1
|
Shu WC, Jackson MB. Intrinsic and Synaptic Contributions to Repetitive Spiking in Dentate Granule Cells. J Neurosci 2024; 44:e0716232024. [PMID: 38503495 PMCID: PMC11063872 DOI: 10.1523/jneurosci.0716-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Abstract
Repetitive firing of granule cells (GCs) in the dentate gyrus (DG) facilitates synaptic transmission to the CA3 region. This facilitation can gate and amplify the flow of information through the hippocampus. High-frequency bursts in the DG are linked to behavior and plasticity, but GCs do not readily burst. Under normal conditions, a single shock to the perforant path in a hippocampal slice typically drives a GC to fire a single spike, and only occasionally more than one spike is seen. Repetitive spiking in GCs is not robust, and the mechanisms are poorly understood. Here, we used a hybrid genetically encoded voltage sensor to image voltage changes evoked by cortical inputs in many mature GCs simultaneously in hippocampal slices from male and female mice. This enabled us to study relatively infrequent double and triple spikes. We found GCs are relatively homogeneous and their double spiking behavior is cell autonomous. Blockade of GABA type A receptors increased multiple spikes and prolonged the interspike interval, indicating inhibitory interneurons limit repetitive spiking and set the time window for successive spikes. Inhibiting synaptic glutamate release showed that recurrent excitation mediated by hilar mossy cells contributes to, but is not necessary for, multiple spiking. Blockade of T-type Ca2+ channels did not reduce multiple spiking but prolonged interspike intervals. Imaging voltage changes in different GC compartments revealed that second spikes can be initiated in either dendrites or somata. Thus, pharmacological and biophysical experiments reveal roles for both synaptic circuitry and intrinsic excitability in GC repetitive spiking.
Collapse
Affiliation(s)
- Wen-Chi Shu
- Department of Neuroscience and Biophysics Program, University of Wisconsin-Madison, Wisconsin 53705
| | - Meyer B Jackson
- Department of Neuroscience and Biophysics Program, University of Wisconsin-Madison, Wisconsin 53705
| |
Collapse
|
2
|
Ye Z, Shelton AM, Shaker JR, Boussard J, Colonell J, Birman D, Manavi S, Chen S, Windolf C, Hurwitz C, Namima T, Pedraja F, Weiss S, Raducanu B, Ness TV, Jia X, Mastroberardino G, Rossi LF, Carandini M, Häusser M, Einevoll GT, Laurent G, Sawtell NB, Bair W, Pasupathy A, Lopez CM, Dutta B, Paninski L, Siegle JH, Koch C, Olsen SR, Harris TD, Steinmetz NA. Ultra-high density electrodes improve detection, yield, and cell type identification in neuronal recordings. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.23.554527. [PMID: 37662298 PMCID: PMC10473688 DOI: 10.1101/2023.08.23.554527] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
To understand the neural basis of behavior, it is essential to sensitively and accurately measure neural activity at single neuron and single spike resolution. Extracellular electrophysiology delivers this, but it has biases in the neurons it detects and it imperfectly resolves their action potentials. To minimize these limitations, we developed a silicon probe with much smaller and denser recording sites than previous designs, called Neuropixels Ultra (NP Ultra). This device samples neuronal activity at ultra-high spatial density (~10 times higher than previous probes) with low noise levels, while trading off recording span. NP Ultra is effectively an implantable voltage-sensing camera that captures a planar image of a neuron's electrical field. We use a spike sorting algorithm optimized for these probes to demonstrate that the yield of visually-responsive neurons in recordings from mouse visual cortex improves up to ~3-fold. We show that NP Ultra can record from small neuronal structures including axons and dendrites. Recordings across multiple brain regions and four species revealed a subset of extracellular action potentials with unexpectedly small spatial spread and axon-like features. We share a large-scale dataset of these brain-wide recordings in mice as a resource for studies of neuronal biophysics. Finally, using ground-truth identification of three major inhibitory cortical cell types, we found that these cell types were discriminable with approximately 75% success, a significant improvement over lower-resolution recordings. NP Ultra improves spike sorting performance, detection of subcellular compartments, and cell type classification to enable more powerful dissection of neural circuit activity during behavior.
Collapse
Affiliation(s)
- Zhiwen Ye
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Andrew M. Shelton
- MindScope Program, Allen Institute, Seattle, WA, USA
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Jordan R. Shaker
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Julien Boussard
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | | | - Daniel Birman
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Sahar Manavi
- MindScope Program, Allen Institute, Seattle, WA, USA
| | - Susu Chen
- Janelia Research Campus, Ashburn, VA, USA
| | - Charlie Windolf
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Cole Hurwitz
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Tomoyuki Namima
- Department of Biological Structure, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| | - Federico Pedraja
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Shahaf Weiss
- Max Planck Institute for Brain Research, Frankfurt, Germany
| | | | | | - Xiaoxuan Jia
- Center for Life Sciences & IDG/McGovern Institute for Brain Research, Tsinghua University, China
| | - Giulia Mastroberardino
- UCL Institute of Ophthalmology, University College London, London, UK
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - L. Federico Rossi
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Gaute T. Einevoll
- Norwegian University of Life Sciences, Ås, Norway
- University of Oslo, Oslo, Norway
| | - Gilles Laurent
- Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Nathaniel B. Sawtell
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Wyeth Bair
- Department of Biological Structure, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| | - Anitha Pasupathy
- Department of Biological Structure, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| | | | | | - Liam Paninski
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | | | - Christof Koch
- MindScope Program, Allen Institute, Seattle, WA, USA
| | - Shawn R. Olsen
- MindScope Program, Allen Institute, Seattle, WA, USA
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Timothy D. Harris
- Janelia Research Campus, Ashburn, VA, USA
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
3
|
Beninger J, Rossbroich J, Tóth K, Naud R. Functional subtypes of synaptic dynamics in mouse and human. Cell Rep 2024; 43:113785. [PMID: 38363673 DOI: 10.1016/j.celrep.2024.113785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/08/2023] [Accepted: 01/27/2024] [Indexed: 02/18/2024] Open
Abstract
Synapses preferentially respond to particular temporal patterns of activity with a large degree of heterogeneity that is informally or tacitly separated into classes. Yet, the precise number and properties of such classes are unclear. Do they exist on a continuum and, if so, when is it appropriate to divide that continuum into functional regions? In a large dataset of glutamatergic cortical connections, we perform model-based characterization to infer the number and characteristics of functionally distinct subtypes of synaptic dynamics. In rodent data, we find five clusters that partially converge with transgenic-associated subtypes. Strikingly, the application of the same clustering method in human data infers a highly similar number of clusters, supportive of stable clustering. This nuanced dictionary of functional subtypes shapes the heterogeneity of cortical synaptic dynamics and provides a lens into the basic motifs of information transmission in the brain.
Collapse
Affiliation(s)
- John Beninger
- Center for Neural Dynamics and Artificial Intelligence, University of Ottawa, Ottawa, ON K1H 8M5, Canada; uOttawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Julian Rossbroich
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Science, University of Basel, Basel, Switzerland
| | - Katalin Tóth
- Center for Neural Dynamics and Artificial Intelligence, University of Ottawa, Ottawa, ON K1H 8M5, Canada; uOttawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Richard Naud
- Center for Neural Dynamics and Artificial Intelligence, University of Ottawa, Ottawa, ON K1H 8M5, Canada; uOttawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Physics, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
4
|
Ford AN, Czarny JE, Rogalla MM, Quass GL, Apostolides PF. Auditory Corticofugal Neurons Transmit Auditory and Non-auditory Information During Behavior. J Neurosci 2024; 44:e1190232023. [PMID: 38123993 PMCID: PMC10869159 DOI: 10.1523/jneurosci.1190-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/08/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Layer 5 pyramidal neurons of sensory cortices project "corticofugal" axons to myriad sub-cortical targets, thereby broadcasting high-level signals important for perception and learning. Recent studies suggest dendritic Ca2+ spikes as key biophysical mechanisms supporting corticofugal neuron function: these long-lasting events drive burst firing, thereby initiating uniquely powerful signals to modulate sub-cortical representations and trigger learning-related plasticity. However, the behavioral relevance of corticofugal dendritic spikes is poorly understood. We shed light on this issue using 2-photon Ca2+ imaging of auditory corticofugal dendrites as mice of either sex engage in a GO/NO-GO sound-discrimination task. Unexpectedly, only a minority of dendritic spikes were triggered by behaviorally relevant sounds under our conditions. Task related dendritic activity instead mostly followed sound cue termination and co-occurred with mice's instrumental licking during the answer period of behavioral trials, irrespective of reward consumption. Temporally selective, optogenetic silencing of corticofugal neurons during the trial answer period impaired auditory discrimination learning. Thus, auditory corticofugal systems' contribution to learning and plasticity may be partially nonsensory in nature.
Collapse
Affiliation(s)
- Alexander N Ford
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
| | - Jordyn E Czarny
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
| | - Meike M Rogalla
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
| | - Gunnar L Quass
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
| | - Pierre F Apostolides
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
5
|
Müller-Komorowska D, Kuru B, Beck H, Braganza O. Phase information is conserved in sparse, synchronous population-rate-codes via phase-to-rate recoding. Nat Commun 2023; 14:6106. [PMID: 37777512 PMCID: PMC10543394 DOI: 10.1038/s41467-023-41803-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/19/2023] [Indexed: 10/02/2023] Open
Abstract
Neural computation is often traced in terms of either rate- or phase-codes. However, most circuit operations will simultaneously affect information across both coding schemes. It remains unclear how phase and rate coded information is transmitted, in the face of continuous modification at consecutive processing stages. Here, we study this question in the entorhinal cortex (EC)- dentate gyrus (DG)- CA3 system using three distinct computational models. We demonstrate that DG feedback inhibition leverages EC phase information to improve rate-coding, a computation we term phase-to-rate recoding. Our results suggest that it i) supports the conservation of phase information within sparse rate-codes and ii) enhances the efficiency of plasticity in downstream CA3 via increased synchrony. Given the ubiquity of both phase-coding and feedback circuits, our results raise the question whether phase-to-rate recoding is a recurring computational motif, which supports the generation of sparse, synchronous population-rate-codes in areas beyond the DG.
Collapse
Affiliation(s)
- Daniel Müller-Komorowska
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan.
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany.
| | - Baris Kuru
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Heinz Beck
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V, Bonn, Germany
| | - Oliver Braganza
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany.
- Institute for Socio-Economics, University of Duisburg-Essen, Duisburg, Germany.
| |
Collapse
|
6
|
Munari L, Patel V, Johnson N, Mariottini C, Prabha S, Blitzer RD, Iyengar R. Memory discrimination is promoted by the expression of the transcription repressor WT1 in the dentate gyrus. Front Behav Neurosci 2023; 17:1130840. [PMID: 37830039 PMCID: PMC10564998 DOI: 10.3389/fnbeh.2023.1130840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/14/2023] [Indexed: 10/14/2023] Open
Abstract
The hippocampus is critical for the precise formation of contextual memories. Overlapping inputs coming from the entorhinal cortex are processed by the trisynaptic pathway to form distinct memories. Disruption in any step of the circuit flow can lead to a lack of memory precision, and to memory interference. We have identified the transcriptional repressor Wilm's Tumor 1 (WT1) as an important regulator of synaptic plasticity involved in memory discrimination in the hippocampus. In male mice, using viral and transgenic approaches, we showed that WT1 deletion in granule cells of the dentate gyrus (DG) disrupts memory discrimination. With electrophysiological methods, we then identified changes in granule cells' excitability and DG synaptic transmission indicating that WT1 knockdown in DG granule cells disrupts the inhibitory feedforward input from mossy fibers to CA3 by decreasing mIPSCs and shifting the normal excitatory/inhibitory (E/I) balance in the DG → CA3 circuit in favor of excitation. Finally, using a chemogenetic approach, we established a causal link between granule cell hyperexcitability and memory discrimination impairments. Our results suggest that WT1 enables a circuit-level computation that drives pattern discrimination behavior.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ravi Iyengar
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
7
|
Marosi EL, Arszovszki A, Brunner J, Szabadics J. Similar Presynaptic Action Potential-Calcium Influx Coupling in Two Types of Large Mossy Fiber Terminals Innervating CA3 Pyramidal Cells and Hilar Mossy Cells. eNeuro 2023; 10:ENEURO.0017-23.2023. [PMID: 36697256 PMCID: PMC9907395 DOI: 10.1523/eneuro.0017-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Morphologically similar axon boutons form synaptic contacts with diverse types of postsynaptic cells. However, it is less known to what extent the local axonal excitability, presynaptic action potentials (APs), and AP-evoked calcium influx contribute to the functional diversity of synapses and neuronal activity. This is particularly interesting in synapses that contact cell types that show only subtle cellular differences but fulfill completely different physiological functions. Here, we tested these questions in two synapses that are formed by rat hippocampal granule cells (GCs) onto hilar mossy cells (MCs) and CA3 pyramidal cells, which albeit share several morphologic and synaptic properties but contribute to distinct physiological functions. We were interested in the deterministic steps of the action potential-calcium ion influx coupling as these complex modules may underlie the functional segregation between and within the two cell types. Our systematic comparison using direct axonal recordings showed that AP shapes, Ca2+ currents and their plasticity are indistinguishable in synapses onto these two cell types. These suggest that the complete module that couples granule cell activity to synaptic release is shared by hilar mossy cells and CA3 pyramidal cells. Thus, our findings present an outstanding example for the modular composition of distinct cell types, by which cells employ different components only for those functions that are deterministic for their specialized functions, while many of their main properties are shared.
Collapse
Affiliation(s)
| | | | - János Brunner
- Institute of Experimental Medicine, Budapest, 1083, Hungary
| | | |
Collapse
|
8
|
Smith LA, Goodman AM, McMahon LL. Dentate Granule Cells Are Hyperexcitable in the TgF344-AD Rat Model of Alzheimer's Disease. Front Synaptic Neurosci 2022; 14:826601. [PMID: 35685246 PMCID: PMC9171068 DOI: 10.3389/fnsyn.2022.826601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
The dentate gyrus is both a critical gatekeeper for hippocampal signal processing and one of the first brain regions to become dysfunctional in Alzheimer's disease (AD). Accordingly, the appropriate balance of excitation and inhibition through the dentate is a compelling target for mechanistic investigation and therapeutic intervention in early AD. Previously, we reported an increased long-term potentiation (LTP) magnitude at medial perforant path-dentate granule cell (MPP-DGC) synapses in slices from both male and acutely ovariectomized female TgF344-AD rats compared with wild type (Wt) as early as 6 months of age that is accompanied by an increase in steady-state postsynaptic depolarization during the high-frequency stimulation used to induce plasticity. Subsequently, we found that heightened function of β-adrenergic receptors (β-ARs) drives the increase in the LTP magnitude, but the increase in steady-state depolarization was only partially due to β-AR activation. As we previously reported no detectable difference in spine density or presynaptic release probability, we entertained the possibility that DGCs themselves might have modified passive or active membrane properties, which may contribute to the significant increase in charge transfer during high-frequency stimulation. Using brain slice electrophysiology from 6-month-old female rats acutely ovariectomized to eliminate variability due to fluctuating plasma estradiol, we found significant changes in passive membrane properties and active membrane properties leading to increased DGC excitability in TgF344-AD rats. Specifically, TgF344-AD DGCs have an increased input resistance and decreased rheobase, decreased sag, and increased action potential (AP) spike accommodation. Importantly, we found that for the same amount of depolarizing current injection, DGCs from TgF344-AD compared with Wt rats have a larger magnitude voltage response, which was accompanied by a decreased delay to fire the first action potential, indicating TgF344-AD DGCs membranes are more excitable. Taken together, DGCs in TgF344-AD rats are more excitable, which likely contributes to the heightened depolarization during high-frequency synaptic activation.
Collapse
|
9
|
Reorganization of Parvalbumin Immunopositive Perisomatic Innervation of Principal Cells in Focal Cortical Dysplasia Type IIB in Human Epileptic Patients. Int J Mol Sci 2022; 23:ijms23094746. [PMID: 35563137 PMCID: PMC9100614 DOI: 10.3390/ijms23094746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
Focal cortical dysplasia (FCD) is one of the most common causes of drug-resistant epilepsy. As several studies have revealed, the abnormal functioning of the perisomatic inhibitory system may play a role in the onset of seizures. Therefore, we wanted to investigate whether changes of perisomatic inhibitory inputs are present in FCD. Thus, the input properties of abnormal giant- and control-like principal cells were examined in FCD type IIB patients. Surgical samples were compared to controls from the same cortical regions with short postmortem intervals. For the study, six subjects were selected/each group. The perisomatic inhibitory terminals were quantified in parvalbumin and neuronal nuclei double immunostained sections using a confocal fluorescent microscope. The perisomatic input of giant neurons was extremely abundant, whereas control-like cells of the same samples had sparse inputs. A comparison of pooled data shows that the number of parvalbumin-immunopositive perisomatic terminals contacting principal cells was significantly larger in epileptic cases. The analysis showed some heterogeneity among epileptic samples. However, five out of six cases had significantly increased perisomatic input. Parameters of the control cells were homogenous. The reorganization of the perisomatic inhibitory system may increase the probability of seizure activity and might be a general mechanism of abnormal network activity.
Collapse
|
10
|
Ding L, Balsamo G, Chen H, Blanco-Hernandez E, Zouridis IS, Naumann R, Preston-Ferrer P, Burgalossi A. Juxtacellular opto-tagging of hippocampal CA1 neurons in freely moving mice. eLife 2022; 11:71720. [PMID: 35080491 PMCID: PMC8791633 DOI: 10.7554/elife.71720] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/06/2022] [Indexed: 01/05/2023] Open
Abstract
Neural circuits are made of a vast diversity of neuronal cell types. While immense progress has been made in classifying neurons based on morphological, molecular, and functional properties, understanding how this heterogeneity contributes to brain function during natural behavior has remained largely unresolved. In the present study, we combined the juxtacellular recording and labeling technique with optogenetics in freely moving mice. This allowed us to selectively target molecularly defined cell classes for in vivo single-cell recordings and morphological analysis. We validated this strategy in the CA1 region of the mouse hippocampus by restricting Channelrhodopsin expression to Calbindin-positive neurons. Directly versus indirectly light-activated neurons could be readily distinguished based on the latencies of light-evoked spikes, with juxtacellular labeling and post hoc histological analysis providing ‘ground-truth’ validation. Using these opto-juxtacellular procedures in freely moving mice, we found that Calbindin-positive CA1 pyramidal cells were weakly spatially modulated and conveyed less spatial information than Calbindin-negative neurons – pointing to pyramidal cell identity as a key determinant for neuronal recruitment into the hippocampal spatial map. Thus, our method complements current in vivo techniques by enabling optogenetic-assisted structure–function analysis of single neurons recorded during natural, unrestrained behavior.
Collapse
Affiliation(s)
- Lingjun Ding
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.,Graduate Training Centre of Neuroscience - International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Giuseppe Balsamo
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.,Graduate Training Centre of Neuroscience - International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Hongbiao Chen
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.,Graduate Training Centre of Neuroscience - International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Eduardo Blanco-Hernandez
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| | - Ioannis S Zouridis
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.,Graduate Training Centre of Neuroscience - International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Robert Naumann
- Chinese Academy of Sciences, Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Nanshan, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Patricia Preston-Ferrer
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| | - Andrea Burgalossi
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany.,Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| |
Collapse
|
11
|
Pofahl M, Nikbakht N, Haubrich AN, Nguyen T, Masala N, Distler F, Braganza O, Macke JH, Ewell LA, Golcuk K, Beck H. Synchronous activity patterns in the dentate gyrus during immobility. eLife 2021; 10:65786. [PMID: 33709911 PMCID: PMC7987346 DOI: 10.7554/elife.65786] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/11/2021] [Indexed: 01/25/2023] Open
Abstract
The hippocampal dentate gyrus is an important relay conveying sensory information from the entorhinal cortex to the hippocampus proper. During exploration, the dentate gyrus has been proposed to act as a pattern separator. However, the dentate gyrus also shows structured activity during immobility and sleep. The properties of these activity patterns at cellular resolution, and their role in hippocampal-dependent memory processes have remained unclear. Using dual-color in vivo two-photon Ca2+ imaging, we show that in immobile mice dentate granule cells generate sparse, synchronized activity patterns associated with entorhinal cortex activation. These population events are structured and modified by changes in the environment; and they incorporate place- and speed cells. Importantly, they are more similar than expected by chance to population patterns evoked during self-motion. Using optogenetic inhibition, we show that granule cell activity is not only required during exploration, but also during immobility in order to form dentate gyrus-dependent spatial memories.
Collapse
Affiliation(s)
- Martin Pofahl
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Negar Nikbakht
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - André N Haubrich
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Theresa Nguyen
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Nicola Masala
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Fabian Distler
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Oliver Braganza
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Jakob H Macke
- Machine Learning in Science, Cluster of Excellence "Machine Learning", University of Tübingen, Germany & Department Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Laura A Ewell
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Kurtulus Golcuk
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Heinz Beck
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen e.V, Bonn, Germany
| |
Collapse
|
12
|
Rossbroich J, Trotter D, Beninger J, Tóth K, Naud R. Linear-nonlinear cascades capture synaptic dynamics. PLoS Comput Biol 2021; 17:e1008013. [PMID: 33720935 PMCID: PMC7993773 DOI: 10.1371/journal.pcbi.1008013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 03/25/2021] [Accepted: 02/25/2021] [Indexed: 11/18/2022] Open
Abstract
Short-term synaptic dynamics differ markedly across connections and strongly regulate how action potentials communicate information. To model the range of synaptic dynamics observed in experiments, we have developed a flexible mathematical framework based on a linear-nonlinear operation. This model can capture various experimentally observed features of synaptic dynamics and different types of heteroskedasticity. Despite its conceptual simplicity, we show that it is more adaptable than previous models. Combined with a standard maximum likelihood approach, synaptic dynamics can be accurately and efficiently characterized using naturalistic stimulation patterns. These results make explicit that synaptic processing bears algorithmic similarities with information processing in convolutional neural networks.
Collapse
Affiliation(s)
- Julian Rossbroich
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Daniel Trotter
- Department of Physics, University of Ottawa, Ottawa, ON, Canada
| | - John Beninger
- uOttawa Brain Mind Institute, Center for Neural Dynamics, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Katalin Tóth
- uOttawa Brain Mind Institute, Center for Neural Dynamics, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Richard Naud
- Department of Physics, University of Ottawa, Ottawa, ON, Canada
- uOttawa Brain Mind Institute, Center for Neural Dynamics, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
13
|
Chamberland S, Timofeeva Y, Evstratova A, Norman CA, Volynski K, Tóth K. Slow-decaying presynaptic calcium dynamics gate long-lasting asynchronous release at the hippocampal mossy fiber to CA3 pyramidal cell synapse. Synapse 2020; 74:e22178. [PMID: 32598500 PMCID: PMC7685170 DOI: 10.1002/syn.22178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/21/2023]
Abstract
Action potentials trigger two modes of neurotransmitter release, with a fast synchronous component and a temporally delayed asynchronous release. Asynchronous release contributes to information transfer at synapses, including at the hippocampal mossy fiber (MF) to CA3 pyramidal cell synapse where it controls the timing of postsynaptic CA3 pyramidal neuron firing. Here, we identified and characterized the main determinants of asynchronous release at the MF–CA3 synapse. We found that asynchronous release at MF–CA3 synapses can last on the order of seconds following repetitive MF stimulation. Elevating the stimulation frequency or the external Ca2+ concentration increased the rate of asynchronous release, thus, arguing that presynaptic Ca2+ dynamics is the major determinant of asynchronous release rate. Direct MF bouton Ca2+ imaging revealed slow Ca2+ decay kinetics of action potential (AP) burst‐evoked Ca2+ transients. Finally, we observed that asynchronous release was preferentially mediated by Ca2+ influx through P/Q‐type voltage‐gated Ca2+ channels, while the contribution of N‐type VGCCs was limited. Overall, our results uncover the determinants of long‐lasting asynchronous release from MF terminals and suggest that asynchronous release could influence CA3 pyramidal cell firing up to seconds following termination of granule cell bursting.
Collapse
Affiliation(s)
- Simon Chamberland
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Université Laval, Quebec, QC, Canada
| | - Yulia Timofeeva
- Department of Computer Science, University of Warwick, Coventry, UK.,Centre for Complexity Science, University of Warwick, Coventry, UK.,University College London Institute of Neurology, University College London, London, UK
| | - Alesya Evstratova
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Université Laval, Quebec, QC, Canada
| | - Christopher A Norman
- Mathematics for Real-World Systems Centre for Doctoral Training, University of Warwick, Coventry, UK
| | - Kirill Volynski
- University College London Institute of Neurology, University College London, London, UK
| | - Katalin Tóth
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
14
|
Oláh VJ, Lukacsovich D, Winterer J, Arszovszki A, Lőrincz A, Nusser Z, Földy C, Szabadics J. Functional specification of CCK+ interneurons by alternative isoforms of Kv4.3 auxiliary subunits. eLife 2020; 9:58515. [PMID: 32490811 PMCID: PMC7269670 DOI: 10.7554/elife.58515] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 05/20/2020] [Indexed: 01/18/2023] Open
Abstract
CCK-expressing interneurons (CCK+INs) are crucial for controlling hippocampal activity. We found two firing phenotypes of CCK+INs in rat hippocampal CA3 area; either possessing a previously undetected membrane potential-dependent firing or regular firing phenotype, due to different low-voltage-activated potassium currents. These different excitability properties destine the two types for distinct functions, because the former is essentially silenced during realistic 8–15 Hz oscillations. By contrast, the general intrinsic excitability, morphology and gene-profiles of the two types were surprisingly similar. Even the expression of Kv4.3 channels were comparable, despite evidences showing that Kv4.3-mediated currents underlie the distinct firing properties. Instead, the firing phenotypes were correlated with the presence of distinct isoforms of Kv4 auxiliary subunits (KChIP1 vs. KChIP4e and DPP6S). Our results reveal the underlying mechanisms of two previously unknown types of CCK+INs and demonstrate that alternative splicing of few genes, which may be viewed as a minor change in the cells’ whole transcriptome, can determine cell-type identity.
Collapse
Affiliation(s)
- Viktor János Oláh
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine, Budapest, Hungary.,János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - David Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Jochen Winterer
- Laboratory of Neural Connectivity, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Antónia Arszovszki
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Andrea Lőrincz
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zoltan Nusser
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - János Szabadics
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
15
|
Dentate gyrus circuits for encoding, retrieval and discrimination of episodic memories. Nat Rev Neurosci 2020; 21:153-168. [PMID: 32042144 DOI: 10.1038/s41583-019-0260-z] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2019] [Indexed: 12/19/2022]
Abstract
The dentate gyrus (DG) has a key role in hippocampal memory formation. Intriguingly, DG lesions impair many, but not all, hippocampus-dependent mnemonic functions, indicating that the rest of the hippocampus (CA1-CA3) can operate autonomously under certain conditions. An extensive body of theoretical work has proposed how the architectural elements and various cell types of the DG may underlie its function in cognition. Recent studies recorded and manipulated the activity of different neuron types in the DG during memory tasks and have provided exciting new insights into the mechanisms of DG computational processes, particularly for the encoding, retrieval and discrimination of similar memories. Here, we review these DG-dependent mnemonic functions in light of the new findings and explore mechanistic links between the cellular and network properties of, and the computations performed by, the DG.
Collapse
|
16
|
Komendantov AO, Venkadesh S, Rees CL, Wheeler DW, Hamilton DJ, Ascoli GA. Quantitative firing pattern phenotyping of hippocampal neuron types. Sci Rep 2019; 9:17915. [PMID: 31784578 PMCID: PMC6884469 DOI: 10.1038/s41598-019-52611-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/20/2019] [Indexed: 01/19/2023] Open
Abstract
Systematically organizing the anatomical, molecular, and physiological properties of cortical neurons is important for understanding their computational functions. Hippocampome.org defines 122 neuron types in the rodent hippocampal formation based on their somatic, axonal, and dendritic locations, putative excitatory/inhibitory outputs, molecular marker expression, and biophysical properties. We augmented the electrophysiological data of this knowledge base by collecting, quantifying, and analyzing the firing responses to depolarizing current injections for every hippocampal neuron type from published experiments. We designed and implemented objective protocols to classify firing patterns based on 5 transients (delay, adapting spiking, rapidly adapting spiking, transient stuttering, and transient slow-wave bursting) and 4 steady states (non-adapting spiking, persistent stuttering, persistent slow-wave bursting, and silence). This automated approach revealed 9 unique (plus one spurious) families of firing pattern phenotypes while distinguishing potential new neuronal subtypes. Novel statistical associations emerged between firing responses and other electrophysiological properties, morphological features, and molecular marker expression. The firing pattern parameters, experimental conditions, spike times, references to the original empirical evidences, and analysis scripts are released open-source through Hippocampome.org for all neuron types, greatly enhancing the existing search and browse capabilities. This information, collated online in human- and machine-accessible form, will help design and interpret both experiments and model simulations.
Collapse
Affiliation(s)
- Alexander O Komendantov
- Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, MS 2A1, Fairfax, Virginia, 2230, USA.
| | - Siva Venkadesh
- Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, MS 2A1, Fairfax, Virginia, 2230, USA
| | - Christopher L Rees
- Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, MS 2A1, Fairfax, Virginia, 2230, USA
| | - Diek W Wheeler
- Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, MS 2A1, Fairfax, Virginia, 2230, USA
| | - David J Hamilton
- Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, MS 2A1, Fairfax, Virginia, 2230, USA
| | - Giorgio A Ascoli
- Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, MS 2A1, Fairfax, Virginia, 2230, USA.
| |
Collapse
|
17
|
Christian KM, Ming GL, Song H. Adult neurogenesis and the dentate gyrus: Predicting function from form. Behav Brain Res 2019; 379:112346. [PMID: 31722241 DOI: 10.1016/j.bbr.2019.112346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Abstract
Hypotheses about the functional properties of the dentate gyrus and adult dentate neurogenesis have been shaped by early observations of the anatomy of this region, mostly in rodents. This has led to the development of a few core propositions that have guided research over the past several years, including the predicted role of this region in pattern separation and the local transformation of inputs from the entorhinal cortex. We now have the opportunity to review these predictions and update these anatomical observations based on recently developed techniques that reveal the complex structure, connectivity, and dynamic properties of distinct cell populations in the dentate gyrus at a higher resolution. Cumulative evidence suggests that the dentate gyrus and adult-born granule cells play a role in some forms of behavioral discriminations, but there are still many unanswered questions about how the dentate gyrus processes information to support the disambiguation of stimuli.
Collapse
Affiliation(s)
- Kimberly M Christian
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA; Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Guo-Li Ming
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA; Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Developmental and Cell Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Epigenetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA; Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Developmental and Cell Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Epigenetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Lalanne T, Oyrer J, Farrant M, Sjöström PJ. Synapse Type-Dependent Expression of Calcium-Permeable AMPA Receptors. Front Synaptic Neurosci 2018; 10:34. [PMID: 30369875 PMCID: PMC6194349 DOI: 10.3389/fnsyn.2018.00034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022] Open
Abstract
Calcium-permeable (CP) AMPA-type glutamate receptors (AMPARs) are known to mediate synaptic plasticity in several different interneuron (IN) types. Recent evidence suggests that CP-AMPARs are synapse-specifically expressed at excitatory connections onto a subset of IN types in hippocampus and neocortex. For example, CP-AMPARs are found at connections from pyramidal cells (PCs) to basket cells (BCs), but not to Martinotti cells (MCs). This synapse type-specific expression of CP-AMPARs suggests that synaptic dynamics as well as learning rules are differentially implemented in local circuits and has important implications not just in health but also in disease states such as epilepsy.
Collapse
Affiliation(s)
- Txomin Lalanne
- Department of Biomedicine, Institute of Physiology, University of Basel, Basel, Switzerland
| | - Julia Oyrer
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Mark Farrant
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - P Jesper Sjöström
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, Montreal General Hospital, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|