliation(s)
- Christopher A. Shera
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA90033
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA90089
| | - Alessandro Altoè
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA90033
| |
Collapse
|
9
|
Takahashi S, Zhou Y, Cheatham MA, Homma K. The pathogenic roles of the p.R130S prestin variant in DFNB61 hearing loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554157. [PMID: 37662362 PMCID: PMC10473669 DOI: 10.1101/2023.08.21.554157] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
DFNB61 is a recessively inherited nonsyndromic hearing loss caused by mutations in SLC26A5 , the gene that encodes the voltage-driven motor protein, prestin. Prestin is abundantly expressed in the auditory outer hair cells that mediate cochlear amplification. Two DFNB61-associated SLC26A5 variants, p.W70X and p.R130S, were identified in patients who are compound heterozygous for these nonsense and missense changes ( SLC26A5 W70X/R130S ). Our recent study showed that mice homozygous for p.R130S ( Slc26a5 R130S/R130S ) suffer from hearing loss that is ascribed to significantly reduced motor kinetics of prestin. Given that W70X-prestin is nonfunctional, compound heterozygous Slc26a5 R130S/- mice were used as a model for human SLC26A5 W70X/R130S . By examining the pathophysiological consequences of p.R130S prestin when it is the sole allele for prestin protein production, we determined that this missense change results in progressive outer hair cell loss in addition to its effects on prestin's motor action. Thus, this study fully defines the pathogenic roles for the p.R130S prestin, which points to the presence of a limited time window for potential clinical intervention.
Collapse
|
10
|
Cheatham MA. Distortion Product Otoacoustic Emissions in Mice Above and Below the Eliciting Primaries. J Assoc Res Otolaryngol 2023; 24:413-428. [PMID: 37464091 PMCID: PMC10504173 DOI: 10.1007/s10162-023-00903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Normal hearing is associated with cochlear nonlinearity. When two tones (f1 and f2) are presented, the intracochlear response contains additional components that can be recorded from the ear canal as distortion product otoacoustic emissions (DPOAEs). Although the most prominent intermodulation distortion component is at 2f1-f2, other cubic distortion products are also generated. Because these measurements are noninvasive, they are used in humans and in animal models to detect hearing loss. This study evaluated how loss of sensitivity affects DPOAEs with frequencies above and below the stimulating primaries, i.e., for upper sideband (USB) components like 2f2-f1 and for lower sideband (LSB) components like 2f1-f2. DPOAEs were recorded in several mouse mutants with varying degrees of hearing loss associated with structural changes to the tectorial membrane (TM), or with loss of outer hair cell (OHC) somatic electromotility due to lack of prestin or to the expression of a non-functional prestin. In mice with changes in sensitivity, magnitude reductions were observed for 2f1-f2 relative to controls with mice lacking prestin showing the greatest changes. In contrast, 2f2-f1 was minimally affected by reductions in cochlear gain due to changes in the TM or by the loss of OHC somatic electromotility. In addition, TM mutants with spontaneous otoacoustic emissions (SOAEs) generated larger responses than controls at 2f2-f1 when its frequency was similar to that for the SOAEs. Although cochlear pathologies appear to affect USB and LSB DPOAEs in different ways, both 2f1-f2 and 2f2-f1 reflect nonlinearities associated with the transducer channels. However, in mice, the component at 2f2-f1 does not appear to receive enhancement due to prestin's motor action.
Collapse
Affiliation(s)
- Mary Ann Cheatham
- The Knowles Hearing Center, Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2-240 Frances Searle Building, 2240 Campus Drive, Evanston, IL, 60208, USA.
| |
Collapse
|
11
|
Xie Z, Ma XH, Bai QF, Tang J, Sun JH, Jiang F, Guo W, Wang CM, Yang R, Wen YC, Wang FY, Chen YX, Zhang H, He DZ, Kelley MW, Yang S, Zhang WJ. ZBTB20 is essential for cochlear maturation and hearing in mice. Proc Natl Acad Sci U S A 2023; 120:e2220867120. [PMID: 37279265 PMCID: PMC10268240 DOI: 10.1073/pnas.2220867120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/25/2023] [Indexed: 06/08/2023] Open
Abstract
The mammalian cochlear epithelium undergoes substantial remodeling and maturation before the onset of hearing. However, very little is known about the transcriptional network governing cochlear late-stage maturation and particularly the differentiation of its lateral nonsensory region. Here, we establish ZBTB20 as an essential transcription factor required for cochlear terminal differentiation and maturation and hearing. ZBTB20 is abundantly expressed in the developing and mature cochlear nonsensory epithelial cells, with transient expression in immature hair cells and spiral ganglion neurons. Otocyst-specific deletion of Zbtb20 causes profound deafness with reduced endolymph potential in mice. The subtypes of cochlear epithelial cells are normally generated, but their postnatal development is arrested in the absence of ZBTB20, as manifested by an immature appearance of the organ of Corti, malformation of tectorial membrane (TM), a flattened spiral prominence (SP), and a lack of identifiable Boettcher cells. Furthermore, these defects are related with a failure in the terminal differentiation of the nonsensory epithelium covering the outer border Claudius cells, outer sulcus root cells, and SP epithelial cells. Transcriptome analysis shows that ZBTB20 regulates genes encoding for TM proteins in the greater epithelial ridge, and those preferentially expressed in root cells and SP epithelium. Our results point to ZBTB20 as an essential regulator for postnatal cochlear maturation and particularly for the terminal differentiation of cochlear lateral nonsensory domain.
Collapse
Affiliation(s)
- Zhifang Xie
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai200092, China
- Department of Pathophysiology, Naval Medical University, Shanghai200433, China
| | - Xian-Hua Ma
- Department of Pathophysiology, Naval Medical University, Shanghai200433, China
| | - Qiu-Fang Bai
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin300134, China
| | - Jie Tang
- Department of Physiology, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Jian-He Sun
- Senior Department of Otolaryngology-Head and Neck Surgery, National Clinical Research Center for Otolaryngologic Diseases, the Sixth Medical Center of PLA General Hospital, Beijing100141, China
| | - Fei Jiang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai200092, China
| | - Wei Guo
- Senior Department of Otolaryngology-Head and Neck Surgery, National Clinical Research Center for Otolaryngologic Diseases, the Sixth Medical Center of PLA General Hospital, Beijing100141, China
| | - Chen-Ma Wang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin300134, China
| | - Rui Yang
- Department of Pathophysiology, Naval Medical University, Shanghai200433, China
| | - Yin-Chuan Wen
- Department of Physiology, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Fang-Yuan Wang
- Senior Department of Otolaryngology-Head and Neck Surgery, National Clinical Research Center for Otolaryngologic Diseases, the Sixth Medical Center of PLA General Hospital, Beijing100141, China
| | - Yu-Xia Chen
- Department of Pathophysiology, Naval Medical University, Shanghai200433, China
| | - Hai Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai200433, China
| | - David Z. He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE68178
| | | | - Shiming Yang
- Senior Department of Otolaryngology-Head and Neck Surgery, National Clinical Research Center for Otolaryngologic Diseases, the Sixth Medical Center of PLA General Hospital, Beijing100141, China
| | - Weiping J. Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai200433, China
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin300134, China
| |
Collapse
|
12
|
Takahashi S, Zhou Y, Kojima T, Cheatham MA, Homma K. Prestin's fast motor kinetics is essential for mammalian cochlear amplification. Proc Natl Acad Sci U S A 2023; 120:e2217891120. [PMID: 36893263 PMCID: PMC10089206 DOI: 10.1073/pnas.2217891120] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/06/2023] [Indexed: 03/11/2023] Open
Abstract
Prestin (SLC26A5)-mediated voltage-driven elongations and contractions of sensory outer hair cells within the organ of Corti are essential for mammalian cochlear amplification. However, whether this electromotile activity directly contributes on a cycle-by-cycle basis is currently controversial. By restoring motor kinetics in a mouse model expressing a slowed prestin missense variant, this study provides experimental evidence acknowledging the importance of fast motor action to mammalian cochlear amplification. Our results also demonstrate that the point mutation in prestin disrupting anion transport in other proteins of the SLC26 family does not alter cochlear function, suggesting that the potential weak anion transport of prestin is not essential in the mammalian cochlea.
Collapse
Affiliation(s)
- Satoe Takahashi
- Department of Otolaryngology–Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Yingjie Zhou
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL60208
| | - Takashi Kojima
- Department of Otolaryngology–Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Mary Ann Cheatham
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL60208
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL60208
| | - Kazuaki Homma
- Department of Otolaryngology–Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL60208
| |
Collapse
|
13
|
Motallebzadeh H, Puria S. Stimulus-frequency otoacoustic emissions and middle-ear pressure gains in a finite-element mouse model. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:2769. [PMID: 36456266 PMCID: PMC9643045 DOI: 10.1121/10.0014901] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 06/17/2023]
Abstract
For evoked otoacoustic emissions (OAEs), the stimulus and emission signals traverse the middle ear (ME) in forward and reverse directions, respectively. In this study, a fully coupled three-dimensional finite-element model of the mouse ear canal (EC), ME, and cochlea was used to calculate ME pressure gains, impedances, and reflectances at the EC-entrance and stapes-footplate-cochlear-fluid interfaces. The cochlear model incorporates a series of interdigitated Y-shaped structures sandwiched between the basilar membrane and reticular lamina, each comprised of a Deiters' cell, its phalangeal-process extension, and an outer hair cell (OHC). By introducing random perturbations to the OHC gains, stimulation-frequency otoacoustic emissions (SFOAEs) were generated. Raising the perturbation magnitude from 10% to 80% increased the SFOAE magnitude by up to 24 dB in the 10-30 kHz frequency range. Increasing or decreasing the stiffness of the stapes annular ligament and eardrum by a factor of 8 changed the SFOAEs by up to 30 dB, but the round-trip ME gain as measured could not account for this. A modified round-trip ME gain, with reflections removed at the EC-entrance and stapes-cochlea boundaries, eliminated a ±10 dB discrepancy and allowed ME changes to be quantitatively associated with changes in measured OAEs.
Collapse
Affiliation(s)
- Hamid Motallebzadeh
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114, USA
| | - Sunil Puria
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114, USA
| |
Collapse
|
14
|
Abdala C, Luo P, Shera CA. Characterizing the Relationship Between Reflection and Distortion Otoacoustic Emissions in Normal-Hearing Adults. J Assoc Res Otolaryngol 2022; 23:647-664. [PMID: 35804277 PMCID: PMC9613820 DOI: 10.1007/s10162-022-00857-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022] Open
Abstract
Otoacoustic emissions (OAEs) arise from one (or a combination) of two basic generation mechanisms in the cochlea: nonlinear distortion and linear reflection. As a result of having distinct generation processes, these two classes of emissions may provide non-redundant information about hair-cell integrity and show distinct sensitivities to cochlear pathology. Here, we characterize the relationship between reflection and distortion emissions in normal hearers across a broad frequency and stimulus-level space using novel analysis techniques. Furthermore, we illustrate the promise of this approach in a small group of individuals with mild-moderate hearing loss. A "joint-OAE profile" was created by measuring interleaved swept-tone stimulus-frequency OAEs (SFOAEs) and 2f1-f2 distortion-product OAEs (DPOAEs) in the same ears using well-considered parameters. OAE spectra and input/output functions were calculated across five octaves. Using our specific recording protocol and analysis scheme, SFOAEs in normal hearers had higher levels than did DPOAEs, with the most pronounced differences occurring at the highest stimulus levels. Also, SFOAE compression occurred at higher stimulus levels (than did DPOAE compression) and its growth in the compressed region was steeper. The diagnostic implications of these findings and the influence of the measurement protocol on both OAEs (and on their relationship) are discussed.
Collapse
Affiliation(s)
- Carolina Abdala
- Auditory Research Center, Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Ping Luo
- Auditory Research Center, Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Christopher A Shera
- Auditory Research Center, Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
15
|
Homma K, Takahashi S, Cheatham MA. How much prestin motor activity is required for normal hearing? Hear Res 2022; 423:108376. [PMID: 34848118 PMCID: PMC9091054 DOI: 10.1016/j.heares.2021.108376] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022]
Abstract
Prestin (SLC26A5) is a membrane-based voltage-dependent motor protein responsible for outer hair cell (OHC) somatic electromotility. Its importance for mammalian cochlear amplification has been demonstrated using mouse models lacking prestin (prestin-KO) and expressing dysfunctional prestin, prestinV499G/Y501H (499-prestin-KI). However, it is still not elucidated how prestin contributes to the mechanical amplification process in the cochlea. In this study, we characterized several prestin mouse models in which prestin activity in OHCs was variously manipulated. We found that near-normal cochlear function can be maintained even when prestin activity is significantly reduced, suggesting that the relationship between OHC electromotility and the peripheral sensitivity to sound may not be linear. This result is counterintuitive given the large threshold shifts in prestin-KO and 499-prestin-KI mice, as reported in previous studies. To reconcile these apparently opposing observations, we entertain a voltage- and turgor pressure-based cochlear amplification mechanism that requires prestin but is insensitive to significant reductions in prestin protein expression. This article is part of the Special Issue Outer hair cell Edited by Joseph Santos-Sacchi and Kumar Navaratnam.
Collapse
Affiliation(s)
- Kazuaki Homma
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60208, USA.
| | - Satoe Takahashi
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mary Ann Cheatham
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60208, USA; Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
16
|
Quiñones PM, Meenderink SWF, Applegate BE, Oghalai JS. Unloading outer hair cell bundles in vivo does not yield evidence of spontaneous oscillations in the mouse cochlea. Hear Res 2022; 423:108473. [PMID: 35287989 PMCID: PMC9339463 DOI: 10.1016/j.heares.2022.108473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022]
Abstract
Along with outer hair cell (OHC) somatic electromotility as the actuator of cochlear amplification, active hair bundle motility may be a complementary mechanism in the mammalian auditory system. Here, we searched the mouse cochlea for the presence of spontaneous bundle oscillations that have been observed in non-mammalian ears. In those systems, removal of the overlying membrane is necessary for spontaneous bundle oscillations to manifest. Thus, we used a genetic mouse model with a C1509G (cysteine-to-glycine) point mutation in the Tecta gene where the tectorial (TM) is lifted away from the OHC bundles, allowing us to explore whether unloaded bundles spontaneously oscillate. We used VOCTV in vivo to detect OHC length changes due to electromotility as a proxy for the spontaneous opening and closing of the mechanoelectrical transduction (MET) channels associated with bundle oscillation. In wild type mice with the TM attached to OHC bundles, we did find peaks in vibratory magnitude spectra. Such peaks were not observed in the mutants where the TM is detached from the OHC bundles. Statistical analysis of the time signals indicates that these peaks do not signify active oscillations. Rather, they are filtered responses of the sensitive wild type cochlea to weak background noise. We therefore conclude that, to the limits of our system (∼30 pm), there is no spontaneous mechanical activity that manifests as oscillations in OHC electromotility within the mouse cochlea, arguing that unloaded OHC bundles do not oscillate in vivo. This article is part of the Special Issue Outer hair cell Edited by Joseph Santos-Sacchi and Kumar Navaratnam.
Collapse
Affiliation(s)
- Patricia M Quiñones
- Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Los Angeles, CA, USA
| | | | - Brian E Applegate
- Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Los Angeles, CA, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - John S Oghalai
- Caruso Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Zhang D, Wu J, Yuan Y, Li X, Gao X, Han M, Gao S, Huang S, Dai P. A novel missense variant in CEACAM16 gene causes autosomal dominant nonsyndromic hearing loss. Ann Hum Genet 2022; 86:207-217. [PMID: 35292975 PMCID: PMC9314904 DOI: 10.1111/ahg.12463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 11/27/2022]
Abstract
AbstractAimAutosomal dominant non‐syndromic hearing loss is a common sensorineural disorder with extremely high genetic heterogeneity. CEA antigen‐related cell adhesion molecule 16(CEACAM16)is a secreted glycoprotein encoded by the CEACAM16 gene. Mutations in CEACAM16 lead to autosomal dominant non‐syndromic hearing loss in humans, due defects in the tectorial membrane of the inner ear. Here we reported a novel missense variant in CEACAM16 gene causes autosomal dominant non‐syndromic hearing loss.Material and methodsA four‐generation Chinese family affected by late‐onset and progressive hearing loss was enrolled in this study. The proband was analyzed by targeted next‐generation sequencing and bioinformatic analysis. And in vitro experiments were performed in overexpressed transfected HEK293T cells to investigate the pathogenesis of the mutant protein.ResultsWe identified a novel missense variant in the CEACAM16 gene c.763A>G; (p.Arg255Gly) as causing autosomal dominant non‐syndromic hearing loss in the Chinese family. Using Western blot analysis, ELISA, and immunofluorescence we found increased expression level of the secreted mutant CEACAM16 protein, both intracellularly and extracellularly, compared with wild type CEACAM16 protein.ConclusionOur study showed that the p.Arg255Gly variant leads to increased secretion of mutant CEACAM16 protein, with potential deleterious effect to the function of the protein. Our findings expand the mutation spectrum of CEACAM16, and further the understanding CEACAM16 function and implications in disease.
Collapse
Affiliation(s)
- Dejun Zhang
- College of Otolaryngology Head and Neck SurgeryChinese PLA General HospitalBeijingChina
- Department of Otolaryngology Head and Neck SurgeryThe Second Hospital of Jilin UniversityChangchunChina
- State Key Lab of Hearing Science, Ministry of EducationNational Clinical Research Center for Otolaryngologic DiseasesBeijingChina
- Beijing Key Lab of Hearing Impairment for Prevention and TreatmentBeijingChina
| | - Jie Wu
- College of Otolaryngology Head and Neck SurgeryChinese PLA General HospitalBeijingChina
- State Key Lab of Hearing Science, Ministry of EducationNational Clinical Research Center for Otolaryngologic DiseasesBeijingChina
- Beijing Key Lab of Hearing Impairment for Prevention and TreatmentBeijingChina
| | - Yongyi Yuan
- College of Otolaryngology Head and Neck SurgeryChinese PLA General HospitalBeijingChina
- State Key Lab of Hearing Science, Ministry of EducationNational Clinical Research Center for Otolaryngologic DiseasesBeijingChina
- Beijing Key Lab of Hearing Impairment for Prevention and TreatmentBeijingChina
| | - Xiaohong Li
- Department of Otolaryngology, Head and Neck Surgery, National Children's Medical Center/Beijing Children's HospitalCapital Medical UniversityBeijingPR China
| | - Xue Gao
- Department of OtolaryngologyPLA Rocket Force Characteristic Medical CenterBeijingChina
| | - Mingyu Han
- College of Otolaryngology Head and Neck SurgeryChinese PLA General HospitalBeijingChina
- State Key Lab of Hearing Science, Ministry of EducationNational Clinical Research Center for Otolaryngologic DiseasesBeijingChina
- Beijing Key Lab of Hearing Impairment for Prevention and TreatmentBeijingChina
| | - Song Gao
- Department of OtolaryngologySouth‐East Hospital Affiliated to Xiamen UniversityZhangzhouChina
| | - Shasha Huang
- College of Otolaryngology Head and Neck SurgeryChinese PLA General HospitalBeijingChina
- State Key Lab of Hearing Science, Ministry of EducationNational Clinical Research Center for Otolaryngologic DiseasesBeijingChina
- Beijing Key Lab of Hearing Impairment for Prevention and TreatmentBeijingChina
| | - Pu Dai
- College of Otolaryngology Head and Neck SurgeryChinese PLA General HospitalBeijingChina
- State Key Lab of Hearing Science, Ministry of EducationNational Clinical Research Center for Otolaryngologic DiseasesBeijingChina
- Beijing Key Lab of Hearing Impairment for Prevention and TreatmentBeijingChina
| |
Collapse
|
18
|
van Dieken A, Staecker H, Schmitt H, Harre J, Pich A, Roßberg W, Lenarz T, Durisin M, Warnecke A. Bioinformatic Analysis of the Perilymph Proteome to Generate a Human Protein Atlas. Front Cell Dev Biol 2022; 10:847157. [PMID: 35573665 PMCID: PMC9096870 DOI: 10.3389/fcell.2022.847157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
The high complexity of the cellular architecture of the human inner ear and the inaccessibility for tissue biopsy hampers cellular and molecular analysis of inner ear disease. Sampling and analysis of perilymph may present an opportunity for improved diagnostics and understanding of human inner ear pathology. Analysis of the perilymph proteome from patients undergoing cochlear implantation was carried out revealing a multitude of proteins and patterns of protein composition that may enable characterisation of patients into subgroups. Based on existing data and databases, single proteins that are not present in the blood circulation were related to cells within the cochlea to allow prediction of which cells contribute to the individual perilymph proteome of the patients. Based on the results, we propose a human atlas of the cochlea. Finally, druggable targets within the perilymph proteome were identified. Understanding and modulating the human perilymph proteome will enable novel avenues to improve diagnosis and treatment of inner ear diseases.
Collapse
Affiliation(s)
- Alina van Dieken
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck, Surgery, University of Kansas School of Medicine, Kansas City, KS, United States
| | - Heike Schmitt
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Jennifer Harre
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Andreas Pich
- Core Facility Proteomics, Hannover Medical School, Hannover, Germany
| | - Willi Roßberg
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Martin Durisin
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
19
|
Mansour A, Sellon JB, Filizzola D, Ghaffari R, Cheatham MA, Freeman DM. Age-related degradation of tectorial membrane dynamics with loss of CEACAM16. Biophys J 2021; 120:4777-4785. [PMID: 34555361 PMCID: PMC8595744 DOI: 10.1016/j.bpj.2021.09.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/01/2021] [Accepted: 09/16/2021] [Indexed: 11/29/2022] Open
Abstract
Studies of genetic disorders of sensorineural hearing loss have been instrumental in delineating mechanisms that underlie the remarkable sensitivity and selectivity that are hallmarks of mammalian hearing. For example, genetic modifications of TECTA and TECTB, which are principal proteins that comprise the tectorial membrane (TM), have been shown to alter auditory thresholds and frequency tuning in ways that can be understood in terms of changes in the mechanical properties of the TM. Here, we investigate effects of genetic modification targeting CEACAM16, a third important TM protein. Loss of CEACAM16 has been recently shown to lead to progressive reductions in sensitivity. Whereas age-related hearing losses have previously been linked to changes in sensory receptor cells, the role of the TM in progressive hearing loss is largely unknown. Here, we show that TM stiffness and viscosity are significantly reduced in adult mice that lack functional CEACAM16 relative to age-matched wild-type controls. By contrast, these same mechanical properties of TMs from juvenile mice that lack functional CEACAM16 are more similar to those of wild-type mice. Thus, changes in hearing phenotype align with changes in TM material properties and can be understood in terms of the same TM wave properties that were previously used to characterize modifications of TECTA and TECTB. These results demonstrate that CEACAM16 is essential for maintaining TM mechanical and wave properties, which in turn are necessary for sustaining the remarkable sensitivity and selectivity of mammalian hearing with increasing age.
Collapse
Affiliation(s)
- Amer Mansour
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jonathan B Sellon
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Daniel Filizzola
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Roozbeh Ghaffari
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Mary Ann Cheatham
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Knowles Hearing Center, Northwestern University, Evanston, Illinois
| | - Dennis M Freeman
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
20
|
Multiple Cases of Auditory Neuropathy Illuminate the Importance of Subcortical Neural Synchrony for Speech-in-noise Recognition and the Frequency-following Response. Ear Hear 2021; 43:605-619. [PMID: 34619687 DOI: 10.1097/aud.0000000000001122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The role of subcortical synchrony in speech-in-noise (SIN) recognition and the frequency-following response (FFR) was examined in multiple listeners with auditory neuropathy. Although an absent FFR has been documented in one listener with idiopathic neuropathy who has severe difficulty recognizing SIN, several etiologies cause the neuropathy phenotype. Consequently, it is necessary to replicate absent FFRs and concomitant SIN difficulties in patients with multiple sources and clinical presentations of neuropathy to elucidate fully the importance of subcortical neural synchrony for the FFR and SIN recognition. DESIGN Case series. Three children with auditory neuropathy (two males with neuropathy attributed to hyperbilirubinemia, one female with a rare missense mutation in the OPA1 gene) were compared to age-matched controls with normal hearing (52 for electrophysiology and 48 for speech recognition testing). Tests included standard audiological evaluations, FFRs, and sentence recognition in noise. The three children with neuropathy had a range of clinical presentations, including moderate sensorineural hearing loss, use of a cochlear implant, and a rapid progressive hearing loss. RESULTS Children with neuropathy generally had good speech recognition in quiet but substantial difficulties in noise. These SIN difficulties were somewhat mitigated by a clear speaking style and presenting words in a high semantic context. In the children with neuropathy, FFRs were absent from all tested stimuli. In contrast, age-matched controls had reliable FFRs. CONCLUSION Subcortical synchrony is subject to multiple forms of disruption but results in a consistent phenotype of an absent FFR and substantial difficulties recognizing SIN. These results support the hypothesis that subcortical synchrony is necessary for the FFR. Thus, in healthy listeners, the FFR may reflect subcortical neural processes important for SIN recognition.
Collapse
|
21
|
Cheatham MA. Spontaneous otoacoustic emissions are biomarkers for mice with tectorial membrane defects. Hear Res 2021; 409:108314. [PMID: 34332206 DOI: 10.1016/j.heares.2021.108314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/22/2021] [Accepted: 07/12/2021] [Indexed: 01/12/2023]
Abstract
Cochlear function depends on the operation of a coupled feedback loop, incorporating outer hair cells (OHCs), and structured to assure that inner hair cells (IHCs) convey frequency specific acoustic information to the brain, even at very low sound levels. Although our knowledge of OHC function and its contribution to cochlear amplification has expanded, the importance of the tectorial membrane (TM) to the processing of mechanical inputs has not been fully elucidated. In addition, there are a surprising number of genetic mutations that affect TM structure and that produce hearing loss in humans. By synthesizing old and new results obtained on several mouse mutants, we learned that animals with abnormal TMs are prone to generate spontaneous otoacoustic emissions (SOAE), which are uncommon in most wildtype laboratory animals. Because SOAEs are not produced in TM mutants or in humans when threshold shifts exceed approximately 25 dB, some degree of cochlear amplification is required. However, amplification by itself is not sufficient because normal mice are rarely spontaneous emitters. Since SOAEs reflect active cochlear operation, TM mutants are valuable for studying the oscillatory nature of the amplification process and the structures associated with its stabilization. Inasmuch as the mouse models were selected to mirror human auditory disorders, using SOAEs as a noninvasive clinical tool may assist the classification of individuals with genetic defects that influence the active mechanisms responsible for sensitivity and frequency selectivity, the hallmarks of mammalian hearing.
Collapse
Affiliation(s)
- Mary Ann Cheatham
- The Knowles Hearing Center, Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2-240 Frances Searle Building, 2240 Campus Drive, Evanston, IL 60208, USA.
| |
Collapse
|
22
|
Motallebzadeh H, Puria S. Mouse middle-ear forward and reverse acoustics. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:2711. [PMID: 33940924 PMCID: PMC8060050 DOI: 10.1121/10.0004218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 05/26/2023]
Abstract
The mouse is an important animal model for hearing science. However, our knowledge of the relationship between mouse middle-ear (ME) anatomy and function is limited. The ME not only transmits sound to the cochlea in the forward direction, it also transmits otoacoustic emissions generated in the cochlea to the ear canal (EC) in the reverse direction. Due to experimental limitations, a complete characterization of the mouse ME has not been possible. A fully coupled finite-element model of the mouse EC, ME, and cochlea was developed and calibrated against experimental measurements. Impedances of the EC, ME, and cochlea were calculated, alongside pressure transfer functions for the forward, reverse, and round-trip directions. The effects on sound transmission of anatomical changes such as removing the ME cavity, pars flaccida, and mallear orbicular apophysis were also calculated. Surprisingly, below 10 kHz, the ME cavity, eardrum, and stapes annular ligament were found to significantly affect the cochlear input impedance, which is a result of acoustic coupling through the round window. The orbicular apophysis increases the delay of the transmission line formed by the flexible malleus, incus, and stapes, and improves the forward sound-transmission characteristics in the frequency region of 7-30 kHz.
Collapse
Affiliation(s)
- Hamid Motallebzadeh
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114, USA
| | - Sunil Puria
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts 02114, USA
| |
Collapse
|
23
|
Cheatham MA. Comparing spontaneous and stimulus frequency otoacoustic emissions in mice with tectorial membrane defects. Hear Res 2020; 400:108143. [PMID: 33340968 DOI: 10.1016/j.heares.2020.108143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 01/28/2023]
Abstract
The global standing-wave model for generation of spontaneous otoacoustic emissions (SOAEs) suggests that they are amplitude-stabilized standing waves and that the spacing between SOAEs corresponds to the interval over which the phase changes by one cycle as determined from the phase-gradient delays of stimulus frequency otoacoustic emissions (SFOAEs). Because data characterizing the relationship between spontaneous and evoked emissions in nonhuman mammals are limited, we examined SOAEs and SFOAEs in tectorial membrane (TM) mutants and their controls. Computations indicate that the spacing between adjacent SOAEs is predicted by the SFOAE phase-gradient delays for TM mutants lacking Ceacam16, where SOAE frequencies are greater than ~20 kHz and the mutants retain near-normal hearing when young. Mice with a missense mutation in Tecta (TectaY1870C/+), as well as mice lacking Otoancorin (Otoa-/-), were also examined. Although these mutants exhibit hearing loss, they generate SOAEs with average frequencies of 11 kHz in TectaY1870C/+ and 6 kHz in Otoa-/-. In these animals, the spacing between adjacent SOAEs is larger than predicted by the SFOAE phase delays. It is also demonstrated that mice do not exhibit the strong frequency-dependence in signal coding that characterizes species with good low-frequency hearing. In fact, a transition occurs near the apical end of the mouse cochlea rather than at the mid-point along the cochlear partition. Hence, disagreements with the standing-wave model are not easily explained by a transition in tuning ratios between apical and basal regions of the cochlea, especially for SOAEs generated in TectaY1870C/+mice.
Collapse
Affiliation(s)
- Mary Ann Cheatham
- The Knowles Hearing Center, Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2-240 Frances Searle Building, 2240 Campus Drive, Evanston IL 60208, USA.
| |
Collapse
|
24
|
Twin study of neonatal transient-evoked otoacoustic emissions. Hear Res 2020; 398:108108. [PMID: 33212398 DOI: 10.1016/j.heares.2020.108108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 01/13/2023]
Abstract
Our knowledge of which physiological mechanisms shape transient evoked otoacoustic emissions (TEOAEs) is incomplete, although thousands of TEOAEs are recorded each day as part of universal newborn hearing-screening (UNHS). TEOAE heritability may explain some of the large TEOAE variability observed in neonates, and give insights into the TEOAE generators and modulators, and why TEOAEs are generally larger in females and right ears. The aim was to estimate TEOAE heritability and describe ear and sex effects in a consecutive subset of all twins that passed UNHS at the same occasion at two hospitals during a six-year period (more than 30 000 neonates screened in total). TEOAEs were studied and TEOAE level correlations compared in twin sets of same-sex (SS, 302 individual twins, 151 twin pairs) and opposite-sex (OS, 152 individual twins, 76 twin pairs). A mathematical model was used to estimate and compare monozygotic (MZ) and dizygotic (DZ) intra-twin pair TEOAE level correlations, based on the data from the SS and OS twin sets. For both SS and OS twin pairs TEOAE levels were significantly higher in right ears and females, compared to left ears and males, as previously demonstrated in young adult twins and large groups of neonates. Neonatal females in OS twin pairs did not demonstrate masculinized TEOAEs, as has been demonstrated for OAEs in young adult females in OS twin pairs. The within-twin pair TEOAE level correlations were higher for SS twin pairs than for OS twin pairs, whereas the within-pair correlation coefficients could not be distinguished from zero when twins were randomly paired. These results reflect heredity as a key factor in TEOAE level variability. Additionally, the estimated MZ within-twin pair TEOAE level correlations were higher than those for DZ twin pairs. The heritability estimates reached up to 100% TEOAE heritability, which is numerically larger than previous estimates of about 75% in young adult twins.
Collapse
|
25
|
Hänske J, Hammacher T, Grenkowitz F, Mansfeld M, Dau TH, Maksimov P, Friedrich C, Zimmermann W, Kammerer R. Natural selection supports escape from concerted evolution of a recently duplicated CEACAM1 paralog in the ruminant CEA gene family. Sci Rep 2020; 10:3404. [PMID: 32099040 PMCID: PMC7042247 DOI: 10.1038/s41598-020-60425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/31/2020] [Indexed: 11/24/2022] Open
Abstract
Concerted evolution is often observed in multigene families such as the CEA gene family. As a result, sequence similarity of paralogous genes is significantly higher than expected from their evolutionary distance. Gene conversion, a “copy paste” DNA repair mechanism that transfers sequences from one gene to another and homologous recombination are drivers of concerted evolution. Nevertheless, some gene family members escape concerted evolution and acquire sufficient sequence differences that orthologous genes can be assigned in descendant species. Reasons why some gene family members can escape while others are captured by concerted evolution are poorly understood. By analyzing the entire CEA gene family in cattle (Bos taurus) we identified a member (CEACAM32) that was created by gene duplication and cooption of a unique transmembrane domain exon in the most recent ancestor of ruminants. CEACAM32 shows a unique, testis-specific expression pattern. Phylogenetic analysis indicated that CEACAM32 is not involved in concerted evolution of CEACAM1 paralogs in ruminants. However, analysis of gene conversion events revealed that CEACAM32 is subject to gene conversion but remarkably, these events are found in the leader exon and intron sequences but not in exons coding for the Ig-like domains. These findings suggest that natural selection hinders gene conversion affecting protein sequences of the mature protein and thereby support escape of CEACAM32 from concerted evolution.
Collapse
Affiliation(s)
- Jana Hänske
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Insel Riems, Germany.,Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen Sachsen, Dresden, Germany
| | - Tim Hammacher
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Insel Riems, Germany
| | - Franziska Grenkowitz
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Insel Riems, Germany
| | - Martin Mansfeld
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Insel Riems, Germany
| | - Tung Huy Dau
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Insel Riems, Germany
| | - Pavlo Maksimov
- Institute of Epidemiology, Friedrich-Loeffler-Institute, Greifswald - InselRiems, Germany
| | - Christin Friedrich
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Insel Riems, Germany.,Institute of Systems Immunology, University of Würzburg, Würzburg, Germany
| | - Wolfgang Zimmermann
- Tumor Immunology Laboratory, LIFE Center, Department of Urology, Ludwig-Maximilians-University, Munich, Germany
| | - Robert Kammerer
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald - Insel Riems, Germany.
| |
Collapse
|
26
|
Bullen A, Forge A, Wright A, Richardson GP, Goodyear RJ, Taylor R. Ultrastructural defects in stereocilia and tectorial membrane in aging mouse and human cochleae. J Neurosci Res 2019; 98:1745-1763. [DOI: 10.1002/jnr.24556] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Anwen Bullen
- UCL Ear Institute University College London London UK
| | - Andrew Forge
- UCL Ear Institute University College London London UK
| | | | - Guy P. Richardson
- Sussex Neuroscience School of Life Sciences University of Sussex Falmer, Brighton UK
| | - Richard J. Goodyear
- Sussex Neuroscience School of Life Sciences University of Sussex Falmer, Brighton UK
| | - Ruth Taylor
- UCL Ear Institute University College London London UK
| |
Collapse
|
27
|
Sellon JB, Ghaffari R, Freeman DM. The Tectorial Membrane: Mechanical Properties and Functions. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033514. [PMID: 30348837 DOI: 10.1101/cshperspect.a033514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The tectorial membrane (TM) is widely believed to play a critical role in determining the remarkable sensitivity and frequency selectivity that are hallmarks of mammalian hearing. Recently developed mouse models of human hearing disorders have provided new insights into the molecular, nanomechanical mechanisms that underlie resonance and traveling wave properties of the TM. Herein we review recent experimental and theoretical results detailing TM morphology, local poroelastic and electromechanical interactions, and global spread of excitation via TM traveling waves, with direct implications for cochlear mechanisms.
Collapse
Affiliation(s)
- Jonathan B Sellon
- Research Laboratory of Electronics, MIT, Cambridge, Massachusetts 02139
| | - Roozbeh Ghaffari
- Research Laboratory of Electronics, MIT, Cambridge, Massachusetts 02139
| | - Dennis M Freeman
- Research Laboratory of Electronics, MIT, Cambridge, Massachusetts 02139.,Department of Electrical Engineering and Computer Science, MIT, Cambridge, Massachusetts 02139
| |
Collapse
|
28
|
Morgan A, Koboldt DC, Barrie ES, Crist ER, García García G, Mezzavilla M, Faletra F, Mihalic Mosher T, Wilson RK, Blanchet C, Manickam K, Roux AF, Gasparini P, Dell'Orco D, Girotto G. Mutations in PLS1, encoding fimbrin, cause autosomal dominant nonsyndromic hearing loss. Hum Mutat 2019; 40:2286-2295. [PMID: 31397523 DOI: 10.1002/humu.23891] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/29/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022]
Abstract
Nonsyndromic hearing loss (NSHL), a common sensory disorder, is characterized by high clinical and genetic heterogeneity (i.e., approximately 115 genes and 170 loci so far identified). Nevertheless, almost half of patients submitted for genetic testing fail to receive a conclusive molecular diagnosis. We used next-generation sequencing to identify causal variants in PLS1 (c.805G>A, p.[E269K]; c.713G>T, p.[L238R], and c.383T>C, p.[F128S]) in three unrelated families of European ancestry with autosomal dominant NSHL. PLS1 encodes Plastin 1 (also called fimbrin), one of the most abundant actin-bundling proteins of the stereocilia. In silico protein modeling suggests that all variants destabilize the structure of the actin-binding domain 1, likely reducing the protein's ability to bind F actin. The role of PLS1 gene in hearing function is further supported by the recent demonstration that Pls1-/ - mice show a hearing loss phenotype similar to that of our patients. In summary, we report PLS1 as a novel gene for autosomal dominant NSHL, suggesting that this gene is required for normal hearing in humans and mice.
Collapse
Affiliation(s)
- Anna Morgan
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Daniel C Koboldt
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Elizabeth S Barrie
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Erin R Crist
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio.,Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Gema García García
- Laboratory of Molecular Genetics, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Massimo Mezzavilla
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
| | - Flavio Faletra
- Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
| | - Theresa Mihalic Mosher
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio.,Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Richard K Wilson
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio.,Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Catherine Blanchet
- Centre of Reference for Genetic Sensory Diseases, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Kandamurugu Manickam
- Department of Pediatrics, The Ohio State University, Columbus, Ohio.,Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Anne-Francoise Roux
- Laboratory of Molecular Genetics, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Paolo Gasparini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal and Child Health - IRCCS, Burlo Garofolo, Trieste, Italy
| |
Collapse
|
29
|
PKHD1L1 is a coat protein of hair-cell stereocilia and is required for normal hearing. Nat Commun 2019; 10:3801. [PMID: 31444330 PMCID: PMC6707252 DOI: 10.1038/s41467-019-11712-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/28/2019] [Indexed: 12/18/2022] Open
Abstract
The bundle of stereocilia on inner ear hair cells responds to subnanometer deflections produced by sound or head movement. Stereocilia are interconnected by a variety of links and also carry an electron-dense surface coat. The coat may contribute to stereocilia adhesion or protect from stereocilia fusion, but its molecular identity remains unknown. From a database of hair-cell-enriched translated proteins, we identify Polycystic Kidney and Hepatic Disease 1-Like 1 (PKHD1L1), a large, mostly extracellular protein of 4249 amino acids with a single transmembrane domain. Using serial immunogold scanning electron microscopy, we show that PKHD1L1 is expressed at the tips of stereocilia, especially in the high-frequency regions of the cochlea. PKHD1L1-deficient mice lack the surface coat at the upper but not lower regions of stereocilia, and they develop progressive hearing loss. We conclude that PKHD1L1 is a component of the surface coat and is required for normal hearing in mice. There is little known about the function or molecular identity of the electron-dense stereocilia coat, which is transiently present at the surface of stereocilia. In this study authors screened a database of hair-cell-enriched translated proteins to identify the expression of Polycystic Kidney and Hepatic Disease 1-Like 1 (PKHD1L1), a large, mostly extracellular protein, and show that it forms the coat at the tips of stereocilia and is required for normal hearing in mice
Collapse
|
30
|
Goodyear RJ, Cheatham MA, Naskar S, Zhou Y, Osgood RT, Zheng J, Richardson GP. Accelerated Age-Related Degradation of the Tectorial Membrane in the Ceacam16βgal/βgal Null Mutant Mouse, a Model for Late-Onset Human Hereditary Deafness DFNB113. Front Mol Neurosci 2019; 12:147. [PMID: 31249509 PMCID: PMC6582249 DOI: 10.3389/fnmol.2019.00147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/20/2019] [Indexed: 12/20/2022] Open
Abstract
CEACAM16 is a non-collagenous protein of the tectorial membrane, an extracellular structure of the cochlea essential for normal hearing. Dominant and recessive mutations in CEACAM16 have been reported to cause postlingual and progressive forms of deafness in humans. In a previous study of young Ceacam16βgal/βgal null mutant mice on a C57Bl/6J background, the incidence of spontaneous otoacoustic emissions (SOAEs) was greatly increased relative to Ceacam16+/+ and Ceacam16+/βgal mice, but auditory brain-stem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs) were near normal, indicating auditory thresholds were not significantly affected. To determine if the loss of CEACAM16 leads to hearing loss at later ages in this mouse line, cochlear structure and auditory function were examined in Ceacam16+/+, Ceacam16+/βgal and Ceacam16βgal/βgal mice at 6 and 12 months of age and compared to that previously described at 1 month. Analysis of older Ceacam16βgal/βgal mice reveals a progressive loss of matrix from the core of the tectorial membrane that is more extensive in the apical, low-frequency regions of the cochlea. In Ceacam16βgal/βgal mice at 6-7 months, the DPOAE magnitude at 2f1-f2 and the incidence of SOAEs both decrease relative to young animals. By ∼12 months, SOAEs and DPOAEs are not detected in Ceacam16βgal/βgal mice and ABR thresholds are increased by up to ∼40 dB across frequency, despite a complement of hair cells similar to that present in Ceacam16+/+ mice. Although SOAE incidence decreases with age in Ceacam16βgal/βgal mice, it increases in aging heterozygous Ceacam16+/βgal mice and is accompanied by a reduction in the accumulation of CEACAM16 in the tectorial membrane relative to controls. An apically-biased loss of matrix from the core of the tectorial membrane, similar to that observed in young Ceacam16βgal/βgal mice, is also seen in Ceacam16+/+ and Ceacam16+/βgal mice, and other strains of wild-type mice, but at much later ages. The loss of Ceacam16 therefore accelerates age-related degeneration of the tectorial membrane leading, as in humans with mutations in CEACAM16, to a late-onset progressive form of hearing loss.
Collapse
Affiliation(s)
- Richard J. Goodyear
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Mary Ann Cheatham
- The Knowles Hearing Center, Northwestern University, Evanston, IL, United States
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Souvik Naskar
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Yingjie Zhou
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Richard T. Osgood
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Jing Zheng
- The Knowles Hearing Center, Northwestern University, Evanston, IL, United States
- Department of Otolaryngology – Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Guy P. Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
31
|
Bowling T, Lemons C, Meaud J. Reducing tectorial membrane viscoelasticity enhances spontaneous otoacoustic emissions and compromises the detection of low level sound. Sci Rep 2019; 9:7494. [PMID: 31097743 PMCID: PMC6522542 DOI: 10.1038/s41598-019-43970-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/02/2019] [Indexed: 01/08/2023] Open
Abstract
The mammalian cochlea is able to detect faint sounds due to the presence of an active nonlinear feedback mechanism that boosts cochlear vibrations of low amplitude. Because of this feedback, self-sustained oscillations called spontaneous otoacoustic emissions (SOAEs) can often be measured in the ear canal. Recent experiments in genetically modified mice have demonstrated that mutations of the genes expressed in the tectorial membrane (TM), an extracellular matrix located in the cochlea, can significantly enhance the generation of SOAEs. Multiple untested mechanisms have been proposed to explain these unexpected results. In this work, a physiologically motivated computational model of a mammalian species commonly studied in auditory research, the gerbil, is used to demonstrate that altering the viscoelastic properties of the TM tends to affect the linear stability of the cochlea, SOAE generation and the cochlear response to low amplitude stimuli. These results suggest that changes in TM properties might be the underlying cause for SOAE enhancement in some mutant mice. Furthermore, these theoretical findings imply that the TM contributes to keeping the mammalian cochlea near an oscillatory instability, which promotes high sensitivity and the detection of low level stimuli.
Collapse
Affiliation(s)
- Thomas Bowling
- G.W.W. School of Mechanical Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia, 30332, USA
| | - Charlsie Lemons
- G.W.W. School of Mechanical Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia, 30332, USA
| | - Julien Meaud
- G.W.W. School of Mechanical Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia, 30332, USA. .,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
32
|
Takahashi S, Yamashita T, Homma K, Zhou Y, Zuo J, Zheng J, Cheatham MA. Deletion of exons 17 and 18 in prestin's STAS domain results in loss of function. Sci Rep 2019; 9:6874. [PMID: 31053797 PMCID: PMC6499820 DOI: 10.1038/s41598-019-43343-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/23/2019] [Indexed: 12/03/2022] Open
Abstract
Cochlear outer hair cells (OHC) express the motor protein, prestin, which is required for sensitivity and frequency selectivity. Because our previous work showed that a calmodulin binding site (CBS) was located in prestin's C-terminal, specifically within the intrinsically disordered region, we sought to delete the IDR to study the functional significance of calcium-dependent, calmodulin binding on OHC function. Although the construct lacking the IDR (∆IDR prestin) demonstrated wildtype-like nonlinear capacitance (NLC) in HEK293T cells, the phenotype in ∆IDR prestin knockins (KI) was similar to that in prestin knockouts: thresholds were elevated, NLC was absent and OHCs were missing from basal regions of the cochlea. Although ∆IDR prestin mRNA was measured, no prestin protein was detected. At the mRNA level, both of prestin's exons 17 and 18 were entirely removed, rather than the smaller region encoding the IDR. Our hybrid exon that contained the targeted deletion (17-18 ∆IDR) failed to splice in vitro and prestin protein lacking exons 17 and 18 aggregated and failed to target the cell membrane. Hence, the absence of prestin protein in ∆IDR KI OHCs may be due to the unexpected splicing of the hybrid 17-18 ∆IDR exon followed by rapid degradation of nonfunctional prestin protein.
Collapse
Affiliation(s)
- Satoe Takahashi
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Tetsuji Yamashita
- St. Jude Children's Research Hospital, Department of Developmental Neurobiology, Memphis, TN, USA
| | - Kazuaki Homma
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Knowles Hearing Center, Northwestern University, Evanston, IL, USA
| | - Yingjie Zhou
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Jian Zuo
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Jing Zheng
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Knowles Hearing Center, Northwestern University, Evanston, IL, USA
| | - Mary Ann Cheatham
- Knowles Hearing Center, Northwestern University, Evanston, IL, USA.
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
33
|
Power Dissipation in the Cochlea Can Enhance Frequency Selectivity. Biophys J 2019; 116:1362-1375. [PMID: 30878199 PMCID: PMC6451036 DOI: 10.1016/j.bpj.2019.02.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/15/2019] [Accepted: 02/22/2019] [Indexed: 12/22/2022] Open
Abstract
The cochlear cavity is filled with viscous fluids, and it is partitioned by a viscoelastic structure called the organ of Corti complex. Acoustic energy propagates toward the apex of the cochlea through vibrations of the organ of Corti complex. The dimensions of the vibrating structures range from a few hundred (e.g., the basilar membrane) to a few micrometers (e.g., the stereocilia bundle). Vibrations of microstructures in viscous fluid are subjected to energy dissipation. Because the viscous dissipation is considered to be detrimental to the function of hearing-sound amplification and frequency tuning-the cochlea uses cellular actuators to overcome the dissipation. Compared to extensive investigations on the cellular actuators, the dissipating mechanisms have not been given appropriate attention, and there is little consensus on damping models. For example, many theoretical studies use an inviscid fluid approximation and lump the viscous effect to viscous damping components. Others neglect viscous dissipation in the organ of Corti but consider fluid viscosity. We have developed a computational model of the cochlea that incorporates viscous fluid dynamics, organ of Corti microstructural mechanics, and electrophysiology of the outer hair cells. The model is validated by comparing with existing measurements, such as the viscoelastic response of the tectorial membrane, and the cochlear input impedance. Using the model, we investigated how dissipation components in the cochlea affect its function. We found that the majority of acoustic energy dissipation of the cochlea occurs within the organ of Corti complex, not in the scalar fluids. Our model suggests that an appropriate dissipation can enhance the tuning quality by reducing the spread of energy provided by the outer hair cells' somatic motility.
Collapse
|
34
|
Lemons C, Sellon JB, Boatti E, Filizzola D, Freeman DM, Meaud J. Anisotropic Material Properties of Wild-Type and Tectb -/- Tectorial Membranes. Biophys J 2019; 116:573-585. [PMID: 30665694 DOI: 10.1016/j.bpj.2018.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/28/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022] Open
Abstract
The tectorial membrane (TM) is an extracellular matrix that is directly coupled with the mechanoelectrical receptors responsible for sensory transduction and amplification. As such, the TM is often hypothesized to play a key role in the remarkable sensory abilities of the mammalian cochlea. Genetic studies targeting TM proteins have shown that changes in TM structure dramatically affect cochlear function in mice. Precise information about the mechanical properties of the TMs of wild-type and mutant mice at audio frequencies is required to elucidate the role of the TM and to understand how these genetic mutations affect cochlear mechanics. In this study, images of isolated TM segments are used to determine both the radial and longitudinal motions of the TM in response to a harmonic radial excitation. The resulting longitudinally propagating radial displacement and highly spatially dependent longitudinal displacement are modeled using finite-element models that take into account the anisotropy and finite dimensions of TMs. An automated, least-square fitting algorithm is used to find the anisotropic material properties of wild-type and Tectb-/- mice at audio frequencies. Within the auditory frequency range, it is found that the TM is a highly viscoelastic and anisotropic structure with significantly higher stiffness in the direction of the collagen fibers. Although no decrease in the stiffness in the fiber direction is observed, the stiffness of the TM in shear and in the transverse direction is found to be significantly reduced in Tectb-/- mice. As a result, TMs of the mutant mice tend to be significantly more anisotropic within the frequency range examined in this study. The effects of the Tectb-/- mutation on the TM's anisotropic material properties may be responsible for the changes in cochlear tuning and sensitivity that have been previously reported for these mice.
Collapse
Affiliation(s)
- Charlsie Lemons
- G.W.W. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Jonathan B Sellon
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Elisa Boatti
- G.W.W. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Daniel Filizzola
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Dennis M Freeman
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Julien Meaud
- G.W.W. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
35
|
Spontaneous Otoacoustic Emissions in TectaY1870C/+ Mice Reflect Changes in Cochlear Amplification and How It Is Controlled by the Tectorial Membrane. eNeuro 2018; 5:eN-NWR-0314-18. [PMID: 30627650 PMCID: PMC6325554 DOI: 10.1523/eneuro.0314-18.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 12/26/2022] Open
Abstract
Spontaneous otoacoustic emissions (SOAEs) recorded from the ear canal in the absence of sound reflect cochlear amplification, an outer hair cell (OHC) process required for the extraordinary sensitivity and frequency selectivity of mammalian hearing. Although wild-type mice rarely emit, those with mutations that influence the tectorial membrane (TM) show an incidence of SOAEs similar to that in humans. In this report, we characterized mice with a missense mutation in Tecta, a gene required for the formation of the striated-sheet matrix within the core of the TM. Mice heterozygous for the Y1870C mutation (TectaY1870C/+) are prolific emitters, despite a moderate hearing loss. Additionally, Kimura’s membrane, into which the OHC stereocilia insert, separates from the main body of the TM, except at apical cochlear locations. Multimodal SOAEs are also observed in TectaY1870C/+ mice where energy is present at frequencies that are integer multiples of a lower-frequency SOAE (the primary). Second-harmonic SOAEs, at twice the frequency of a lower-frequency primary, are the most frequently observed. These secondary SOAEs are found in spatial regions where stimulus-evoked OAEs are small or in the noise floor. Introduction of high-level suppressors just above the primary SOAE frequency reduce or eliminate both primary and second-harmonic SOAEs. In contrast, second-harmonic SOAEs are not affected by suppressors, either above or below the second-harmonic SOAE frequency, even when they are much larger in amplitude. Hence, second-harmonic SOAEs do not appear to be spatially separated from their primaries, a finding that has implications for cochlear mechanics and the consequences of changes to TM structure.
Collapse
|
36
|
Trans-differentiation of outer hair cells into inner hair cells in the absence of INSM1. Nature 2018; 563:691-695. [PMID: 30305733 PMCID: PMC6279423 DOI: 10.1038/s41586-018-0570-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/14/2018] [Indexed: 01/09/2023]
Abstract
The mammalian cochlea contains two types of mechanosensory hair cells (HCs) that play different and critical roles in hearing. Inner hair cells (IHCs), with an elaborate presynaptic apparatus, signal to cochlear neurons and communicate sound information to the brain. Outer hair cells (OHCs) mechanically amplify sound-induced vibrations, enabling enhanced sensitivity to sound and sharp tuning. Cochlear HCs are solely generated during development and their death, most often of OHCs, is the main cause of deafness. OHCs and IHCs, together with supporting cells, originate embryonically from the prosensory region of the otocyst, but how HCs differentiate into two different types is unknown1–3. Here we show that Insm1, which encodes a zinc finger protein transiently expressed in nascent OHCs, consolidates their fate by preventing trans-differentiation into IHCs. In the absence of INSM1 many HCs born embryonically as OHCs switch fates to become mature IHCs. In order to identify the genetic mechanisms by which Insm1 operates, we compared transcriptomes of immature IHCs vs OHCs, as well as OHCs with and without INSM1. OHCs lacking INSM1 upregulate a set of genes, most of which are normally preferentially expressed by IHCs. The homeotic cell transformation of OHCs without INSM1 into IHCs reveals for the first time a mechanism by which these neighboring mechanosensory cells begin to differ: INSM1 represses a core set of early IHC-enriched genes in embryonic OHCs and makes them unresponsive to an IHC-inducing gradient, so that they proceed to mature as OHCs. Without INSM1, some of the OHCs upregulating these few IHC-enriched transcripts trans-differentiate into IHCs, revealing the first candidate genes for IHC-specific differentiation.
Collapse
|
37
|
Zhou Y, Takahashi S, Homma K, Duan C, Zheng J, Cheatham MA, Zheng J. The susceptibility of cochlear outer hair cells to cyclodextrin is not related to their electromotile activity. Acta Neuropathol Commun 2018; 6:98. [PMID: 30249300 PMCID: PMC6151916 DOI: 10.1186/s40478-018-0599-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/13/2018] [Indexed: 11/26/2022] Open
Abstract
Niemann-Pick Type C1 (NPC1) disease is a fatal neurovisceral disorder caused by dysfunction of NPC1 protein, which plays a role in intracellular cholesterol trafficking. The cholesterol-chelating agent, 2-hydroxypropyl-β-cyclodextrin (HPβCD), is currently undergoing clinical trials for treatment of this disease. Though promising in alleviating neurological symptoms, HPβCD causes irreversible hearing loss in NPC1 patients and outer hair cell (OHC) death in animal models. We recently found that HPβCD-induced OHC death can be significantly alleviated in a mouse model lacking prestin, an OHC-specific motor protein required for the high sensitivity and sharp frequency selectivity of mammalian hearing. Since cholesterol status is known to influence prestin’s electromotility, we examined how prestin contributes to HPβCD-induced OHC death in the disease context using the NPC1 knockout (KO) mouse model (NPC1-KO). We found normal expression and localization of prestin in NPC1-KO OHCs. Whole-cell patch-clamp recordings revealed a significant depolarization of the voltage-operating point of prestin in NPC1-KO mice, suggesting reduced levels of cholesterol in the lateral membrane of OHCs that lack NPC1. OHC loss and elevated thresholds were found for high frequency regions in NPC1-KO mice, whose OHCs retained their sensitivity to HPβCD. To investigate whether prestin’s electromotile function contributes to HPβCD-induced OHC death, the prestin inhibitor salicylate was co-administered with HPβCD to WT and NPC1-KO mice. Neither oral nor intraperitoneal administration of salicylate mitigated HPβCD-induced OHC loss. To further determine the contribution of prestin’s electromotile function, a mouse model expressing a virtually nonelectromotile prestin protein (499-prestin) was subjected to HPβCD treatment. 499-prestin knockin mice showed no resistance to HPβCD-induced OHC loss. As 499-prestin maintains its ability to bind cholesterol, our data imply that HPβCD-induced OHC death is ascribed to the structural role of prestin in maintaining the OHC’s lateral membrane, rather than its motor function.
Collapse
|
38
|
Booth KT, Kahrizi K, Najmabadi H, Azaiez H, Smith RJ. Old gene, new phenotype: splice-altering variants in CEACAM16 cause recessive non-syndromic hearing impairment. J Med Genet 2018; 55:555-560. [PMID: 29703829 PMCID: PMC6060001 DOI: 10.1136/jmedgenet-2018-105349] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/03/2018] [Accepted: 04/07/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hearing loss is a genetically and phenotypically heterogeneous disorder. OBJECTIVES The purpose of this study was to determine the genetic cause underlying the postlingual progressive hearing loss in two Iranian families. METHODS We used OtoSCOPE, a next-generation sequencing platform targeting >150 genes causally linked to deafness, to screen two deaf probands. Data analysis was completed using a custom bioinformatics pipeline, and variants were functionally assessed using minigene splicing assays. RESULTS We identified two homozygous splice-altering variants (c.37G>T and c.662-1G>C) in the CEACAM16 gene, segregating with the deafness in each family. The minigene splicing results revealed the c.37G>T results in complete skipping of exon 2 and loss of the AUG start site. The c.662-1G>C activates a cryptic splice site inside exon 5 resulting in a shift in the mRNA reading frame. CONCLUSIONS These results suggest that loss-of-function mutations in CEACAM16 result in postlingual progressive hearing impairment and further support the role of CEACAM16 in auditory function.
Collapse
Affiliation(s)
- Kevin T Booth
- Molecular Otolaryngology Renal Research Laboratories, Department of Otolaryngology-Head Neck Surgery, University of Iowa, Iowa City, Iowa
- The Interdisciplinary Graduate Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hela Azaiez
- Molecular Otolaryngology Renal Research Laboratories, Department of Otolaryngology-Head Neck Surgery, University of Iowa, Iowa City, Iowa
| | - Richard J Smith
- Molecular Otolaryngology Renal Research Laboratories, Department of Otolaryngology-Head Neck Surgery, University of Iowa, Iowa City, Iowa
- The Interdisciplinary Graduate Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
39
|
Wiwatpanit T, Remis NN, Ahmad A, Zhou Y, Clancy JC, Cheatham MA, García-Añoveros J. Codeficiency of Lysosomal Mucolipins 3 and 1 in Cochlear Hair Cells Diminishes Outer Hair Cell Longevity and Accelerates Age-Related Hearing Loss. J Neurosci 2018; 38:3177-3189. [PMID: 29453205 PMCID: PMC5884457 DOI: 10.1523/jneurosci.3368-17.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/16/2018] [Accepted: 02/02/2018] [Indexed: 01/11/2023] Open
Abstract
Acquired hearing loss is the predominant neurodegenerative condition associated with aging in humans. Although mutations on several genes are known to cause congenital deafness in newborns, few genes have been implicated in age-related hearing loss (ARHL), perhaps because its cause is likely polygenic. Here, we generated mice lacking lysosomal calcium channel mucolipins 3 and 1 and discovered that both male and female mice suffered a polygenic form of hearing loss. Whereas mucolipin 1 is ubiquitously expressed in all cells, mucolipin 3 is expressed in a small subset of cochlear cells, hair cells (HCs) and marginal cells of the stria vascularis, and very few other cell types. Mice lacking both mucolipins 3 and 1, but not either one alone, experienced hearing loss as early as at 1 month of age. The severity of hearing impairment progressed from high to low frequencies and increased with age. Early onset of ARHL in these mice was accompanied by outer HC (OHC) loss. Adult mice conditionally lacking mucolipins in HCs exhibited comparable auditory phenotypes, thereby revealing that the reason for OHC loss is mucolipin codeficiency in the HCs and not in the stria vascularis. Furthermore, we observed that OHCs lacking mucolipins contained abnormally enlarged lysosomes aggregated at the apical region of the cell, whereas other organelles appeared normal. We also demonstrated that these aberrant lysosomes in OHCs lost their membrane integrity through lysosomal membrane permeabilization, a known cause of cellular toxicity that explains why and how OHCs die, leading to premature ARHL.SIGNIFICANCE STATEMENT Presbycusis, or age-related hearing loss (ARHL), is a common characteristic of aging in mammals. Although many genes have been identified to cause deafness from birth in both humans and mice, only a few are known to associate with progressive ARHL, the most prevalent form of deafness. We have found that mice lacking two lysosomal channels, mucolipins 3 and 1, suffer accelerated ARHL due to auditory outer hair cell degeneration, the most common cause of hearing loss and neurodegenerative condition in humans. Lysosomes lacking mucolipins undergo organelle membrane permeabilization and promote cytotoxicity with age, revealing a novel mechanism of outer hair cell degeneration and ARHL. These results underscore the importance of lysosomes in hair cell survival and the maintenance of hearing.
Collapse
Affiliation(s)
- Teerawat Wiwatpanit
- Driskill Graduate Program in Life Sciences, Northwestern University, Chicago, Illinois 60611
- Department of Anesthesiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| | - Natalie N Remis
- Driskill Graduate Program in Life Sciences, Northwestern University, Chicago, Illinois 60611
- Department of Anesthesiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| | - Aisha Ahmad
- Communication Sciences and Disorders Knowles Hearing Center, Northwestern University, Evanston, Illinois 60208
| | - Yingjie Zhou
- Communication Sciences and Disorders Knowles Hearing Center, Northwestern University, Evanston, Illinois 60208
| | - John C Clancy
- Department of Anesthesiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| | - Mary Ann Cheatham
- Communication Sciences and Disorders Knowles Hearing Center, Northwestern University, Evanston, Illinois 60208
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Chicago, Illinois 60611, and
| | - Jaime García-Añoveros
- Driskill Graduate Program in Life Sciences, Northwestern University, Chicago, Illinois 60611,
- Department of Anesthesiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Chicago, Illinois 60611, and
- Departments of Neurology and Physiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
40
|
Goodyear RJ, Richardson GP. Structure, Function, and Development of the Tectorial Membrane: An Extracellular Matrix Essential for Hearing. Curr Top Dev Biol 2018; 130:217-244. [PMID: 29853178 DOI: 10.1016/bs.ctdb.2018.02.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The tectorial membrane is an extracellular matrix that lies over the apical surface of the auditory epithelia in the inner ears of reptiles, birds, and mammals. Recent studies have shown it is composed of a small set of proteins, some of which are only produced at high levels in the ear and many of which are the products of genes that, when mutated, cause nonsyndromic forms of human hereditary deafness. Quite how the proteins of the tectorial membrane are assembled within the lumen of the inner ear to form a structure that is precisely regulated in its size and physical properties along the length of a tonotopically organized hearing organ is a question that remains to be fully answered. In this brief review we will summarize what is known thus far about the structure, protein composition, and function of the tectorial membrane in birds and mammals, describe how the tectorial membrane develops, and discuss major events that have occurred during the evolution of this extracellular matrix.
Collapse
Affiliation(s)
- Richard J Goodyear
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Guy P Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom.
| |
Collapse
|
41
|
Mao B, Moss CF, Wilkinson GS. Age-dependent gene expression in the inner ear of big brown bats (Eptesicus fuscus). PLoS One 2017; 12:e0186667. [PMID: 29073148 PMCID: PMC5658057 DOI: 10.1371/journal.pone.0186667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 10/05/2017] [Indexed: 12/25/2022] Open
Abstract
For echolocating bats, hearing is essential for survival. Specializations for detecting and processing high frequency sounds are apparent throughout their auditory systems. Recent studies on echolocating mammals have reported evidence of parallel evolution in some hearing-related genes in which distantly related groups of echolocating animals (bats and toothed whales), cluster together in gene trees due to apparent amino acid convergence. However, molecular adaptations can occur not only in coding sequences, but also in the regulation of gene expression. The aim of this study was to examine the expression of hearing-related genes in the inner ear of developing big brown bats, Eptesicus fuscus, during the period in which echolocation vocalizations increase dramatically in frequency. We found that seven genes were significantly upregulated in juveniles relative to adults, and that the expression of four genes through development correlated with estimated age. Compared to available data for mice, it appears that expression of some hearing genes is extended in juvenile bats. These results are consistent with a prolonged growth period required to develop larger cochlea relative to body size, a later maturation of high frequency hearing, and a greater dependence on high frequency hearing in echolocating bats.
Collapse
Affiliation(s)
- Beatrice Mao
- Department of Biology, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Cynthia F. Moss
- Department of Psychological and Brain Sciences, Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Gerald S. Wilkinson
- Department of Biology, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
42
|
Fettiplace R. Hair Cell Transduction, Tuning, and Synaptic Transmission in the Mammalian Cochlea. Compr Physiol 2017; 7:1197-1227. [PMID: 28915323 DOI: 10.1002/cphy.c160049] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sound pressure fluctuations striking the ear are conveyed to the cochlea, where they vibrate the basilar membrane on which sit hair cells, the mechanoreceptors of the inner ear. Recordings of hair cell electrical responses have shown that they transduce sound via submicrometer deflections of their hair bundles, which are arrays of interconnected stereocilia containing the mechanoelectrical transducer (MET) channels. MET channels are activated by tension in extracellular tip links bridging adjacent stereocilia, and they can respond within microseconds to nanometer displacements of the bundle, facilitated by multiple processes of Ca2+-dependent adaptation. Studies of mouse mutants have produced much detail about the molecular organization of the stereocilia, the tip links and their attachment sites, and the MET channels localized to the lower end of each tip link. The mammalian cochlea contains two categories of hair cells. Inner hair cells relay acoustic information via multiple ribbon synapses that transmit rapidly without rundown. Outer hair cells are important for amplifying sound-evoked vibrations. The amplification mechanism primarily involves contractions of the outer hair cells, which are driven by changes in membrane potential and mediated by prestin, a motor protein in the outer hair cell lateral membrane. Different sound frequencies are separated along the cochlea, with each hair cell being tuned to a narrow frequency range; amplification sharpens the frequency resolution and augments sensitivity 100-fold around the cell's characteristic frequency. Genetic mutations and environmental factors such as acoustic overstimulation cause hearing loss through irreversible damage to the hair cells or degeneration of inner hair cell synapses. © 2017 American Physiological Society. Compr Physiol 7:1197-1227, 2017.
Collapse
Affiliation(s)
- Robert Fettiplace
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
43
|
Abdala C, Kalluri R. Towards a joint reflection-distortion otoacoustic emission profile: Results in normal and impaired ears. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:812. [PMID: 28863614 PMCID: PMC5552396 DOI: 10.1121/1.4996859] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 05/12/2023]
Abstract
Otoacoustic emissions (OAEs) provide salient information about cochlear function and dysfunction. Two broad classes of emissions, linear reflection and nonlinear distortion, arise via distinct cochlear processes and hence, appear to provide independent information about cochlear health and hearing. Considered in combination, these two OAE types may characterize sensory hearing loss most effectively. In this study, the level-dependent growth of stimulus-frequency OAEs (a reflection-type emission) and distortion-product OAEs (a distortion-type emission) were measured in ten normal-hearing ears and eight ears with slight-to-moderate sensorineural hearing loss. Metrics of OAE strength and compression were derived from OAE input/output functions and then considered in a combined fashion. Results indicate that SFOAEs and DPOAEs differ significantly in their strength and compression features. When SFOAE and DPOAE metrics are displayed together on a two-dimensional plot, relatively well-defined data clusters describe their normative relationship. In hearing-impaired ears, this relationship is disrupted but not in a uniform way across ears; ears with similar audiograms showed differently altered joint-OAE profiles. Hearing loss sometimes affected only one OAE or one more than the other. Results suggest a joint-OAE profile is promising and warrants study in a large group of subjects with sensory hearing loss of varied etiologies.
Collapse
Affiliation(s)
- Carolina Abdala
- Caruso Department of Otolaryngology, Auditory Research Center, University of Southern California, 1640 Marengo Street, Suite 326, Los Angeles, California 90033, USA
| | - Radha Kalluri
- Caruso Department of Otolaryngology, Auditory Research Center, University of Southern California, 1640 Marengo Street, Suite 326, Los Angeles, California 90033, USA
| |
Collapse
|
44
|
Takahashi S, Homma K, Zhou Y, Nishimura S, Duan C, Chen J, Ahmad A, Cheatham MA, Zheng J. Susceptibility of outer hair cells to cholesterol chelator 2-hydroxypropyl-β-cyclodextrine is prestin-dependent. Sci Rep 2016; 6:21973. [PMID: 26903308 PMCID: PMC4763217 DOI: 10.1038/srep21973] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/29/2016] [Indexed: 12/19/2022] Open
Abstract
Niemann-Pick type C1 disease (NPC1) is a fatal genetic disorder caused by impaired intracellular cholesterol trafficking. Recent studies reported ototoxicity of 2-hydroxypropyl- β-cyclodextrin (HPβCD), a cholesterol chelator and the only promising treatment for NPC1. Because outer hair cells (OHCs) are the only cochlear cells affected by HPβCD, we investigated whether prestin, an OHC-specific motor protein, might be involved. Single, high-dose administration of HPβCD resulted in OHC death in prestin wildtype (WT) mice whereas OHCs were largely spared in prestin knockout (KO) mice in the basal region, implicating prestin's involvement in ototoxicity of HPβCD. We found that prestin can interact with cholesterol in vitro, suggesting that HPβCD-induced ototoxicity may involve disruption of this interaction. Time-lapse analysis revealed that OHCs isolated from WT animals rapidly deteriorated upon HPβCD treatment while those from prestin-KOs tolerated the same regimen. These results suggest that a prestin-dependent mechanism contributes to HPβCD ototoxicity.
Collapse
MESH Headings
- 2-Hydroxypropyl-beta-cyclodextrin
- Animals
- Brain/drug effects
- Brain/metabolism
- Brain/pathology
- Cell Death/drug effects
- Chelating Agents/administration & dosage
- Chelating Agents/adverse effects
- Cholesterol/metabolism
- Disease Susceptibility
- Gene Expression
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/pathology
- Hearing Loss, Sensorineural/chemically induced
- Hearing Loss, Sensorineural/genetics
- Hearing Loss, Sensorineural/pathology
- Humans
- Mice
- Mice, Knockout
- Molecular Motor Proteins/deficiency
- Molecular Motor Proteins/genetics
- Neuroprotective Agents/administration & dosage
- Neuroprotective Agents/adverse effects
- Niemann-Pick Disease, Type C/drug therapy
- Niemann-Pick Disease, Type C/genetics
- Niemann-Pick Disease, Type C/metabolism
- Niemann-Pick Disease, Type C/pathology
- Time-Lapse Imaging
- beta-Cyclodextrins/administration & dosage
- beta-Cyclodextrins/adverse effects
Collapse
Affiliation(s)
- Satoe Takahashi
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA
| | - Kazuaki Homma
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA
- Knowles Hearing Center, Northwestern University, Evanston, IL 60208, USA
| | - Yingjie Zhou
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA
| | - Shinichi Nishimura
- Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Chongwen Duan
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA
| | - Jessie Chen
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA
| | - Aisha Ahmad
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA
| | - Mary Ann Cheatham
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA
- Knowles Hearing Center, Northwestern University, Evanston, IL 60208, USA
| | - Jing Zheng
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA
- Knowles Hearing Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
45
|
Increased Spontaneous Otoacoustic Emissions in Mice with a Detached Tectorial Membrane. J Assoc Res Otolaryngol 2015; 17:81-8. [PMID: 26691158 DOI: 10.1007/s10162-015-0551-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022] Open
Abstract
Mutations in genes encoding tectorial membrane (TM) proteins are a significant cause of human hereditary hearing loss (Hildebrand et al. 2011), and several mouse models have been developed to study the functional significance of this accessory structure in the mammalian cochlea. In this study, we use otoacoustic emissions (OAE), signals obtained from the ear canal that provide a measure of cochlear function, to characterize a mouse in which the TM is detached from the spiral limbus due to an absence of otoancorin (Otoa, Lukashkin et al. 2012). Our results demonstrate that spontaneous emissions (SOAE), sounds produced in the cochlea without stimulation, increase dramatically in mice with detached TMs even though their hearing sensitivity is reduced. This behavior is unusual because wild-type (WT) controls are rarely spontaneous emitters. SOAEs in mice lacking Otoa predominate around 7 kHz, which is much lower than in either WT animals when they generate SOAEs or in mutant mice in which the TM protein Ceacam16 is absent (Cheatham et al. 2014). Although both mutants lack Hensen's stripe, loss of this TM feature is only observed in regions coding frequencies greater than ~15 kHz in WT mice so its loss cannot explain the low-frequency, de novo SOAEs observed in mice lacking Otoa. The fact that ~80 % of mice lacking Otoa produce SOAEs even when they generate smaller distortion product OAEs suggests that the active process is still functioning in these mutants but the system(s) involved have become less stable due to alterations in TM structure.
Collapse
|
46
|
Prestin-Dependence of Outer Hair Cell Survival and Partial Rescue of Outer Hair Cell Loss in PrestinV499G/Y501H Knockin Mice. PLoS One 2015; 10:e0145428. [PMID: 26682723 PMCID: PMC4684303 DOI: 10.1371/journal.pone.0145428] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/23/2015] [Indexed: 12/23/2022] Open
Abstract
A knockin (KI) mouse expressing mutated prestinV499G/Y501H (499 prestin) was created to study cochlear amplification. Recordings from isolated outer hair cells (OHC) in this mutant showed vastly reduced electromotility and, as a consequence, reduced hearing sensitivity. Although 499 prestin OHCs were normal in stiffness and longer than OHCs lacking prestin, accelerated OHC death was unexpectedly observed relative to that documented in prestin knockout (KO) mice. These observations imply an additional role of prestin in OHC maintenance besides its known requirement for mammalian cochlear amplification. In order to gain mechanistic insights into prestin-associated OHC loss, we implemented several interventions to improve survival. First, 499 prestin KI’s were backcrossed to Bak KO mice, which lack the mitochondrial pro-apoptotic gene Bak. Because oxidative stress is implicated in OHC death, another group of 499 prestin KI mice was fed the antioxidant diet, Protandim. 499 KI mice were also backcrossed onto the FVB murine strain, which retains excellent high-frequency hearing well into adulthood, to reduce the compounding effect of age-related hearing loss associated with the original 499 prestin KIs. Finally, a compound heterozygous (chet) mouse expressing one copy of 499 prestin and one copy of KO prestin was also created to reduce quantities of 499 prestin protein. Results show reduction in OHC death in chets, and in 499 prestin KIs on the FVB background, but only a slight improvement in OHC survival for mice receiving Protandim. We also report that improved OHC survival in 499 prestin KIs had little effect on hearing phenotype, reaffirming the original contention about the essential role of prestin’s motor function in cochlear amplification.
Collapse
|
47
|
Power dissipation in the subtectorial space of the mammalian cochlea is modulated by inner hair cell stereocilia. Biophys J 2015; 108:479-88. [PMID: 25650916 DOI: 10.1016/j.bpj.2014.12.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/26/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022] Open
Abstract
The stereocilia bundle is the mechano-transduction apparatus of the inner ear. In the mammalian cochlea, the stereocilia bundles are situated in the subtectorial space (STS)--a micrometer-thick space between two flat surfaces vibrating relative to each other. Because microstructures vibrating in fluid are subject to high-viscous friction, previous studies considered the STS as the primary place of energy dissipation in the cochlea. Although there have been extensive studies on how metabolic energy is used to compensate the dissipation, much less attention has been paid to the mechanism of energy dissipation. Using a computational model, we investigated the power dissipation in the STS. The model simulates fluid flow around the inner hair cell (IHC) stereocilia bundle. The power dissipation in the STS because of the presence IHC stereocilia increased as the stimulating frequency decreased. Along the axis of the stimulating frequency, there were two asymptotic values of power dissipation. At high frequencies, the power dissipation was determined by the shear friction between the two flat surfaces of the STS. At low frequencies, the power dissipation was dominated by the viscous friction around the IHC stereocilia bundle--the IHC stereocilia increased the STS power dissipation by 50- to 100-fold. There exists a characteristic frequency for STS power dissipation, CFSTS, defined as the frequency where power dissipation drops to one-half of the low frequency value. The IHC stereocilia stiffness and the gap size between the IHC stereocilia and the tectorial membrane determine the characteristic frequency. In addition to the generally assumed shear flow, nonshear STS flow patterns were simulated. Different flow patterns have little effect on the CFSTS. When the mechano-transduction of the IHC was tuned near the vibrating frequency, the active motility of the IHC stereocilia bundle reduced the power dissipation in the STS.
Collapse
|
48
|
Hofrichter MAH, Nanda I, Gräf J, Schröder J, Shehata-Dieler W, Vona B, Haaf T. A Novel de novo Mutation in CEACAM16 Associated with Postlingual Hearing Impairment. Mol Syndromol 2015; 6:156-63. [PMID: 26648831 DOI: 10.1159/000439576] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2015] [Indexed: 12/20/2022] Open
Abstract
Mutations in CEACAM16 cause autosomal dominant nonsyndromic hearing loss (DFNA4B). So far, 2 families have been reported with segregating missense mutations, both in the immunoglobulin constant domain A of the CEACAM16 protein. In this study, we used the TruSight One panel to investigate a parent-child trio without familial history of hearing loss and one affected child. When filtering for recessive inheritance and de novo events, we discovered a de novo CEACAM16 mutation (c.1094T>G, p.Leu365Arg) as the sole likely pathogenic variant. The de novo mutation was confirmed by Sanger sequencing and STR analysis. The proband's hearing loss closely matches the described onset and severity for DFNA4B. We present the third CEACAM16 variant and the first de novo mutation in CEACAM16. This de novo mutation is robustly described as a pathogenic mutation according to in silico mutation prediction tools and affects a highly conserved amino acid in the most strongly conserved CEACAM16 N2 domain. Our strategy of screening family trios enhances de novo mutation discovery and the exclusion of other variants of potential interest through pedigree filtering.
Collapse
Affiliation(s)
| | - Indrajit Nanda
- Department of Human Genetics, Julius Maximilian University, Würzburg, Germany
| | - Jens Gräf
- Department of Human Genetics, Julius Maximilian University, Würzburg, Germany
| | - Jörg Schröder
- Department of Human Genetics, Julius Maximilian University, Würzburg, Germany
| | - Wafaa Shehata-Dieler
- Department of Otorhinolaryngology, Comprehensive Hearing Center, University Hospitals, Würzburg, Germany
| | - Barbara Vona
- Department of Human Genetics, Julius Maximilian University, Würzburg, Germany
| | - Thomas Haaf
- Department of Human Genetics, Julius Maximilian University, Würzburg, Germany
| |
Collapse
|
49
|
Nishio SY, Hattori M, Moteki H, Tsukada K, Miyagawa M, Naito T, Yoshimura H, Iwasa YI, Mori K, Shima Y, Sakuma N, Usami SI. Gene expression profiles of the cochlea and vestibular endorgans: localization and function of genes causing deafness. Ann Otol Rhinol Laryngol 2015; 124 Suppl 1:6S-48S. [PMID: 25814645 DOI: 10.1177/0003489415575549] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVES We sought to elucidate the gene expression profiles of the causative genes as well as the localization of the encoded proteins involved in hereditary hearing loss. METHODS Relevant articles (as of September 2014) were searched in PubMed databases, and the gene symbols of the genes reported to be associated with deafness were located on the Hereditary Hearing Loss Homepage using localization, expression, and distribution as keywords. RESULTS Our review of the literature allowed us to systematize the gene expression profiles for genetic deafness in the inner ear, clarifying the unique functions and specific expression patterns of these genes in the cochlea and vestibular endorgans. CONCLUSIONS The coordinated actions of various encoded molecules are essential for the normal development and maintenance of auditory and vestibular function.
Collapse
Affiliation(s)
- Shin-Ya Nishio
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Mitsuru Hattori
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hideaki Moteki
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Keita Tsukada
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Maiko Miyagawa
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takehiko Naito
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hidekane Yoshimura
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoh-Ichiro Iwasa
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kentaro Mori
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yutaka Shima
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoko Sakuma
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan Department of Otorhinolaryngology and Head and Neck Surgery, Yokohama City University School of Medicine, Yokohama, Japan
| | - Shin-Ichi Usami
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
50
|
Wang H, Wang X, He C, Li H, Qing J, Grati M, Hu Z, Li J, Hu Y, Xia K, Mei L, Wang X, Yu J, Chen H, Jiang L, Liu Y, Men M, Zhang H, Guan L, Xiao J, Zhang J, Liu X, Feng Y. Exome sequencing identifies a novel CEACAM16 mutation associated with autosomal dominant nonsyndromic hearing loss DFNA4B in a Chinese family. J Hum Genet 2015; 60:119-126. [PMID: 25589040 PMCID: PMC4375019 DOI: 10.1038/jhg.2014.114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/21/2014] [Accepted: 11/25/2014] [Indexed: 12/28/2022]
Abstract
Autosomal dominant nonsyndromic hearing loss (ADNSHL/DFNA) is a highly genetically heterogeneous disorder. Hitherto only about 30 ADNSHL-causing genes have been identified and many unknown genes remain to be discovered. In this research, genome-wide linkage analysis mapped the disease locus to a 4.3 Mb region on chromosome 19q13 in SY-026, a five-generation nonconsanguineous Chinese family affected by late-onset and progressive ADNSHL. This linkage region showed partial overlap with the previously reported DFNA4. Simultaneously, probands were analyzed using exome capture followed by next generation sequencing. Encouragingly, a heterozygous missense mutation, c.505G>A (p.G169R) in exon 3 of the CEACAM16 gene (carcinoembryonic antigen-related cell adhesion molecule 16), was identified via this combined strategy. Sanger sequencing verified that the mutation co-segregated with hearing loss in the family and that it was not present in 200 unrelated control subjects with matched ancestry. This is the second report in the literature of a family with ADNSHL caused by CEACAM16 mutation. Immunofluorescence staining and Western blots also prove CEACAM16 to be a secreted protein. Furthermore, our studies in transfected HEK293T cells show that the secretion efficacy of the mutant CEACAM16 is much lower than that of the wild-type, suggesting a deleterious effect of the sequence variant.
Collapse
Affiliation(s)
- Honghan Wang
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.,Department of Head and Neck Surgery, Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Xinwei Wang
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Chufeng He
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Haibo Li
- State Key Laboratory of Medical Genetics of China, Changsha, Hunan, China
| | - Jie Qing
- Department of Otorhinolaryngology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Mhamed Grati
- Department of Otorhinolaryngology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Zhengmao Hu
- State Key Laboratory of Medical Genetics of China, Changsha, Hunan, China
| | - Jiada Li
- State Key Laboratory of Medical Genetics of China, Changsha, Hunan, China
| | - Yiqiao Hu
- State Key Laboratory of Medical Genetics of China, Changsha, Hunan, China
| | - Kun Xia
- State Key Laboratory of Medical Genetics of China, Changsha, Hunan, China
| | - Lingyun Mei
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Xingwei Wang
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Jianjun Yu
- Department of Head and Neck Surgery, Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Hongsheng Chen
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Lu Jiang
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Yalan Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Meichao Men
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.,Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hailin Zhang
- Department of Head and Neck Surgery, Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
| | | | | | | | - Xuezhong Liu
- Department of Otorhinolaryngology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Yong Feng
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.,State Key Laboratory of Medical Genetics of China, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| |
Collapse
|