1
|
Männel C, Ramos-Sanchez J, Obrig H, Ahissar M, Schaadt G. Perceptual anchoring: Children with dyslexia benefit less than controls from contextual repetitions in speech processing. Clin Neurophysiol 2024; 166:117-128. [PMID: 39153460 DOI: 10.1016/j.clinph.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVES Individuals with dyslexia perceive and utilize statistical features in the auditory input deficiently. The present study investigates whether affected children also benefit less from repeating context tones as perceptual anchors for subsequent speech processing. METHODS In an event-related potential study, eleven-year-old children with dyslexia (n = 21) and without dyslexia (n = 20) heard syllable pairs, with the first syllable either receiving a constant pitch (anchor) or variable pitch (no-anchor), while second syllables were identical across conditions. RESULTS Children with and without dyslexia showed smaller auditory P2 responses to constant-pitch versus variable-pitch first syllables, while only control children additionally showed smaller N1 and faster P1 responses. This suggests less automatic processing of anchor repetitions in dyslexia. For the second syllables, both groups showed faster P2 responses following anchor than no-anchor first syllables, but only controls additionally showed smaller P2 responses. CONCLUSIONS Children with and without dyslexia show differences in anchor effects. While both groups seem to allocate less attention to speech stimuli after contextual repetitions, children with dyslexia display less facilitation in speech processing from acoustic anchors. SIGNIFICANCE Altered anchoring in the linguistic domain may contribute to the difficulties of individuals with dyslexia in establishing long-term representations of speech.
Collapse
Affiliation(s)
- Claudia Männel
- Department of Audiology and Phoniatrics, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany; Clinic for Cognitive Neurology, University of Leipzig, Liebigstr. 16, 04103 Leipzig, Germany.
| | - Jessica Ramos-Sanchez
- Donders Institute for Brain, Cognition, and Behaviour, Thomas van Aquinostraat 4, 6525 GD Nijmegen, Netherlands
| | - Hellmuth Obrig
- Clinic for Cognitive Neurology, University of Leipzig, Liebigstr. 16, 04103 Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany
| | - Merav Ahissar
- ELSC Center for Brain Research, Hebrew University of Jerusalem
| | - Gesa Schaadt
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany; Department of Education and Psychology, Freie Universität Berlin, Schwendenerstr. 33, 14195 Berlin, Germany
| |
Collapse
|
2
|
Kimel E, Daikhin L, Jakoby H, Ahissar M. Reduced benefit from long-term item frequency contributes to short-term memory deficits in dyslexia. Mem Cognit 2024:10.3758/s13421-024-01601-z. [PMID: 38956011 DOI: 10.3758/s13421-024-01601-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 07/04/2024]
Abstract
Dyslexia, a specific difficulty in acquiring proficient reading, is also characterized by reduced short-term memory (STM) capacity. Extensive research indicates that individuals with developmental dyslexia (IDDs) benefit less from exposure, and this hampers their long-term knowledge accumulation. It is well established that long-term knowledge has a great effect on performance in STM tasks, and thus IDDs' reduced benefit of exposure could potentially reduce their relative performance in such tasks, especially when frequent items, such as digit-words, are used. In this study we used a standard, widely used, STM assessment: the Digit Span subtest from the Wechsler Adult Intelligence Scale. The task was conducted twice: in native language and in second language. As exposure to native language is greater than exposure to second language, we predicted that IDDs' performance in the task administered in native language will reveal a larger group difference as compared to second language, due to IDDs' reduced benefit of item frequency. The prediction was confirmed, in line with the hypothesis that reduced STM in dyslexia to a large extent reflects reduced benefits from long-term item frequency and not a reduced STM per se.
Collapse
Affiliation(s)
- Eva Kimel
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel.
- Department of Psychology, The University of York, York, North Yorkshire, YO10 5DD, UK.
| | - Luba Daikhin
- Department of Psychology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Hilla Jakoby
- Department of Psychology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
- Department of Communication Disorders, Hadassah Academic College, Jerusalem, Israel
| | - Merav Ahissar
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
- Department of Psychology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| |
Collapse
|
3
|
Govani V, Shastry A, Iosifescu D, Govil P, Mayer M, Sobeih T, Choo T, Wall M, Sehatpour P, Kantrowitz J. Augmentation of learning in schizophrenia by D-serine is related to auditory and frontally-generated biomarkers: A randomized, double-blind, placebo-controlled study. RESEARCH SQUARE 2023:rs.3.rs-2943290. [PMID: 37293030 PMCID: PMC10246259 DOI: 10.21203/rs.3.rs-2943290/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Auditory cognition is impaired in schizophrenia, and typically engages a complex, distributed, hierarchical network, including both auditory and frontal input. We recently demonstrated proof of principle for the target engagement of an N-methyl-D-aspartate-type glutamate receptor (NMDAR) agonist + auditory targeted remediation (d-serine+AudRem) combination, showing significant improvement in auditory-learning induced plasticity and mismatch negativity. In this secondary analysis, we report on frontal EEG outcomes, assessing for both generalized effects and the mechanism of auditory plasticity. 21 schizophrenia or schizoaffective disorder participants were randomized to three 1x weekly AudRem + double-blind d-serine (100 mg/kg) visits. In AudRem, participants indicated which paired tone was higher in pitch. The focus of this secondary analysis was a frontally (premotor) mediated EEG outcome- event-related desynchronization in the b band (b-ERD), which was shown to be sensitive to AudRem in previous studies. d-Serine+AudRem led to significant improvement in b-ERD power across the retention and motor preparation intervals (F 1,18 =6.0, p=0.025) vs. AudRem alone. b-ERD was significantly related to baseline cognition, but not auditory-learning induced plasticity. The principal finding of this prespecified secondary analysis are that in addition to improving auditory based biomarkers, the d-serine+AudRem combination led to significant improvement in biomarkers thought to represent frontally mediated dysfunction, suggesting potential generalization of effects. Changes in auditory-learning induced plasticity were independent of these frontally mediated biomarkers. Ongoing work will assess whether d-serine+AudRem is sufficient to remediate cognition or whether targeting frontal NMDAR deficits with higher-level remediation may also be required. Trial Registration: NCT03711500.
Collapse
|
4
|
Repeated series learning revisited with a novel prediction on the reduced effect of item frequency in dyslexia. Sci Rep 2022; 12:13521. [PMID: 35941176 PMCID: PMC9359986 DOI: 10.1038/s41598-022-16805-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Developmental dyslexia, a difficulty with acquiring fluent reading, has also been characterized by reduced short-term memory (STM) capacity, which is often operationalized with span tasks. The low performance of individuals with dyslexia (IDDs) in such tasks is commonly attributed to poor phonological memory. However, we suggest an alternative explanation based on the observation that many times the items that are used in spans tasks are high-frequency items (e.g., digit words). We suggest that IDDs do not enjoy the benefit of item frequency to the same extent as controls, and thus their performance in span tasks is especially hampered. On the contrary, learning of repeated sequences was shown to be largely independent of item frequency, and therefore this type of learning may be unimpaired in dyslexia. To test both predictions, we used the Hebb-learning paradigm. We found that IDDs’ performance is especially poor compared to controls’ when high-frequency items are used, and that their repeated series learning does not differ from that of controls. Taken together with existing literature, our findings suggest that impaired learning of repeated series is not a core characteristic of dyslexia, and that the reports on reduced STM in dyslexia may to a large extent be explained by reduced benefit of item frequency.
Collapse
|
5
|
Manning C, Hulks V, Tibber MS, Dakin SC. Integration of visual motion and orientation signals in dyslexic children: an equivalent noise approach. ROYAL SOCIETY OPEN SCIENCE 2022; 9:200414. [PMID: 35592763 PMCID: PMC9066306 DOI: 10.1098/rsos.200414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Dyslexic individuals have been reported to have reduced global motion sensitivity, which could be attributed to various causes including atypical magnocellular or dorsal stream function, impaired spatial integration, increased internal noise and/or reduced external noise exclusion. Here, we applied an equivalent noise experimental paradigm alongside a traditional motion-coherence task to determine what limits global motion processing in dyslexia. We also presented static analogues of the motion tasks (orientation tasks) to investigate whether perceptual differences in dyslexia were restricted to motion processing. We compared the performance of 48 dyslexic and 48 typically developing children aged 8 to 14 years in these tasks and used equivalent noise modelling to estimate levels of internal noise (the precision associated with estimating each element's direction/orientation) and sampling (the effective number of samples integrated to judge the overall direction/orientation). While group differences were subtle, dyslexic children had significantly higher internal noise estimates for motion discrimination, and higher orientation-coherence thresholds, than typical children. Thus, while perceptual differences in dyslexia do not appear to be restricted to motion tasks, motion and orientation processing seem to be affected differently. The pattern of results also differs from that previously reported in autistic children, suggesting perceptual processing differences are condition-specific.
Collapse
Affiliation(s)
- Catherine Manning
- Department of Experimental Psychology, University of Oxford, UK
- School of Psychology and Clinical Language Sciences, University of Reading, UK
| | - Victoria Hulks
- Department of Experimental Psychology, University of Oxford, UK
| | - Marc S. Tibber
- Department of Clinical, Educational and Health Psychology, UCL, UK
| | - Steven C. Dakin
- School of Optometry and Vision Science, University of Auckland, New Zealand
- UCL Institute of Ophthalmology, University College London, UK
| |
Collapse
|
6
|
Jacewicz E, Arzbecker LJ, Fox RA. Perception of indexical cues in speech by children and adults with and without dyslexia: Regional dialect and gender identification. DYSLEXIA (CHICHESTER, ENGLAND) 2022; 28:60-78. [PMID: 34612551 DOI: 10.1002/dys.1702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/07/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Auditory research in developmental dyslexia proposes that deficient auditory processing of speech underlies difficulties with reading and spelling. Focusing predominantly on phonological processing, studies have not yet addressed the role of the speaker-related (indexical) properties of speech that enable the formation of phonological representations. Here, we assess auditory processing of indexical characteristics cueing a speaker's regional dialect and gender to determine whether dyslexia constraints recognition of dialect features and voice gender. Adults and children aged 11-14 years with dyslexia and their age-matched controls responded to 360 unique sentences extracted from spontaneous conversations of 40 speakers. In addition to the original unprocessed speech, there were two focused filtered conditions (using lowpass filtering at 400 Hz and 8-channel noise vocoding) probing listeners' responses to segmental and prosodic cues. Compared with controls, both groups with dyslexia were significantly limited in their abilities to recognize dialect features from either set of cues. The results for gender suggest that their comparatively worse gender recognition in the noise-vocoded condition was possibly related to poor temporal resolution. We propose that the deficient processing of indexical cues by individuals with dyslexia originates in peripheral auditory processes, of which impaired processing of relevant temporal cues in amplitude envelope is a likely candidate.
Collapse
Affiliation(s)
- Ewa Jacewicz
- Department of Speech and Hearing Science, The Ohio State University, Columbus, Ohio, USA
| | - Lian J Arzbecker
- Department of Speech and Hearing Science, The Ohio State University, Columbus, Ohio, USA
| | - Robert Allen Fox
- Department of Speech and Hearing Science, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
7
|
Beach SD, Lim SJ, Cardenas-Iniguez C, Eddy MD, Gabrieli JDE, Perrachione TK. Electrophysiological correlates of perceptual prediction error are attenuated in dyslexia. Neuropsychologia 2022; 165:108091. [PMID: 34801517 PMCID: PMC8807066 DOI: 10.1016/j.neuropsychologia.2021.108091] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/09/2021] [Accepted: 11/17/2021] [Indexed: 01/30/2023]
Abstract
A perceptual adaptation deficit often accompanies reading difficulty in dyslexia, manifesting in poor perceptual learning of consistent stimuli and reduced neurophysiological adaptation to stimulus repetition. However, it is not known how adaptation deficits relate to differences in feedforward or feedback processes in the brain. Here we used electroencephalography (EEG) to interrogate the feedforward and feedback contributions to neural adaptation as adults with and without dyslexia viewed pairs of faces and words in a paradigm that manipulated whether there was a high probability of stimulus repetition versus a high probability of stimulus change. We measured three neural dependent variables: expectation (the difference between prestimulus EEG power with and without the expectation of stimulus repetition), feedforward repetition (the difference between event-related potentials (ERPs) evoked by an expected change and an unexpected repetition), and feedback-mediated prediction error (the difference between ERPs evoked by an unexpected change and an expected repetition). Expectation significantly modulated prestimulus theta- and alpha-band EEG in both groups. Unexpected repetitions of words, but not faces, also led to significant feedforward repetition effects in the ERPs of both groups. However, neural prediction error when an unexpected change occurred instead of an expected repetition was significantly weaker in dyslexia than the control group for both faces and words. These results suggest that the neural and perceptual adaptation deficits observed in dyslexia reflect the failure to effectively integrate perceptual predictions with feedforward sensory processing. In addition to reducing perceptual efficiency, the attenuation of neural prediction error signals would also be deleterious to the wide range of perceptual and procedural learning abilities that are critical for developing accurate and fluent reading skills.
Collapse
Affiliation(s)
- Sara D. Beach
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A.,Program in Speech and Hearing Bioscience and Technology, Harvard University, 260 Longwood Avenue, Boston, MA 02115 U.S.A
| | - Sung-Joo Lim
- Department of Speech, Language, and Hearing Sciences, Boston University, 635 Commonwealth Avenue, Boston, MA 02215 U.S.A
| | - Carlos Cardenas-Iniguez
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A
| | - Marianna D. Eddy
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A
| | - John D. E. Gabrieli
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A
| | - Tyler K. Perrachione
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A.,Department of Speech, Language, and Hearing Sciences, Boston University, 635 Commonwealth Avenue, Boston, MA 02215 U.S.A.,Correspondence: Tyler K. Perrachione, Ph.D., Department of Speech, Language, and Hearing Sciences, Boston University, 635 Commonwealth Ave., Boston, MA 02215, Phone: +1.617.358.7410,
| |
Collapse
|
8
|
Dissecting the Roles of Supervised and Unsupervised Learning in Perceptual Discrimination Judgments. J Neurosci 2021; 41:757-765. [PMID: 33380471 PMCID: PMC7842757 DOI: 10.1523/jneurosci.0757-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/26/2020] [Accepted: 11/05/2020] [Indexed: 11/21/2022] Open
Abstract
Our ability to compare sensory stimuli is a fundamental cognitive function, which is known to be affected by two biases: choice bias, which reflects a preference for a given response, and contraction bias, which reflects a tendency to perceive stimuli as similar to previous ones. To test whether both reflect supervised processes, we designed feedback protocols aimed to modify them and tested them in human participants. Choice bias was readily modifiable. However, contraction bias was not. To compare these results to those predicted from an optimal supervised process, we studied a noise-matched optimal linear discriminator (Perceptron). In this model, both biases were substantially modified, indicating that the “resilience” of contraction bias to feedback does not maximize performance. These results suggest that perceptual discrimination is a hierarchical, two-stage process. In the first, stimulus statistics are learned and integrated with representations in an unsupervised process that is impenetrable to external feedback. In the second, a binary judgment, learned in a supervised way, is applied to the combined percept. SIGNIFICANCE STATEMENT The seemingly effortless process of inferring physical reality from the sensory input is highly influenced by previous knowledge, leading to perceptual biases. Two common ones are contraction bias (the tendency to perceive stimuli as similar to previous ones) and choice bias (the tendency to prefer a specific response). Combining human psychophysical experiments with computational modeling we show that they reflect two different learning processes. Contraction bias reflects unsupervised learning of stimuli statistics, whereas choice bias results from supervised or reinforcement learning. This dissociation reveals a hierarchical, two-stage process. The first, where stimuli statistics are learned and integrated with representations, is unsupervised. The second, where a binary judgment is applied to the combined percept, is learned in a supervised way.
Collapse
|
9
|
Jaffe-Dax S, Eigsti IM. Perceptual inference is impaired in individuals with ASD and intact in individuals who have lost the autism diagnosis. Sci Rep 2020; 10:17085. [PMID: 33051465 PMCID: PMC7554034 DOI: 10.1038/s41598-020-72896-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/07/2020] [Indexed: 11/09/2022] Open
Abstract
Beyond the symptoms which characterize their diagnoses, individuals with autism spectrum disorder (ASD) show enhanced performance in simple perceptual discrimination tasks. Often attributed to superior sensory sensitivities, enhanced performance may also reflect a weaker bias towards previously perceived stimuli. This study probes perceptual inference in a group of individuals who have lost the autism diagnosis (LAD); that is, they were diagnosed with ASD in early childhood but have no current ASD symptoms. Groups of LAD, current ASD, and typically developing (TD) participants completed an auditory discrimination task. Individuals with TD showed a bias towards previously perceived stimuli-a perceptual process called "contraction bias"; that is, their representation of a given tone was contracted towards the preceding trial stimulus in a manner that is Bayesian optimal. Similarly, individuals in the LAD group showed a contraction bias. In contrast, individuals with current ASD showed a weaker contraction bias, suggesting reduced perceptual inferencing. These findings suggest that changes that characterize LAD extend beyond the social and communicative symptoms of ASD, impacting perceptual domains. Measuring perceptual processing earlier in development in ASD will tap the causality between changes in perceptual and symptomatological domains. Further, the characterization of perceptual inference could reveal meaningful individual differences in complex high-level behaviors.
Collapse
Affiliation(s)
- Sagi Jaffe-Dax
- Department of Psychology, Princeton University, Princeton, NJ, 08544, USA.
| | - Inge-Marie Eigsti
- Department of Psychological Sciences and Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
10
|
Kimel E, Weiss AH, Jakoby H, Daikhin L, Ahissar M. Short-term memory capacity and sensitivity to language statistics in dyslexia and among musicians. Neuropsychologia 2020; 149:107624. [PMID: 32920031 PMCID: PMC7768182 DOI: 10.1016/j.neuropsychologia.2020.107624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 10/26/2022]
Abstract
Poor short-term memory (STM) capacity in individuals with dyslexia (IDDs) and enhanced STM capacity in musicians are well documented, yet their causes are disputed. Previous studies also found poor use of stimuli statistics by IDDs and enhanced use by musicians. We hypothesized that these observations are functionally related, as follows: Enhanced sensitivity to statistics facilitates musicians' benefit from each exposure, and reduced sensitivity to statistics hinders IDDs' benefit. Thus, larger group differences are expected for larger exposure: STM capacity, which is sensitive to item familiarity, will thus be larger among musicians, and smaller among IDDS, particularly for high-frequency items. Testing this hypothesis using syllable span, we found that musicians' advantage and IDDs' difficulty were indeed larger for high-frequency syllables than for low-frequency ones. By contrast, benefits from sequence repetition did not differ between musicians, controls and IDDs, suggesting that online sequence learning is based on a different mechanism. To test this dissociation we recruited, in addition to native Hebrew speakers, native English speakers, matched to the Hebrew-speaking controls. Their spans for high-frequency syllables in Hebrew, which do not have high frequency in English, were small - as expected from reduced exposure to these syllables. Yet, their benefit from sequence repetition was similar to that of the three Hebrew-speaking groups. Taken together, these experiments suggest that different sensitivities to item frequency explain some of the population-related variability in STM tasks. By contrast, benefits from sequence repetition do not depend on item familiarity, and do not differ between groups.
Collapse
Affiliation(s)
- Eva Kimel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel.
| | - Atalia Hai Weiss
- Department of Psychology, The Hebrew University, Mt. Scopus, Jerusalem, 9190501, Israel; Department of Communication Disorders, Hadassah Academic College, 37 Hanevi'im St.Jerusalem 9101001, Israel
| | - Hilla Jakoby
- Department of Psychology, The Hebrew University, Mt. Scopus, Jerusalem, 9190501, Israel; Department of Communication Disorders, Hadassah Academic College, 37 Hanevi'im St.Jerusalem 9101001, Israel
| | - Luba Daikhin
- Department of Psychology, The Hebrew University, Mt. Scopus, Jerusalem, 9190501, Israel
| | - Merav Ahissar
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel; Department of Psychology, The Hebrew University, Mt. Scopus, Jerusalem, 9190501, Israel
| |
Collapse
|
11
|
Sysoeva OV, Molholm S, Djukic A, Frey HP, Foxe JJ. Atypical processing of tones and phonemes in Rett Syndrome as biomarkers of disease progression. Transl Psychiatry 2020; 10:188. [PMID: 32522978 PMCID: PMC7287060 DOI: 10.1038/s41398-020-00877-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 12/27/2022] Open
Abstract
Due to severe motor impairments and the lack of expressive language abilities seen in most patients with Rett Syndrome (RTT), it has proven extremely difficult to obtain accurate measures of auditory processing capabilities in this population. Here, we examined early auditory cortical processing of pure tones and more complex phonemes in females with Rett Syndrome (RTT), by recording high-density auditory evoked potentials (AEP), which allow for objective evaluation of the timing and severity of processing deficits along the auditory processing hierarchy. We compared AEPs of 12 females with RTT to those of 21 typically developing (TD) peers aged 4-21 years, interrogating the first four major components of the AEP (P1: 60-90 ms; N1: 100-130 ms; P2: 135-165 ms; and N2: 245-275 ms). Atypicalities were evident in RTT at the initial stage of processing. Whereas the P1 showed increased amplitude to phonemic inputs relative to tones in TD participants, this modulation by stimulus complexity was absent in RTT. Interestingly, the subsequent N1 did not differ between groups, whereas the following P2 was hugely diminished in RTT, regardless of stimulus complexity. The N2 was similarly smaller in RTT and did not differ as a function of stimulus type. The P2 effect was remarkably robust in differentiating between groups with near perfect separation between the two groups despite the wide age range of our samples. Given this robustness, along with the observation that P2 amplitude was significantly associated with RTT symptom severity, the P2 has the potential to serve as a monitoring, treatment response, or even surrogate endpoint biomarker. Compellingly, the reduction of P2 in patients with RTT mimics findings in animal models of RTT, providing a translational bridge between pre-clinical and human research.
Collapse
Affiliation(s)
- Olga V. Sysoeva
- grid.412750.50000 0004 1936 9166The Cognitive Neurophysiology Laboratory, Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY USA ,grid.240283.f0000 0001 2152 0791The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY USA ,grid.4886.20000 0001 2192 9124The Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Sophie Molholm
- grid.412750.50000 0004 1936 9166The Cognitive Neurophysiology Laboratory, Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY USA ,grid.240283.f0000 0001 2152 0791The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY USA
| | - Aleksandra Djukic
- grid.240283.f0000 0001 2152 0791The Rett Syndrome Center, Department of Neurology, Montefiore Medical Center & Albert Einstein College of Medicine, Bronx, NY USA
| | - Hans-Peter Frey
- grid.240283.f0000 0001 2152 0791The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY USA
| | - John J. Foxe
- grid.412750.50000 0004 1936 9166The Cognitive Neurophysiology Laboratory, Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY USA ,grid.240283.f0000 0001 2152 0791The Cognitive Neurophysiology Laboratory, Departments of Pediatrics and Neuroscience, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY USA
| |
Collapse
|
12
|
de la Garrigue N, Glasser J, Sehatpour P, Iosifescu DV, Dias E, Carlson M, Shope C, Sobeih T, Choo TH, Wall MM, Kegeles LS, Gangwisch J, Mayer M, Brazis S, De Baun HM, Wolfer S, Bermudez D, Arnold M, Rette D, Meftah AM, Conant M, Lieberman JA, Kantrowitz JT. Grant Report on d-Serine Augmentation of Neuroplasticity-Based Auditory Learning in Schizophrenia †. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2020; 5:e200018. [PMID: 32856005 PMCID: PMC7448686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We report on the rationale and design of an ongoing NIMH sponsored R61-R33 project in schizophrenia/schizoaffective disorder. This project studies augmenting the efficacy of auditory neuroplasticity cognitive remediation (AudRem) with d-serine, an N-methyl-d-aspartate-type glutamate receptor (NMDAR) glycine-site agonist. We operationalize improved (smaller) thresholds in pitch (frequency) between successive auditory stimuli after AudRem as improved plasticity, and mismatch negativity (MMN) and auditory θ as measures of functional target engagement of both NMDAR agonism and plasticity. Previous studies showed that AudRem alone produces significant, but small cognitive improvements, while d-serine alone improves symptoms and MMN. However, the strongest results for plasticity outcomes (improved pitch thresholds, auditory MMN and θ) were found when combining d-serine and AudRem. AudRem improvements correlated with reading and other auditory cognitive tasks, suggesting plasticity improvements are predictive of functionally relevant outcomes. While d-serine appears to be efficacious for acute AudRem enhancement, the optimal dose remains an open question, as does the ability of combined d-serine + AudRem to produce sustained improvement. In the ongoing R61, 45 schizophrenia patients will be randomized to receive three placebo-controlled, double-blind d-serine + AudRem sessions across three separate 15 subject dose cohorts (80/100/120 mg/kg). Successful completion of the R61 is defined by ≥moderate effect size changes in target engagement and correlation with function, without safety issues. During the three-year R33, we will assess the sustained effects of d-serine + AudRem. In addition to testing a potentially viable treatment, this project will develop a methodology to assess the efficacy of novel NMDAR modulators, using d-serine as a "gold-standard".
Collapse
Affiliation(s)
| | - Juliana Glasser
- New York State Psychiatric Institute, New York, NY 10032, USA
| | - Pejman Sehatpour
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA,Nathan Kline Institute, Orangeburg, NY 10962, USA
| | - Dan V. Iosifescu
- Nathan Kline Institute, Orangeburg, NY 10962, USA,NYU Langone Medical Center, New York, NY 10016, USA
| | - Elisa Dias
- Nathan Kline Institute, Orangeburg, NY 10962, USA,NYU Langone Medical Center, New York, NY 10016, USA
| | - Marlene Carlson
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | - Tarek Sobeih
- Nathan Kline Institute, Orangeburg, NY 10962, USA
| | - Tse-Hwei Choo
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Melanie M. Wall
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Lawrence S. Kegeles
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - James Gangwisch
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Megan Mayer
- New York State Psychiatric Institute, New York, NY 10032, USA
| | | | | | | | - Dalton Bermudez
- New York State Psychiatric Institute, New York, NY 10032, USA
| | - Molly Arnold
- Nathan Kline Institute, Orangeburg, NY 10962, USA
| | | | - Amir M. Meftah
- New York State Psychiatric Institute, New York, NY 10032, USA
| | - Melissa Conant
- New York State Psychiatric Institute, New York, NY 10032, USA
| | - Jeffrey A. Lieberman
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Joshua T. Kantrowitz
- New York State Psychiatric Institute, New York, NY 10032, USA,Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA,Nathan Kline Institute, Orangeburg, NY 10962, USA,Correspondence: Joshua T. Kantrowitz, ; Tel.: +1-646-774-6738
| |
Collapse
|
13
|
Kahta S, Schiff R. Deficits in statistical leaning of auditory sequences among adults with dyslexia. DYSLEXIA (CHICHESTER, ENGLAND) 2019; 25:142-157. [PMID: 31006948 DOI: 10.1002/dys.1618] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/13/2019] [Accepted: 03/27/2019] [Indexed: 05/14/2023]
Abstract
Recently, it has been suggested that developmental dyslexia (DD) is related to deficits in general mechanisms of statistical learning (SL). The aim of the current study was to explore these relations using a nonlinguistic auditory artificial grammar learning (A-AGL) task. Most studies using AGL to explore the role of SL among readers with dyslexia used visual stimuli. The current study explored SL abilities among adults with DD using a nonlinguistic auditory task, because evidence suggests that SL is affected by the modality of stimuli. Forty-eight (21 DD and 27 typically developed [TD]) adults participated in two A-AGL tasks: implicit and explicit. The results showed a significant difference between the groups, as TD readers outperformed adults with DD. This difference in performance supports the SL deficit hypothesis among adults with dyslexia, although the causal relations between auditory SL and reading still require further examination. In addition, no difference was found between the implicit and explicit tasks, suggesting that unlike the visual AGL, participants with DD do not benefit from elevating attentional resources during A-AGL.
Collapse
Affiliation(s)
- Shani Kahta
- Learning Disabilities Studies MA Program, Haddad Center for Dyslexia and Learning Disabilities, School of Education, Bar-Ilan University, Ramat GAN, Israel
| | - Rachel Schiff
- Learning Disabilities Studies MA Program, Haddad Center for Dyslexia and Learning Disabilities, School of Education, Bar-Ilan University, Ramat GAN, Israel
| |
Collapse
|
14
|
Ozernov-Palchik O, Wolf M, Patel AD. Relationships between early literacy and nonlinguistic rhythmic processes in kindergarteners. J Exp Child Psychol 2019; 167:354-368. [PMID: 29227852 DOI: 10.1016/j.jecp.2017.11.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 11/04/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
Abstract
A growing number of studies report links between nonlinguistic rhythmic abilities and certain linguistic abilities, particularly phonological skills. The current study investigated the relationship between nonlinguistic rhythmic processing, phonological abilities, and early literacy abilities in kindergarteners. A distinctive aspect of the current work was the exploration of whether processing of different types of rhythmic patterns is differentially related to kindergarteners' phonological and reading-related abilities. Specifically, we examined the processing of metrical versus nonmetrical rhythmic patterns, that is, patterns capable of being subdivided into equal temporal intervals or not (Povel & Essens, 1985). This is an important comparison because most music involves metrical sequences, in which rhythm often has an underlying temporal grid of isochronous units. In contrast, nonmetrical sequences are arguably more typical to speech rhythm, which is temporally structured but does not involve an underlying grid of equal temporal units. A rhythm discrimination app with metrical and nonmetrical patterns was administered to 74 kindergarteners in conjunction with cognitive and preliteracy measures. Findings support a relationship among rhythm perception, phonological awareness, and letter-sound knowledge (an essential precursor of reading). A mediation analysis revealed that the association between rhythm perception and letter-sound knowledge is mediated through phonological awareness. Furthermore, metrical perception accounted for unique variance in letter-sound knowledge above all other language and cognitive measures. These results point to a unique role for temporal regularity processing in the association between musical rhythm and literacy in young children.
Collapse
Affiliation(s)
- Ola Ozernov-Palchik
- Eliot Pearson Department of Child Study and Human Development, Tufts University, Medford, MA 02155, USA.
| | - Maryanne Wolf
- Eliot Pearson Department of Child Study and Human Development, Tufts University, Medford, MA 02155, USA
| | - Aniruddh D Patel
- Department of Psychology, Tufts University, Medford, MA 02155, USA; Azrieli Program in Brain, Mind & Consciousness, Canadian Institute for Advanced Research (CIFAR), Toronto, Canada
| |
Collapse
|
15
|
Lieder I, Adam V, Frenkel O, Jaffe-Dax S, Sahani M, Ahissar M. Perceptual bias reveals slow-updating in autism and fast-forgetting in dyslexia. Nat Neurosci 2019; 22:256-264. [DOI: 10.1038/s41593-018-0308-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022]
|
16
|
Jones MW, Kuipers JR, Nugent S, Miley A, Oppenheim G. Episodic traces and statistical regularities: Paired associate learning in typical and dyslexic readers. Cognition 2018; 177:214-225. [DOI: 10.1016/j.cognition.2018.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 12/23/2022]
|
17
|
Gabay Y, Holt LL. Short-term adaptation to sound statistics is unimpaired in developmental dyslexia. PLoS One 2018; 13:e0198146. [PMID: 29879142 PMCID: PMC5991687 DOI: 10.1371/journal.pone.0198146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 05/14/2018] [Indexed: 11/19/2022] Open
Abstract
Developmental dyslexia is presumed to arise from phonological impairments. Accordingly, people with dyslexia show speech perception deficits taken as indication of impoverished phonological representations. However, the nature of speech perception deficits in those with dyslexia remains elusive. Specifically, there is no agreement as to whether speech perception deficits arise from speech-specific processing impairments, or from general auditory impairments that might be either specific to temporal processing or more general. Recent studies show that general auditory referents such as Long Term Average Spectrum (LTAS, the distribution of acoustic energy across the duration of a sound sequence) affect speech perception. Here we examine the impact of preceding target sounds' LTAS on phoneme categorization to assess the nature of putative general auditory impairments associated with dyslexia. Dyslexic and typical listeners categorized speech targets varying perceptually from /ga/-/da/ preceded by speech and nonspeech tone contexts varying. Results revealed a spectrally contrastive influence of the preceding context LTAS on speech categorization, with a larger magnitude effect for nonspeech compared to speech precursors. Importantly, there was no difference in the presence or magnitude of the effects across dyslexia and control groups. These results demonstrate an aspect of general auditory processing that is spared in dyslexia, available to support phonemic processing when speech is presented in context.
Collapse
Affiliation(s)
- Yafit Gabay
- Department of Special Education, University of Haifa, Haifa, Israel
- Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel
| | - Lori L. Holt
- Carnegie Mellon University, Department of Psychology, Pittsburgh, United States of America
| |
Collapse
|
18
|
Ozernov-Palchik O, Patel AD. Musical rhythm and reading development: does beat processing matter? Ann N Y Acad Sci 2018; 1423:166-175. [PMID: 29781084 DOI: 10.1111/nyas.13853] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 01/24/2023]
Abstract
There is mounting evidence for links between musical rhythm processing and reading-related cognitive skills, such as phonological awareness. This may be because music and speech are rhythmic: both involve processing complex sound sequences with systematic patterns of timing, accent, and grouping. Yet, there is a salient difference between musical and speech rhythm: musical rhythm is often beat-based (based on an underlying grid of equal time intervals), while speech rhythm is not. Thus, the role of beat-based processing in the reading-rhythm relationship is not clear. Is there is a distinct relation between beat-based processing mechanisms and reading-related language skills, or is the rhythm-reading link entirely due to shared mechanisms for processing nonbeat-based aspects of temporal structure? We discuss recent evidence for a distinct link between beat-based processing and early reading abilities in young children, and suggest experimental designs that would allow one to further methodically investigate this relationship. We propose that beat-based processing taps into a listener's ability to use rich contextual regularities to form predictions, a skill important for reading development.
Collapse
Affiliation(s)
- Ola Ozernov-Palchik
- Eliot Pearson Department of Child Study and Human Development, Tufts University, Medford, Massachusetts
| | - Aniruddh D Patel
- Department of Psychology, Tufts University, Medford, Massachusetts
- Azrieli Program in Brain, Mind and Consciousness, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada
| |
Collapse
|
19
|
Jaffe-Dax S, Kimel E, Ahissar M. Shorter cortical adaptation in dyslexia is broadly distributed in the superior temporal lobe and includes the primary auditory cortex. eLife 2018; 7:30018. [PMID: 29488880 PMCID: PMC5860871 DOI: 10.7554/elife.30018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/27/2018] [Indexed: 12/25/2022] Open
Abstract
Studies of the performance of individuals with dyslexia in perceptual tasks suggest that their implicit inference of sound statistics is impaired. Previously, using two-tone frequency discrimination, we found that the effect of previous trials' frequencies on the judgments of individuals with dyslexia decays faster than the effect on controls' judgments, and that the adaptation (decrease of neural response to repeated stimuli) of their ERP responses to tones is shorter (Jaffe-Dax et al., 2017). Here, we show the cortical distribution of these abnormal dynamics of adaptation using fast-acquisition fMRI. We find that faster decay of adaptation in dyslexia is widespread, although the most significant effects are found in the left superior temporal lobe, including the auditory cortex. This broad distribution suggests that the faster decay of implicit memory of individuals with dyslexia is a general characteristic of their cortical dynamics, which also affects sensory cortices.
Collapse
Affiliation(s)
- Sagi Jaffe-Dax
- Department of Psychology, Princeton University, Princeton, United States
| | - Eva Kimel
- The Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Merav Ahissar
- The Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Psychology, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
20
|
Javitt DC, Lee M, Kantrowitz JT, Martinez A. Mismatch negativity as a biomarker of theta band oscillatory dysfunction in schizophrenia. Schizophr Res 2018; 191:51-60. [PMID: 28666633 DOI: 10.1016/j.schres.2017.06.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/11/2017] [Accepted: 06/14/2017] [Indexed: 11/19/2022]
Abstract
Mismatch negativity (MMN) is among the best established biomarkers of cortical dysfunction in schizophrenia. MMN generators are localized primarily to primary and secondary auditory regions, and are known to reflect activity mediated by cortical N-methyl-d-aspartate-type glutamate receptors (NMDAR). Nevertheless, mechanisms underlying MMN generation at the local circuit level remain incompletely understood. This review synthesizes recent advances in circuit-level conceptualization of MMN based upon neuro-oscillatory findings. In the neuro-oscillatory (aka event-related spectral perturbation, ERSP) approach, responses to sensory stimuli are decomposed into underlying frequency bands prior to analysis. MMN reflects activity primarily in theta (4-7Hz) frequency band, which is thought to depend primarily upon interplay between cortical pyramidal neurons and somatostatin (SST)-type local circuit GABAergic interneurons. Schizophrenia-related deficits in theta generation are also observed not only in MMN, but also in other auditory and visual contexts. At the local circuit level, SST interneurons are known to maintain tonic inhibition over cortical pyramidal interneurons. SST interneurons, in turn, are inhibited by a class of interneurons expressing vasoactive intestinal polypeptide (VIP). In rodents, SST interneurons have been shown to respond differentially to deviant vs. standard stimuli, and inhibition of SST interneurons has been found to selectively inhibit deviance-related activity in rodent visual cortex. Here we propose that deficits in theta frequency generation, as exemplified by MMN, may contribute significantly to cortical dysfunction in schizophrenia, and may be tied to impaired interplay between cortical pyramidal neurons and local circuit SST-type GABAergic interneurons.
Collapse
Affiliation(s)
- Daniel C Javitt
- Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, NY 10032, United States; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States.
| | - Migyung Lee
- Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, NY 10032, United States; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| | - Joshua T Kantrowitz
- Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, NY 10032, United States; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| | - Antigona Martinez
- Division of Experimental Therapeutics, Department of Psychiatry, Columbia University, New York, NY 10032, United States; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| |
Collapse
|
21
|
Perrachione TK, Del Tufo SN, Winter R, Murtagh J, Cyr A, Chang P, Halverson K, Ghosh SS, Christodoulou JA, Gabrieli JDE. Dysfunction of Rapid Neural Adaptation in Dyslexia. Neuron 2017; 92:1383-1397. [PMID: 28009278 DOI: 10.1016/j.neuron.2016.11.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/16/2016] [Accepted: 10/26/2016] [Indexed: 11/16/2022]
Abstract
Identification of specific neurophysiological dysfunctions resulting in selective reading difficulty (dyslexia) has remained elusive. In addition to impaired reading development, individuals with dyslexia frequently exhibit behavioral deficits in perceptual adaptation. Here, we assessed neurophysiological adaptation to stimulus repetition in adults and children with dyslexia for a wide variety of stimuli, spoken words, written words, visual objects, and faces. For every stimulus type, individuals with dyslexia exhibited significantly diminished neural adaptation compared to controls in stimulus-specific cortical areas. Better reading skills in adults and children with dyslexia were associated with greater repetition-induced neural adaptation. These results highlight a dysfunction of rapid neural adaptation as a core neurophysiological difference in dyslexia that may underlie impaired reading development. Reduced neurophysiological adaptation may relate to prior reports of reduced behavioral adaptation in dyslexia and may reveal a difference in brain functions that ultimately results in a specific reading impairment.
Collapse
Affiliation(s)
- Tyler K Perrachione
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Stephanie N Del Tufo
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rebecca Winter
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jack Murtagh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Abigail Cyr
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Patricia Chang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kelly Halverson
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Satrajit S Ghosh
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joanna A Christodoulou
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John D E Gabrieli
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
22
|
Heald SLM, Van Hedger SC, Nusbaum HC. Perceptual Plasticity for Auditory Object Recognition. Front Psychol 2017; 8:781. [PMID: 28588524 PMCID: PMC5440584 DOI: 10.3389/fpsyg.2017.00781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/26/2017] [Indexed: 01/25/2023] Open
Abstract
In our auditory environment, we rarely experience the exact acoustic waveform twice. This is especially true for communicative signals that have meaning for listeners. In speech and music, the acoustic signal changes as a function of the talker (or instrument), speaking (or playing) rate, and room acoustics, to name a few factors. Yet, despite this acoustic variability, we are able to recognize a sentence or melody as the same across various kinds of acoustic inputs and determine meaning based on listening goals, expectations, context, and experience. The recognition process relates acoustic signals to prior experience despite variability in signal-relevant and signal-irrelevant acoustic properties, some of which could be considered as "noise" in service of a recognition goal. However, some acoustic variability, if systematic, is lawful and can be exploited by listeners to aid in recognition. Perceivable changes in systematic variability can herald a need for listeners to reorganize perception and reorient their attention to more immediately signal-relevant cues. This view is not incorporated currently in many extant theories of auditory perception, which traditionally reduce psychological or neural representations of perceptual objects and the processes that act on them to static entities. While this reduction is likely done for the sake of empirical tractability, such a reduction may seriously distort the perceptual process to be modeled. We argue that perceptual representations, as well as the processes underlying perception, are dynamically determined by an interaction between the uncertainty of the auditory signal and constraints of context. This suggests that the process of auditory recognition is highly context-dependent in that the identity of a given auditory object may be intrinsically tied to its preceding context. To argue for the flexible neural and psychological updating of sound-to-meaning mappings across speech and music, we draw upon examples of perceptual categories that are thought to be highly stable. This framework suggests that the process of auditory recognition cannot be divorced from the short-term context in which an auditory object is presented. Implications for auditory category acquisition and extant models of auditory perception, both cognitive and neural, are discussed.
Collapse
|
23
|
Kantrowitz JT, Epstein ML, Beggel O, Rohrig S, Lehrfeld JM, Revheim N, Lehrfeld NP, Reep J, Parker E, Silipo G, Ahissar M, Javitt DC. Neurophysiological mechanisms of cortical plasticity impairments in schizophrenia and modulation by the NMDA receptor agonist D-serine. Brain 2017; 139:3281-3295. [PMID: 27913408 DOI: 10.1093/brain/aww262] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/20/2016] [Accepted: 08/29/2016] [Indexed: 11/12/2022] Open
Abstract
Schizophrenia is associated with deficits in cortical plasticity that affect sensory brain regions and lead to impaired cognitive performance. Here we examined underlying neural mechanisms of auditory plasticity deficits using combined behavioural and neurophysiological assessment, along with neuropharmacological manipulation targeted at the N-methyl-D-aspartate type glutamate receptor (NMDAR). Cortical plasticity was assessed in a cohort of 40 schizophrenia/schizoaffective patients relative to 42 healthy control subjects using a fixed reference tone auditory plasticity task. In a second cohort (n = 21 schizophrenia/schizoaffective patients, n = 13 healthy controls), event-related potential and event-related time-frequency measures of auditory dysfunction were assessed during administration of the NMDAR agonist d-serine. Mismatch negativity was used as a functional read-out of auditory-level function. Clinical trials registration numbers were NCT01474395/NCT02156908 Schizophrenia/schizoaffective patients showed significantly reduced auditory plasticity versus healthy controls (P = 0.001) that correlated with measures of cognitive, occupational and social dysfunction. In event-related potential/time-frequency analyses, patients showed highly significant reductions in sensory N1 that reflected underlying impairments in θ responses (P < 0.001), along with reduced θ and β-power modulation during retention and motor-preparation intervals. Repeated administration of d-serine led to intercorrelated improvements in (i) auditory plasticity (P < 0.001); (ii) θ-frequency response (P < 0.05); and (iii) mismatch negativity generation to trained versus untrained tones (P = 0.02). Schizophrenia/schizoaffective patients show highly significant deficits in auditory plasticity that contribute to cognitive, occupational and social dysfunction. d-serine studies suggest first that NMDAR dysfunction may contribute to underlying cortical plasticity deficits and, second, that repeated NMDAR agonist administration may enhance cortical plasticity in schizophrenia.
Collapse
Affiliation(s)
- Joshua T Kantrowitz
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA .,2 Division of Experimental Therapeutics, Departments of Psychiatry and Neuroscience, Columbia University, New York, NY, USA
| | - Michael L Epstein
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA.,3 Graduate Center, City University of New York, New York, NY, USA
| | - Odeta Beggel
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA
| | - Stephanie Rohrig
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA
| | - Jonathan M Lehrfeld
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA
| | - Nadine Revheim
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA
| | - Nayla P Lehrfeld
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA
| | - Jacob Reep
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA
| | - Emily Parker
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA
| | - Gail Silipo
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA
| | - Merav Ahissar
- 4 Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel C Javitt
- 1 Schizophrenia Research Center, Nathan Kline Institute, Orangeburg, NY, USA.,2 Division of Experimental Therapeutics, Departments of Psychiatry and Neuroscience, Columbia University, New York, NY, USA
| |
Collapse
|
24
|
Daikhin L, Raviv O, Ahissar M. Auditory Stimulus Processing and Task Learning Are Adequate in Dyslexia, but Benefits From Regularities Are Reduced. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2017; 60:471-479. [PMID: 28114605 DOI: 10.1044/2016_jslhr-h-16-0114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/07/2016] [Indexed: 06/06/2023]
Abstract
PURPOSE The reading deficit for people with dyslexia is typically associated with linguistic, memory, and perceptual-discrimination difficulties, whose relation to reading impairment is disputed. We proposed that automatic detection and usage of serial sound regularities for individuals with dyslexia is impaired (anchoring deficit hypothesis), leading to the formation of less reliable sound predictions. Agus, Carrión-Castillo, Pressnitzer, and Ramus, (2014) reported seemingly contradictory evidence by showing similar performance by participants with and without dyslexia in a demanding auditory task that contained task-relevant regularities. To carefully assess the sensitivity of participants with dyslexia to regularities of this task, we replicated their study. METHOD Thirty participants with and 24 without dyslexia performed the replicated task. On each trial, a 1-s noise stimulus was presented. Participants had to decide whether the stimulus contained repetitions (was constructed from a 0.5-s noise segment repeated twice) or not. It is implicit in this structure that some of the stimuli with repetitions were themselves repeated across trials. We measured the ability to detect within-noise repetitions and the sensitivity to cross-trial repetitions of the same noise stimuli. RESULTS We replicated the finding of similar mean performance. However, individuals with dyslexia were less sensitive to the cross-trial repetition of noise stimuli and tended to be more sensitive to repetitions in novel noise stimuli. CONCLUSION These findings indicate that online auditory processing for individuals with dyslexia is adequate but their implicit retention and usage of sound regularities is indeed impaired.
Collapse
Affiliation(s)
- Luba Daikhin
- Department of Psychology and Cognitive Sciences, Hebrew University of Jerusalem, Israel
| | - Ofri Raviv
- Edmond & Lily Safra Center for Brain Sciences, Interdisciplinary Center for Neural Computation, Hebrew University of Jerusalem, Israel
| | - Merav Ahissar
- Department of Psychology and Cognitive Sciences, Hebrew University of Jerusalem, IsraelEdmond & Lily Safra Center for Brain Sciences, Interdisciplinary Center for Neural Computation, Hebrew University of Jerusalem, Israel
| |
Collapse
|
25
|
Jaffe-Dax S, Frenkel O, Ahissar M. Dyslexics' faster decay of implicit memory for sounds and words is manifested in their shorter neural adaptation. eLife 2017; 6. [PMID: 28115055 PMCID: PMC5279949 DOI: 10.7554/elife.20557] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/09/2017] [Indexed: 11/13/2022] Open
Abstract
Dyslexia is a prevalent reading disability whose underlying mechanisms are still disputed. We studied the neural mechanisms underlying dyslexia using a simple frequency-discrimination task. Though participants were asked to compare the two tones in each trial, implicit memory of previous trials affected their responses. We hypothesized that implicit memory decays faster among dyslexics. We tested this by increasing the temporal intervals between consecutive trials, and by measuring the behavioral impact and ERP responses from the auditory cortex. Dyslexics showed a faster decay of implicit memory effects on both measures, with similar time constants. Finally, faster decay of implicit memory also characterized the impact of sound regularities in benefitting dyslexics' oral reading rate. Their benefit decreased faster as a function of the time interval from the previous reading of the same non-word. We propose that dyslexics’ shorter neural adaptation paradoxically accounts for their longer reading times, since it reduces their temporal window of integration of past stimuli, resulting in noisier and less reliable predictions for both simple and complex stimuli. Less reliable predictions limit their acquisition of reading expertise. DOI:http://dx.doi.org/10.7554/eLife.20557.001 The term “dyslexia” comes from the Greek for “difficulty with words”. People with dyslexia struggle with reading and spelling: they may mix up letters within words and tend to read and write more slowly than others. However, not every symptom of dyslexia is related to literacy. Affected individuals also differ from good readers on simple perceptual tasks, such as distinguishing between tones of different frequencies. In a series of trials involving discrimination between pairs of tones, a person’s performance on each trial will be influenced by the tones presented on previous trials. Both good readers and individuals with dyslexia automatically form a subconscious memory of the tones they hear, and use this memory to guide their performance on subsequent trials. However, people with dyslexia benefit less from this effect than good readers. Jaffe-Dax et al. have now identified the mechanism that underlies this phenomenon, revealing new insights into how dyslexia influences brain activity. By varying the interval between successive pairs of tones, the experiments showed that the memory of previous tones decays faster in people with dyslexia than in good readers. A similar effect occurs when the stimuli are nonsense words. Both good and poor readers manage to read nonsense words more quickly on their second attempt. However, people with dyslexia benefit less from the previous exposure when the gap between repetitions is longer than a couple of seconds. Further studies are needed to determine whether and how the faster decay of memory traces for words is related to impaired reading ability in people with dyslexia. One possibility is that the faster decay of memory traces makes it more difficult to predict future stimuli, which may impair reading. An imaging study is underway to investigate where in the brain this rapid decay of memory traces occurs. DOI:http://dx.doi.org/10.7554/eLife.20557.002
Collapse
Affiliation(s)
- Sagi Jaffe-Dax
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Psychology, Princeton University, Princeton, United States
| | - Or Frenkel
- Psychology Department, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Merav Ahissar
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Psychology Department, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
26
|
Neef NE, Müller B, Liebig J, Schaadt G, Grigutsch M, Gunter TC, Wilcke A, Kirsten H, Skeide MA, Kraft I, Kraus N, Emmrich F, Brauer J, Boltze J, Friederici AD. Dyslexia risk gene relates to representation of sound in the auditory brainstem. Dev Cogn Neurosci 2017; 24:63-71. [PMID: 28182973 PMCID: PMC6987796 DOI: 10.1016/j.dcn.2017.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/15/2017] [Accepted: 01/15/2017] [Indexed: 12/20/2022] Open
Abstract
Previous studies associate poor reading with unstable speech-evoked brainstem responses. DCDC2 and KIAA0319 risk alleles form a strong genetic link with developmental dyslexia. Genetic burden with KIAA0319 risk is related to unstable speech-evoked brainstem responses. Genetic burden with DCDC2 risk is related to intact speech-evoked brainstem responses. Revealed brain-gene relationships may inform the multifactorial pathophysiology of dyslexia.
Dyslexia is a reading disorder with strong associations with KIAA0319 and DCDC2. Both genes play a functional role in spike time precision of neurons. Strikingly, poor readers show an imprecise encoding of fast transients of speech in the auditory brainstem. Whether dyslexia risk genes are related to the quality of sound encoding in the auditory brainstem remains to be investigated. Here, we quantified the response consistency of speech-evoked brainstem responses to the acoustically presented syllable [da] in 159 genotyped, literate and preliterate children. When controlling for age, sex, familial risk and intelligence, partial correlation analyses associated a higher dyslexia risk loading with KIAA0319 with noisier responses. In contrast, a higher risk loading with DCDC2 was associated with a trend towards more stable responses. These results suggest that unstable representation of sound, and thus, reduced neural discrimination ability of stop consonants, occurred in genotypes carrying a higher amount of KIAA0319 risk alleles. Current data provide the first evidence that the dyslexia-associated gene KIAA0319 can alter brainstem responses and impair phoneme processing in the auditory brainstem. This brain-gene relationship provides insight into the complex relationships between phenotype and genotype thereby improving the understanding of the dyslexia-inherent complex multifactorial condition.
Collapse
Affiliation(s)
- Nicole E Neef
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.
| | - Bent Müller
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
| | - Johanna Liebig
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Gesa Schaadt
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; Department of Psychology, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Maren Grigutsch
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Thomas C Gunter
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Arndt Wilcke
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
| | - Holger Kirsten
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany; Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig and LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany
| | - Michael A Skeide
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Indra Kraft
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Nina Kraus
- Auditory Neuroscience Laboratory, Northwestern University, Evanston, IL 60208, USA
| | - Frank Emmrich
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
| | - Jens Brauer
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Johannes Boltze
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany; Department of Medical Cell Technology, Fraunhofer Research Institution for Marine Biotechnology, and Institute for Medical and Marine Biotechnology, University of Lübeck, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| |
Collapse
|
27
|
Perrachione TK, Del Tufo SN, Winter R, Murtagh J, Cyr A, Chang P, Halverson K, Ghosh SS, Christodoulou JA, Gabrieli JDE. Dysfunction of Rapid Neural Adaptation in Dyslexia. Neuron 2016. [PMID: 28009278 DOI: 10.1016/j.neuron.2016.11.020"] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
Identification of specific neurophysiological dysfunctions resulting in selective reading difficulty (dyslexia) has remained elusive. In addition to impaired reading development, individuals with dyslexia frequently exhibit behavioral deficits in perceptual adaptation. Here, we assessed neurophysiological adaptation to stimulus repetition in adults and children with dyslexia for a wide variety of stimuli, spoken words, written words, visual objects, and faces. For every stimulus type, individuals with dyslexia exhibited significantly diminished neural adaptation compared to controls in stimulus-specific cortical areas. Better reading skills in adults and children with dyslexia were associated with greater repetition-induced neural adaptation. These results highlight a dysfunction of rapid neural adaptation as a core neurophysiological difference in dyslexia that may underlie impaired reading development. Reduced neurophysiological adaptation may relate to prior reports of reduced behavioral adaptation in dyslexia and may reveal a difference in brain functions that ultimately results in a specific reading impairment.
Collapse
Affiliation(s)
- Tyler K Perrachione
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Stephanie N Del Tufo
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rebecca Winter
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jack Murtagh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Abigail Cyr
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Patricia Chang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kelly Halverson
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Satrajit S Ghosh
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joanna A Christodoulou
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John D E Gabrieli
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
28
|
Halag-Milo T, Stoppelman N, Kronfeld-Duenias V, Civier O, Amir O, Ezrati-Vinacour R, Ben-Shachar M. Beyond production: Brain responses during speech perception in adults who stutter. Neuroimage Clin 2016; 11:328-338. [PMID: 27298762 PMCID: PMC4893016 DOI: 10.1016/j.nicl.2016.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/03/2016] [Accepted: 02/18/2016] [Indexed: 12/02/2022]
Abstract
Developmental stuttering is a speech disorder that disrupts the ability to produce speech fluently. While stuttering is typically diagnosed based on one's behavior during speech production, some models suggest that it involves more central representations of language, and thus may affect language perception as well. Here we tested the hypothesis that developmental stuttering implicates neural systems involved in language perception, in a task that manipulates comprehensibility without an overt speech production component. We used functional magnetic resonance imaging to measure blood oxygenation level dependent (BOLD) signals in adults who do and do not stutter, while they were engaged in an incidental speech perception task. We found that speech perception evokes stronger activation in adults who stutter (AWS) compared to controls, specifically in the right inferior frontal gyrus (RIFG) and in left Heschl's gyrus (LHG). Significant differences were additionally found in the lateralization of response in the inferior frontal cortex: AWS showed bilateral inferior frontal activity, while controls showed a left lateralized pattern of activation. These findings suggest that developmental stuttering is associated with an imbalanced neural network for speech processing, which is not limited to speech production, but also affects cortical responses during speech perception.
Collapse
Affiliation(s)
- Tali Halag-Milo
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel; The Cognitive Science Program, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nadav Stoppelman
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Vered Kronfeld-Duenias
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Oren Civier
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Ofer Amir
- The Department of Communication Disorders, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ruth Ezrati-Vinacour
- The Department of Communication Disorders, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michal Ben-Shachar
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel; Department of English Literature and Linguistics, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|