1
|
Singh J, Barrett J, Sangaletti R, Dietrich WD, Rajguru SM. Additive Protective Effects of Delayed Mild Therapeutic Hypothermia and Antioxidants on PC12 Cells Exposed to Oxidative Stress. Ther Hypothermia Temp Manag 2020; 11:77-87. [PMID: 32302519 DOI: 10.1089/ther.2019.0034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mild therapeutic hypothermia is protective against several cellular stresses, but the mechanisms underlying this protection are not completely resolved. In the present study, we used an in vitro model to investigate whether therapeutic hypothermia at 33°C applied following a peroxide-induced oxidative stress would protect PC12 cells. A 1-hour exposure to tert-butyl peroxide increased cell death measured 24 hours later. This cell death was dose-dependent in the range of 100-1000 μM tert-butyl peroxide with ∼50% cell death observed at 24 hours from 500 μM peroxide exposure. Cell survival/death was measured with an alamarBlue viability assay, and propidium iodide/Hoechst imaging for counts of living and dead cells. Therapeutic hypothermia at 33°C applied for 2 hours postperoxide exposure significantly increased cell survival measured 24 hours postperoxide-induced stress. This protection was present even when delayed hypothermia, 15 minutes after the peroxide washout, was applied. Addition of any of the three FDA-approved antioxidants (Tempol, EUK134, Edaravone at 100 μM) in combination with hypothermia improved cell survival. With the therapeutic hypothermia treatment, a significant downregulation of caspases-3 and -8 and tumor necrosis factor-α was observed at 3 and 24 hours poststress. Consistent with this, a cell-permeable pan-caspase inhibitor Z-VAD-FMK applied in combination with hypothermia significantly increased cell survival. Overall, these results suggest that the antioxidants quenching of reactive oxygen species likely works with hypothermia to reduce mitochondrial damage and/or apoptotic mechanisms. Further studies are required to confirm and extend these results to other cell types, including neuronal cells, and other forms of oxidative stress as well as to optimize the critical parameters of hypothermia treatment such as target temperature and duration.
Collapse
Affiliation(s)
- Jayanti Singh
- Department of Otolaryngology, University of Miami, Miami, Florida, USA
| | - John Barrett
- Department of Physiology and Biophysics, University of Miami, Miami, Florida, USA
| | | | - W Dalton Dietrich
- Department of Biomedical Engineering, University of Miami, Miami, Florida, USA.,Department of Neurological Surgery, University of Miami, Miami, Florida, USA
| | - Suhrud M Rajguru
- Department of Otolaryngology, University of Miami, Miami, Florida, USA.,Department of Biomedical Engineering, University of Miami, Miami, Florida, USA
| |
Collapse
|
2
|
Reduced Cholinergic Activity in the Hippocampus of Hippocampal Cholinergic Neurostimulating Peptide Precursor Protein Knockout Mice. Int J Mol Sci 2019; 20:ijms20215367. [PMID: 31661900 PMCID: PMC6862429 DOI: 10.3390/ijms20215367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022] Open
Abstract
The cholinergic efferent network from the medial septal nucleus to the hippocampus has an important role in learning and memory processes. This cholinergic projection can generate theta oscillations in the hippocampus to efficiently encode novel information. Hippocampal cholinergic neurostimulating peptide (HCNP) induces acetylcholine synthesis in medial septal nuclei. HCNP is processed from the N-terminal region of a 186 amino acid, 21 kD HCNP precursor protein called HCNP-pp (also known as Raf kinase inhibitory protein (RKIP) and phosphatidylethanolamine-binding protein 1 (PEBP1)). In this study, we generated HCNP-pp knockout (KO) mice and assessed their cholinergic septo-hippocampal projection, local field potentials in CA1, and behavioral phenotypes. No significant behavioral phenotype was observed in HCNP-pp KO mice. However, theta power in the CA1 of HCNP-pp KO mice was significantly reduced because of fewer cholineacetyltransferase-positive axons in the CA1 stratum oriens. These observations indicated disruption of cholinergic activity in the septo-hippocampal network. Our study demonstrates that HCNP may be a cholinergic regulator in the septo-hippocampal network.
Collapse
|
3
|
Tajik A, Rezayof A, Ghasemzadeh Z, Sardari M. Activation of the dorsal hippocampal nicotinic acetylcholine receptors improves tamoxifen-induced memory retrieval impairment in adult female rats. Neuroscience 2016; 327:1-9. [DOI: 10.1016/j.neuroscience.2016.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 12/20/2022]
|
4
|
Maki AE, Morris KA, Catherman K, Chen X, Hatcher NG, Gold PE, Sweedler JV. Fibrinogen α-chain-derived peptide is upregulated in hippocampus of rats exposed to acute morphine injection and spontaneous alternation testing. Pharmacol Res Perspect 2014; 2:e00037. [PMID: 24855564 PMCID: PMC4024393 DOI: 10.1002/prp2.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Fibrinogen is a secreted glycoprotein that is synthesized in the liver, although recent in situ hybridization data support its expression in the brain. It is involved in blood clotting and is released in the brain upon injury. Here, we report changes in the extracellular levels of fibrinogen α-chain-derived peptides in the brain after injections of saline and morphine. More specifically, in order to assess hippocampus-related working memory, an approach pairing in vivo microdialysis with mass spectrometry was used to characterize extracellular peptide release from the hippocampus of rats in response to saline or morphine injection coupled with a spontaneous alternation task. Two fibrinopeptide A-related peptides derived from the fibrinogen α-chain – fibrinopeptide A (ADTGTTSEFIEAGGDIR) and a fibrinopeptide A-derived peptide (DTGTTSEFIEAGGDIR) – were shown to be consistently elevated in the hippocampal microdialysate. Fibrinopeptide A was significantly upregulated in rats exposed to morphine and spontaneous alternation testing compared with rats exposed to saline and spontaneous alternation testing (P < 0.001), morphine alone (P < 0.01), or saline alone (P < 0.01), respectively. The increase in fibrinopeptide A in rats subjected to morphine and a memory task suggests that a complex interaction between fibrinogen and morphine takes place in the hippocampus.
Collapse
Affiliation(s)
- Agatha E Maki
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Kenneth A Morris
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Kasia Catherman
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Xian Chen
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Nathan G Hatcher
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Paul E Gold
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Jonathan V Sweedler
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| |
Collapse
|
5
|
Savage LM, Hall JM, Resende LS. Translational rodent models of Korsakoff syndrome reveal the critical neuroanatomical substrates of memory dysfunction and recovery. Neuropsychol Rev 2012; 22:195-209. [PMID: 22528861 PMCID: PMC5113815 DOI: 10.1007/s11065-012-9194-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/14/2012] [Indexed: 01/01/2023]
Abstract
Investigation of the amnesic disorder Korsakoff Syndrome (KS) has been vital in elucidating the critical brain regions involved in learning and memory. Although the thalamus and mammillary bodies are the primary sites of neuropathology in KS, functional deactivation of the hippocampus and certain cortical regions also contributes to the chronic cognitive dysfunction reported in KS. The rodent pyrithiamine-induced thiamine deficiency (PTD) model has been used to study the extent of hippocampal and cortical neuroadaptations in KS. In the PTD model, the hippocampus, frontal and retrosplenial cortical regions display loss of cholinergic innervation, decreases in behaviorally stimulated acetylcholine release and reductions in neurotrophins. While PTD treatment results in significant impairment in measures of spatial learning and memory, other cognitive processes are left intact and may be recruited to improve cognitive outcome. In addition, behavioral recovery can be stimulated in the PTD model by increasing acetylcholine levels in the medial septum, hippocampus and frontal cortex, but not in the retrosplenial cortex. These data indicate that although the hippocampus and frontal cortex are involved in the pathogenesis of KS, these regions retain neuroplasticity and may be critical targets for improving cognitive outcome in KS.
Collapse
Affiliation(s)
- Lisa M Savage
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton, NY 13902, USA.
| | | | | |
Collapse
|
6
|
Cui X, Weng Y, Frappé I, Burgess A, Girão da Cruz MT, Schachner M, Aubert I. The cell adhesion molecule L1 regulates the expression of choline acetyltransferase and the development of septal cholinergic neurons. Brain Behav 2011; 1:73-86. [PMID: 22399087 PMCID: PMC3236547 DOI: 10.1002/brb3.15] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/02/2011] [Accepted: 08/09/2011] [Indexed: 01/06/2023] Open
Abstract
Mutations in the L1 gene cause severe brain malformations and mental retardation. We investigated the potential roles of L1 in the regulation of choline acetyltransferase (ChAT) and in the development of septal cholinergic neurons, which are known to project to the hippocampus and play key roles in cognitive functions. Using stereological approaches, we detected significantly fewer ChAT-positive cholinergic neurons in the medial septum and vertical limb of the diagonal band of Broca (MS/VDB) of 2-week-old L1-deficient mice compared to wild-type littermates (1644 ± 137 vs. 2051 ± 165, P = 0.038). ChAT protein levels in the septum were 53% lower in 2-week-old L1-deficient mice compared to wild-type littermates. ChAT activity in the septum was significantly reduced in L1-deficient mice compared to wild-type littermates at 1 (34%) and 2 (40%) weeks of age. In vitro, increasing doses of L1-Fc induced ChAT activity in septal neurons with a significant linear trend (*P = 0.0065). At 4 weeks of age in the septum and at all time points investigated in the caudate-putamen (CPu), the number of ChAT-positive neurons and the levels of ChAT activity were not statistically different between L1-deficient mice and wild-type littermates. The total number of cells positive for the neuronal nuclear antigen (NeuN) in the MS/VDB and CPu was not statistically different in L1-deficient mice compared to wild-type littermates, and comparable expression of the cell cycle marker Ki67 was observed. Our results indicate that L1 is required for the timely maturation of septal cholinergic neurons and that L1 promotes the expression and activity of ChAT in septal neurons.
Collapse
Affiliation(s)
- Xuezhi Cui
- Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, M4N 3M5, Canada
| | - Ying‐Qi Weng
- Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, M4N 3M5, Canada
| | - Isabelle Frappé
- Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, M4N 3M5, Canada
| | - Alison Burgess
- Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | | | - Melitta Schachner
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
- Zentrum fuer Molekulare Neurobiologie, Universitaetskrankenhaus Hamburg‐Eppendorf, Hamburg, 20246, Germany
- Center for Neuroscience, Shantou University Medical College, Shantou, 515041, P.R. China
| | - Isabelle Aubert
- Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| |
Collapse
|
7
|
Vetreno RP, Klintsova A, Savage LM. Stage-dependent alterations of progenitor cell proliferation and neurogenesis in an animal model of Wernicke-Korsakoff syndrome. Brain Res 2011; 1391:132-46. [PMID: 21440532 PMCID: PMC3087287 DOI: 10.1016/j.brainres.2011.03.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 02/19/2011] [Accepted: 03/18/2011] [Indexed: 10/18/2022]
Abstract
Alcohol-induced Wernicke-Korsakoff syndrome (WKS) culminates in bilateral diencephalic lesion and severe amnesia. Using the pyrithiamine-induced thiamine deficiency (PTD) animal paradigm of WKS, our laboratory has demonstrated hippocampal dysfunction in the absence of gross anatomical pathology. Extensive literature has revealed reduced hippocampal neurogenesis following a neuropathological insult, which might contribute to hippocampus-based learning and memory impairments. Thus, the current investigation was conducted to determine whether PTD treatment altered hippocampal neurogenesis in a stage-dependent fashion. Male Sprague-Dawley rats were assigned to one of 4 stages of thiamine deficiency based on behavioral symptoms: pre-symptomatic stage, ataxic stage, early post-opisthotonus stage, or the late post-opisthotonus stage. The S-phase mitotic marker 5'-bromo-2'-deoxyuridine (BrdU) was administered at the conclusion of each stage following thiamine restoration and subjects were perfused 24 hours or 28 days after BrdU to assess cellular proliferation or neurogenesis and survival, respectively. Dorsal hippocampal sections were immunostained for BrdU (proliferating cell marker), NeuN (neurons), GFAP (astrocytes), Iba-1 (microglia), and O4 (oligodendrocytes). The PTD treatment increased progenitor cell proliferation and survival during the early post-opisthotonus stage. However, levels of neurogenesis were reduced during this stage as well as the late post-opisthotonus stage where there was also an increase in astrocytogenesis. The diminished numbers of newly generated neurons (BrdU/NeuN co-localization) was paralleled by increased BrdU cells that did not co-localize with any of the phenotypic markers during these later stages. These data demonstrate that long-term alterations in neurogenesis and gliogenesis might contribute to the observed hippocampal dysfunction in the PTD model and human WKS.
Collapse
Affiliation(s)
- Ryan P Vetreno
- Department of Psychology, Behavioral Neuroscience, State University of New York at Binghamton, Vestal, NY 13902, USA.
| | | | | |
Collapse
|
8
|
Beste C, Schneider D, Epplen JT, Arning L. The functional BDNF Val66Met polymorphism affects functions of pre-attentive visual sensory memory processes. Neuropharmacology 2010; 60:467-71. [PMID: 21056046 DOI: 10.1016/j.neuropharm.2010.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 10/27/2010] [Accepted: 10/28/2010] [Indexed: 11/29/2022]
Abstract
The brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is involved in nerve growth and survival. Especially, a single nucleotide polymorphism (SNP) in the BDNF gene, Val66Met, has gained a lot of attention, because of its effect on activity-dependent BDNF secretion and its link to impaired memory processes. We hypothesize that the BDNF Val66Met polymorphism may have modulatory effects on the visual sensory (iconic) memory performance. Two hundred and eleven healthy German students (106 female and 105 male) were included in the data analysis. Since BDNF is also discussed to be involved in the pathogenesis of depression, we additionally tested for possible interactions with depressive mood. The BDNF Val66Met polymorphism significantly influenced iconic-memory performance, with the combined Val/Met-Met/Met genotype group revealing less time stability of information stored in iconic memory than the Val/Val group. Furthermore, this stability was positively correlated with depressive mood exclusively in the Val/Val genotype group. Thus, these results show that the BDNF Val66Met polymorphism has an effect on pre-attentive visual sensory memory processes.
Collapse
Affiliation(s)
- Christian Beste
- Department of Biopsychology, Institute for Cognitive Neuroscience, Ruhr-University Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany.
| | | | | | | |
Collapse
|
9
|
Transplantation of primed or unprimed mouse embryonic stem cell-derived neural precursor cells improves cognitive function in Alzheimerian rats. Differentiation 2009; 78:59-68. [PMID: 19616885 DOI: 10.1016/j.diff.2009.06.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by progressive and irreversible decline of memory. Neuropathological features include the progressive degeneration of cholinergic neurons in the forebrain cholinergic projection system especially nucleus basalis of Meynert (nbM). New cell therapeutic approaches for the replacement of degenerated cells are being researched. The aim of this study was to investigate the production of cholinergic neurons from mouse embryonic stem cells (ESCs) and potential for utilizing ESC-derived neuronal precursor cells (NPCs) and primed NPCs (PNPCs) for cell restorative therapy in a rodent model of AD. NPCs were produced by growth factor-mediated selection under serum-free conditions and differentiated better into cholinergic neurons when NPCs primed with Shh (approximately 22%) in comparison with different cholinergic promoting factors. Behavioral assessment of unilateral nbM ibotenic acid-lesioned rats by Morris water maze and spatial probe test revealed a significant behavioral improvement in memory deficits following transplantation with NPCs and/or PNPCs. Immunohistochemical analysis revealed that the majority (approximately 70%) of the NPCs and/or PNPCs retained neuronal phenotype and approximately 40% of them had a cholinergic cell phenotype following transplantation with no tumor formation, indicating that these may be safe for transplantation. This experimental study has important implications as it suggests that the transplantation of mouse ESC-derived NPCs and/or following commitment to a cholinergic cell phenotype can promote behavioral recovery in a rodent model of AD.
Collapse
|
10
|
Chaverneff F, Barrett J. Casein kinase II contributes to the synergistic effects of BMP7 and BDNF on Smad 1/5/8 phosphorylation in septal neurons under hypoglycemic stress. J Neurochem 2009; 109:733-43. [PMID: 19222702 DOI: 10.1111/j.1471-4159.2009.05990.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The combination of bone morphogenetic protein 7 (BMP7) and neurotrophins (e.g. brain-derived neurotrophic factor, BDNF) protects septal neurons during hypoglycemic stress. We investigated the signaling mechanisms underlying this synergistic protection. BMP7 (5 nM) increased phosphorylation and nuclear translocation of BMP-responsive Smads 1/5/8 within 30 min in cultures of rat embryonic septal neurons. BDNF (100 ng/mL) enhanced the BMP7-induced increase in phospho-Smad levels in both nucleus and cytoplasm; this effect was more pronounced after a hypoglycemic stress. BDNF increased both Akt and Erk phosphorylation, but pharmacological blockade of these kinase pathways (with wortmannin and U0126, respectively) did not reduce the Smad phosphorylation produced by the BMP7 + BDNF combination. Inhibitors of casein kinase II (CK2) activity reduced the (BMP7 + BDNF)-induced Smad phosphorylation, and this trophic factor combination increased CK2 activity in hypoglycemic cultures. These findings suggest that BDNF can increase BMP-dependent Smad phosphorylation via a mechanism requiring CK2.
Collapse
Affiliation(s)
- Florence Chaverneff
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | |
Collapse
|
11
|
Auld DS, Mennicken F, Day JC, Quirion R. Neurotrophins differentially enhance acetylcholine release, acetylcholine content and choline acetyltransferase activity in basal forebrain neurons. J Neurochem 2008. [DOI: 10.1046/j.1471-4159.2001.00234.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Overexpression of Cdk5 or non-phosphorylatable retinoblastoma protein protects septal neurons from oxygen-glucose deprivation. Neurochem Res 2008; 33:1852-8. [PMID: 18351461 DOI: 10.1007/s11064-008-9647-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 02/28/2008] [Indexed: 10/22/2022]
Abstract
Activation of cyclin dependent kinases (Cdks) contributes to neuronal death following ischemia. We used oxygen-glucose deprivation (OGD) in septal neuronal cultures to test for possible roles of cell cycle proteins in neuronal survival. Increased cdc2-immunoreactive neurons were observed at 24 h after the end of 5 h OGD. Green fluorescent protein (GFP) or GFP along with a wild type or dominant negative form of the retinoblastoma protein (Rb), or cyclin-dependent kinase5 (Cdk5), were overexpressed using plasmid constructs. Following OGD, when compared to controls, neurons expressing both GFP and dominant negative Rb, RbDeltaK11, showed significantly less damage using microscopy imaging. Overexpression of Rb-wt did not affect survival. Surprisingly, overexpression of Cdk5-wild type significantly protected neurons from process disintegration but Cdk5T33, a dominant negative Cdk5, gave little or no protection. Thus phosphorylation of the cell cycle regulator, Rb, contributes to death in OGD in septal neurons but Cdk5 can have a protective role.
Collapse
|
13
|
Burgess A, Aubert I. Polysialic acid limits choline acetyltransferase activity induced by brain-derived neurotrophic factor. J Neurochem 2006; 99:797-806. [PMID: 16903870 DOI: 10.1111/j.1471-4159.2006.04110.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Choline acetyltransferase (ChAT), the enzyme synthesizing acetylcholine, is known to be activated by brain derived neurotrophic factor (BDNF). We found that the specific removal of the carbohydrate polysialic acid (PSA) significantly increased BDNF-induced ChAT-activity in embryonic septal neurons. Using a p75 neurotrophin receptor (p75(NTR)) function-blocking antibody and K252a, a-pan tropomyosin related kinase (Trk) inhibitor, we demonstrate that BDNF-induced ChAT activity requires the stimulation of p75(NTR) and TrkB. PSA removal drastically increased radioactive iodinated ([(125)I])BDNF's maximal binding capacity (Bmax), derived from concentrations of [(125)I]BDNF ranging from 1 pM to 3.2 nM. In the presence of unlabeled nerve growth factor to prevent the binding of [(125)I]BDNF to p75(NTR) sites, the impact of PSA removal on the binding capacity of [(125)I]BDNF was greatly reduced. In conclusion, PSA limits BDNF-induced ChAT activity and BDNF-receptor interactions. BDNF-induced ChAT activity is TrkB and p75(NTR) dependent, and upon PSA removal the additional binding of BDNF to its receptors, especially p75(NTR), likely contributes to the maximal ChAT activity observed. In vivo, the ontogenetic loss of PSA in the postnatal period may allow more interactions between BDNF and its receptors to increase ChAT activity and assure the proper development of the cholinergic septal neurons.
Collapse
Affiliation(s)
- Alison Burgess
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
14
|
Panickar KS, Nonner D, Barrett JN. Overexpression of Bcl-xl protects septal neurons from prolonged hypoglycemia and from acute ischemia-like stress. Neuroscience 2005; 135:73-80. [PMID: 16111822 DOI: 10.1016/j.neuroscience.2005.02.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 02/11/2005] [Accepted: 02/20/2005] [Indexed: 11/15/2022]
Abstract
Overexpression of Bcl-xl, a member of the Bcl-2 protein family, is reported to protect from a variety of stresses involving delayed cell death. We tested the ability of Bcl-xl overexpression to protect primary cultures of embryonic rat septal neurons subjected to one of four different stresses: 6 h of combined oxygen-glucose deprivation, which produces rapid cell death, or a 24 h exposure to hypoglycemia, hyperglycemia, or 1mM 3-nitropropionic acid (an inhibitor of mitochondrial respiration), which results in a more slowly-developing death. Prior to the stress neurons were transiently transfected to overexpress either green fluorescent protein only or green fluorescent protein along with wild-type Bcl-xl. Immediately after oxygen-glucose deprivation, many neurons expressing green fluorescent protein only showed process blebbing and disintegration, with only 49% of the initial cells remaining intact with processes. Neurons expressing both green fluorescent protein and Bcl-xl showed less damage (68% intact post-stress, P<0.05). This result indicates that Bcl-xl's saving effects are not due solely to blocking delayed (apoptotic) death, because death following oxygen-glucose deprivation was rapid and was not accompanied by increased activation of caspase-3. Bcl-xl expression also significantly protected against the hypoglycemic stress (23% intact 24 h post-stress with green fluorescent protein only, compared with 70% with Bcl-xl and green fluorescent protein), but did not protect from hyperglycemia or 3-nitropropionic acid. Thus Bcl-xl does not protect against all forms of delayed death. Bcl-xl's protective effects may include blocking early damaging events, perhaps by increasing mitochondrial function in the face of low levels of energy substrates. Bcl-xl's protective effects may require an intact electron transport chain.
Collapse
Affiliation(s)
- K S Panickar
- Department of Physiology and Biophysics (R430), University of Miami Miller School of Medicine, PO Box 016430, Miami, FL 33101, USA.
| | | | | |
Collapse
|
15
|
Paban V, Jaffard M, Chambon C, Malafosse M, Alescio-Lautier B. Time course of behavioral changes following basal forebrain cholinergic damage in rats: Environmental enrichment as a therapeutic intervention. Neuroscience 2005; 132:13-32. [PMID: 15780463 DOI: 10.1016/j.neuroscience.2004.11.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2004] [Indexed: 11/27/2022]
Abstract
The present experiment was designed to study changes in behavior following immunolesioning of the basal forebrain cholinergic system. Rats were lesioned at 3 months of age by injection of the 192 IgG-saporin immunotoxin into the medial septum area and the nucleus basalis magnocellularis, and then tested at different times after surgery (from days 7-500) on a range of behavioral tests, administered in the following order: a nonmatching-to-position task in a T-maze, an object-recognition task, an object-location task, and an open-field activity test. The results revealed a two-way interaction between post-lesion behavioral testing time and memory demands. In the nonmatching-to-position task, memory deficits appeared quite rapidly after surgery, i.e. at a post-lesion time as short as 1 month. In the object-recognition test, memory impairments appeared only when rats were tested at late post-lesion times (starting at 15 months), whereas in the object-location task deficits were apparent at early post-lesion times (starting from 2 months). Taking the post-operative time into account, one can hypothesize that at the shortest post-lesion times, behavioral deficits are due to pure cholinergic depletion, while as the post-lesion time increases, one can speculate the occurrence of a non-cholinergic system decompensation process and/or a gradual degeneration process affecting other neuronal systems that may contribute to mnemonic impairments. Interestingly, when middle-aged rats were housed in an enriched environment, 192 IgG-saporin-lesioned rats performed better than standard-lesioned rats on both the nonmatching-to-position and the object-recognition tests. Environment enrichment had significant beneficial effects in 192 IgG-saporin-lesioned rats, suggesting that lesioned rats at late post-lesion times (over 1 year) still have appreciable cognitive plasticity.
Collapse
Affiliation(s)
- V Paban
- Université d'Aix-Marseille I, Laboratoire de Neurobiologie Intégrative et Adaptative, UMR/CNRS 6149, Avenue Normandie Escadrille Niemen, 13397 Marseille, Cedex 20, France.
| | | | | | | | | |
Collapse
|
16
|
Nonner D, Panickar K, Barrett EF, Barrett JN. Bone morphogenetic proteins and neurotrophins provide complementary protection of septal cholinergic function during phosphatase inhibitor-induced stress. J Neurochem 2004; 91:77-87. [PMID: 15379889 DOI: 10.1111/j.1471-4159.2004.02687.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cultures of embryonic rat septum were exposed for 24-48 h to 2-5 nm okadaic acid (OA), an inhibitor of pp1A and pp2A phosphatases. This stress killed approximately 75% of neurons. A neurotrophin (NT) combination (nerve growth factor and brain-derived neurotrophic factor, each 100 ng/mL) plus a bone morphogenetic protein (BMP6 or BMP7, 5 nm) reduced the death of both cholinergic and non-cholinergic neurons, and preserved choline acetyltransferase (ChAT) activity assayed 2-6 days post-stress. This NT + BMP combination preserved ChAT activity better than either NTs or BMPs alone, and was effective even if trophic factor addition was delayed until 12 h after stress onset. A general caspase inhibitor (qVD-OPH, 10 micro g/mL) also increased survival of stressed cholinergic neurons, but its protection of ChAT activity was shorter lived than that produced by the NT + BMP combination. Neither the NT + BMP combination nor the caspase inhibitor reduced the OA-induced increase in tau phosphorylation. These findings indicate that NTs and BMPs have synergistic protective effects against an OA stress, and suggest that at least some of these protective effects occur upstream of caspase activation.
Collapse
Affiliation(s)
- Doris Nonner
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | | | |
Collapse
|
17
|
Hsiao SH, DuBois DW, Miranda RC, Frye GD. Critically timed ethanol exposure reduces GABAAR function on septal neurons developing in vivo but not in vitro. Brain Res 2004; 1008:69-80. [PMID: 15081384 DOI: 10.1016/j.brainres.2004.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2004] [Indexed: 12/29/2022]
Abstract
Six-day 'binge' ethanol intoxication postnatal days (PD) 4-9 delays up-regulation of gamma-aminobutyric acid type A receptors (GABAARs) in developing rat septal neurons [Dev. Brain Res. 130 (2001) 25]. This distortion occurs during synaptogenesis and could contribute to cognitive dysfunction in fetal alcohol syndrome (FAS). Here, we asked two questions concerning requirements for vulnerability to GABAAR blunting by ethanol. First, we asked whether receptor blunting required PD 4-9 ethanol exposure in rat pups and found that just a brief 2-day exposure (PD 8-9) was as effective as all 6 days. However, 2-day exposure on PD 4-5 was ineffective, showing that 'binge' timing was important. We also asked whether 'binge' exposure directly inhibited intrinsic processes of septal neurons and could blunt GABAARs on cells maturing outside the brain. Embryonic septal neurons grown in serum-free dispersed culture developed extensive dendritic arborizations, spontaneous synaptic activity and robust whole-cell GABAAR function, but surprisingly, did not show developmental up-regulation of GABAARs like septal neurons maturing in vivo [Brain Res. 810 (1998) 100]. Furthermore, age-matched 6-day 'binge' ethanol exposure did not blunt GABAAR function in septal neurons in vitro. These results suggest developmental mechanisms driving up-regulation of GABAAR function in septal neurons in vivo briefly becomes vulnerable to ethanol insult in early postnatal life. While septal neurons express comparable functional GABAARs whether maturing in vivo or in vitro, vulnerability to ethanol-induced receptor blunting requires elements of an intact brain environment not replicated in culture.
Collapse
Affiliation(s)
- Shu-Huei Hsiao
- Department of Medical Pharmacology and Toxicology, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| | | | | | | |
Collapse
|
18
|
Garza AA, Ha TG, Garcia C, Chen MJ, Russo-Neustadt AA. Exercise, antidepressant treatment, and BDNF mRNA expression in the aging brain. Pharmacol Biochem Behav 2004; 77:209-20. [PMID: 14751447 DOI: 10.1016/j.pbb.2003.10.020] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Principal mental disorders affecting the geriatric population include dementia and depression. A lack of trophic support is thought to contribute to the pathology of these disorders. Physical activity and antidepressant treatment increase the expression of brain-derived neurotrophic factor (BDNF) in the young rat hippocampus. Herein, we investigated the responsiveness of the aging rat hippocampus to antidepressant treatment and voluntary exercise. In situ hybridization revealed that, in young animals, exercise, antidepressant treatment, or their combination elevated BDNF mRNA levels in several hippocampal regions, most notably in the CA3, CA4, and dentate gyrus (DG). This effect was rapid (detectable at 2 days) and sustainable to 20 days. In aged (22-month-old) rats, hippocampal responsiveness to antidepressant treatment and exercise was also rapid and sustainable, but evident mostly in the CA1 and CA2. Daily swimming also revealed that small amounts of activity led to marked elevations in hippocampal BDNF mRNA. The differences in regional patterns of BDNF mRNA elevations between young and aged animals observed with running were maintained with this different exercise modality. Our results indicate that the aged brain is responsive to exercise and antidepressant treatment, and changes in regional response patterns may reflect shifts in hippocampal physiology during the lifespan.
Collapse
Affiliation(s)
- Antonio A Garza
- Department of Biological Sciences, California State University-Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA
| | | | | | | | | |
Collapse
|
19
|
Berchtold NC, Kesslak JP, Cotman CW. Hippocampal brain-derived neurotrophic factor gene regulation by exercise and the medial septum. J Neurosci Res 2002; 68:511-21. [PMID: 12111841 DOI: 10.1002/jnr.10256] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) enhances synaptic plasticity and neuron function. We have reported that voluntary exercise increases BDNF mRNA levels in the hippocampus; however, mechanisms underlying this regulation have not been defined. We hypothesized that medial septal cholinergic and/or gamma amino butyric acid (GABA)ergic neurons, which provide a major input to the hippocampus, may regulate the baseline gene expression and exercise-dependent gene upregulation of this neurotrophin. Focal lesions were produced by medial septal infusion of the saporin-linked immunotoxins 192-IgG-saporin or OX7-saporin. 192-IgG-saporin produced a selective and complete loss of medial septal cholinergic neurons with no accompanying GABA loss. Baseline BDNF mRNA was reduced in the hippocampus of sedentary animals, but exercise-induced gene upregulation was not impaired, despite complete loss of septo-hippocampal cholinergic afferents. OX7-saporin produced a graded lesion of the medial septum characterized by predominant GABA neuron loss with less reduction in the number of cholinergic cells. OX7-saporin lesion reduced baseline hippocampal BDNF mRNA and attenuated exercise-induced gene upregulation, in a dose-dependent manner. These results suggest that combined loss of septal GABAergic and cholinergic input to the hippocampus may be important for exercise-dependent BDNF gene regulation, while cholinergic activity on its own is not sufficient. These results are discussed in relation to their implications for aging and Alzheimer's disease.
Collapse
Affiliation(s)
- Nicole C Berchtold
- Institute for Brain Aging and Dementia, University of California, Irvine, California, 92697-4540, USA.
| | | | | |
Collapse
|
20
|
Abrahám IM, Harkany T, Horvath KM, Luiten PG. Action of glucocorticoids on survival of nerve cells: promoting neurodegeneration or neuroprotection? J Neuroendocrinol 2001; 13:749-60. [PMID: 11578524 DOI: 10.1046/j.1365-2826.2001.00705.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Extensive studies during the past decades provided compelling evidence that glucocorticoids (GCs) have the potential to affect the development, survival and death of neurones. These observations, however, reflect paradoxical features of GCs, as they may be critically involved in both neurodegenerative and neuroprotective processes. Hence, we first address different aspects of the complex role of GCs in neurodegeneration and neuroprotection, such as concentration dependent actions of GCs on neuronal viability, anatomical diversity of GC-mediated mechanisms in the brain and species and strain differences in GC-induced neurodegeneration. Second, the modulatory action of GCs during development and ageing of the central nervous system, as well as the contribution of altered GC balance to the pathogenesis of neurodegenerative disorders is considered. In addition, we survey recent data as to the possible mechanisms underlying the neurodegenerative and neuroprotective actions of GCs. As such, two major aspects will be discerned: (i) GC-dependent offensive events, such as GC-induced inhibition of glucose uptake, increased extracellular glutamate concentration and concomitant elevation of intracellular Ca(2+), decrease in GABAergic signalling and regulation of local GC concentrations by 11 beta-hydroxysteroid dehydrogenases; and (ii) GC-related cellular defence mechanisms, such as decrease in after-hyperpolarization, increased synthesis and release of neurotrophic factors and lipocortin-1, feedback regulation of Ca(2+) currents and induction of antioxidant enzymes. The particular relevance of these mechanisms to the neurodegenerative and neuroprotective effects of GCs in the brain is discussed.
Collapse
Affiliation(s)
- I M Abrahám
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | |
Collapse
|
21
|
Auld DS, Mennicken F, Quirion R. Nerve growth factor rapidly induces prolonged acetylcholine release from cultured basal forebrain neurons: differentiation between neuromodulatory and neurotrophic influences. J Neurosci 2001; 21:3375-82. [PMID: 11331367 PMCID: PMC6762468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Long-term exposure to nerve growth factor (NGF) is well established to have neurotrophic effects on basal forebrain cholinergic neurons, but its potential actions as a fast-acting neuromodulator are not as well understood. We report that NGF (0.1-100 ng/ml) rapidly (<60 min) and robustly enhanced constitutive acetylcholine (ACh) release (148-384% of control) from basal forebrain cultures without immediate persistent increases in choline acetyltransferase activity. More ACh was released in response to NGF when exposure was coupled with a higher depolarization level, suggesting activity dependence. In a long-term potentiation-like manner, brief NGF exposure (10 ng/ml; 60 min) induced robust and prolonged increases in ACh release, a capacity that was shared with the other neurotrophins. K252a (10-100 nm), BAPTA-AM (25 microm), and Cd(2+) (200 microm) prevented NGF enhancement of ACh release, suggesting the involvement of TrkA receptors, Ca(2+), and voltage-gated Ca(2+) channels, respectively. Forskolin (10 microm), a cAMP generator, enhanced constitutive ACh release but did not interact synergistically with NGF. Tetrodotoxin (1 microm) and cycloheximide (2 microm) did not prevent NGF-induced ACh release, indicative of action at the level of the cholinergic nerve terminal and that new protein synthesis is not required for this neurotransmitter-like effect, respectively. In contrast, after a 24 hr NGF treatment, distinct protein synthesis-dependent and independent effects on choline acetyltransferase activity and ACh release were observed. These results indicate that neuromodulator/neurotransmitter-like (protein synthesis-independent) and neurotrophic (translation-dependent) actions likely make distinct contributions to the enhancement of cholinergic activity by NGF.
Collapse
Affiliation(s)
- D S Auld
- Douglas Hospital Research Center, Montréal, Québec, Canada H4H 1R3
| | | | | |
Collapse
|
22
|
Nonner D, Barrett EF, Kaplan P, Barrett JN. Bone morphogenetic proteins (BMP6 and BMP7) enhance the protective effect of neurotrophins on cultured septal cholinergic neurons during hypoglycemia. J Neurochem 2001; 77:691-9. [PMID: 11299331 DOI: 10.1046/j.1471-4159.2001.00273.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of two bone morphogenetic proteins (BMP6, BMP7), alone and in combination with neurotrophins, were tested on cultures of embryonic day 15 rat septum. A week-long exposure to BMP6 or BMP7 in the optimal concentration range of 2-5 n M increased the activity of choline acetyltransferase (ChAT) by 1.6-2-fold, in both septal and combined septal-hippocampal cultures. The increase in ChAT activity reached significance after 4 days and continued to increase over an 11-day exposure. Under control culture conditions neither BMP significantly altered the number of cholinergic neurons, and BMP effects on ChAT activity were less than linearly additive with those of nerve growth factor. The effects of BMPs and BMP + neurotrophin combinations were also assayed under two stress conditions: low-density culture and hypoglycemia. In low-density cultures BMPs and BMP + neurotrophin combinations preserved ChAT activity more effectively than neurotrophins alone. During 24 h hypoglycemic stress, BMPs alone did not preserve ChAT activity, but BMP + neurotrophin combinations preserved ChAT activity much more effectively than neurotrophins alone. These results demonstrate that BMP6 and BMP7 enhance ChAT activity under control and low-density stress conditions, and that during a hypoglycemic stress their trophic effect requires and complements that exerted by neurotrophins.
Collapse
Affiliation(s)
- D Nonner
- Department of Physiology and Biophysics, University of Miami Medical School, Miami, USA Creative Biomolecules, Boston, USA
| | | | | | | |
Collapse
|
23
|
Ehret A, Haaf A, Jeltsch H, Heimrich B, Feuerstein TJ, Jackisch R. Modulation of electrically evoked acetylcholine release in cultured rat septal neurones. J Neurochem 2001; 76:555-64. [PMID: 11208918 DOI: 10.1046/j.1471-4159.2001.00030.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The electrically evoked release of acetylcholine and its modulation via auto- and heteroreceptors were studied in primary cell cultures prepared from embryonic rat septum (ED 17). Cultures were grown for 1, 2 or 3 weeks on circular, poly D-lysine-coated glass coverslips. They developed a dense network of non-neuronal and neuronal cells, only some of which were immunopositive for choline acetyltransferase. To measure acetylcholine release, the cells on the coverslips were pre-incubated with [3H]choline (0.1 micromol/L), superfused with modified Krebs-Henseleit buffer at 25 degrees C and electrically stimulated twice for 2 min (S1, S2; 3 Hz, 0.5 ms, 90-100 mA). The electrically evoked overflow of [3H] from the cells consisted of approximately 80% of authentic [3H]Ach, was largely Ca2+-dependent and tetrodotoxin sensitive, and hence represents an action potential-evoked, exocytotic release of acetylcholine. Using pairs of selective agonists and antagonist added before S2, muscarinic autoreceptors, as well as inhibitory adenosine A1- and opioid mu-receptors, could be detected, whereas delta-opioid receptors were not found. Evoked [3H] overflow from cultures grown for 1 week, although Ca2+ dependent and tetrodotoxin sensitive, was insensitive to the muscarinic agonist oxotremorine, whereas the effect of oxotremorine on cells grown for 3 weeks was even more pronounced than that in 2-week-old cultures. In conclusion, similar to observations on rat septal tissue in vivo, acetylcholine release from septal cholinergic neurones grown in vitro is inhibited via muscarinic, adenosine A1 and mu-opioid receptors. This in vitro model may prove useful in the exploration of regulatory mechanisms underlying the expression of release modulating receptors on septal cholinergic neurones.
Collapse
Affiliation(s)
- A Ehret
- Institut für Pharmakologie und Toxikologie, Neuropharmakologisches Laboratorium, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Murer MG, Yan Q, Raisman-Vozari R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer's disease and Parkinson's disease. Prog Neurobiol 2001; 63:71-124. [PMID: 11040419 DOI: 10.1016/s0301-0082(00)00014-9] [Citation(s) in RCA: 642] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a small dimeric protein, structurally related to nerve growth factor, which is abundantly and widely expressed in the adult mammalian brain. BDNF has been found to promote survival of all major neuronal types affected in Alzheimer's disease and Parkinson's disease, like hippocampal and neocortical neurons, cholinergic septal and basal forebrain neurons, and nigral dopaminergic neurons. In this article, we summarize recent work on the molecular and cellular biology of BDNF, including current ideas about its intracellular trafficking, regulated synthesis and release, and actions at the synaptic level, which have considerably expanded our conception of BDNF actions in the central nervous system. But our primary aim is to review the literature regarding BDNF distribution in the human brain, and the modifications of BDNF expression which occur in the brain of individuals with Alzheimer's disease and Parkinson's disease. Our knowledge concerning BDNF actions on the neuronal populations affected in these pathological states is also reviewed, with an aim at understanding its pathogenic and pathophysiological relevance.
Collapse
Affiliation(s)
- M G Murer
- Departamento de Fisiologia, Facultad de Medicina, Universidad de Buenos Aires, Paraguay.
| | | | | |
Collapse
|
25
|
Mizuno M, Yamada K, Olariu A, Nawa H, Nabeshima T. Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J Neurosci 2000; 20:7116-21. [PMID: 10995859 PMCID: PMC6772840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2000] [Revised: 07/03/2000] [Accepted: 07/06/2000] [Indexed: 02/17/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) regulates both short-term synaptic functions and activity-dependent synaptic plasticity such as long-term potentiation. In the present study, we investigated the role of BDNF in the spatial reference and working memory in a radial arm maze test. The radial arm maze training resulted in a significant increase in the BDNF mRNA expression in the hippocampus, although the expression in the frontal cortex did not change. When spatial learning was inhibited by treatment with 7-nitroindazole, an inhibitor of brain nitric oxide synthase, the increase in the hippocampal BDNF mRNA did not occur. To clarify the causal relation between BDNF mRNA expression and spatial memory formation, we examined the effects of antisense BDNF treatment on spatial learning and memory. A continuous intracerebroventricular infusion of antisense BDNF oligonucleotide resulted in an impairment of spatial learning, although the sense oligonucleotide had no effect. Treatment with antisense, but not sense, BDNF oligonucleotide was associated with a significant reduction of BDNF mRNA and protein levels in the hippocampus. Furthermore, treatment with antisense BDNF oligonucleotide in rats, which had previously acquired spatial memory by an extensive training, impaired both reference and working memory. There were no differences in locomotor activity, food consumption, and body weight between the antisense and sense oligonucleotide-treated rats. These results suggest that BDNF plays an important role not only in the formation, but also in the retention and/or recall, of spatial memory.
Collapse
Affiliation(s)
- M Mizuno
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Showa-ku Nagoya 466-8560, Japan
| | | | | | | | | |
Collapse
|
26
|
Ward NL, Hagg T. BDNF is needed for postnatal maturation of basal forebrain and neostriatum cholinergic neurons in vivo. Exp Neurol 2000; 162:297-310. [PMID: 10739636 DOI: 10.1006/exnr.1999.7346] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurotrophins regulate survival, neurite outgrowth, and phenotypic maturation of developing neurons. Brain-derived neurotrophic factor (BDNF) can promote the survival of developing cholinergic forebrain neurons in vitro and reduce their degeneration following injury in adult rats. We investigated the role of endogenous BDNF during postnatal development of these cholinergic neurons by analyzing homozygous BDNF-deficient (-/-) mice and their littermates (+/+, +/-). At P6, the number of choline acetyltransferase- (ChAT) positive neurons in the medial septum was approximately 23% lower in BDNF-/- mice, although their brain and body weight was normal. At P15, control (+/+) littermates had approximately 45% more and approximately 45% larger ChAT-positive neurons and a much denser cholinergic hippocampal innervation than at P6, indicative of maturation of the septohippocampal system. In BDNF-/- mice, the number, size, and ChAT-immunostaining intensity of the cholinergic neurons remained the same between P6 and P15 (few mice survive longer). BDNF-/- mice had about three times more TUNEL-labeled (a marker of apoptosis) cells in the medial septum at P6, consistent with (but not proof of) the possibility that the cholinergic neurons were dying. The cholinergic hippocampal innervation in BDNF-/- mice expanded to a lesser extent than in controls and had reduced levels of acetylcholinesterase staining at P15. The developmental deficits were largely similar in the neostriatum of BDNF-/- mice. These findings suggest that BDNF is critical for postnatal development and maturation of cholinergic forebrain neurons.
Collapse
Affiliation(s)
- N L Ward
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, B3H 4H7, Canada
| | | |
Collapse
|
27
|
Nonner D, Barrett EF, Barrett JN. Brief exposure to neurotrophins produces a calcium-dependent increase in choline acetyltransferase activity in cultured rat septal neurons. J Neurochem 2000; 74:988-99. [PMID: 10693929 DOI: 10.1046/j.1471-4159.2000.0740988.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We demonstrate that brief (30-min) exposure of cultured embryonic rat septal neurons to neurotrophins (NTs) increases choline acetyltransferase (ChAT) activity by 20-50% for all tested NTs (nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4, each at 100 ng/ml). The increase in ChAT activity was first detected 12 h after NT exposure, persisted at least 48 h, and was not mediated by increased neuronal survival or action-potential activity. Under some conditions, the response to brief NT exposure was as great as that produced by continuous exposure. NT stimulation of ChAT activity was inhibited by inhibitors of p75- and Trk kinase-mediated signaling, by removal of extracellular Ca2+ during the period of NT exposure, and by buffering intracellular Ca2+ with BAPTA. Application of nerve growth factor and brain-derived neurotrophic factor transiently increased [Ca2+] within a subpopulation of neurons. NT stimulation of ChAT activity was not affected significantly by cyclic AMP agonists or antagonists. These findings suggest that brief exposure to NTs can have a long-lasting effect on cholinergic transmission, and that this effect requires Ca2+, but not cyclic AMP.
Collapse
Affiliation(s)
- D Nonner
- Department of Physiology and Biophysics, University of Miami School of Medicine, Florida 33101, USA
| | | | | |
Collapse
|
28
|
Jonakait GM, Wen Y, Wan Y, Ni L. Macrophage cell-conditioned medium promotes cholinergic differentiation of undifferentiated progenitors and synergizes with nerve growth factor action in the developing basal forebrain. Exp Neurol 2000; 161:285-96. [PMID: 10683294 DOI: 10.1006/exnr.1999.7255] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Conditioned medium from stimulated microglia and from the monocyte/macrophage cell line (RAW 264.7; MC-CM) promotes the differentiation of cholinergic neurons from undifferentiated progenitors in the septal nuclei and adjacent basal forebrain (BF). We have studied the regulation of this process by measuring the activity of choline acetyltransferase (ChAT) in cultured BF taken from embryonic day 16 rat brain. Inhibition of either xanthine oxidase with allopurinol or nitric oxide synthase with N(G)-monomethyl-l-arginine produces a small but significant improvement in the efficacy of MC-CM while inclusion of pyrrolidine dithiocarbamate, a hydroxyl radical scavenger widely used as an antioxidant, lowers MC-CM-induced ChAT activity. Addition of nerve growth factor (NGF) but not brain-derived neurotrophic factor or glial-derived neurotrophic factor together with MC-CM has a synergistic effect on both ChAT activity and ChAT mRNA, raising ChAT activity as much as 29-fold and ChAT mRNA almost 15-fold. While MC-CM raised mRNA for trkA, the effect was not synergistic with NGF. mRNA for the common neurotrophin receptor (p75NTR) showed a modest synergistic increase. Blockade of the Ras/Raf/ERK [extracellular signal-regulated kinase, also known as mitogen-activated protein [(MAP) kinase] signal transduction pathway with either PD28059 (an inhibitor of MAP kinase/ERK kinase kinase or MEK) or N-acetyl-S-farnesyl-l-cysteine (an inhibitor of Ras farnesylation and, hence, activation) inhibited the action of MC-CM. Moreover, a subpopulation of cells responded rapidly to MC-CM with an increased appearance of phosphorylated ERK. Because NGF also utilizes this pathway, synergy may occur along this signal transduction pathway.
Collapse
Affiliation(s)
- G M Jonakait
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, 07102, USA
| | | | | | | |
Collapse
|
29
|
Gil Z, Silberberg SD, Magleby KL. Voltage-induced membrane displacement in patch pipettes activates mechanosensitive channels. Proc Natl Acad Sci U S A 1999; 96:14594-9. [PMID: 10588750 PMCID: PMC24481 DOI: 10.1073/pnas.96.25.14594] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The patch-clamp technique allows currents to be recorded through single ion channels in patches of cell membrane in the tips of glass pipettes. When recording, voltage is typically applied across the membrane patch to drive ions through open channels and to probe the voltage-sensitivity of channel activity. In this study, we used video microscopy and single-channel recording to show that prolonged depolarization of a membrane patch in borosilicate pipettes results in delayed slow displacement of the membrane into the pipette and that this displacement is associated with the activation of mechanosensitive (MS) channels in the same patch. The membrane displacement, approximately 1 micrometer with each prolonged depolarization, occurs after variable delays ranging from tens of milliseconds to many seconds and is correlated in time with activation of MS channels. Increasing the voltage step shortens both the delay to membrane displacement and the delay to activation. Preventing depolarization-induced membrane displacement by applying positive pressure to the shank of the pipette or by coating the tips of the borosilicate pipettes with soft glass prevents the depolarization-induced activation of MS channels. The correlation between depolarization-induced membrane displacement and activation of MS channels indicates that the membrane displacement is associated with sufficient membrane tension to activate MS channels. Because membrane tension can modulate the activity of various ligand and voltage-activated ion channels as well as some transporters, an apparent voltage dependence of a channel or transporter in a membrane patch in a borosilicate pipette may result from voltage-induced tension rather than from direct modulation by voltage.
Collapse
Affiliation(s)
- Z Gil
- Department of Life Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | | |
Collapse
|
30
|
Wu X, Glinn MA, Ostrowski NL, Su Y, Ni B, Cole HW, Bryant HU, Paul SM. Raloxifene and estradiol benzoate both fully restore hippocampal choline acetyltransferase activity in ovariectomized rats. Brain Res 1999; 847:98-104. [PMID: 10564741 DOI: 10.1016/s0006-8993(99)02062-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Selective estrogen receptor modulators (SERMs) demonstrate tissue-specific estrogen receptor (ER) agonist or antagonist properties. Raloxifene, a prototypical SERM, has ER agonist properties in bone and on cholesterol metabolism but full antagonist properties in the uterus and breast. To characterize the ER agonist/antagonist profile of raloxifene in the brain, we have examined its effect on the activity of a known estrogen-responsive gene product, choline acetyltransferase (ChAT), in the hippocampus and other brain regions of 6-month-old ovariectomized (OVX) Sprague-Dawley rats. Three weeks post-ovariectomy, animals received estradiol benzoate (EB, 0.03 mg or 0.3 mg kg(-1) day(-1) for 3 or 10 days); raloxifene HCl (3.0 mg kg(-1) day(-1) for 3 or 10 days), tamoxifen (3.0 mg kg(-1) day(-1) for 10 days) or vehicle (20% CDX). As previously reported, ChAT activity decreased by approximately 20%-50% in the hippocampus of OVX compared with SHAM-operated control rats with no change in ChAT activity observed in the hypothalamus. Raloxifene or EB reversed the OVX-induced decrease in ChAT activity in the hippocampus but did not change ChAT activity in the hypothalamus. Animals that received combined EB (0.03 mg/kg) plus raloxifene (1 mg/kg) or tamoxifen alone (3.0 or 10 mg/kg) also showed increased hippocampal ChAT activity. Raloxifene failed to increase uterine weight and blocked the estrogen-induced increase in uterine weight, while another SERM, tamoxifen, increased uterine weight. These data demonstrate that raloxifene has estrogen-like properties on hippocampal ChAT activity in vivo, and suggest that benzothiophene SERMs may exert estrogen-like beneficial effects on cholinergic neurotransmission in brain without producing peripheral stimulation of breast or uterine tissue.
Collapse
Affiliation(s)
- X Wu
- Neuroscience and Endocrine Divisions, Lilly Research Laboratories, Eli Lilly and Company, DC 0530, Lilly Corporate Center, Indianapolis, IN, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Yan J, Barrett JN. Purification from bovine serum of a survival-promoting factor for cultured central neurons and its identification as selenoprotein-P. J Neurosci 1998; 18:8682-91. [PMID: 9786975 PMCID: PMC6793531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/1998] [Revised: 08/07/1998] [Accepted: 08/17/1998] [Indexed: 02/09/2023] Open
Abstract
We purified from bovine serum a glycoprotein that promotes the survival of rat embryonic neurons cultured from septum and other brain regions. A 40,000-fold purification was achieved by using a combination of ammonium sulfate precipitation, Zn2+ affinity chromatography, Cibacron blue 3-GA dye affinity chromatography, ABx ion exchange chromatography, and preparative PAGE. The active protein had an apparent molecular weight of 50-60 kDa. The concentration required for half-maximal survival (EC50) was 12 ng/ml ( approximately 200 pM) for the final fraction. Amino acid sequencing after cyanogen bromide cleavage yielded two sequences that are homologous to regions of deduced sequence of the selenoprotein-P (SPP) family in bovine, rat, and human. Antibodies against a synthetic peptide within the bovine SPP sequence immunoprecipitated and inhibited the survival-promoting activity of a partially purified serum fraction. The purified protein supported neuronal survival more effectively than inorganic selenium. These results suggest that SPP or an SPP-like protein contributes to the neuronal survival-promoting activity of serum.
Collapse
Affiliation(s)
- J Yan
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | |
Collapse
|
32
|
Abstract
It is proposed that altered dendrite length and de novo formation of new dendrite branches in cholinoceptive cells are responsible for long-term memory storage, a process enabled by the degradation of microtubule-associated protein-2. These memories are encoded as modality-specific associable representations. Accordingly, associable representations are confined to cytoarchitectonic modules of the cerebral cortex, hippocampus, and amygdala. The proposed sequence of events leading to long-term storage in cholinoceptive dendrites begins with changes in neuronal activity, then in neurotrophin release, followed by enhanced acetylcholine release, muscarinic response, calcium influx, degradation of microtubule-associated protein-2, and finally new dendrite structure. Hypothetically, each associable representation consists of altered dendrite segments from approximately 5000-15,000 cholinoceptive cells contained within one or a few module(s). Simultaneous restructuring during consolidation of long-term memory is hypothesized to result in a similar infrastructure among dendrite sets, facilitating co-activation of those dendrite sets by neurotransmitters such as acetylcholine, and conceivably enabling high energy interactions between those dendrites by phenomena such as quantum optical coherence. Based on the specific architecture proposed, it is estimated that the human telecephalon contains enough dendrites to encode 50 million associable representations in a lifetime, or put another way, to encode one new associable representation each minute. The implications that this proposal has regarding treatments for Alzheimer's disease are also discussed.
Collapse
Affiliation(s)
- N J Woolf
- Laboratory of Chemical Neuroanatomy, University of California, Los Angeles 90095-1563, USA. ,
| |
Collapse
|