1
|
Saraswat Ohri S, Myers SA, Rood B, Brown BL, Chilton PM, Slomnicki L, Liu Y, Wei GZ, Andres KR, Mohan D, Howard RM, Whittemore SR, Hetman M. Reduced White Matter Damage and Lower Neuroinflammatory Potential of Microglia and Macrophages in Hri/Eif2ak1 -/- Mice After Contusive Spinal Cord Injury. Glia 2025. [PMID: 39760211 DOI: 10.1002/glia.24669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/29/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Cellular stressors inhibit general protein synthesis while upregulating stress response transcripts and/or proteins. Phosphorylation of the translation factor eIF2α by one of the several stress-activated kinases is a trigger for such signaling, known as the integrated stress response (ISR). The ISR regulates cell survival and function under stress. Here, germline knockout mice were used to determine contributions by three major ISR kinases, HRI/EIF2AK1, GCN2/EIF2AK4, and PKR//EIF2AK2, to pathogenesis of moderate contusive spinal cord injury (SCI) at the thoracic T9 level. One-day post-injury (dpi), reduced levels of peIF2α were found in Hri-/- and Gcn2-/-, but not in Pkr-/- mice. In addition, Hri-/- mice showed attenuated expression of the downstream ISR transcripts, Atf4 or Chop. Such differential effects of SCI-activated ISR correlated with a strong or moderate enhancement of locomotor recovery in Hri-/- or Gcn2-/- mice, respectively. Hri-/- mice also showed reduced white matter loss, increased content of oligodendrocytes (OL) and attenuated neuroinflammation, including decreased lipid accumulation in microglia/macrophages. Cultured neonatal Hri-/- OLs showed lower ISR cytotoxicity. Moreover, cell autonomous reduction in neuroinflammatory potential was observed in microglia and bone marrow-derived macrophages derived from Hri-/- mice. These data identify HRI as a major positive regulator of SCI-associated secondary injury. In addition, targeting HRI may enable multimodal neuroprotection to enhance functional recovery after SCI.
Collapse
Affiliation(s)
- Sujata Saraswat Ohri
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - Scott A Myers
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - Benjamin Rood
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Biochemistry & Molecular Genetics, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - Brandon L Brown
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Anatomical Sciences & Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology & Toxicology, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - Paula M Chilton
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Norton Neuroscience Institute, Louisville, Kentucky, USA
| | - Lukasz Slomnicki
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - Yu Liu
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - George Z Wei
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Interdisciplinary Program in Translational Neuroscience, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - Kariena R Andres
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - Divya Mohan
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - Russell M Howard
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - Scott R Whittemore
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Biochemistry & Molecular Genetics, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Anatomical Sciences & Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology & Toxicology, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Interdisciplinary Program in Translational Neuroscience, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Biochemistry & Molecular Genetics, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Anatomical Sciences & Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology & Toxicology, University of Louisville, School of Medicine, Louisville, Kentucky, USA
- Department of Interdisciplinary Program in Translational Neuroscience, University of Louisville, School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
2
|
Derafshpour L, Niazi M, Pourheydar B, Roshan-Milani S, Asghariehahari M, Chodari L. Aging and voluntary exercise's effects on Aβ1-42 levels, endoplasmic reticulum stress factors, and apoptosis in the hippocampus of old male rats. Brain Res 2025; 1850:149447. [PMID: 39761746 DOI: 10.1016/j.brainres.2025.149447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/21/2024] [Accepted: 01/03/2025] [Indexed: 01/14/2025]
Abstract
Within the aging cortex, amyloid beta peptide (Aβ) is a crucial element of the senile plaques, a hallmark feature often observed in cases of Alzheimer's disease (AD). The UPR (unfolded protein response), a cellular mechanism for protein folding, is switched on by Aβ accumulation. Endoplasmic reticulum (ER) stress has been identified as playing a role in aging and the development of neurodegenerative diseases. The exact molecular pathways leading to perishing of cells from Aβ-induced ER stress, as well as the impact of voluntary exercise on these mechanisms, are still subjects awaiting a definitive answer yet. In the current study, 18 male Wistar rats were included: 6 young rats (3 months old; 200-250 g) in the Young Control group, and 12 old rats (18 months old; 400-430 g) randomly allocated to the Old Control and Old Exercise groups. The rat cages had running wheels for them to voluntarily run on for 8 weeks. This was followed by Western blotting, immunohistochemical staining, biochemical as well as morphological analyses. Voluntary exercise reduced Aβ1-42 deposition (P < 0.001) and inhibited the activation of caspase-8 (P < 0.001) and caspase-12 (P < 0.01), and on top of that down-regulated the expression of ATF6 (P < 0.001), CHOP (P < 0.01), and p-PERK (P < 0.05) proteins in the hippocampus of old male rats. Exercise amplified the population of Bcl-2-expressing cells and decreased the population of Bax-expressing cells in the hippocampus of the Old Exercise group (P < 0.001). Voluntary exercise inhibited the apoptotic pathways and suppressed the activation of UPR signaling pathways. Hence, voluntary exercise may be a therapeutic strategy and a promising approach to prevent AD through modulation of Aβ-induced ER stress.
Collapse
Affiliation(s)
- Leila Derafshpour
- Neuroscience, Ottawa Hospital Research Institue, Ottawa, ONK1H 8M5, Canada
| | - Mona Niazi
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Bagher Pourheydar
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Anatomical Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shiva Roshan-Milani
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Morteza Asghariehahari
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
3
|
Noori H, Alazzeh ZJ, Rehman OU, Idrees M, Marsool MDM, Abdul Rehman K, Gohil KM, Ahmad SS, Subash T, Dixon K. Endoplasmic reticulum's role in multiple sclerosis, exploring potential biomarkers, and pioneering therapeutic strategies: a comprehensive review of literature. Neurol Sci 2025; 46:113-123. [PMID: 39269572 DOI: 10.1007/s10072-024-07766-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Multiple Sclerosis (MS) is a complex and chronic autoimmune disease that affects the central nervous system. Inflammation and demyelination characterize it, which results in a range of neurological impairments. The increasing worldwide occurrence of MS, affecting an estimated 2.8 million individuals in 2020, highlights the urgent requirement for further research to tackle the significant impact it has on individuals and healthcare systems globally. OBJECTIVE In this study, we wanted to explore the complex function of the endoplasmic reticulum (ER) in the origin, development, and resolution of MS, emphasizing its importance in neuroinflammatory illnesses. The ER has become a central focus in comprehending the pathogenesis of MS. Upon reviewing the literature, we observed a lack of thorough analysis that explores the involvement of endoplasmic reticulum stress in multiple sclerosis. Thus, we aimed through this research to examine the correlations between ER stress and its influence on immunological dysregulation, demyelination, and neurodegeneration in MS. FINDINGS Based on the latest clinical trials, we suggested theories that explore possible biomarkers linked to ER stress and the unfolded protein response. Identifying molecules that are suggestive of early stages of illness and can serve as prognostic tools for improving our understanding of the heterogeneity of MS and offering novel approaches for managing the disease. Finally, through our comprehensive search, we wanted to offer a plan for future research, suggesting new and creative methods for managing MS and encouraging the creation of specific treatments that aim to reduce the impact of MS on individuals worldwide.
Collapse
Affiliation(s)
- Hamid Noori
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Level 6, West Wing, Oxford, OX3 9DU, UK
| | | | - Obaid Ur Rehman
- Department of Medicine, Services Institute of Medical Sciences, Lahore, Pakistan
| | | | | | - Khawaja Abdul Rehman
- Department of Medicine, CMH Lahore Medical College and Institute of Dentistry, Lahore, Pakistan.
| | - Krutika Mahendra Gohil
- Topiwala National Medical College & Bai Yamunabai Laxman Nair Charitable Hospital, Mumbai, India
| | | | | | - Kayla Dixon
- University of Birmingham Medical School, Birmingham, UK
| |
Collapse
|
4
|
Wu S, Lin W. The physiological role of the unfolded protein response in the nervous system. Neural Regen Res 2024; 19:2411-2420. [PMID: 38526277 PMCID: PMC11090440 DOI: 10.4103/1673-5374.393105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/12/2023] [Indexed: 03/26/2024] Open
Abstract
The unfolded protein response (UPR) is a cellular stress response pathway activated when the endoplasmic reticulum, a crucial organelle for protein folding and modification, encounters an accumulation of unfolded or misfolded proteins. The UPR aims to restore endoplasmic reticulum homeostasis by enhancing protein folding capacity, reducing protein biosynthesis, and promoting protein degradation. It also plays a pivotal role in coordinating signaling cascades to determine cell fate and function in response to endoplasmic reticulum stress. Recent research has highlighted the significance of the UPR not only in maintaining endoplasmic reticulum homeostasis but also in influencing various physiological processes in the nervous system. Here, we provide an overview of recent findings that underscore the UPR's involvement in preserving the function and viability of neuronal and myelinating cells under physiological conditions, and highlight the critical role of the UPR in brain development, memory storage, retinal cone development, myelination, and maintenance of myelin thickness.
Collapse
Affiliation(s)
- Shuangchan Wu
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Wensheng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Medina R, Derias AM, Lakdawala M, Speakman S, Lucke-Wold B. Overview of emerging therapies for demyelinating diseases. World J Clin Cases 2024; 12:6361-6373. [PMID: 39464332 PMCID: PMC11438674 DOI: 10.12998/wjcc.v12.i30.6361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
This paper provides an overview of autoimmune disorders of the central nervous system, specifically those caused by demyelination. We explore new research regarding potential therapeutic interventions, particularly those aimed at inducing remyelination. Remyelination is a detailed process, involving many cell types-oligodendrocyte precursor cells (OPCs), astrocytes, and microglia-and both the innate and adaptive immune systems. Our discussion of this process includes the differentiation potential of neural stem cells, the function of adult OPCs, and the impact of molecular mediators on myelin repair. Emerging therapies are also explored, with mechanisms of action including the induction of OPC differentiation, the transplantation of mesenchymal stem cells, and the use of molecular mediators. Further, we discuss current medical advancements in relation to many myelin-related disorders, including multiple sclerosis, optic neuritis, neuromyelitis optica spectrum disorder, myelin oligodendrocyte glycoprotein antibody-associated disease, transverse myelitis, and acute disseminated encephalomyelitis. Beyond these emerging systemic therapies, we also introduce the dimethyl fumarate/silk fibroin nerve conduit and its potential role in the treatment of peripheral nerve injuries. Despite these aforementioned scientific advancements, this paper maintains the need for ongoing research to deepen our understanding of demyelinating diseases and advance therapeutic strategies that enhance affected patients' quality of life.
Collapse
Affiliation(s)
- Robert Medina
- University of Florida College of Medicine, University of Florida, Gainesville, Fl 32610, United States
| | - Ann-Marie Derias
- University of Florida College of Medicine, University of Florida, Gainesville, Fl 32610, United States
| | - Maria Lakdawala
- University of Florida College of Medicine, University of Florida, Gainesville, Fl 32610, United States
| | - Skye Speakman
- University of Florida College of Medicine, University of Florida, Gainesville, Fl 32610, United States
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
6
|
Castelo-Branco G, Kukanja P, Guerreiro-Cacais AO, Rubio Rodríguez-Kirby LA. Disease-associated oligodendroglia: a putative nexus in neurodegeneration. Trends Immunol 2024; 45:750-759. [PMID: 39322475 DOI: 10.1016/j.it.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024]
Abstract
Neural cells in our central nervous system (CNS) have long been thought to be mere targets of neuroinflammatory events in neurodegenerative diseases such as multiple sclerosis (MS) or Alzheimer's disease. While glial populations such as microglia and astrocytes emerged as active responders and modifiers of pathological environments, oligodendroglia and neurons have been associated with altered homeostasis and eventual cell death. The advent of single-cell and spatial omics technologies has demonstrated transitions of CNS-resident glia, including oligodendroglia, into disease-associated (DA) states. Anchored in recent findings of their roles in MS, we propose that DA glia constitute key nexus of disease progression, with DA oligodendroglia contributing to the modulation of neuroinflammation in certain neurodegenerative diseases, constituting novel putative pharmacological targets for such pathologies.
Collapse
Affiliation(s)
- Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Petra Kukanja
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, 17177 Stockholm, Sweden
| | - André O Guerreiro-Cacais
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, 171 76 Solna, Sweden
| | - Leslie A Rubio Rodríguez-Kirby
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
7
|
Gao Y, Slomnicki LP, Kilanczyk E, Forston MD, Pietrzak M, Rouchka EC, Howard RM, Whittemore SR, Hetman M. Reduced Expression of Oligodendrocyte Linage-Enriched Transcripts During the Endoplasmic Reticulum Stress/Integrated Stress Response. ASN Neuro 2024; 16:2371162. [PMID: 39024571 PMCID: PMC11262469 DOI: 10.1080/17590914.2024.2371162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/12/2024] [Indexed: 07/20/2024] Open
Abstract
Endoplasmic reticulum (ER) stress in oligodendrocyte (OL) linage cells contributes to several CNS pathologies including traumatic spinal cord injury (SCI) and multiple sclerosis. Therefore, primary rat OL precursor cell (OPC) transcriptomes were analyzed using RNASeq after treatments with two ER stress-inducing drugs, thapsigargin (TG) or tunicamycin (TM). Gene ontology term (GO) enrichment showed that both drugs upregulated mRNAs associated with the general stress response. The GOs related to ER stress were only enriched for TM-upregulated mRNAs, suggesting greater ER stress selectivity of TM. Both TG and TM downregulated cell cycle/cell proliferation-associated transcripts, indicating the anti-proliferative effects of ER stress. Interestingly, many OL lineage-enriched mRNAs were downregulated, including those for transcription factors that drive OL identity such as Olig2. Moreover, ER stress-associated decreases of OL-specific gene expression were found in mature OLs from mouse models of white matter pathologies including contusive SCI, toxin-induced demyelination, and Alzheimer's disease-like neurodegeneration. Taken together, the disrupted transcriptomic fingerprint of OL lineage cells may facilitate myelin degeneration and/or dysfunction when pathological ER stress persists in OL lineage cells.
Collapse
Affiliation(s)
- Yonglin Gao
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Departments of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Lukasz P Slomnicki
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Departments of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Ewa Kilanczyk
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Departments of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Michael D Forston
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Departments of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Eric C Rouchka
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, Louisville, Kentucky, USA
| | - Russell M Howard
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Departments of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Scott R Whittemore
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Departments of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Departments of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
8
|
Saraswat Ohri S, Forston MD, Myers SA, Brown BL, Andres KR, Howard RM, Gao Y, Liu Y, Cavener DR, Hetman M, Whittemore SR. Oligodendrocyte-selective deletion of the eIF2α kinase Perk/Eif2ak3 limits functional recovery after spinal cord injury. Glia 2024; 72:1259-1272. [PMID: 38587137 DOI: 10.1002/glia.24525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/13/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024]
Abstract
After spinal cord injury (SCI), re-establishing cellular homeostasis is critical to optimize functional recovery. Central to that response is PERK signaling, which ultimately initiates a pro-apoptotic response if cellular homeostasis cannot be restored. Oligodendrocyte (OL) loss and white matter damage drive functional consequences and determine recovery potential after thoracic contusive SCI. We examined acute (<48 h post-SCI) and chronic (6 weeks post-SCI) effects of conditionally deleting Perk from OLs prior to SCI. While Perk transcript is expressed in many types of cells in the adult spinal cord, its levels are disproportionately high in OL lineage cells. Deletion of OL-Perk prior to SCI resulted in: (1) enhanced acute phosphorylation of eIF2α, a major PERK substrate and the critical mediator of the integrated stress response (ISR), (2) enhanced acute expression of the downstream ISR genes Atf4, Ddit3/Chop, and Tnfrsf10b/Dr5, (3) reduced acute OL lineage-specific Olig2 mRNA, but not neuronal or astrocytic mRNAs, (4) chronically decreased OL content in the spared white matter at the injury epicenter, (5) impaired hindlimb locomotor recovery, and (6) reduced chronic epicenter white matter sparing. Cultured primary OL precursor cells with reduced PERK expression and activated ER stress response showed: (1) unaffected phosphorylation of eIF2α, (2) enhanced ISR gene induction, and (3) increased cytotoxicity. Therefore, OL-Perk deficiency exacerbates ISR signaling and potentiates white matter damage after SCI. The latter effect is likely mediated by increased loss of Perk-/- OLs.
Collapse
Affiliation(s)
- Sujata Saraswat Ohri
- Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Interdisciplinary Program in Translational Neuroscience, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Michael D Forston
- Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Scott A Myers
- Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA
| | - Brandon L Brown
- Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA
- Department of Interdisciplinary Program in Translational Neuroscience, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Kariena R Andres
- Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA
| | - Russell M Howard
- Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA
| | - Yonglin Gao
- Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA
| | - Yu Liu
- Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA
| | - Douglas R Cavener
- Department of Biology, Penn State University, University Park, Pennsylvania, USA
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Interdisciplinary Program in Translational Neuroscience, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- M.D./Ph.D. Program, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Scott R Whittemore
- Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Interdisciplinary Program in Translational Neuroscience, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- M.D./Ph.D. Program, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
9
|
Vidicevic S, Tasic J, Stanojevic Z, Ciric D, Martinovic T, Paunovic V, Petricevic S, Tomonjic N, Isakovic A, Trajkovic V. Endoplasmic reticulum stress response in immune cells contributes to experimental autoimmune encephalomyelitis pathogenesis in rats. Immunol Lett 2024; 267:106855. [PMID: 38537720 DOI: 10.1016/j.imlet.2024.106855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/28/2023] [Accepted: 03/23/2024] [Indexed: 04/01/2024]
Abstract
We examined the role of endoplasmic reticulum (ER) stress and the ensuing unfolded protein response (UPR) in the development of the central nervous system (CNS)-directed immune response in the rat model of experimental autoimmune encephalomyelitis (EAE). The induction of EAE with syngeneic spinal cord homogenate in complete Freund's adjuvant (CFA) caused a time-dependent increase in the expression of ER stress/UPR markers glucose-regulated protein 78 (GRP78), X-box-binding protein 1 (XBP1), C/EBP homologous protein (CHOP), and phosphorylated eukaryotic initiation factor 2α (eIF2α) in the draining lymph nodes of both EAE-susceptible Dark Agouti (DA) and EAE-resistant Albino Oxford (AO) rats. However, the increase in ER stress markers was more pronounced in AO rats. CFA alone also induced ER stress, but the effect was weaker and less sustained compared to full immunization. The ultrastructural analysis of DA lymph node tissue by electron microscopy revealed ER dilatation in lymphocytes, macrophages, and plasma cells, while immunoblot analysis of CD3-sorted lymph node cells demonstrated the increase in ER stress/UPR markers in both CD3+ (T cell) and CD3- (non-T) cell compartments. A positive correlation was observed between the levels of ER stress/UPR markers in the CNS-infiltrated mononuclear cells and the clinical activity of the disease. Finally, the reduction of EAE clinical signs by ER stress inhibitor ursodeoxycholic acid was associated with the decrease in the expression of mRNA encoding pro-inflammatory cytokines TNF and IL-1β, and encephalitogenic T cell cytokines IFN-γ and IL-17. Collectively, our data indicate that ER stress response in immune cells might be an important pathogenetic factor and a valid therapeutic target in the inflammatory damage of the CNS.
Collapse
Affiliation(s)
- Sasenka Vidicevic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Jelena Tasic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Zeljka Stanojevic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia.
| | - Darko Ciric
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Tamara Martinovic
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Verica Paunovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Sasa Petricevic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Nina Tomonjic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia; Institute of Rheumatology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Aleksandra Isakovic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| |
Collapse
|
10
|
Liu X, Xin DE, Zhong X, Zhao C, Li Z, Zhang L, Dourson AJ, Lee L, Mishra S, Bayat AE, Nicholson E, Seibel WL, Yan B, Mason J, Turner BJ, Gonsalvez DG, Ong W, Chew SY, Ghosh B, Yoon SO, Xin M, He Z, Tchieu J, Wegner M, Nave KA, Franklin RJM, Dutta R, Trapp BD, Hu M, Smith MA, Jankowski MP, Barton SK, He X, Lu QR. Small-molecule-induced epigenetic rejuvenation promotes SREBP condensation and overcomes barriers to CNS myelin regeneration. Cell 2024; 187:2465-2484.e22. [PMID: 38701782 DOI: 10.1016/j.cell.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/01/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024]
Abstract
Remyelination failure in diseases like multiple sclerosis (MS) was thought to involve suppressed maturation of oligodendrocyte precursors; however, oligodendrocytes are present in MS lesions yet lack myelin production. We found that oligodendrocytes in the lesions are epigenetically silenced. Developing a transgenic reporter labeling differentiated oligodendrocytes for phenotypic screening, we identified a small-molecule epigenetic-silencing-inhibitor (ESI1) that enhances myelin production and ensheathment. ESI1 promotes remyelination in animal models of demyelination and enables de novo myelinogenesis on regenerated CNS axons. ESI1 treatment lengthened myelin sheaths in human iPSC-derived organoids and augmented (re)myelination in aged mice while reversing age-related cognitive decline. Multi-omics revealed that ESI1 induces an active chromatin landscape that activates myelinogenic pathways and reprograms metabolism. Notably, ESI1 triggered nuclear condensate formation of master lipid-metabolic regulators SREBP1/2, concentrating transcriptional co-activators to drive lipid/cholesterol biosynthesis. Our study highlights the potential of targeting epigenetic silencing to enable CNS myelin regeneration in demyelinating diseases and aging.
Collapse
Affiliation(s)
- Xuezhao Liu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Dazhuan Eric Xin
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xiaowen Zhong
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, 45229, USA
| | - Chuntao Zhao
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zhidan Li
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Liguo Zhang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Adam J Dourson
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lindsay Lee
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Shreya Mishra
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Arman E Bayat
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Eva Nicholson
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - William L Seibel
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bingfang Yan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, 45229, USA
| | - Joel Mason
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne 3052, Australia
| | - Bradley J Turner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne 3052, Australia
| | - David G Gonsalvez
- Department of Anatomy and Developmental Biology, Monash University, Melbourne 3168, Australia
| | - William Ong
- School of Chemistry, Chemical Engineering, and Biotechnology Nanyang Technological University, Singapore 637459, Singapore
| | - Sing Yian Chew
- School of Chemistry, Chemical Engineering, and Biotechnology Nanyang Technological University, Singapore 637459, Singapore; Lee Kong Chian School of Medicine, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, India, 500078
| | - Sung Ok Yoon
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, Ohio
| | - Mei Xin
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jason Tchieu
- Department of Pediatrics, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael Wegner
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Robin J M Franklin
- Altos Labs, Cambridge Institute of Science, Granta Park, Cambridge CB21 6GP, UK
| | - Ranjan Dutta
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Case Western Reserve University School of Medicine, Cleveland, OH 44195, USA
| | - Bruce D Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Case Western Reserve University School of Medicine, Cleveland, OH 44195, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Matthew A Smith
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA; Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, OH, USA
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Pediatric Pain Research Center, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Samantha K Barton
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne 3052, Australia
| | - Xuelian He
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
11
|
Lei Z, Lin W. Mechanisms Governing Oligodendrocyte Viability in Multiple Sclerosis and Its Animal Models. Cells 2024; 13:116. [PMID: 38247808 PMCID: PMC10814231 DOI: 10.3390/cells13020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune inflammatory demyelinating disease of the central nervous system (CNS), which is triggered by an autoimmune assault targeting oligodendrocytes and myelin. Recent research indicates that the demise of oligodendrocytes due to an autoimmune attack contributes significantly to the pathogenesis of MS and its animal model experimental autoimmune encephalomyelitis (EAE). A key challenge in MS research lies in comprehending the mechanisms governing oligodendrocyte viability and devising therapeutic approaches to enhance oligodendrocyte survival. Here, we provide an overview of recent findings that highlight the contributions of oligodendrocyte death to the development of MS and EAE and summarize the current literature on the mechanisms governing oligodendrocyte viability in these diseases.
Collapse
Affiliation(s)
- Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China;
| | - Wensheng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Takasugi M, Ohtani N, Takemura K, Emmrich S, Zakusilo FT, Yoshida Y, Kutsukake N, Mariani JN, Windrem MS, Chandler-Militello D, Goldman SA, Satoh J, Ito S, Seluanov A, Gorbunova V. CD44 correlates with longevity and enhances basal ATF6 activity and ER stress resistance. Cell Rep 2023; 42:113130. [PMID: 37708026 PMCID: PMC10591879 DOI: 10.1016/j.celrep.2023.113130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 07/14/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
The naked mole rat (NMR) is the longest-lived rodent, resistant to multiple age-related diseases including neurodegeneration. However, the mechanisms underlying the NMR's resistance to neurodegenerative diseases remain elusive. Here, we isolated oligodendrocyte progenitor cells (OPCs) from NMRs and compared their transcriptome with that of other mammals. Extracellular matrix (ECM) genes best distinguish OPCs of long- and short-lived species. Notably, expression levels of CD44, an ECM-binding protein that has been suggested to contribute to NMR longevity by mediating the effect of hyaluronan (HA), are not only high in OPCs of long-lived species but also positively correlate with longevity in multiple cell types/tissues. We found that CD44 localizes to the endoplasmic reticulum (ER) and enhances basal ATF6 activity. CD44 modifies proteome and membrane properties of the ER and enhances ER stress resistance in a manner dependent on unfolded protein response regulators without the requirement of HA. HA-independent role of CD44 in proteostasis regulation may contribute to mammalian longevity.
Collapse
Affiliation(s)
- Masaki Takasugi
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan.
| | - Naoko Ohtani
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan.
| | - Kazuaki Takemura
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Stephan Emmrich
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Frances T Zakusilo
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Yuya Yoshida
- Department of Pathophysiology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Nobuyuki Kutsukake
- Research Center for Integrative Evolutionary Science, SOKENDAI, The Graduate University for Advanced Studies, Kanagawa, Japan
| | - John N Mariani
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Martha S Windrem
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Devin Chandler-Militello
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Junko Satoh
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA.
| |
Collapse
|
13
|
Chen Y, Quan S, Patil V, Kunjamma RB, Tokars HM, Leisten ED, Joy G, Wills S, Chan JR, Wong YC, Popko B. Insights into the mechanism of oligodendrocyte protection and remyelination enhancement by the integrated stress response. Glia 2023; 71:2180-2195. [PMID: 37203250 PMCID: PMC10681276 DOI: 10.1002/glia.24386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
central nervous system (CNS) inflammation triggers activation of the integrated stress response (ISR). We previously reported that prolonging the ISR protects remyelinating oligodendrocytes and promotes remyelination in the presence of inflammation. However, the exact mechanisms through which this occurs remain unknown. Here, we investigated whether the ISR modulator Sephin1 in combination with the oligodendrocyte differentiation enhancing reagent bazedoxifene (BZA) is able to accelerate remyelination under inflammation, and the underlying mechanisms mediating this pathway. We find that the combined treatment of Sephin1 and BZA is sufficient to accelerate early-stage remyelination in mice with ectopic IFN-γ expression in the CNS. IFN-γ, which is a critical inflammatory cytokine in multiple sclerosis (MS), inhibits oligodendrocyte precursor cell (OPC) differentiation in culture and triggers a mild ISR. Mechanistically, we further show that BZA promotes OPC differentiation in the presence of IFN-γ, while Sephin1 enhances the IFN-γ-induced ISR by reducing protein synthesis and increasing RNA stress granule formation in differentiating oligodendrocytes. Finally, pharmacological suppression of the ISR blocks stress granule formation in vitro and partially lessens the beneficial effect of Sephin1 on disease progression in a mouse model of MS, experimental autoimmune encephalitis (EAE). Overall, our findings uncover distinct mechanisms of action of BZA and Sephin1 on oligodendrocyte lineage cells under inflammatory stress, suggesting that a combination therapy may effectively promote restoring neuronal function in MS patients.
Collapse
Affiliation(s)
- Yanan Chen
- Deptment of Biology, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Songhua Quan
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Vaibhav Patil
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rejani B. Kunjamma
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Haley M. Tokars
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Eric D. Leisten
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Godwin Joy
- Deptment of Biology, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Samantha Wills
- Deptment of Biology, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jonah R. Chan
- Weill Institute for Neuroscience, Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Yvette C. Wong
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Brian Popko
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
14
|
Talukdar G, Orr HT, Lei Z. The PERK pathway: beneficial or detrimental for neurodegenerative diseases and tumor growth and cancer. Hum Mol Genet 2023; 32:2545-2557. [PMID: 37384418 PMCID: PMC10407711 DOI: 10.1093/hmg/ddad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
Protein kinase R (PKR)-like endoplasmic reticulum (ER) kinase (PERK) is one of the three major sensors in the unfolded protein response (UPR). The UPR is involved in the modulation of protein synthesis as an adaptive response. Prolonged PERK activity correlates with the development of diseases and the attenuation of disease severity. Thus, the current debate focuses on the role of the PERK signaling pathway either in accelerating or preventing diseases such as neurodegenerative diseases, myelin disorders, and tumor growth and cancer. In this review, we examine the current findings on the PERK signaling pathway and whether it is beneficial or detrimental for the above-mentioned disorders.
Collapse
Affiliation(s)
- Gourango Talukdar
- Institute for Translational Neuroscience and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Harry T Orr
- Institute for Translational Neuroscience and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhixin Lei
- Institute for Translational Neuroscience and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
15
|
Alghibiwi H, Ansari MA, Nadeem A, Algonaiah MA, Attia SM, Bakheet SA, Albekairi TH, Almudimeegh S, Alhamed AS, Shahid M, Alwetaid MY, Alassmrry YA, Ahmad SF. DAPTA, a C-C Chemokine Receptor 5 (CCR5), Leads to the Downregulation of Notch/NF-κB Signaling and Proinflammatory Mediators in CD40 + Cells in Experimental Autoimmune Encephalomyelitis Model in SJL/J Mice. Biomedicines 2023; 11:1511. [PMID: 37371605 DOI: 10.3390/biomedicines11061511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system characterized by motor deficits, cognitive impairment, fatigue, pain, and sensory and visual dysfunction. CD40, highly expressed in B cells, plays a significant role in MS pathogenesis. The experimental autoimmune encephalomyelitis (EAE) mouse model of MS has been well established, as well as its relevance in MS patients. This study aimed to evaluate the therapeutic potential of DAPTA, a selective C-C chemokine receptor 5 (CCR5) antagonist in the murine model of MS, and to expand the knowledge of its mechanism of action. Following the induction of EAE, DAPTA was administrated (0.01 mg/kg, i.p.) daily from day 14 to day 42. We investigated the effects of DAPTA on NF-κB p65, IκBα, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α in CD40+ spleen B cells using flow cytometry. Furthermore, we also analyzed the effect of DAPTA on NF-κB p65, IκBα, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α mRNA expression levels using qRT-PCR in brain tissue. EAE mice treated with DAPTA showed substantial reductions in NF-κB p65, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α but an increase in the IκBα of CD40+ B lymphocytes. Moreover, EAE mice treated with DAPTA displayed decreased NF-κB p65, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α and but showed increased IκBα mRNA expression levels. This study showed that DAPTA has significant neuroprotective potential in EAE via the downregulation of inflammatory mediators and NF-κB/Notch signaling. Collectively, DAPTA might have potential therapeutic targets for use in MS treatment.
Collapse
Affiliation(s)
- Hanan Alghibiwi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Majed Ali Algonaiah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Almudimeegh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah S Alhamed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yasseen A Alassmrry
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Takano C, Takano T, Masumura M, Nakamura R, Koda S, Bochimoto H, Yoshida S, Bando Y. Involvement of Degenerating 21.5 kDa Isoform of Myelin Basic Protein in the Pathogenesis of the Relapse in Murine Relapsing-Remitting Experimental Autoimmune Encephalomyelitis and MS Autopsied Brain. Int J Mol Sci 2023; 24:ijms24098160. [PMID: 37175866 PMCID: PMC10179612 DOI: 10.3390/ijms24098160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Multiple sclerosis (MS) is the chronic inflammatory demyelinating disease of the CNS. Relapsing-remitting MS (RRMS) is the most common type of MS. However, the mechanisms of relapse and remission in MS have not been fully understood. While SJL mice immunized with proteolipid protein (PLP) develop relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE), we have recently observed that some of these mice were resistant to the active induction of relapsing EAE after initial clinical and histological symptoms of EAE with a severity similar to the relapsing EAE mice. To clarify the mechanism of relapsing, we examined myelin morphology during PLP139-151-induced RR-EAE in the SJL mice. While RR-EAE mice showed an increased EAE severity (relapse) with CNS inflammation, demyelination with abnormal myelin morphology in the spinal cord, the resistant mice exhibited a milder EAE phenotype with diminished relapse. Compared with the RR-EAE mice, the resistant mice showed less CNS inflammation, demyelination, and abnormalities of the myelin structure. In addition, scanning electron microscopic (SEM) analysis with the osmium-maceration method displayed ultrastructural abnormalities of the myelin structure in the white matter of the RR-EAE spinal cord, but not in that of the resistant mice. While the intensity of myelin staining was reduced in the relapsing EAE spinal cord, immunohistochemistry and immunoblot analysis revealed that the 21.5 kDa isoform of degenerating myelin basic protein (MBP) was specifically induced in the relapsing EAE spinal cord. Taken together, the neuroinflammation-induced degenerating 21 kDa isoform of MBP sheds light on the development of abnormal myelin on the relapse of MS pathogenesis.
Collapse
Affiliation(s)
- Chie Takano
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Neurosurgery, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Takuma Takano
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Neurosurgery, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Makoto Masumura
- Institute for Social Innovation and Cooperation, Niigata University, Niigata 951-8510, Japan
| | | | | | - Hiroki Bochimoto
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Shigetaka Yoshida
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Yoshio Bando
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Anatomy, Akita University Graduate School of Medicine, Hondo 1-1-1, Akita 010-8543, Japan
| |
Collapse
|
17
|
Fan Q, Takarada-Iemata M, Okitani N, Tamatani T, Ishii H, Hattori T, Kiryu-Seo S, Kiyama H, Hori O. Brain injury triggers cell-type-specific and time-dependent endoplasmic reticulum stress responses. Glia 2023; 71:667-681. [PMID: 36412235 DOI: 10.1002/glia.24303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022]
Abstract
The unfolded protein response (UPR) is a signal transduction network that responds to endoplasmic reticulum (ER) stress by coordinating protein homeostasis to maintain cell viability. The UPR can also trigger cell death when adaptive responses fail to improve protein homeostasis. Despite accumulating evidence suggesting that the UPR plays a role in neurodegenerative diseases and brain insults, our understanding of how ER stress is induced under neuropathological conditions is limited. Here, we investigated the cell- and time-specific patterns of the ER stress response after brain injury using ER stress-activated indicator (ERAI) mice, which enable monitoring of the UPR in vivo via increased fluorescence of a spliced XBP-1 protein fused with the green fluorescent protein (GFP) variant Venus. Following cortical stab injury of ERAI mice, the GFP signal and number of GFP+ cells increased in the ipsilateral cortex throughout the observation period (6 h to 7 days post-injury), confirming the induction of the UPR. GFP signals were observed in injured neurons early (from 6 h) after brain injury. However, non-neuronal cells, mainly endothelial cells followed by astrocytes, accounted for the majority of GFP+ cells after brain injury. Similar results were obtained in a mouse model of focal cerebral ischemia. These findings suggest that activation of the UPR in both neuronal and non-neuronal cells, especially endothelial cells and astrocytes, may play an important role in and could be a potential therapeutic target for acute brain injuries.
Collapse
Affiliation(s)
- Qiyan Fan
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Mika Takarada-Iemata
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Nahoko Okitani
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Tamatani
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Ishii
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tsuyoshi Hattori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Sumiko Kiryu-Seo
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
18
|
Alomar HA, Nadeem A, Ansari MA, Attia SM, Bakheet SA, Al-Mazroua HA, Alhazzani K, Assiri MA, Alqinyah M, Almudimeegh S, Ahmad SF. Mitogen-activated protein kinase inhibitor PD98059 improves neuroimmune dysfunction in experimental autoimmune encephalomyelitis in SJL/J mice through the inhibition of nuclear factor-kappa B signaling in B cells. Brain Res Bull 2023; 194:45-53. [PMID: 36646144 DOI: 10.1016/j.brainresbull.2023.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 12/20/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Multiple sclerosis (MS) is a severe autoimmune disease leading to demyelination, followed by consequent axonal degeneration, causing sensory, motor, cognitive, and visual symptoms. Experimental autoimmune encephalomyelitis (EAE) is the most well-studied animal model of MS. Most current MS treatments are not completely effective, and severe side effects remain a great challenge. In this study, we report the therapeutic efficacy of PD98059, a potent mitogen-activated protein kinase inhibitor, on proteolipid protein (PLP)139-151-induced EAE in SJL/J mice. Following the induction of EAE, mice were intraperitoneally treated with PD98059 (5 mg/kg for 14 days) daily from day 14 to day 28. This study investigated the effects of PD98059 on C-C motif chemokine receptor 6 (CCR6), CD14, NF-κB p65, IκBα, GM-CSF, iNOS, IL-6, TNF-α in CD45R+ B lymphocytes using flow cytometry. Furthermore, we analyzed the effect of PD98059 on CCR6, CD14, NF-κB p65, GM-CSF, iNOS, IL-6, and TNF-α mRNA and protein expression levels using qRT-PCR analysis in brain tissues. Mechanistic investigations revealed that PD98059-treated in mice with EAE had reduced CD45R+CCR6+, CD45R+CD14+, CD45R+NF-κB p65+, CD45R+GM-CSF+, CD45R+iNOS+, CD45R+IL-6+, and CD45R+TNF-α+ cells and increased CD45R+IκBα+ cells compared with vehicle-treated control mice in the spleen. Moreover, downregulation of CCR6, CD14, NF-κB p65, GM-CSF, iNOS, IL-6, and TNF-α mRNA expression level was observed in PD98059-treated mice with EAE compared with vehicle-treated control mice in the brain tissue. The results of this study demonstrate that PD98059 modulates inflammatory mediators through multiple cellular mechanisms. The results of this study suggest that PD98059 may be pursued as a therapeutic agent for the treatment of MS.
Collapse
Affiliation(s)
- Hatun A Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Alqinyah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Almudimeegh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
19
|
Shayya HJ, Kahiapo JK, Duffié R, Lehmann KS, Bashkirova L, Monahan K, Dalton RP, Gao J, Jiao S, Schieren I, Belluscio L, Lomvardas S. ER stress transforms random olfactory receptor choice into axon targeting precision. Cell 2022; 185:3896-3912.e22. [PMID: 36167070 PMCID: PMC9588687 DOI: 10.1016/j.cell.2022.08.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 01/26/2023]
Abstract
Olfactory sensory neurons (OSNs) convert the stochastic choice of one of >1,000 olfactory receptor (OR) genes into precise and stereotyped axon targeting of OR-specific glomeruli in the olfactory bulb. Here, we show that the PERK arm of the unfolded protein response (UPR) regulates both the glomerular coalescence of like axons and the specificity of their projections. Subtle differences in OR protein sequences lead to distinct patterns of endoplasmic reticulum (ER) stress during OSN development, converting OR identity into distinct gene expression signatures. We identify the transcription factor Ddit3 as a key effector of PERK signaling that maps OR-dependent ER stress patterns to the transcriptional regulation of axon guidance and cell-adhesion genes, instructing targeting precision. Our results extend the known functions of the UPR from a quality-control pathway that protects cells from misfolded proteins to a sensor of cellular identity that interprets physiological states to direct axon wiring.
Collapse
Affiliation(s)
- Hani J Shayya
- Mortimer B. Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY 10027, USA; Medical Scientist Training Program, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jerome K Kahiapo
- Mortimer B. Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY 10027, USA; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Rachel Duffié
- Mortimer B. Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Katherine S Lehmann
- Developmental Neural Plasticity Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa Bashkirova
- Mortimer B. Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Kevin Monahan
- Mortimer B. Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Ryan P Dalton
- The Miller Institute for Basic Research in Science, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joanna Gao
- Barnard College, New York, NY 10025, USA
| | - Song Jiao
- Developmental Neural Plasticity Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ira Schieren
- Mortimer B. Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Leonardo Belluscio
- Developmental Neural Plasticity Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stavros Lomvardas
- Mortimer B. Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Neuroscience, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
20
|
Kukharsky MS, Everett MW, Lytkina OA, Raspopova MA, Kovrazhkina EA, Ovchinnikov RK, Antohin AI, Moskovtsev AA. Protein Homeostasis Dysregulation in Pathogenesis of Neurodegenerative Diseases. Mol Biol 2022. [DOI: 10.1134/s0026893322060115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Shi M, Chai Y, Zhang J, Chen X. Endoplasmic Reticulum Stress-Associated Neuronal Death and Innate Immune Response in Neurological Diseases. Front Immunol 2022; 12:794580. [PMID: 35082783 PMCID: PMC8784382 DOI: 10.3389/fimmu.2021.794580] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
Neuronal death and inflammatory response are two common pathological hallmarks of acute central nervous system injury and chronic degenerative disorders, both of which are closely related to cognitive and motor dysfunction associated with various neurological diseases. Neurological diseases are highly heterogeneous; however, they share a common pathogenesis, that is, the aberrant accumulation of misfolded/unfolded proteins within the endoplasmic reticulum (ER). Fortunately, the cell has intrinsic quality control mechanisms to maintain the proteostasis network, such as chaperone-mediated folding and ER-associated degradation. However, when these control mechanisms fail, misfolded/unfolded proteins accumulate in the ER lumen and contribute to ER stress. ER stress has been implicated in nearly all neurological diseases. ER stress initiates the unfolded protein response to restore proteostasis, and if the damage is irreversible, it elicits intracellular cascades of death and inflammation. With the growing appreciation of a functional association between ER stress and neurological diseases and with the improved understanding of the multiple underlying molecular mechanisms, pharmacological and genetic targeting of ER stress are beginning to emerge as therapeutic approaches for neurological diseases.
Collapse
Affiliation(s)
- Mingming Shi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Yan Chai
- Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
22
|
Lei Z, Stone S, Lin W. Detection of PERK Signaling in the Central Nervous System. Methods Mol Biol 2022; 2378:233-245. [PMID: 34985704 DOI: 10.1007/978-1-0716-1732-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In response to endoplasmic reticulum (ER) stress, activation of pancreatic ER kinase (PERK) signaling adapts cells to stressful conditions by phosphorylating eukaryotic translation initiation factor 2α (eIF2α). Phosphorylation of eIF2α inhibits global protein translation but stimulates the expression of numerous stress-responsive genes by inducing the transcription factor ATF4. A large number of studies have shown that activation of PERK signaling has beneficial or detrimental effects in various diseases of the central nervous system (CNS), including neurodegenerative diseases, myelin disorders, CNS injuries, among others. This chapter is devoted to describing the practical methods for the detection of PERK signaling in CNS diseases.
Collapse
Affiliation(s)
- Zhixin Lei
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, WMBB4-140, Minneapolis, MN, USA
| | - Sarrabeth Stone
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, WMBB4-140, Minneapolis, MN, USA
| | - Wensheng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
- Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, WMBB4-140, Minneapolis, MN, USA.
| |
Collapse
|
23
|
Yamanaka Y, Miyagi T, Harada Y, Kuroda M, Kanekura K. Establishment of chemically oligomerizable TAR DNA-binding protein-43 which mimics amyotrophic lateral sclerosis pathology in mammalian cells. J Transl Med 2021; 101:1331-1340. [PMID: 34131277 DOI: 10.1038/s41374-021-00623-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/09/2022] Open
Abstract
One of the pathological hallmarks of amyotrophic lateral sclerosis (ALS) is mislocalized, cytosolic aggregation of TAR DNA-Binding Protein-43 (TDP-43). Not only TDP-43 per se is a causative gene of ALS but also mislocalization and aggregation of TDP-43 seems to be a common pathological change in both sporadic and familial ALS. The mechanism how nuclear TDP-43 transforms into cytosolic aggregates remains elusive, but recent studies using optogenetics have proposed that aberrant liquid-liquid phase separation (LLPS) of TDP-43 links to the aggregation process, leading to cytosolic distribution. Although LLPS plays an important role in the aggregate formation, there are still several technical problems in the optogenetic technique to be solved to progress further in vivo study. Here we report a chemically oligomerizable TDP-43 system. Oligomerization of TDP-43 was achieved by a small compound AP20187, and oligomerized TDP-43 underwent aggregate formation, followed by cytosolic mislocalization and induction of cell toxicity. The mislocalized TDP-43 co-aggregated with wt-TDP-43, Fused-in-sarcoma (FUS), TIA1 and sequestosome 1 (SQSTM1)/p62, mimicking ALS pathology. The chemically oligomerizable TDP-43 also revealed the roles of the N-terminal domain, RNA-recognition motif, nuclear export signal and low complexity domain in the aggregate formation and mislocalization of TDP-43. The aggregate-prone properties of TDP-43 were enhanced by a familial ALS-causative mutation. In conclusion, the chemically oligomerizable TDP-43 system could be useful to study the mechanisms underlying the droplet-aggregation phase transition and cytosolic mislocalization of TDP-43 in ALS and further study in vivo.
Collapse
Affiliation(s)
- Yoshiaki Yamanaka
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Tamami Miyagi
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Yuichiro Harada
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| | - Kohsuke Kanekura
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| |
Collapse
|
24
|
Knockdown of Golgi Stress-Responsive Caspase-2 Ameliorates HLD17-Associated AIMP2 Mutant-Mediated Inhibition of Oligodendroglial Cell Morphological Differentiation. Neurochem Res 2021; 47:2617-2631. [PMID: 34523057 DOI: 10.1007/s11064-021-03451-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Hypomyelinating leukodystrophy 17 is an autosomal recessive disease affecting myelin-forming oligodendroglial cells in the central nervous system. The gene responsible for HLD17 encodes aminoacyl-tRNA synthase complex-interacting multifunctional protein 2, whose product proteins form a scaffold that supports aminoacyl-tRNA synthetases throughout the cell body. Here we show that the HLD17-associated nonsense mutation (Tyr35-to-Ter [Y35X]) of AIMP2 localizes AIMP2 proteins as aggregates into the Golgi bodies in mouse oligodendroglial FBD-102b cells. Wild type AIMP2 proteins, in contrast, are distributed throughout the cell body. Expression of the Y35X mutant proteins, but not the wild type proteins, in cells upregulates Golgi stress signaling involving caspase-2 activation. Cells expressing the wild type proteins exhibit differentiated phenotypes with web-like structures bearing many processes following the induction of differentiation, whereas cells expressing the Y35X mutant proteins fail to differentiate. Furthermore, CASP2 knockdown but not control knockdown reverses the phenotypes of cells expressing the mutant proteins. These results suggest that HLD17-associated AIMP2 mutant proteins are localized in the Golgi bodies where their proteins stimulate Golgi stress-responsive CASP2 to inhibit differentiation; this effect is ameliorated by knockdown of CASP2. These findings may reveal some of the molecular and cellular pathological mechanisms underlying HLD17 and possible approaches to ameliorating the disease's effects.
Collapse
|
25
|
Fernández D, Geisse A, Bernales JI, Lira A, Osorio F. The Unfolded Protein Response in Immune Cells as an Emerging Regulator of Neuroinflammation. Front Aging Neurosci 2021; 13:682633. [PMID: 34177557 PMCID: PMC8226365 DOI: 10.3389/fnagi.2021.682633] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/10/2021] [Indexed: 01/21/2023] Open
Abstract
Immune surveillance is an essential process that safeguards the homeostasis of a healthy brain. Among the increasing diversity of immune cells present in the central nervous system (CNS), microglia have emerged as a prominent leukocyte subset with key roles in the support of brain function and in the control of neuroinflammation. In fact, impaired microglial function is associated with the development of neurodegenerative diseases, including Alzheimer’s disease (AD) and Parkinson’s disease (PD). Interestingly, these pathologies are also typified by protein aggregation and proteostasis dysfunction at the level of the endoplasmic reticulum (ER). These processes trigger activation of the unfolded protein response (UPR), which is a conserved signaling network that maintains the fidelity of the cellular proteome. Remarkably, beyond its role in protein folding, the UPR has also emerged as a key regulator of the development and function of immune cells. However, despite this evidence, the contribution of the UPR to immune cell homeostasis, immune surveillance, and neuro-inflammatory processes remains largely unexplored. In this review, we discuss the potential contribution of the UPR in brain-associated immune cells in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Dominique Fernández
- Laboratory of Immunology and Cellular Stress, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Antonia Geisse
- Laboratory of Immunology and Cellular Stress, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jose Ignacio Bernales
- Laboratory of Immunology and Cellular Stress, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alonso Lira
- Laboratory of Immunology and Cellular Stress, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fabiola Osorio
- Laboratory of Immunology and Cellular Stress, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
26
|
Zou S, Hu B. In vivo imaging reveals mature Oligodendrocyte division in adult Zebrafish. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:16. [PMID: 34075520 PMCID: PMC8169745 DOI: 10.1186/s13619-021-00079-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Whether mature oligodendrocytes (mOLs) participate in remyelination has been disputed for several decades. Recently, some studies have shown that mOLs participate in remyelination by producing new sheaths. However, whether mOLs can produce new oligodendrocytes by asymmetric division has not been proven. Zebrafish is a perfect model to research remyelination compared to other species. In this study, optic nerve crushing did not induce local mOLs death. After optic nerve transplantation from olig2:eGFP fish to AB/WT fish, olig2+ cells from the donor settled and rewrapped axons in the recipient. After identifying these rewrapping olig2+ cells as mOLs at 3 months posttransplantation, in vivo imaging showed that olig2+ cells proliferated. Additionally, in vivo imaging of new olig2+ cell division from mOLs was also captured within the retina. Finally, fine visual function was renewed after the remyelination program was completed. In conclusion, our in vivo imaging results showed that new olig2+ cells were born from mOLs by asymmetric division in adult zebrafish, which highlights the role of mOLs in the progression of remyelination in the mammalian CNS.
Collapse
Affiliation(s)
- Suqi Zou
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, P. R. China.
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, P. R. China.
| | - Bing Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| |
Collapse
|
27
|
Roth LM, Akay-Espinoza C, Grinspan JB, Jordan-Sciutto KL. HIV-induced neuroinflammation inhibits oligodendrocyte maturation via glutamate-dependent activation of the PERK arm of the integrated stress response. Glia 2021; 69:2252-2271. [PMID: 34058792 DOI: 10.1002/glia.24033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022]
Abstract
Despite combined antiretroviral therapy (cART), HIV-associated neurocognitive disorder (HAND) affects 30-50% of HIV-positive patients. Importantly, persistent white matter pathologies, specifically corpus callosum thinning and disruption of white matter microstructures observed in patients with HAND despite viral control through cART, raise the possibility that HIV infection in the setting of suboptimal cART may perturb oligodendrocyte (OL) maturation, function and/or survival, influencing HAND persistence in the cART era. To examine the effect of HIV infection on OL maturation, we used supernatants of primary human monocyte-derived macrophages infected with HIV (HIV/MDMs) to treat primary cultures of rat oligodendrocyte precursor cells (OPCs) during their differentiation to mature OLs. Using immunostaining for lineage-specific markers, we found that HIV/MDMs significantly inhibited OPC maturation. Based on our previous studies, we examined the potential role of several signaling pathways, including ionotropic glutamate receptors and the integrated stress response (ISR), and found that AMPA receptors (AMPAR)/kainic acid (KA) receptors (KARs) mediated the HIV/MDMs-induced defect in OL maturation. We also found that the treatment of OPC cultures with glutamate or AMPAR/KAR agonists phenocopied this effect. Blocking ISR activation, specifically the PERK arm of the ISR, protected OPCs from HIV/MDMs-mediated inhibition of OL maturation. Further, while glutamate, AMPA, and KA activated the ISR, inhibition of AMPAR/KAR activation prevented ISR induction in OPCs and rescued OL maturation. Collectively, these data identify glutamate signaling via ISR activation as a potential therapeutic pathway to ameliorate white matter pathologies in HAND and highlight the need for further investigation of their contribution to cognitive impairment.
Collapse
Affiliation(s)
- Lindsay M Roth
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Cagla Akay-Espinoza
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Judith B Grinspan
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kelly L Jordan-Sciutto
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Tang BM, Li ZW, Wang ZY. PERK activator CCT020312 prevents inflammation-mediated osteoporosis in the ovariectomized rats. Gynecol Endocrinol 2021; 37:342-348. [PMID: 33480297 DOI: 10.1080/09513590.2021.1874904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To investigate the therapeutic effects of PERK activator CCT020312 (CCT) on inflammation-mediated osteoporosis (IMO) in ovariectomized rats. METHODS Rats were divided into Sham, IMO, IMO + 1 mg/kg CCT and IMO + 2 mg/kg CCT groups. IMO models were constructed by bilateral ovariectomy (OVX) on 1st day followed by injection with magnesium silicate (Talc) on the 59th day. Sham rats did not undergo OVX surgery and were injected with saline instead of Talc. From 60th to 79th day, rats were treated with DMSO (vehicle control) in the Sham and IMO groups, and 1 or 2 mg/kg CCT020312 in treatment groups. Osteopontin (OPN), osteocalcin (OCN), tartrate-resistant acid phosphatase (TRAP), C-terminal telopeptide of type I collagen (CTX-I), and pro-inflammatory factors were measured on the 80th day. ProdigyDEXA was used to evaluate bone mineral density and content (BMD/BMC). Bone volume/total volume (BV/TV), connectivity density (Conn.D), trabecular number (Tb.N), and trabecular separation (Tb.Sp) was assessed using 3D micro-CT scanner. RESULTS CCT up-regulated Conn.D, BV/TV, and Tb.N, but down-regulated Tb.Sp in IMO rats. Besides, the declined femoral BMD and BMC in IMO rats were elevated after CCT treatment. Besides, IMO rats represented declined OPN and OCN, as well as increased TRAP, CTX-I, and pro-inflammatory factors, whereas those in the treatment groups were ameliorated regarding these indexes, with 2 mg/kg CCT showing better effect. CONCLUSION PERK activator CCT020312 can be served as a new therapeutic option for the protection against bone loss in the OVX rat model associated with inflammation probably by manipulating inflammatory factors.
Collapse
Affiliation(s)
- Bao-Ming Tang
- Department of Orthopedics, Affiliated Hospital of Qinghai University, Xining, China
| | - Zhao-Wei Li
- Department of Orthopedics, Affiliated Hospital of Qinghai University, Xining, China
| | - Zhuo-Ya Wang
- Department of Geriatrics, Affiliated Hospital of Qinghai University, Xining, China
| |
Collapse
|
29
|
Hypomyelinating Leukodystrophy 15 (HLD15)-Associated Mutation of EPRS1 Leads to Its Polymeric Aggregation in Rab7-Positive Vesicle Structures, Inhibiting Oligodendroglial Cell Morphological Differentiation. Polymers (Basel) 2021; 13:polym13071074. [PMID: 33805425 PMCID: PMC8037150 DOI: 10.3390/polym13071074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 01/28/2023] Open
Abstract
Pelizaeus–Merzbacher disease (PMD), also known as hypomyelinating leukodystrophy 1 (HLD1), is an X-linked recessive disease affecting in the central nervous system (CNS). The gene responsible for HLD1 encodes proteolipid protein 1 (plp1), which is the major myelin structural protein produced by oligodendroglial cells (oligodendrocytes). HLD15 is an autosomal recessive disease affecting the glutamyl-prolyl-aminoacyl-tRNA synthetase 1 (eprs1) gene, whose product, the EPRS1 protein, is a bifunctional aminoacyl-tRNA synthetase that is localized throughout cell bodies and that catalyzes the aminoacylation of glutamic acid and proline tRNA species. Here, we show that the HLD15-associated nonsense mutation of Arg339-to-Ter (R339X) localizes EPRS1 proteins as polymeric aggregates into Rab7-positive vesicle structures in mouse oligodendroglial FBD-102b cells. Wild-type proteins, in contrast, are distributed throughout the cell bodies. Expression of the R339X mutant proteins, but not the wild-type proteins, in cells induces strong signals regulating Rab7. Whereas cells expressing the wild-type proteins exhibited phenotypes with myelin web-like structures bearing processes following the induction of differentiation, cells expressing the R339X mutant proteins did not. These results indicate that HLD15-associated EPRS1 mutant proteins are localized in Rab7-positive vesicle structures where they modulate Rab7 regulatory signaling, inhibiting cell morphological differentiation. These findings may reveal some of the molecular and cellular pathological mechanisms underlying HLD15.
Collapse
|
30
|
Hattori K, Tago K, Memezawa S, Ochiai A, Sawaguchi S, Kato Y, Sato T, Tomizuka K, Ooizumi H, Ohbuchi K, Mizoguchi K, Miyamoto Y, Yamauchi J. The Infantile Leukoencephalopathy-Associated Mutation of C11ORF73/HIKESHI Proteins Generates de novo Interactive Activity with Filamin A, Inhibiting Oligodendroglial Cell Morphological Differentiation. MEDICINES (BASEL, SWITZERLAND) 2021; 8:medicines8020009. [PMID: 33535532 PMCID: PMC7912763 DOI: 10.3390/medicines8020009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 04/20/2023]
Abstract
Genetic hypomyelinating diseases are a heterogeneous group of disorders involving the white matter. One infantile hypomyelinating leukoencephalopathy is associated with the homozygous variant (Cys4-to-Ser (C4S)) of the c11orf73 gene. Methods: We observed that in mouse oligodendroglial FBD-102b cells, the C4S mutant proteins but not the wild type ones of C11orf73 are microscopically localized in the lysosome. And, they downregulate lysosome-related signaling in an immunoblotting technique. Results: The C4S mutant proteins specifically interact with Filamin A, which is known to anchor transmembrane proteins to the actin cytoskeleton; the C4S mutant proteins and Filamin A are also observed in the lysosome fraction. While parental FBD-102b cells and cells harboring the wild type constructs exhibit morphological differentiation, cells harboring C4S mutant constructs do not. It may be that morphological differentiation is inhibited because expression of these C4S mutant proteins leads to defects in the actin cytoskeletal network involving Filamin A. Conclusions: The findings that leukoencephalopathy-associated C11ORF73 mutant proteins specifically interact with Filamin A, are localized in the lysosome, and inhibit morphological differentiation shed light on the molecular and cellular pathological mechanisms that underlie infantile hypomyelinating leukoencephalopathy.
Collapse
Affiliation(s)
- Kohei Hattori
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (K.H.); (S.M.); (A.O.); (S.S.); (Y.K.); (T.S.)
| | - Kenji Tago
- Department of Biochemistry, Jichi Medical University, Shimotsuke, Tochigi 321-0498, Japan;
| | - Shiori Memezawa
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (K.H.); (S.M.); (A.O.); (S.S.); (Y.K.); (T.S.)
| | - Arisa Ochiai
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (K.H.); (S.M.); (A.O.); (S.S.); (Y.K.); (T.S.)
| | - Sui Sawaguchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (K.H.); (S.M.); (A.O.); (S.S.); (Y.K.); (T.S.)
| | - Yukino Kato
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (K.H.); (S.M.); (A.O.); (S.S.); (Y.K.); (T.S.)
| | - Takanari Sato
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (K.H.); (S.M.); (A.O.); (S.S.); (Y.K.); (T.S.)
| | - Kazuma Tomizuka
- Laboratory of Bioengineering, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan;
| | - Hiroaki Ooizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan; (H.O.); (K.O.); (K.M.)
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan; (H.O.); (K.O.); (K.M.)
| | - Kazushige Mizoguchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan; (H.O.); (K.O.); (K.M.)
| | - Yuki Miyamoto
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan;
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (K.H.); (S.M.); (A.O.); (S.S.); (Y.K.); (T.S.)
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan;
- Correspondence: ; Tel.: +81-42-676-7164; Fax: +81-42-676-8841
| |
Collapse
|
31
|
Layalle S, They L, Ourghani S, Raoul C, Soustelle L. Amyotrophic Lateral Sclerosis Genes in Drosophila melanogaster. Int J Mol Sci 2021; 22:ijms22020904. [PMID: 33477509 PMCID: PMC7831090 DOI: 10.3390/ijms22020904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating adult-onset neurodegenerative disease characterized by the progressive degeneration of upper and lower motoneurons. Most ALS cases are sporadic but approximately 10% of ALS cases are due to inherited mutations in identified genes. ALS-causing mutations were identified in over 30 genes with superoxide dismutase-1 (SOD1), chromosome 9 open reading frame 72 (C9orf72), fused in sarcoma (FUS), and TAR DNA-binding protein (TARDBP, encoding TDP-43) being the most frequent. In the last few decades, Drosophila melanogaster emerged as a versatile model for studying neurodegenerative diseases, including ALS. In this review, we describe the different Drosophila ALS models that have been successfully used to decipher the cellular and molecular pathways associated with SOD1, C9orf72, FUS, and TDP-43. The study of the known fruit fly orthologs of these ALS-related genes yielded significant insights into cellular mechanisms and physiological functions. Moreover, genetic screening in tissue-specific gain-of-function mutants that mimic ALS-associated phenotypes identified disease-modifying genes. Here, we propose a comprehensive review on the Drosophila research focused on four ALS-linked genes that has revealed novel pathogenic mechanisms and identified potential therapeutic targets for future therapy.
Collapse
Affiliation(s)
- Sophie Layalle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Laetitia They
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Sarah Ourghani
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: (C.R.); (L.S.)
| | - Laurent Soustelle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Correspondence: (C.R.); (L.S.)
| |
Collapse
|
32
|
Yan LL, Zaher HS. Ribosome quality control antagonizes the activation of the integrated stress response on colliding ribosomes. Mol Cell 2020; 81:614-628.e4. [PMID: 33338396 DOI: 10.1016/j.molcel.2020.11.033] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022]
Abstract
Stalling during translation triggers ribosome quality control (RQC) to maintain proteostasis. Recently, stalling has also been linked to the activation of integrated stress response (ISR) by Gcn2. How the two processes are coordinated is unclear. Here, we show that activation of RQC by Hel2 suppresses that of Gcn2. We further show that Hel2 and Gcn2 are activated by a similar set of agents that cause ribosome stalling, with maximal activation of Hel2 observed at a lower frequency of stalling. Interestingly, inactivation of one pathway was found to result in the overactivation of the other, suggesting that both are activated by the same signal of ribosome collisions. Notably, the processes do not appear to be in direct competition with each other; ISR prefers a vacant A site, whereas RQC displays no preference. Collectively, our findings provide important details about how multiple pathways that recognize stalled ribosomes coordinate to mount the appropriate response.
Collapse
Affiliation(s)
- Liewei L Yan
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Hani S Zaher
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
33
|
Jeon YM, Kwon Y, Jo M, Lee S, Kim S, Kim HJ. The Role of Glial Mitochondria in α-Synuclein Toxicity. Front Cell Dev Biol 2020; 8:548283. [PMID: 33262983 PMCID: PMC7686475 DOI: 10.3389/fcell.2020.548283] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
The abnormal accumulation of alpha-synuclein (α-syn) aggregates in neurons and glial cells is widely known to be associated with many neurodegenerative diseases, including Parkinson's disease (PD), Dementia with Lewy bodies (DLB), and Multiple system atrophy (MSA). Mitochondrial dysfunction in neurons and glia is known as a key feature of α-syn toxicity. Studies aimed at understanding α-syn-induced toxicity and its role in neurodegenerative diseases have primarily focused on neurons. However, a growing body of evidence demonstrates that glial cells such as microglia and astrocytes have been implicated in the initial pathogenesis and the progression of α-Synucleinopathy. Glial cells are important for supporting neuronal survival, synaptic functions, and local immunity. Furthermore, recent studies highlight the role of mitochondrial metabolism in the normal function of glial cells. In this work, we review the complex relationship between glial mitochondria and α-syn-mediated neurodegeneration, which may provide novel insights into the roles of glial cells in α-syn-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu-Mi Jeon
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Younghwi Kwon
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
- Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea
| | - Myungjin Jo
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Shinrye Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Seyeon Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
- Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| |
Collapse
|
34
|
Titus HE, Chen Y, Podojil JR, Robinson AP, Balabanov R, Popko B, Miller SD. Pre-clinical and Clinical Implications of "Inside-Out" vs. "Outside-In" Paradigms in Multiple Sclerosis Etiopathogenesis. Front Cell Neurosci 2020; 14:599717. [PMID: 33192332 PMCID: PMC7654287 DOI: 10.3389/fncel.2020.599717] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple Sclerosis (MS) is an immune-mediated neurological disorder, characterized by central nervous system (CNS) inflammation, oligodendrocyte loss, demyelination, and axonal degeneration. Although autoimmunity, inflammatory demyelination and neurodegeneration underlie MS, the initiating event has yet to be clarified. Effective disease modifying therapies need to both regulate the immune system and promote restoration of neuronal function, including remyelination. The challenge in developing an effective long-lived therapy for MS requires that three disease-associated targets be addressed: (1) self-tolerance must be re-established to specifically inhibit the underlying myelin-directed autoimmune pathogenic mechanisms; (2) neurons must be protected from inflammatory injury and degeneration; (3) myelin repair must be engendered by stimulating oligodendrocyte progenitors to remyelinate CNS neuronal axons. The combined use of chronic and relapsing remitting experimental autoimmune encephalomyelitis (C-EAE, R-EAE) (“outside-in”) as well as progressive diphtheria toxin A chain (DTA) and cuprizone autoimmune encephalitis (CAE) (“inside-out”) mouse models allow for the investigation and specific targeting of all three of these MS-associated disease parameters. The “outside-in” EAE models initiated by myelin-specific autoreactive CD4+ T cells allow for the evaluation of both myelin-specific tolerance in the absence or presence of neuroprotective and/or remyelinating agents. The “inside-out” mouse models of secondary inflammatory demyelination are triggered by toxin-induced oligodendrocyte loss or subtle myelin damage, which allows evaluation of novel therapeutics that could promote remyelination and neuroprotection in the CNS. Overall, utilizing these complementary pre-clinical MS models will open new avenues for developing therapeutic interventions, tackling MS from the “outside-in” and/or “inside-out”.
Collapse
Affiliation(s)
- Haley E Titus
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yanan Chen
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joseph R Podojil
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Cour Pharmaceutical Development Company, Inc., Northbrook, IL, United States
| | - Andrew P Robinson
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Roumen Balabanov
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Brian Popko
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Stephen D Miller
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Cour Pharmaceutical Development Company, Inc., Northbrook, IL, United States.,Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
35
|
The Integrated UPR and ERAD in Oligodendrocytes Maintain Myelin Thickness in Adults by Regulating Myelin Protein Translation. J Neurosci 2020; 40:8214-8232. [PMID: 32958569 DOI: 10.1523/jneurosci.0604-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/09/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Myelin proteins, which are produced in the endoplasmic reticulum (ER), are essential and necessary for maintaining myelin structure. The integrated unfold protein response (UPR) and ER-associated degradation (ERAD) are the primary ER quality control mechanism. The adaptor protein Sel1L (Suppressor/Enhancer of Lin-12-like) controls the stability of the E3 ubiquitin ligase Hrd1 (hydroxymethylglutaryl reductase degradation protein 1), and is necessary for the ERAD activity of the Sel1L-Hrd1 complex. Herein, we showed that Sel1L deficiency specifically in oligodendrocytes caused ERAD impairment, the UPR activation, and attenuation of myelin protein biosynthesis; and resulted in late-onset, progressive myelin thinning in the CNS of adult mice (both male and female). The pancreatic ER kinase (PERK) branch of the UPR functions as the master regulator of protein translation in ER-stressed cells. Importantly, PERK inactivation reversed attenuation of myelin protein biosynthesis in oligodendrocytes and restored myelin thickness in the CNS of oligodendrocyte-specific Sel1L-deficient mice (both male and female). Conversely, blockage of proteolipid protein production exacerbated myelin thinning in the CNS of oligodendrocyte-specific Sel1L-deficient mice (both male and female). These findings suggest that impaired ERAD in oligodendrocytes reduces myelin thickness in the adult CNS through suppression of myelin protein translation by activating PERK.SIGNIFICANCE STATEMENT Myelin is an enormous extended plasma membrane of oligodendrocytes that wraps and insulates axons. Myelin structure, including thickness, was thought to be extraordinarily stable in adults. Myelin proteins, which are produced in the endoplasmic reticulum (ER), are essential and necessary for maintaining myelin structure. The integrated unfolded protein response (UPR) and ER-associated degradation (ERAD) are the primary mechanism that maintains ER protein homeostasis. Herein, we explored the role of the integrated UPR and ERAD in oligodendrocytes in regulating myelin protein production and maintaining myelin structure using mouse models. The results presented in this study imply that the integrated UPR and ERAD in oligodendrocytes maintain myelin thickness in adults by regulating myelin protein production.
Collapse
|
36
|
Wu S, Stone S, Yue Y, Lin W. Endoplasmic reticulum associated degradation is required for maintaining endoplasmic reticulum homeostasis and viability of mature Schwann cells in adults. Glia 2020; 69:489-506. [PMID: 32935902 DOI: 10.1002/glia.23910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 01/11/2023]
Abstract
The integrated unfolded protein response (UPR) and endoplasmic reticulum associated degradation (ERAD) is the principle mechanisms that maintain endoplasmic reticulum (ER) homeostasis. Schwann cells (SCs) must produce an enormous amount of myelin proteins via the ER to assemble and maintain myelin structure; however, it is unclear how SCs maintain ER homeostasis. It is known that Suppressor/Enhancer of Lin-12-like (Sel1L) is necessary for the ERAD activity of the Sel1L- hydroxymethylglutaryl reductase degradation protein 1(Hrd1) complex. Herein, we showed that Sel1L deficiency in SCs impaired the ERAD activity of the Sel1L-Hrd1 complex and led to ER stress and activation of the UPR. Interestingly, Sel1L deficiency had no effect on actively myelinating SCs during development, but led to later-onset mature SC apoptosis and demyelination in the adult PNS. Moreover, inactivation of the pancreatic ER kinase (PERK) branch of the UPR did not influence the viability and function of actively myelinating SCs, but resulted in exacerbation of ER stress and apoptosis of mature SCs in SC-specific Sel1L deficient mice. These findings suggest that the integrated UPR and ERAD is dispensable to actively myelinating SCs during development, but is necessary for maintaining ER homeostasis and the viability and function of mature SCs in adults.
Collapse
Affiliation(s)
- Shuangchan Wu
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sarrabeth Stone
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yuan Yue
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wensheng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
37
|
Miyamoto Y, Tanaka M, Ito H, Ooizumi H, Ohbuchi K, Mizoguchi K, Torii T, Yamauchi J. Expression of kinase-deficient MEK2 ameliorates Pelizaeus-Merzbacher disease phenotypes in mice. Biochem Biophys Res Commun 2020; 531:445-451. [PMID: 32800341 DOI: 10.1016/j.bbrc.2020.07.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Abstract
Pelizaeus-Merzbacher disease (PMD) is characterized as a congenital hypomyelinating disorder in oligodendrocytes, myelin-forming glial cells in the central nervous system (CNS). The responsible gene of PMD is plp1, whose multiplication, deletion, or mutation is associated with PMD. We previously reported that primary oligodendrocytes overexpressing proteolipid protein 1 (PLP1) do not have the ability to differentiate morphologically, whereas inhibition of mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) by its cognate siRNA or chemical inhibitor reverses their undifferentiated phenotypes. Here, we show that oligodendrocyte-specific expression of kinase-deficient dominant-inhibitory mutant (MEK2K101A) of MAPK/ERK kinase 2 (MEK2), as the direct upstream molecule of MAPK/ERK in PMD model mice, promotes myelination in CNS tissues. Expression of MEK2K101A in PMD model mice also improves Rotor-rod test performance, which is often used to assess motor coordination in a rodent model with neuropathy. These results suggest that in PMD model mice, MEK2K101A can ameliorate impairments of myelination and motor function and that the signaling through MAPK/ERK may involve potential therapeutic target molecules of PMD in vivo.
Collapse
Affiliation(s)
- Yuki Miyamoto
- Laboratory of Molecular Neuroscience and Neurology, Hachioji, Tokyo, 192-0392, Japan; Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan
| | - Marina Tanaka
- Laboratory of Molecular Neuroscience and Neurology, Hachioji, Tokyo, 192-0392, Japan
| | - Hisanaka Ito
- Laboratory of Bioorganic Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Hiroaki Ooizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki, 200-1192, Japan
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki, 200-1192, Japan
| | - Kazushige Mizoguchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki, 200-1192, Japan
| | - Tomohiro Torii
- Laboratory of Ion Channel Pathophysiology, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Hachioji, Tokyo, 192-0392, Japan; Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan.
| |
Collapse
|
38
|
Yousuf MS, Samtleben S, Lamothe SM, Friedman TN, Catuneanu A, Thorburn K, Desai M, Tenorio G, Schenk GJ, Ballanyi K, Kurata HT, Simmen T, Kerr BJ. Endoplasmic reticulum stress in the dorsal root ganglia regulates large-conductance potassium channels and contributes to pain in a model of multiple sclerosis. FASEB J 2020; 34:12577-12598. [PMID: 32677089 DOI: 10.1096/fj.202001163r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/25/2020] [Accepted: 07/09/2020] [Indexed: 01/22/2023]
Abstract
Neuropathic pain is a common symptom of multiple sclerosis (MS) and current treatment options are ineffective. In this study, we investigated whether endoplasmic reticulum (ER) stress in dorsal root ganglia (DRG) contributes to pain hypersensitivity in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Inflammatory cells and increased levels of ER stress markers are evident in post-mortem DRGs from MS patients. Similarly, we observed ER stress in the DRG of mice with EAE and relieving ER stress with a chemical chaperone, 4-phenylbutyric acid (4-PBA), reduced pain hypersensitivity. In vitro, 4-PBA and the selective PERK inhibitor, AMG44, normalize cytosolic Ca2+ transients in putative DRG nociceptors. We went on to assess disease-mediated changes in the functional properties of Ca2+ -sensitive BK-type K+ channels in DRG neurons. We found that the conductance-voltage (GV) relationship of BK channels was shifted to a more positive voltage, together with a more depolarized resting membrane potential in EAE cells. Our results suggest that ER stress in sensory neurons of MS patients and mice with EAE is a source of pain and that ER stress modulators can effectively counteract this phenotype.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Samira Samtleben
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Shawn M Lamothe
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Timothy N Friedman
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ana Catuneanu
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Kevin Thorburn
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Mansi Desai
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Gustavo Tenorio
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| | - Geert J Schenk
- Department of Anatomy and Neurosciences, Neuroscience Amsterdam, Amsterdam UMC, VU University Medical Center, VUmc MS Center Amsterdam, Amsterdam, The Netherlands
| | - Klaus Ballanyi
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Harley T Kurata
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Thomas Simmen
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Department of Pharmacology, University of Alberta, Edmonton, AB, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
39
|
NF-κB Activation Accounts for the Cytoprotective Effects of PERK Activation on Oligodendrocytes during EAE. J Neurosci 2020; 40:6444-6456. [PMID: 32661025 DOI: 10.1523/jneurosci.1156-20.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 01/09/2023] Open
Abstract
Previous studies demonstrate that activation of pancreatic ER kinase (PERK) protects oligodendrocytes against inflammation in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). Interestingly, data indicate that the cytoprotective effects of PERK activation on oligodendrocytes during EAE are not mediated by activating transcription factor 4 (ATF4) but are accompanied by activation of nuclear factor κB (NF-κB). NF-κB plays a critical role in MS and EAE; however, the effects of NF-κB activation on oligodendrocytes in these diseases remain elusive. Herein, we generated a mouse model that allow for activation of NF-κB specifically in oligodendrocytes and found that enhanced NF-κB activation in oligodendrocytes had a minimal effect on their viability and function under normal conditions (both male and female mice). Interestingly, we found that enhanced NF-κB activation in oligodendrocytes attenuated EAE disease severity and ameliorated EAE-induced oligodendrocyte loss, demyelination, and axon degeneration, without affecting inflammation (female mice). Moreover, we showed that the detrimental effects of PERK inactivation in oligodendrocytes in EAE were accompanied by impaired NF-κB activation in oligodendrocytes, and were completely rescued by enhanced NF-κB activation in oligodendrocytes (female mice). These findings suggest that NF-κB activation accounts for the cytoprotective effects of PERK activation on oligodendrocytes in MS and EAE.SIGNIFICANCE STATEMENT Nuclear factor κB (NF-κB) is activated in oligodendrocytes in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE); however, the role of NF-κB activation in oligodendrocytes in MS and EAE remains elusive. Herein, we generated a mouse model that allows for activation of NF-κB selectively in oligodendrocytes and demonstrated that NF-κB activation prevented oligodendrocyte death and myelin damage in the EAE model. We further demonstrated that NF-κB activation contributed to the protective effects of pancreatic ER kinase (PERK) activation on oligodendrocytes in the EAE model. As such, this work will facilitate the development of new treatments that enhance oligodendrocyte survival in MS patients by targeting the PERK-NF-κB pathway.
Collapse
|
40
|
Takeuchi Y, Tanaka M, Okura N, Fukui Y, Noguchi K, Hayashi Y, Torii T, Ooizumi H, Ohbuchi K, Mizoguchi K, Miyamoto Y, Yamauchi J. Rare Neurologic Disease-Associated Mutations of AIMP1 are Related with Inhibitory Neuronal Differentiation Which is Reversed by Ibuprofen. MEDICINES 2020; 7:medicines7050025. [PMID: 32384815 PMCID: PMC7281511 DOI: 10.3390/medicines7050025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 01/04/2023]
Abstract
Background: Hypomyelinating leukodystrophy 3 (HLD3), previously characterized as a congenital diseases associated with oligodendrocyte myelination, is increasingly regarded as primarily affecting neuronal cells. Methods: We used N1E-115 cells as the neuronal cell model to investigate whether HLD3-associated mutant proteins of cytoplasmic aminoacyl-tRNA synthase complex-interacting multifunctional protein 1 (AIMP1) aggregate in organelles and affect neuronal differentiation. Results: 292CA frame-shift type mutant proteins harboring a two-base (CA) deletion at the 292th nucleotide are mainly localized in the lysosome where they form aggregates. Similar results are observed in mutant proteins harboring the Gln39-to-Ter (Q39X) mutation. Interestingly, the frame-shift mutant-specific peptide specifically interacts with actin to block actin fiber formation. The presence of actin with 292CA mutant proteins, but not with wild type or Q39X ones, in the lysosome is detectable by immunoprecipitation of the lysosome. Furthermore, expression of 292CA or Q39X mutants in cells inhibits neuronal differentiation. Treatment with ibuprofen reverses mutant-mediated inhibitory differentiation as well as the localization in the lysosome. Conclusions: These results not only explain the cell pathological mechanisms inhibiting phenotype differentiation in cells expressing HLD3-associated mutants but also identify the first chemical that restores such cells in vitro.
Collapse
Affiliation(s)
- Yu Takeuchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (Y.T.); (M.T.); (N.O.); (Y.F.); (Y.M.)
| | - Marina Tanaka
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (Y.T.); (M.T.); (N.O.); (Y.F.); (Y.M.)
| | - Nanako Okura
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (Y.T.); (M.T.); (N.O.); (Y.F.); (Y.M.)
| | - Yasuyuki Fukui
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (Y.T.); (M.T.); (N.O.); (Y.F.); (Y.M.)
| | - Ko Noguchi
- Laboratory of Applied Ecology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan;
| | - Yoshihiro Hayashi
- Laboratory of Oncology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan;
| | - Tomohiro Torii
- Laboratory of Ion Channel Pathophysiology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan;
| | - Hiroaki Ooizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan; (H.O.); (K.O.); (K.M.)
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan; (H.O.); (K.O.); (K.M.)
| | - Kazushige Mizoguchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan; (H.O.); (K.O.); (K.M.)
| | - Yuki Miyamoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (Y.T.); (M.T.); (N.O.); (Y.F.); (Y.M.)
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (Y.T.); (M.T.); (N.O.); (Y.F.); (Y.M.)
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
- Correspondence: ; Tel.: (+81)-42-676-7164
| |
Collapse
|
41
|
PP1C and PP2A are p70S6K Phosphatases Whose Inhibition Ameliorates HLD12-Associated Inhibition of Oligodendroglial Cell Morphological Differentiation. Biomedicines 2020; 8:biomedicines8040089. [PMID: 32316234 PMCID: PMC7235839 DOI: 10.3390/biomedicines8040089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/15/2020] [Indexed: 01/27/2023] Open
Abstract
Myelin sheaths created by oligodendroglial cells encase neuronal axons to achieve saltatory conduction and protect axons. Pelizaeus-Merzbacher disease (PMD) is a prototypic, hereditary demyelinating oligodendroglial disease of the central nervous system (CNS), and is currently known as hypomyelinating leukodystrophy 1 (HLD1). HLD12 is an autosomal recessive disorder responsible for the gene that encodes vacuolar protein sorting-associated protein 11 homolog (VPS11). VPS11 is a member of the molecular group controlling the early endosome antigen 1 (EEA1)- and Rab7-positive vesicle-mediated protein trafficking to the lysosomal compartments. Herein, we show that the HLD12-associated Cys846-to-Gly (C846G) mutation of VPS11 leads to its aggregate formation with downregulated signaling through 70 kDa S6 protein kinase (p70S6K) in the oligodendroglial cell line FBD-102b as the model. In contrast, wild-type proteins are localized in both EEA1- and Rab7-positive vesicles. Cells harboring the C846G mutant constructs decrease differentiated phenotypes with web-like structures following differentiation, whereas parental cells exhibit them suitably. It is of note that we identify PP1C and PP2A as the protein phosphatases for phosphorylated Thr-389 of p70S6K essential for kinase activation in cells. The respective knockdown experiments or inhibitor treatment stimulates phosphorylation of p70S6K and ameliorates the inhibition of morphological differentiation, as well as the formation of protein aggregates. These results indicate that inhibition of p70S6K phosphatases PP1C and PP2A improves the defective morphological differentiation associated with HLD12 mutation, thereby hinting at amelioration based on a possible molecular and cellular pathological mechanism underlying HLD12.
Collapse
|
42
|
Stone S, Wu S, Nave KA, Lin W. The UPR preserves mature oligodendrocyte viability and function in adults by regulating autophagy of PLP. JCI Insight 2020; 5:132364. [PMID: 32053121 DOI: 10.1172/jci.insight.132364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/06/2020] [Indexed: 01/03/2023] Open
Abstract
Maintaining cellular proteostasis is essential for oligodendrocyte viability and function; however, its underlying mechanisms remain unexplored. Unfolded protein response (UPR), which comprises 3 parallel branches, inositol requiring enzyme 1 (IRE1), pancreatic ER kinase (PERK), and activating transcription factor 6α (ATF6α), is a major mechanism that maintains cellular proteostasis by facilitating protein folding, attenuating protein translation, and enhancing autophagy and ER-associated degradation. Here we report that impaired UPR in oligodendrocytes via deletion of PERK and ATF6α did not affect developmental myelination but caused late-onset mature oligodendrocyte dysfunction and death in young adult mice. The detrimental effects of the impaired UPR on mature oligodendrocytes were accompanied by autophagy impairment and intracellular proteolipid protein (PLP) accumulation and were rescued by PLP deletion. Data indicate that PLP was degraded by autophagy and that intracellular PLP accumulation was cytotoxic to oligodendrocytes. Thus, these findings imply that the UPR is required for maintaining cellular proteostasis and the viability and function of mature oligodendrocytes in adults by regulating autophagy of PLP.
Collapse
Affiliation(s)
- Sarrabeth Stone
- Department of Neuroscience and.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shuangchan Wu
- Department of Neuroscience and.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Wensheng Lin
- Department of Neuroscience and.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
43
|
Abstract
Activation of the unfolded protein response in response to endoplasmic reticulum stress preserves cell viability and function under stressful conditions. Nevertheless, persistent, unresolvable activation of the unfolded protein response can trigger apoptosis to eliminate stressed cells. Recent studies show that the unfolded protein response plays an important role in the pathogenesis of various disorders of myelin, including multiples sclerosis, Charcot-Marie-Tooth disease, Pelizaeus-Merzbacher disease, vanishing white matter disease, spinal cord injury, tuberous sclerosis complex, and hypoxia-induced perinatal white matter injury. In this review we summarize the current literature on the unfolded protein response and the evidence for its role in the pathogenesis of myelin disorders.
Collapse
Affiliation(s)
- Wensheng Lin
- Department of Neuroscience; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Sarrabeth Stone
- Department of Neuroscience; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
44
|
Matsumoto N, Watanabe N, Iibe N, Tatsumi Y, Hattori K, Takeuchi Y, Oizumi H, Ohbuchi K, Torii T, Miyamoto Y, Yamauchi J. Hypomyelinating leukodystrophy-associated mutation of RARS leads it to the lysosome, inhibiting oligodendroglial morphological differentiation. Biochem Biophys Rep 2019; 20:100705. [PMID: 31737794 PMCID: PMC6849085 DOI: 10.1016/j.bbrep.2019.100705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/16/2019] [Accepted: 10/30/2019] [Indexed: 01/25/2023] Open
Abstract
Pelizaeus-Merzbacher disease (PMD) is a central nervous system (CNS) demyelinating disease in human, currently known as prototypic hypomyelinating leukodystrophy 1 (HLD1). The gene responsible for HLD1 encodes proteolipid protein 1 (PLP1), which is the major myelin protein produced by oligodendrocytes. HLD9 is an autosomal recessive disorder responsible for the gene differing from the plp1 gene. The hld9 gene encodes arginyl-tRNA synthetase (RARS), which belongs to a family of cytoplasmic aminoacyl-tRNA synthetases. Herein we show that HLD9-associated missense mutation of Ser456-to-Leu (S456L) localizes RARS proteins as aggregates into the lysosome but not into the endoplasmic reticulum (ER) and the Golgi body. In contrast, wild-type proteins indeed distribute throughout the cytoplasm. Expression of S456L mutant constructs in cells decreases lysosome-related signaling through ribosomal S6 protein phosphorylation, which is known to be required for myelin formation. Cells harboring the S456L mutant constructs fail to exhibit phenotypes with myelin web-like structures following differentiation in FBD-102b cells, as part of the mammalian oligodendroglial cell model, whereas parental cells exhibit them. Collectively, HLD9-associated RARS mutant proteins are specifically localized in the lysosome with downregulation of S6 phosphorylation involved in myelin formation, inhibiting differentiation in FBD-102b cells. These results present some of the molecular and cellular pathological mechanisms for defect in myelin formation underlying HLD9.
Collapse
Affiliation(s)
- Naoto Matsumoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Natsumi Watanabe
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Noriko Iibe
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Yuriko Tatsumi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Kohei Hattori
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Yu Takeuchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Hiroaki Oizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki, 200-1192, Japan
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki, 200-1192, Japan
| | - Tomohiro Torii
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuki Miyamoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.,Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.,Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan
| |
Collapse
|
45
|
Goodman AD, Anadani N, Gerwitz L. Siponimod in the treatment of multiple sclerosis. Expert Opin Investig Drugs 2019; 28:1051-1057. [PMID: 31603362 DOI: 10.1080/13543784.2019.1676725] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Multiple sclerosis (MS) causes focal lesions of immune-mediated demyelinating events followed by slow progressive accumulation of disability. Over the past 2 decades, multiple medications have been studied and approved for use in MS. Most of these agents work by modulating or suppressing the peripheral immune system. Siponimod is a newer-generation sphingosine 1 phosphate (S1P) receptor modulator that internalizes S1P1 receptors, thereby inhibiting efflux of lymphocytes from lymph nodes and thymus. There are promising data suggesting that it may also have a direct neuroprotective property independent of peripheral lymphocytopenia.Areas covered: We reviewed the pharmacology and the clinical and radiological effects of siponimod.Expert opinion: The selective effect of siponimod on the S1P1 and S1P5 receptors offers a favorable side-effect profile and transient bradycardia can be avoided by dose titration. A phase-II study showed that siponomod has dose-dependent beneficial effects in patients with relapsing remitting disease. The results of a phase-III study suggest that siponimod may be beneficial in secondary progressive MS, at least in patients with disease activity.
Collapse
Affiliation(s)
- Andrew D Goodman
- Neuroimmunology Division, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Nidhiben Anadani
- Department of Neurology, University of Oklahoma Medical Center, Oklahoma City, OK, USA
| | - Lee Gerwitz
- Neuroimmunology Division, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
46
|
Gupta AS, Biswas DD, Brown LSN, Mockenhaupt K, Marone M, Hoskins A, Siebenlist U, Kordula T. A detrimental role of RelB in mature oligodendrocytes during experimental acute encephalomyelitis. J Neuroinflammation 2019; 16:161. [PMID: 31362762 PMCID: PMC6664766 DOI: 10.1186/s12974-019-1548-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/17/2019] [Indexed: 12/31/2022] Open
Abstract
Background Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system (CNS). It is firmly established that overactivation of the p65 (RelA) nuclear factor kappa B (NF-κB) transcription factor upregulates expression of inflammatory mediators in both immune and non-immune resident CNS cells and promotes inflammation during MS. In contrast to p65, NF-κB family member RelB regulates immune cell development and can limit inflammation. Although RelB expression is induced during inflammation in the CNS, its role in MS remains unknown. Methods To examine the role of RelB in non-immune CNS cells, we generated mice with RelB specifically deleted in astrocytes (RelBΔAST), oligodendrocytes (RelBΔOLIGO), or neural progenitor-derived cells (RelBΔNP). We used experimental autoimmune encephalomyelitis (EAE), an accepted mouse model of MS, to assess the effect of RelB deletion on disease outcomes and performed analysis on the histological, cellular, and molecular level. Results Despite being a negative regulator of inflammation, conditional knockout of RelB in non-immune resident CNS cells surprisingly decreased the severity of EAE. This protective effect was recapitulated by conditional deletion of RelB in oligodendrocytes but not astrocytes. Deletion of RelB in oligodendrocytes reduced disease severity, promoted survival of mature oligodendrocytes, and correlated with increased activation of p65 NF-κB. Conclusions These findings suggest that RelB fine tunes inflammation and cell death/survival during EAE. Importantly, our data points out the detrimental role RelB plays in controlling survival of mature oligodendrocytes, which could be explored as a viable option to treat MS in the future. Electronic supplementary material The online version of this article (10.1186/s12974-019-1548-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Angela S Gupta
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine and the Massey Cancer Center, Richmond, VA, 23298, USA
| | - Debolina D Biswas
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine and the Massey Cancer Center, Richmond, VA, 23298, USA
| | - La Shardai N Brown
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine and the Massey Cancer Center, Richmond, VA, 23298, USA
| | - Karli Mockenhaupt
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine and the Massey Cancer Center, Richmond, VA, 23298, USA
| | - Michael Marone
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine and the Massey Cancer Center, Richmond, VA, 23298, USA
| | - Andrew Hoskins
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine and the Massey Cancer Center, Richmond, VA, 23298, USA
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine and the Massey Cancer Center, Richmond, VA, 23298, USA.
| |
Collapse
|
47
|
Doycheva D, Kaur H, Tang J, Zhang JH. The characteristics of the ancient cell death suppressor, TMBIM6, and its related signaling pathways after endoplasmic reticulum stress. J Neurosci Res 2019; 98:77-86. [PMID: 31044452 DOI: 10.1002/jnr.24434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 03/27/2019] [Accepted: 04/10/2019] [Indexed: 12/27/2022]
Abstract
Activation of the unfolded protein response in combination with generation of reactive oxygen species, from cytochrome P450 members and NADPH-P450 reductases, are two major consequences of Endoplasmic Reticulum (ER) stress that cause oxidative damage and cell death. Herein, we reviewed the role of Bax Inhibitor-1 (BI-1), an evolutionarily conserved protein encoded by the Transmembrane Bax inhibitor Motif Containing 6 gene, in protection from ER stress. As BI-1 has multimodal properties that can target a wide array of pathophysiological consequences after injury, our main objective was to explore BI-1's protective role in ER stress and its potential signaling pathways.
Collapse
Affiliation(s)
- Desislava Doycheva
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California
| | - Harpreet Kaur
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California.,Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, California.,Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, California.,Department of Neurology, School of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
48
|
Yue Y, Stanojlovic M, Lin Y, Karsenty G, Lin W. Oligodendrocyte-specific ATF4 inactivation does not influence the development of EAE. J Neuroinflammation 2019; 16:23. [PMID: 30709400 PMCID: PMC6357515 DOI: 10.1186/s12974-019-1415-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/24/2019] [Indexed: 01/13/2023] Open
Abstract
Background Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are inflammatory demyelinating and neurodegenerative diseases of the CNS. Although recent studies suggest the neuroprotective effects of oligodendrocytes in neurodegenerative diseases, it remains unknown whether oligodendrocyte death induced by inflammatory attacks contributes to neurodegeneration in MS and EAE. Upon endoplasmic reticulum (ER) stress, activation of pancreatic ER kinase (PERK) promotes cell survival through induction of activating transcription factor 4 (ATF4) by phosphorylating eukaryotic translation initiation factor 2α (eIF2α). We have generated a mouse model that allows for temporally controlled activation of PERK specifically in oligodendrocytes. Our previous study has demonstrated that PERK activation specifically in oligodendrocytes attenuates EAE disease severity and ameliorates EAE-induced oligodendrocyte apoptosis, demyelination, and axon degeneration, without altering inflammation. Methods We determined whether oligodendrocyte-specific PERK activation reduced neuron loss in the CNS of EAE mice using the mouse model that allows for temporally controlled activation of PERK specifically in oligodendrocytes. We further generated a mouse model that allows for inactivation of ATF4 specifically in oligodendrocytes, and determined the effects of ATF4 inactivation in oligodendrocytes on mice undergoing EAE. Results We showed that protection of oligodendrocytes resulting from PERK activation led to attenuation of neuron loss in the CNS gray matter of EAE mice. Surprisingly, we found that ATF4 inactivation specifically in oligodendrocytes did not alter EAE disease severity and had no effect on oligodendrocyte loss, demyelination, axon degeneration, neuron loss, and inflammation in EAE mice. Conclusions These findings suggest the neuroprotective effects of PERK activation in oligodendrocytes in EAE, and rule out the involvement of ATF4 in oligodendrocytes in the development of EAE. These results imply that the protective effects of PERK activation in oligodendrocytes in MS and EAE are not mediated by ATF4.
Collapse
Affiliation(s)
- Yuan Yue
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Milos Stanojlovic
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yifeng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.,Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Gerard Karsenty
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA
| | - Wensheng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA. .,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
49
|
Stone S, Yue Y, Stanojlovic M, Wu S, Karsenty G, Lin W. Neuron-specific PERK inactivation exacerbates neurodegeneration during experimental autoimmune encephalomyelitis. JCI Insight 2019; 4:124232. [PMID: 30674717 DOI: 10.1172/jci.insight.124232] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are chronic inflammatory demyelinating and neurodegenerative diseases of the CNS. Although neurodegeneration is the major contributor to chronic disability in MS, mechanisms governing the viability of axons and neurons in MS and EAE remain elusive. Data indicate that activation of pancreatic endoplasmic reticulum kinase (PERK) influences, positively or negatively, neuron and axon viability in various neurodegenerative diseases through induction of ATF4. In this study, we demonstrate that the PERK pathway was activated in neurons during EAE. We found that neuron-specific PERK inactivation impaired EAE resolution and exacerbated EAE-induced axon degeneration, neuron loss, and demyelination. Surprisingly, neuron-specific ATF4 inactivation did not alter EAE disease course or EAE-induced axon degeneration, neuron loss, and demyelination. These results suggest that PERK activation in neurons protects axons and neurons against inflammation in MS and EAE through ATF4-independent mechanisms.
Collapse
Affiliation(s)
- Sarrabeth Stone
- Department of Neuroscience and.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yuan Yue
- Department of Neuroscience and.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Milos Stanojlovic
- Department of Neuroscience and.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shuangchan Wu
- Department of Neuroscience and.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gerard Karsenty
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Wensheng Lin
- Department of Neuroscience and.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
50
|
Effects of HLD-associated POLR1C mutant proteins on cellular localization and differentiation. Mol Genet Metab Rep 2018; 17:80-82. [PMID: 30505682 PMCID: PMC6240673 DOI: 10.1016/j.ymgmr.2018.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 11/30/2022] Open
|