1
|
Tumbala Gutti D, Carr R, Schmelz M, Rukwied R. Slow depolarizing electrical stimuli reveal differential time courses of nociceptor recovery after prolonged topical capsaicin in human skin. Eur J Pain 2025; 29:e4726. [PMID: 39297430 DOI: 10.1002/ejp.4726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/13/2024] [Accepted: 08/31/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND We examined de-functionalization and temporal functional recovery of C-nociceptor evoked pain after topical 8% capsaicin applied for 4 consecutive days. METHODS Capsaicin and placebo patches were applied to human forearm skin (n = 14). Cold, warmth and heat pain thresholds, pain NRS to electrical and thermal (48°C, 5 s) stimuli and axon reflex flare were recorded weekly for 49 days. Mechanical and heat sensitive ('polymodal') nociceptors were activated by single electrical half-period sinusoidal pulses (0.5 s, 1 Hz). Mechanical and heat insensitive ('silent') nociceptors were activated by 4 Hz sinusoidal stimuli. RESULTS Capsaicin abolished heat pain. Sensation to electrical sinusoidal stimulation was reduced but never abolished during the treatment. Pain to electrical 1 Hz 'polymodal' nociceptor stimulation took longer to recover than pain ratings to 4 Hz 2.5 s sinusoidal stimulation activating 'polymodal' and 'silent' nociceptors (35 vs. 21 days). Heat pain was indifferent to placebo from day 21-49. Axon reflex flare was abolished during capsaicin and only recovered to ~50% even after 49 days. CONCLUSIONS Capsaicin abolishes heat transduction at terminal nociceptive endings, whereas small-diameter axons sensitive to sinusoidal electrical stimulation can still be activated. 1 Hz depolarizing stimuli evoke burst discharges, as demonstrated before, and recover slower after capsaicin than single pulses induced by 4 Hz. The difference in recovery suggests differential time course of functional regeneration for C-nociceptor sub-types after capsaicin. All sensations recovered completely within 7 weeks in healthy subjects. Our findings contrast analgesia lasting for months in spontaneous neuropathic pain patients treated with 8% capsaicin. SIGNIFICANCE Sinusoidal electrical stimulation can still activate small diameter axons desensitized to heat after 4 consecutive days of topical 8% capsaicin application and reveals differential temporal functional regeneration of C-nociceptor sub-types. Electrical sinusoidal stimulation may detect such axons that no longer respond to heat stimuli in neuropathic skin.
Collapse
Affiliation(s)
- Divya Tumbala Gutti
- Experimental Pain Research, MCTN, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Richard Carr
- Experimental Pain Research, MCTN, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Martin Schmelz
- Experimental Pain Research, MCTN, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Roman Rukwied
- Experimental Pain Research, MCTN, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
2
|
Jiang H, Fang W, Feng Y, Liu X, Zhao J, Xu L, Han G, Long X. Bafilomycin A1 mitigates subchondral bone degeneration and pain in TMJOA rats. Int Immunopharmacol 2025; 147:113947. [PMID: 39756167 DOI: 10.1016/j.intimp.2024.113947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/14/2024] [Accepted: 12/22/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Pain and disability are primary concerns for temporomandibular joint osteoarthritis (TMJOA) patients, and the efficacy of current treatments remains controversial. Overactive osteoclasts are associated with subchondral bone degeneration and pain in OA. The vacuolar H+-ATPase (V-ATPase) is crucial for differentiation and function in osteoclasts, but its role in TMJOA is not well defined. This study aims to evaluate the effects of the V-ATPase inhibitor, bafilomycin A1 (Baf A1) on the progression and pain of TMJOA. MATERIALS AND METHODS Pain behavior tests, histological staining, tartrate-resistant acid phosphatase (TRAP) staining, immunofluorescence staining, and micro-CT analysis were conducted to evaluate the therapeutic efficacy of Baf A1 in monosodium iodoacetate-induced TMJOA in rats. Additionally, TRAP staining, enzyme-linked immunosorbent assay and immunofluorescence staining were used to assess the inhibitory effects of Baf a1 on the osteoclastogenesis, secretion of netrin-1 and neurite growth of trigeminal ganglion (TG) neurons. RESULTS Baf A1 significantly mitigated subchondral bone degeneration by suppressing osteoclastogenesis and subsequently inhibited cartilage degradation in TMJOA rats. Baf A1 also effectively alleviated pain behavior by inhibiting expression of netrin-1 and innervation of sensory nerve in TMJOA rats. In vitro assays of osteoclast and TG further demonstrated the inhibitory effects of Baf A1 on osteoclastogenesis, secretion of netrin-1 and neurite outgrowth of TG. CONCLUSIONS This study demonstrates that Baf A1 inhibits V-ATPase to mitigate TMJOA degeneration and pain by suppressing osteoclastogenesis and secretion of netrin-1, thereby suggesting it as a potential clinical treatment option for degeneration and pain of TMJOA.
Collapse
Affiliation(s)
- Henghua Jiang
- Department of Orthodontic Division II, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Wei Fang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Yaping Feng
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Xin Liu
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Jie Zhao
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Liqin Xu
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Guangli Han
- Department of Orthodontic Division II, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.
| | - Xing Long
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Mashoudy KD, Brooks SG, Andrade LF, Wagner JD, Yosipovitch G. From Compression to Itch: Exploring the Link Between Nerve Compression and Neuropathic Pruritus. Am J Clin Dermatol 2024:10.1007/s40257-024-00898-5. [PMID: 39417971 DOI: 10.1007/s40257-024-00898-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 10/19/2024]
Abstract
Neuropathic itch is a type of chronic pruritus resulting from neural dysfunction along the afferent pathway. It is often accompanied by abnormal sensations such as paresthesia, hyperesthesia, or hypoesthesia. This condition, which may involve motor or autonomic neural damage, significantly impacts patients' quality of life, causing severe itch and associated comorbidities such as depression, disrupted sleep, and social strain. Neuropathic itch accounts for 8% of chronic pruritus cases, though this may be underestimated. This comprehensive review focuses on nerve impingement as the primary pathophysiological mechanism for various forms of neuropathic itch including brachioradial pruritus (BRP), notalgia paresthetica (NP), and anogenital itch. BRP, often seen in middle-aged white women, manifests as pruritus in the dorsolateral forearms typically exacerbated by ultraviolet (UV) exposure and related to cervical spine pathology. NP, prevalent in middle-aged women, presents as pruritus in the upper back due to thoracic spine nerve compression. Anogenital pruritus, affecting 1-5% of adults, is often linked to lumbosacral spine issues after ruling out dermatologic conditions such as lichen sclerosus or lichen simplex chronicus. The pathophysiology of neuropathic itch involves both peripheral and central mechanisms, with nerve damage being a key factor. Diagnosis requires a thorough history, physical examination, and potentially imaging studies. Topical agents such as menthol, capsaicin, and lidocaine are used for mild cases, while systemic medications such as gabapentin, pregabalin, and antidepressants are prescribed for moderate to severe cases; however, no US Food and Drug Administration (FDA)-approved therapies currently exist specifically for neuropathic itch. Understanding the underlying neural dysfunction and appropriate therapeutic strategies is crucial for managing neuropathic itch effectively.
Collapse
Affiliation(s)
- Kayla D Mashoudy
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Sarah G Brooks
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Luis F Andrade
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Jaxon D Wagner
- Department of Orthopaedic Surgery, University of Miami Hospital, Miami, FL, 33136, USA
| | - Gil Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
4
|
Liu W, Jiang H, Ke J, Liu X, Feng Y, Hou J, Long X. Changes of Trigeminal Ganglion Neurons Innervating the Temporomandibular Joint in Chronic Pain Rat Model. Int J Dent 2024; 2024:7015382. [PMID: 39309636 PMCID: PMC11415243 DOI: 10.1155/2024/7015382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/05/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Background: Phenotype alterations of nociceptive neurons have been shown to be a key step in the pathogenesis of many pain-related diseases. However, it is unclear if the characteristic changes of temporomandibular joint (TMJ) primary afferent neurons are related to the pathogenesis of temporomandibular joint osteoarthritis (TMJOA) chronic pain. This study aimed to determine the morphological and neurochemical changes in trigeminal ganglion (TG) neurons innervating the TMJ in TMJOA chronic pain rats. Materials and Methods: Monosodium iodoacetate (MIA)-induced TMJOA chronic pain rat model was established (n = 6), and saline was injected in rats of the control group (n = 6). TMJ primary afferent neurons were labeled with retrograde tracing (Dil). The spatial distribution and the expression of calcitonin gene-related peptide (CGRP), isolectin B4 (IB4), and neurofilament 200 (NF200) of TMJ primary afferent neurons in TG were investigated using immunofluorescence. Intracellular calcium signaling was recorded by calcium imaging (n = 20). Results: TMJ primary afferent neurons were located only in the V3 region of the TG from both saline- and MIA-injected rats. The number of TG neurons innervating the TMJ was increased in MIA-injected rats. Elevated number and intracellular calcium concentration of small- and medium-sized instead of large-sized Dil+ TG neurons were found in MIA-injected rats. The upregulated expression of CGRP and IB4, but not NF200, in TG neurons innervating the rat TMJs was accompanied by TMJOA chronic pain. Conclusion: This study suggests that sensitization of small- to medium-sized Dil+ TG neurons and CGRP- and IB4-positive Dil+ TG neurons might contribute to the development of TMJOA chronic pain in rats. This will provide valuable information for more efficient control of TMJOA chronic pain.
Collapse
Affiliation(s)
- Wen Liu
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyGuanghua School of StomatologySun Yat-Sen University, Guangzhou, Guangdong, China
- State Key Laboratory of Oral and Maxillofacial Reconstruction and RegenerationKey Laboratory of Oral Biomedicine Ministry of EducationHubei Key Laboratory of StomatologySchool and Hospital of StomatologyWuhan University, Wuhan, Hubei, China
| | - Henghua Jiang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and RegenerationKey Laboratory of Oral Biomedicine Ministry of EducationHubei Key Laboratory of StomatologySchool and Hospital of StomatologyWuhan University, Wuhan, Hubei, China
| | - Jin Ke
- State Key Laboratory of Oral and Maxillofacial Reconstruction and RegenerationKey Laboratory of Oral Biomedicine Ministry of EducationHubei Key Laboratory of StomatologySchool and Hospital of StomatologyWuhan University, Wuhan, Hubei, China
| | - Xin Liu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and RegenerationKey Laboratory of Oral Biomedicine Ministry of EducationHubei Key Laboratory of StomatologySchool and Hospital of StomatologyWuhan University, Wuhan, Hubei, China
| | - Yaping Feng
- State Key Laboratory of Oral and Maxillofacial Reconstruction and RegenerationKey Laboratory of Oral Biomedicine Ministry of EducationHubei Key Laboratory of StomatologySchool and Hospital of StomatologyWuhan University, Wuhan, Hubei, China
| | - Jinsong Hou
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyGuanghua School of StomatologySun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xing Long
- State Key Laboratory of Oral and Maxillofacial Reconstruction and RegenerationKey Laboratory of Oral Biomedicine Ministry of EducationHubei Key Laboratory of StomatologySchool and Hospital of StomatologyWuhan University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Ständer S, Schmelz M. Skin Innervation. J Invest Dermatol 2024; 144:1716-1723. [PMID: 38402477 DOI: 10.1016/j.jid.2023.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 02/26/2024]
Abstract
All layers and appendages of the skin are densely innervated by afferent and efferent neurons providing sensory information and controlling skin perfusion and sweating. In mice, neuronal functions have been comprehensively linked to unique single-cell expression patterns and to characteristic arborization of nerve endings in skin and dorsal horn, whereas for humans, specific molecular markers for functional classes of afferent neurons are still lacking. Moreover, bidirectional communication between sensory neurons and local skin cells has become of particular interest, resulting in a broader physiological understanding of sensory function but also of trophic functions and immunomodulation in disease states.
Collapse
Affiliation(s)
- Sonja Ständer
- Department of Dermatology and Center for Chronic Pruritus, University Hospital, Münster, Germany
| | - Martin Schmelz
- Department of Experimental Pain Research, Mannheim Center for Translational Neuroscience (MCTN), Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
6
|
Dey S, Barkai O, Gokhman I, Suissa S, Haffner-Krausz R, Wigoda N, Feldmesser E, Ben-Dor S, Kovalenko A, Binshtok A, Yaron A. Kinesin family member 2A gates nociception. Cell Rep 2023; 42:113257. [PMID: 37851573 DOI: 10.1016/j.celrep.2023.113257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/23/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Abstract
Nociceptive axons undergo remodeling as they innervate their targets during development and in response to environmental insults and pathological conditions. How is nociceptive morphogenesis regulated? Here, we show that the microtubule destabilizer kinesin family member 2A (Kif2a) is a key regulator of nociceptive terminal structures and pain sensitivity. Ablation of Kif2a in sensory neurons causes hyperinnervation and hypersensitivity to noxious stimuli in young adult mice, whereas touch sensitivity and proprioception remain unaffected. Computational modeling predicts that structural remodeling is sufficient to explain the phenotypes. Furthermore, Kif2a deficiency triggers a transcriptional response comprising sustained upregulation of injury-related genes and homeostatic downregulation of highly specific channels and receptors at the late stage. The latter effect can be predicted to relieve the hyperexcitability of nociceptive neurons, despite persisting morphological aberrations, and indeed correlates with the resolution of pain hypersensitivity. Overall, we reveal a critical control node defining nociceptive terminal structure, which is regulating nociception.
Collapse
Affiliation(s)
- Swagata Dey
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Omer Barkai
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem 91120, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Irena Gokhman
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sapir Suissa
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rebecca Haffner-Krausz
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noa Wigoda
- Bioinformatics Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ester Feldmesser
- Bioinformatics Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shifra Ben-Dor
- Bioinformatics Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Andrew Kovalenko
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alexander Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem 91120, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avraham Yaron
- Department of Biomolecular Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
7
|
Renkhold L, Wiegmann H, Pfleiderer B, Süer A, Zeidler C, Pereira MP, Schmelz M, Ständer S, Agelopoulos K. Scratching increases epidermal neuronal branching and alters psychophysical testing responses in atopic dermatitis and brachioradial pruritus. Front Mol Neurosci 2023; 16:1260345. [PMID: 37795274 PMCID: PMC10546039 DOI: 10.3389/fnmol.2023.1260345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/25/2023] [Indexed: 10/06/2023] Open
Abstract
Background Chronic scratching imposes a major stress on the skin and can lead to itch intensity worsening, and consequently, patients may enter an itch-scratch cycle. This repetitive mechanical stress can result in lichenification, worsening of epidermal barrier function, and enhanced cutaneous inflammation. Furthermore, a reduction of intraepidermal nerve fibers was previously described in lichenification. Aim The aim of this study was to investigate the influence of chronic scratching on the epidermal neuroanatomy and on sensory changes, in particular the prevalence of hyperknesis and alloknesis in patients after mechanical, chemical, and electrical stimuli. Methods Analyses were performed on pruritic lichenified (chronically scratched), pruritic non-lichenified (not chronically scratched), and non-pruritic non-lesional (unaffected) skin areas of patients with inflammatory pruritus, i.e., atopic dermatitis (n = 35), and neuropathic pruritus, i.e., brachioradial pruritus (n = 34) vs. healthy matched controls (n = 64). Our fine-grained spatial skin characterization enabled specifically studying the differential effects of chronic scratching in inflammatory and neuropathic itch. Results Analysis of intraepidermal nerve fiber density showed rarefaction of fibers in all three skin areas of patients compared with healthy controls in both diagnoses. Even more, the two pruritic areas had significantly less nerve fibers than the unaffected skin, whereas electrically induced itch was massively increased. Epidermal branching of the remaining nerve fibers in lichenified/chronically scratched skin was increased, particularly in patients with brachioradial pruritus, which may contribute to the pronounced local neuronal sensitivity. Hyperknesis and alloknesis were found to increase independently of lichenification. Conclusion Our results indicate that chronic scratching may not affect intraepidermal nerve fiber density but leads to a stronger branching pattern of intraepidermal nerve fibers, which may contribute to local hypersensitivity. The increased sensitivity in the pruritic areas suggests mechanisms of peripheral sensitization, whereas the increased sensation of electrically and chemically induced itch in unaffected skin indicates central sensitization for itch.
Collapse
Affiliation(s)
- Lina Renkhold
- Department of Dermatology and Centre for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | - Henning Wiegmann
- Department of Dermatology and Centre for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | - Bettina Pfleiderer
- Clinic of Radiology, Medical Faculty, University Hospital Münster, University of Münster, Münster, Germany
| | - Aysenur Süer
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Claudia Zeidler
- Department of Dermatology and Centre for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | - Manuel P. Pereira
- Institute of Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Martin Schmelz
- Department of Experimental Pain Research, MCTN, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sonja Ständer
- Department of Dermatology and Centre for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | - Konstantin Agelopoulos
- Department of Dermatology and Centre for Chronic Pruritus, University Hospital Münster, Münster, Germany
| |
Collapse
|
8
|
Ivasiuk A, Matvieienko M, Kononenko NI, Duzhyy DE, Korogod SM, Voitenko N, Belan P. Diabetes-Induced Amplification of Nociceptive DRG Neuron Output by Upregulation of Somatic T-Type Ca 2+ Channels. Biomolecules 2023; 13:1320. [PMID: 37759720 PMCID: PMC10526307 DOI: 10.3390/biom13091320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The development of pain symptoms in peripheral diabetic neuropathy (PDN) is associated with the upregulation of T-type Ca2+ channels (T-channels) in the soma of nociceptive DRG neurons. Moreover, a block of these channels in DRG neurons effectively reversed mechanical and thermal hyperalgesia in animal diabetic models, indicating that T-channel functioning in these neurons is causally linked to PDN. However, no particular mechanisms relating the upregulation of T-channels in the soma of nociceptive DRG neurons to the pathological pain processing in PDN have been suggested. Here we have electrophysiologically identified voltage-gated currents expressed in nociceptive DRG neurons and developed a computation model of the neurons, including peripheral and central axons. Simulations showed substantially stronger sensitivity of neuronal excitability to diabetes-induced T-channel upregulation at the normal body temperature compared to the ambient one. We also found that upregulation of somatic T-channels, observed in these neurons under diabetic conditions, amplifies a single action potential invading the soma from the periphery into a burst of multiple action potentials further propagated to the end of the central axon. We have concluded that the somatic T-channel-dependent amplification of the peripheral nociceptive input to the spinal cord demonstrated in this work may underlie abnormal nociception at different stages of diabetes development.
Collapse
Affiliation(s)
- Arsentii Ivasiuk
- Department of Molecular Biophysics, Bogomoletz Institute of Physiology of NAS of Ukraine, 01024 Kyiv, Ukraine; (A.I.); (M.M.); (N.I.K.); (S.M.K.)
| | - Maksym Matvieienko
- Department of Molecular Biophysics, Bogomoletz Institute of Physiology of NAS of Ukraine, 01024 Kyiv, Ukraine; (A.I.); (M.M.); (N.I.K.); (S.M.K.)
| | - Nikolai I. Kononenko
- Department of Molecular Biophysics, Bogomoletz Institute of Physiology of NAS of Ukraine, 01024 Kyiv, Ukraine; (A.I.); (M.M.); (N.I.K.); (S.M.K.)
| | - Dmytro E. Duzhyy
- Department of Sensory Signaling, Bogomoletz Institute of Physiology of NAS of Ukraine, 01024 Kyiv, Ukraine;
| | - Sergiy M. Korogod
- Department of Molecular Biophysics, Bogomoletz Institute of Physiology of NAS of Ukraine, 01024 Kyiv, Ukraine; (A.I.); (M.M.); (N.I.K.); (S.M.K.)
| | - Nana Voitenko
- Department of Biomedicine and Neuroscience, Kyiv Academic University of NAS of Ukraine, 03142 Kyiv, Ukraine
- Research Center, Dobrobut Academy Medical School, 03022 Kyiv, Ukraine
| | - Pavel Belan
- Department of Molecular Biophysics, Bogomoletz Institute of Physiology of NAS of Ukraine, 01024 Kyiv, Ukraine; (A.I.); (M.M.); (N.I.K.); (S.M.K.)
- Department of Biomedicine and Neuroscience, Kyiv Academic University of NAS of Ukraine, 03142 Kyiv, Ukraine
| |
Collapse
|
9
|
Marra C, Hartke TV, Ringkamp M, Goldfarb M. Enhanced sodium channel inactivation by temperature and FHF2 deficiency blocks heat nociception. Pain 2023; 164:1321-1331. [PMID: 36607284 PMCID: PMC10166761 DOI: 10.1097/j.pain.0000000000002822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/13/2022] [Accepted: 10/31/2022] [Indexed: 01/07/2023]
Abstract
ABSTRACT Transient voltage-gated sodium currents are essential for the initiation and conduction of action potentials in neurons and cardiomyocytes. The amplitude and duration of sodium currents are tuned by intracellular fibroblast growth factor homologous factors (FHFs/iFGFs) that associate with the cytoplasmic tails of voltage-gated sodium channels (Na v s), and genetic ablation of Fhf genes disturbs neurological and cardiac functions. Among reported phenotypes, Fhf2null mice undergo lethal hyperthermia-induced cardiac conduction block attributable to the combined effects of FHF2 deficiency and elevated temperature on the cardiac sodium channel (Na v 1.5) inactivation rate. Fhf2null mice also display a lack of heat nociception, while retaining other somatosensory capabilities. Here, we use electrophysiological and computational methods to show that the heat nociception deficit can be explained by the combined effects of elevated temperature and FHF2 deficiency on the fast inactivation gating of Na v 1.7 and tetrodotoxin-resistant sodium channels expressed in dorsal root ganglion C fibers. Hence, neurological and cardiac heat-associated deficits in Fhf2null mice derive from shared impacts of FHF deficiency and temperature towards Na v inactivation gating kinetics in distinct tissues.
Collapse
Affiliation(s)
- Christopher Marra
- Department of Biological Sciences, Hunter College of City University, New York, NY, United States
- Program in Biology, Graduate Center of City University, New York, NY, United States
| | - Timothy V. Hartke
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Matthias Ringkamp
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Mitchell Goldfarb
- Department of Biological Sciences, Hunter College of City University, New York, NY, United States
- Program in Biology, Graduate Center of City University, New York, NY, United States
| |
Collapse
|
10
|
Caspi Y, Mazar M, Kushnir Y, Mazor Y, Katz B, Lev S, Binshtok AM. Structural plasticity of axon initial segment in spinal cord neurons underlies inflammatory pain. Pain 2023; 164:1388-1401. [PMID: 36645177 DOI: 10.1097/j.pain.0000000000002829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/19/2022] [Indexed: 01/17/2023]
Abstract
ABSTRACT Physiological or pathology-mediated changes in neuronal activity trigger structural plasticity of the action potential generation site-the axon initial segment (AIS). These changes affect intrinsic neuronal excitability, thus tuning neuronal and overall network output. Using behavioral, immunohistochemical, electrophysiological, and computational approaches, we characterized inflammation-related AIS plasticity in rat's superficial (lamina II) spinal cord dorsal horn (SDH) neurons and established how AIS plasticity regulates the activity of SDH neurons, thus contributing to pain hypersensitivity. We show that in naive conditions, AIS in SDH inhibitory neurons is located closer to the soma than in excitatory neurons. Shortly after inducing inflammation, when the inflammatory hyperalgesia is at its peak, AIS in inhibitory neurons is shifted distally away from the soma. The shift in AIS location is accompanied by the decrease in excitability of SDH inhibitory neurons. These AIS location and excitability changes are selective for inhibitory neurons and reversible. We show that AIS shift back close to the soma, and SDH inhibitory neurons' excitability increases to baseline levels following recovery from inflammatory hyperalgesia. The computational model of SDH inhibitory neurons predicts that the distal shift of AIS is sufficient to decrease the intrinsic excitability of these neurons. Our results provide evidence of inflammatory pain-mediated AIS plasticity in the central nervous system, which differentially affects the excitability of inhibitory SDH neurons and contributes to inflammatory hyperalgesia.
Collapse
Affiliation(s)
- Yaki Caspi
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael Mazar
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yishai Kushnir
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yoav Mazor
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel
| | - Ben Katz
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shaya Lev
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexander M Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
11
|
Kutafina E, Becker S, Namer B. Measuring pain and nociception: Through the glasses of a computational scientist. Transdisciplinary overview of methods. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1099282. [PMID: 36926544 PMCID: PMC10013045 DOI: 10.3389/fnetp.2023.1099282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/04/2023] [Indexed: 02/12/2023]
Abstract
In a healthy state, pain plays an important role in natural biofeedback loops and helps to detect and prevent potentially harmful stimuli and situations. However, pain can become chronic and as such a pathological condition, losing its informative and adaptive function. Efficient pain treatment remains a largely unmet clinical need. One promising route to improve the characterization of pain, and with that the potential for more effective pain therapies, is the integration of different data modalities through cutting edge computational methods. Using these methods, multiscale, complex, and network models of pain signaling can be created and utilized for the benefit of patients. Such models require collaborative work of experts from different research domains such as medicine, biology, physiology, psychology as well as mathematics and data science. Efficient work of collaborative teams requires developing of a common language and common level of understanding as a prerequisite. One of ways to meet this need is to provide easy to comprehend overviews of certain topics within the pain research domain. Here, we propose such an overview on the topic of pain assessment in humans for computational researchers. Quantifications related to pain are necessary for building computational models. However, as defined by the International Association of the Study of Pain (IASP), pain is a sensory and emotional experience and thus, it cannot be measured and quantified objectively. This results in a need for clear distinctions between nociception, pain and correlates of pain. Therefore, here we review methods to assess pain as a percept and nociception as a biological basis for this percept in humans, with the goal of creating a roadmap of modelling options.
Collapse
Affiliation(s)
- Ekaterina Kutafina
- Institute of Medical Informatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Faculty of Applied Mathematics, AGH University of Science and Technology, Krakow, Poland
| | - Susanne Becker
- Clinical Psychology, Department of Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany
- Integrative Spinal Research, Department of Chiropractic Medicine, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Barbara Namer
- Junior Research Group Neuroscience, Interdisciplinary Center for Clinical Research Within the Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Physiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
12
|
Agelopoulos K, Renkhold L, Wiegmann H, Dugas M, Süer A, Zeidler C, Schmelz M, Pereira MP, Ständer S. Transcriptomic, Epigenomic, and Neuroanatomic Signatures Differ in Chronic Prurigo, Atopic Dermatitis, and Brachioradial Pruritus. J Invest Dermatol 2023; 143:264-272.e3. [PMID: 36075451 DOI: 10.1016/j.jid.2022.08.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 01/25/2023]
Abstract
Scratching and scratch-induced injuries, including neuroanatomical alterations, are key characteristics of chronic pruritus entities of different origins. The aim of this study was to link gene expression (array hybridization, qPCR) with DNA methylation (array hybridization) and neuroanatomy (PGP9.5 staining) in chronic nodular prurigo (CNPG), atopic dermatitis (AD), brachioradial pruritus (BRP), and matched healthy controls. Specific signatures of gene expression and DNA methylation clearly discriminated pruritic lesional skin from nonpruritic skin in CNPG and from healthy skin of volunteers, respectively. Although intraepidermal nerve fiber density was indiscriminately reduced, the level of epidermal branching, assessed by a semiquantitative pattern analysis, differentiated the entities (CNPG > BRP > AD). Correspondingly, repellent SEMA3A showed the highest expression in AD, whereas axonal growth-promoting nerve GF was most prominent in CNPG and BRP. Overexpression of genes for nerve fiber regeneration (NELL2/NFKB/ARTN) was found in AD and CNPG but not in BRP. Our findings suggest that differential branching patterns rather than mere innervation density separate chronic itch conditions and reflect disease-specific local expression profiles. In pruritic dermatoses (AD and CNPG), nerve injury and subsequent sprouting may primarily result from chronic scratching, whereas genuine neuropathy is expected to underlie BRP.
Collapse
Affiliation(s)
- Konstantin Agelopoulos
- Department of Dermatology and Center for Chronic Pruritus, University Hospital Münster, Münster, Germany.
| | - Lina Renkhold
- Department of Dermatology and Center for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | - Henning Wiegmann
- Department of Dermatology and Center for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, Münster, Germany; Institute of Medical Informatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Aysenur Süer
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Claudia Zeidler
- Department of Dermatology and Center for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | - Martin Schmelz
- Department of Experimental Pain Research, Mannheim Centre for Translational Neuroscience, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Manuel P Pereira
- Department of Dermatology and Center for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | - Sonja Ständer
- Department of Dermatology and Center for Chronic Pruritus, University Hospital Münster, Münster, Germany
| |
Collapse
|
13
|
Callegari F, Brofiga M, Poggio F, Massobrio P. Stimulus-Evoked Activity Modulation of In Vitro Engineered Cortical and Hippocampal Networks. MICROMACHINES 2022; 13:mi13081212. [PMID: 36014137 PMCID: PMC9413227 DOI: 10.3390/mi13081212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022]
Abstract
The delivery of electrical stimuli is crucial to shape the electrophysiological activity of neuronal populations and to appreciate the response of the different brain circuits involved. In the present work, we used dissociated cortical and hippocampal networks coupled to Micro-Electrode Arrays (MEAs) to investigate the features of their evoked response when a low-frequency (0.2 Hz) electrical stimulation protocol is delivered. In particular, cortical and hippocampal neurons were topologically organized to recreate interconnected sub-populations with a polydimethylsiloxane (PDMS) mask, which guaranteed the segregation of the cell bodies and the connections among the sub-regions through microchannels. We found that cortical assemblies were more reactive than hippocampal ones. Despite both configurations exhibiting a fast (<35 ms) response, this did not uniformly distribute over the MEA in the hippocampal networks. Moreover, the propagation of the stimuli-evoked activity within the networks showed a late (35−500 ms) response only in the cortical assemblies. The achieved results suggest the importance of the neuronal target when electrical stimulation experiments are performed. Not all neuronal types display the same response, and in light of transferring stimulation protocols to in vivo applications, it becomes fundamental to design realistic in vitro brain-on-a-chip devices to investigate the dynamical properties of complex neuronal circuits.
Collapse
Affiliation(s)
- Francesca Callegari
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genova, 16145 Genova, Italy; (F.C.); (M.B.); (F.P.)
| | - Martina Brofiga
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genova, 16145 Genova, Italy; (F.C.); (M.B.); (F.P.)
- ScreenNeuroPharm s.r.l., 18038 Sanremo, Italy
| | - Fabio Poggio
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genova, 16145 Genova, Italy; (F.C.); (M.B.); (F.P.)
| | - Paolo Massobrio
- Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genova, 16145 Genova, Italy; (F.C.); (M.B.); (F.P.)
- National Institute for Nuclear Physics (INFN), 16146 Genova, Italy
- Correspondence: ; Tel.: +39-010-335-2761
| |
Collapse
|
14
|
Corneal nerves and their role in dry eye pathophysiology. Exp Eye Res 2022; 222:109191. [PMID: 35850173 DOI: 10.1016/j.exer.2022.109191] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/15/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022]
Abstract
As the cornea is densely innervated, its nerves are integral not only to its structure but also to its pathophysiology. Corneal integrity depends on a protective tear film that is maintained by corneal sensation and the reflex arcs that control tearing and blinking. Furthermore, corneal nerves promote epithelial growth and local immunoregulation. Thus, corneal nerves constitute pillars of ocular surface homeostasis. Conversely, the abnormal tear film in dry eye favors corneal epithelial and nerve damage. The ensuing corneal nerve dysfunction contributes to dry eye progression, ocular pain and discomfort, and other neuropathic symptoms. Recent evidence from clinical studies and animal models highlight the significant but often overlooked neural dimension of dry eye pathophysiology. Herein, we review the anatomy and physiology of corneal nerves before exploring their role in the mechanisms of dry eye disease.
Collapse
|
15
|
Wong C, Barkai O, Wang F, Thörn Pérez C, Lev S, Cai W, Tansley S, Yousefpour N, Hooshmandi M, Lister KC, Latif M, Cuello AC, Prager-Khoutorsky M, Mogil JS, Séguéla P, De Koninck Y, Ribeiro-da-Silva A, Binshtok AM, Khoutorsky A. mTORC2 mediates structural plasticity in distal nociceptive endings that contributes to pain hypersensitivity following inflammation. J Clin Invest 2022; 132:152635. [PMID: 35579957 PMCID: PMC9337825 DOI: 10.1172/jci152635] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
The encoding of noxious stimuli into action potential firing is largely mediated by nociceptive free nerve endings. Tissue inflammation, by changing the intrinsic properties of the nociceptive endings, leads to nociceptive hyperexcitability and thus to the development of inflammatory pain. Here, we showed that tissue inflammation–induced activation of the mammalian target of rapamycin complex 2 (mTORC2) triggers changes in the architecture of nociceptive terminals and leads to inflammatory pain. Pharmacological activation of mTORC2 induced elongation and branching of nociceptor peripheral endings and caused long-lasting pain hypersensitivity. Conversely, nociceptor-specific deletion of the mTORC2 regulatory protein rapamycin-insensitive companion of mTOR (Rictor) prevented inflammation-induced elongation and branching of cutaneous nociceptive fibers and attenuated inflammatory pain hypersensitivity. Computational modeling demonstrated that mTORC2-mediated structural changes in the nociceptive terminal tree are sufficient to increase the excitability of nociceptors. Targeting mTORC2 using a single injection of antisense oligonucleotide against Rictor provided long-lasting alleviation of inflammatory pain hypersensitivity. Collectively, we showed that tissue inflammation–induced activation of mTORC2 causes structural plasticity of nociceptive free nerve endings in the epidermis and inflammatory hyperalgesia, representing a therapeutic target for inflammatory pain.
Collapse
Affiliation(s)
- Calvin Wong
- Department of Anesthesia, McGill University, Montreal, Canada
| | - Omer Barkai
- Department of Medical Neurobiology, The Hebrew University, Jerusalem, Israel
| | - Feng Wang
- Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Canada
| | | | - Shaya Lev
- Department of Medical Neurobiology, The Hebrew University, Jerusalem, Israel
| | - Weihua Cai
- Department of Anesthesia, McGill University, Montreal, Canada
| | - Shannon Tansley
- Department of Psychology, McGill University, Montreal, Canada
| | - Noosha Yousefpour
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | | | - Kevin C Lister
- Department of Anesthesia, McGill University, Montreal, Canada
| | - Mariam Latif
- Department of Anesthesia, McGill University, Montreal, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | | | - Jeffrey S Mogil
- Department of Psychology, McGill University, Montreal, Canada
| | - Philippe Séguéla
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Yves De Koninck
- Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Canada
| | | | | | | |
Collapse
|
16
|
Oto T, Urata K, Hayashi Y, Hitomi S, Shibuta I, Iwata K, Iinuma T, Shinoda M. Age-Related Differences in Transient Receptor Potential Vanilloid 1 and 2 Expression Patterns in the Trigeminal Ganglion Neurons Contribute to Changes in the Palatal Mucosal Heat Pain Sensitivity. TOHOKU J EXP MED 2022; 256:283-290. [PMID: 35296569 DOI: 10.1620/tjem.2022.j004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Tatsuki Oto
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry
| | - Kentaro Urata
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry
| | | | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry
| | - Ikuko Shibuta
- Department of Physiology, Nihon University School of Dentistry
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry
| | - Toshimitsu Iinuma
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry
| | | |
Collapse
|
17
|
Lemaire T, Vicari E, Neufeld E, Kuster N, Micera S. MorphoSONIC: A morphologically structured intramembrane cavitation model reveals fiber-specific neuromodulation by ultrasound. iScience 2021; 24:103085. [PMID: 34585122 PMCID: PMC8456061 DOI: 10.1016/j.isci.2021.103085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/02/2021] [Accepted: 09/01/2021] [Indexed: 11/10/2022] Open
Abstract
Low-Intensity Focused Ultrasound Stimulation (LIFUS) holds promise for the remote modulation of neural activity, but an incomplete mechanistic characterization hinders its clinical maturation. Here we developed a computational framework to model intramembrane cavitation (a candidate mechanism) in multi-compartment, morphologically structured neuron models, and used it to investigate ultrasound neuromodulation of peripheral nerves. We predict that by engaging membrane mechanoelectrical coupling, LIFUS exploits fiber-specific differences in membrane conductance and capacitance to selectively recruit myelinated and/or unmyelinated axons in distinct parametric subspaces, allowing to modulate their activity concurrently and independently over physiologically relevant spiking frequency ranges. These theoretical results consistently explain recent empirical findings and suggest that LIFUS can simultaneously, yet selectively, engage different neural pathways, opening up opportunities for peripheral neuromodulation currently not addressable by electrical stimulation. More generally, our framework is readily applicable to other neural targets to establish application-specific LIFUS protocols.
Collapse
Affiliation(s)
- Théo Lemaire
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1202 Lausanne, Switzerland
| | - Elena Vicari
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1202 Lausanne, Switzerland
- Biorobotics Institute, Scuola Superiore Sant’Anna (SSSA), 56127 Pisa, Italy
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT’IS), 8004 Zurich, Switzerland
| | - Niels Kuster
- Foundation for Research on Information Technologies in Society (IT’IS), 8004 Zurich, Switzerland
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland
| | - Silvestro Micera
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1202 Lausanne, Switzerland
- Biorobotics Institute, Scuola Superiore Sant’Anna (SSSA), 56127 Pisa, Italy
| |
Collapse
|
18
|
Liu W, Jiang H, Liu X, Hu S, Li H, Feng Y, Ke J, Long X. Melatonin Abates TMJOA Chronic Pain by MT 2R in Trigeminal Ganglion Neurons. J Dent Res 2021; 101:111-119. [PMID: 34315312 DOI: 10.1177/00220345211026551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is one of the most common diseases causing chronic pain in the oral and maxillofacial region. So far, there are few ways to relieve the pain of TMJOA. Melatonin (MT) has a good analgesic effect in many diseases, including fibromyalgia, neuropathic pain, chronic headache, and burn pain, with very low acute toxicity and side effects. This study was to investigate the role and mechanism of MT in TMJOA chronic pain. In rats TMJOA chronic pain occurred at day 14 after an intra-temporomandibular joint injection of monosodium iodoacetate, which we previously reported. The enzyme-linked immunosorbent assay results showed that MT levels were higher in the synovial fluid from patients and rats with TMJOA as compared with those from control. Fluorescent retrograde tracing (Dil) identified that upregulation of MT type 2 receptor (MT2R) in trigeminal ganglion (TG) neurons innervating rat temporomandibular joints was accompanied by TMJOA chronic pain. Nociceptive behavior as assessed by von Frey and the Rat Grimace Scale demonstrated that exogenous administration of MT relieved chronic pain in TMJOA rats, whereas blocking MT2R with 4P-PDOT reversed the analgesic effect of MT. Immunofluorescence analysis also confirmed that MT inhibited CGRP and IB4 expression of TG neurons, and this inhibition was reversed by administering the MT2R antagonist in TMJOA rats. By using Fluo-3 AM-based calcium imaging in vitro, MT elicited calcium transients in Dil+ TG neurons, which were significantly abolished by 4P-PDOT. Collectively, this study suggested that MT relieves the TMJOA chronic pain of rats through downregulation of sensitized CGRP+ and IB4+ neurons in TG via MT2R. This will be helpful for health care professionals utilizing MT as an option against TMJOA chronic pain.
Collapse
Affiliation(s)
- W Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - H Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - X Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - S Hu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - H Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Y Feng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - J Ke
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - X Long
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
19
|
Suleimanova A, Talanov M, van den Maagdenberg AMJM, Giniatullin R. Deciphering in silico the Role of Mutated Na V 1.1 Sodium Channels in Enhancing Trigeminal Nociception in Familial Hemiplegic Migraine Type 3. Front Cell Neurosci 2021; 15:644047. [PMID: 34135733 PMCID: PMC8200561 DOI: 10.3389/fncel.2021.644047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/06/2021] [Indexed: 12/24/2022] Open
Abstract
Familial hemiplegic migraine type 3 (FHM3) is caused by gain-of-function mutations in the SCN1A gene that encodes the α1 subunit of voltage-gated NaV1.1 sodium channels. The high level of expression of NaV1.1 channels in peripheral trigeminal neurons may lead to abnormal nociceptive signaling thus contributing to migraine pain. NaV1.1 dysfunction is relevant also for other neurological disorders, foremost epilepsy and stroke that are comorbid with migraine. Here we used computer modeling to test the functional role of FHM3-mutated NaV1.1 channels in mechanisms of trigeminal pain. The activation of Aδ-fibers was studied for two algogens, ATP and 5-HT, operating through P2X3 and 5-HT3 receptors, respectively, at trigeminal nerve terminals. In WT Aδ-fibers of meningeal afferents, NaV1.1 channels efficiently participate in spike generation induced by ATP and 5-HT supported by NaV1.6 channels. Of the various FHM3 mutations tested, the L263V missense mutation, with a longer activation state and lower activation voltage, resulted in the most pronounced spiking activity. In contrast, mutations that result in a loss of NaV1.1 function largely reduced firing of trigeminal nerve fibers. The combined activation of P2X3 and 5-HT3 receptors and branching of nerve fibers resulted in very prolonged and high-frequency spiking activity in the mutants compared to WT. We identified, in silico, key determinants of long-lasting nociceptive activity in FHM3-mutated Aδ-fibers that naturally express P2X3 and 5-HT3 receptors and suggest mutant-specific correction options. Modeled trigeminal nerve firing was significantly higher for FHM3 mutations, compared to WT, suggesting that pronounced nociceptive signaling may contribute to migraine pain.
Collapse
Affiliation(s)
- Alina Suleimanova
- Institute of Information Technology and Intelligent Systems, Kazan Federal University, Kazan, Russia
| | - Max Talanov
- Institute of Information Technology and Intelligent Systems, Kazan Federal University, Kazan, Russia
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Rashid Giniatullin
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
20
|
Solinski HJ, Rukwied R. Electrically Evoked Itch in Human Subjects. Front Med (Lausanne) 2021; 7:627617. [PMID: 33553220 PMCID: PMC7855585 DOI: 10.3389/fmed.2020.627617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
Administration of chemicals (pruritogens) into the skin evokes itch based on signal transduction mechanisms that generate action potentials mainly in mechanically sensitive and insensitive primary afferent C-fibers (pruriceptors). These signals from peripheral neurons are processed in spinal and supra-spinal centers of the central nervous system and finally generate the sensation of itch. Compared to chemical stimulation, electrical activation of pruriceptors would allow for better temporal control and thereby a more direct functional assessment of their activation. Here, we review the electrical stimulation paradigms which were used to evoke itch in humans in the past. We further evaluate recent attempts to explore electrically induced itch in atopic dermatitis patients. Possible mechanisms underlying successful pruritus generation in chronic itch patients by transdermal slowly depolarizing electrical stimulation are discussed.
Collapse
Affiliation(s)
- Hans Jürgen Solinski
- Department of Experimental Pain Research, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Roman Rukwied
- Department of Experimental Pain Research, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
21
|
Werland F, Hirth M, Rukwied R, Ringkamp M, Turnquist B, Jorum E, Namer B, Schmelz M, Obreja O. Maximum axonal following frequency separates classes of cutaneous unmyelinated nociceptors in the pig. J Physiol 2021; 599:1595-1610. [DOI: 10.1113/jp280269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/17/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Fiona Werland
- Department of Experimental Pain Research, MCTN Medical Faculty Mannheim Heidelberg University Mannheim Germany
| | - Michael Hirth
- Department of Experimental Pain Research, MCTN Medical Faculty Mannheim Heidelberg University Mannheim Germany
| | - Roman Rukwied
- Department of Experimental Pain Research, MCTN Medical Faculty Mannheim Heidelberg University Mannheim Germany
| | - Matthias Ringkamp
- Department of Neurosurgery Johns Hopkins University Baltimore MD USA
| | - Brian Turnquist
- Faculty of Mathematics and Computer Science Bethel University MN USA
| | - Ellen Jorum
- Section of Clinical Neurophysiology, Department of Neurology Oslo University Hospital Oslo Norway
- Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Barbara Namer
- IZKF Neuroscience Research Group, University Hospital RWTH Aachen and Department of Physiology and Pathophysiology University of Erlangen‐Nuremberg Erlangen Germany
| | - Martin Schmelz
- Department of Experimental Pain Research, MCTN Medical Faculty Mannheim Heidelberg University Mannheim Germany
| | - Otilia Obreja
- Department of Experimental Pain Research, MCTN Medical Faculty Mannheim Heidelberg University Mannheim Germany
| |
Collapse
|
22
|
Optical Assessment of Nociceptive TRP Channel Function at the Peripheral Nerve Terminal. Int J Mol Sci 2021; 22:ijms22020481. [PMID: 33418928 PMCID: PMC7825137 DOI: 10.3390/ijms22020481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 12/13/2022] Open
Abstract
Free nerve endings are key structures in sensory transduction of noxious stimuli. In spite of this, little is known about their functional organization. Transient receptor potential (TRP) channels have emerged as key molecular identities in the sensory transduction of pain-producing stimuli, yet the vast majority of our knowledge about sensory TRP channel function is limited to data obtained from in vitro models which do not necessarily reflect physiological conditions. In recent years, the development of novel optical methods such as genetically encoded calcium indicators and photo-modulation of ion channel activity by pharmacological tools has provided an invaluable opportunity to directly assess nociceptive TRP channel function at the nerve terminal.
Collapse
|