1
|
Badal KK, Sadhu A, Raveendra BL, McCracken C, Lozano‐Villada S, Shetty AC, Gillette P, Zhao Y, Stommes D, Fieber LA, Schmale MC, Mahurkar A, Hawkins RD, Puthanveettil SV. Single-neuron analysis of aging-associated changes in learning reveals impairments in transcriptional plasticity. Aging Cell 2024; 23:e14228. [PMID: 38924663 PMCID: PMC11488329 DOI: 10.1111/acel.14228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 06/28/2024] Open
Abstract
The molecular mechanisms underlying age-related declines in learning and long-term memory are still not fully understood. To address this gap, our study focused on investigating the transcriptional landscape of a singularly identified motor neuron L7 in Aplysia, which is pivotal in a specific type of nonassociative learning known as sensitization of the siphon-withdraw reflex. Employing total RNAseq analysis on a single isolated L7 motor neuron after short-term or long-term sensitization (LTS) training of Aplysia at 8, 10, and 12 months (representing mature, late mature, and senescent stages), we uncovered aberrant changes in transcriptional plasticity during the aging process. Our findings specifically highlight changes in the expression of messenger RNAs (mRNAs) that encode transcription factors, translation regulators, RNA methylation participants, and contributors to cytoskeletal rearrangements during learning and long noncoding RNAs (lncRNAs). Furthermore, our comparative gene expression analysis identified distinct transcriptional alterations in two other neurons, namely the motor neuron L11 and the giant cholinergic neuron R2, whose roles in LTS are not yet fully elucidated. Taken together, our analyses underscore cell type-specific impairments in the expression of key components related to learning and memory within the transcriptome as organisms age, shedding light on the complex molecular mechanisms driving cognitive decline during aging.
Collapse
Affiliation(s)
- Kerriann K. Badal
- Department of NeuroscienceThe Herbert Wertheim UF Scripps Institute for Biomedical Innovation & TechnologyJupiterFloridaUSA
- Integrated Biology Graduate ProgramFlorida Atlantic UniversityJupiterFloridaUSA
| | - Abhishek Sadhu
- Department of NeuroscienceThe Herbert Wertheim UF Scripps Institute for Biomedical Innovation & TechnologyJupiterFloridaUSA
- Present address:
Center for Alzheimer's and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain InstituteUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Bindu L. Raveendra
- Department of NeuroscienceThe Herbert Wertheim UF Scripps Institute for Biomedical Innovation & TechnologyJupiterFloridaUSA
| | - Carrie McCracken
- The Institute for Genome SciencesUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Sebastian Lozano‐Villada
- Department of NeuroscienceThe Herbert Wertheim UF Scripps Institute for Biomedical Innovation & TechnologyJupiterFloridaUSA
- Harriet L. Wilkes Honors CollegeFlorida Atlantic UniversityJupiterFloridaUSA
| | - Amol C. Shetty
- The Institute for Genome SciencesUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Phillip Gillette
- National Resource for AplysiaUniversity of Miami Rosenstiel School of Marine, Atmospheric, and Earth SciencesMiamiFloridaUSA
| | - Yibo Zhao
- Department of NeuroscienceThe Herbert Wertheim UF Scripps Institute for Biomedical Innovation & TechnologyJupiterFloridaUSA
| | - Dustin Stommes
- National Resource for AplysiaUniversity of Miami Rosenstiel School of Marine, Atmospheric, and Earth SciencesMiamiFloridaUSA
| | - Lynne A. Fieber
- National Resource for AplysiaUniversity of Miami Rosenstiel School of Marine, Atmospheric, and Earth SciencesMiamiFloridaUSA
| | - Michael C. Schmale
- National Resource for AplysiaUniversity of Miami Rosenstiel School of Marine, Atmospheric, and Earth SciencesMiamiFloridaUSA
| | - Anup Mahurkar
- The Institute for Genome SciencesUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Robert D. Hawkins
- Department of NeuroscienceColumbia UniversityNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | | |
Collapse
|
2
|
McManus JM, Chiel HJ, Susswein AJ. Successful and unsuccessful attempts to swallow in a reduced Aplysia preparation regulate feeding responses and produce memory at different neural sites. ACTA ACUST UNITED AC 2019; 26:151-165. [PMID: 30992384 PMCID: PMC6478246 DOI: 10.1101/lm.048983.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/12/2019] [Indexed: 01/26/2023]
Abstract
Sensory feedback shapes ongoing behavior and may produce learning and memory. Motor responses to edible or inedible food in a reduced Aplysia preparation were examined to test how sensory feedback affects behavior and memory. Feeding patterns were initiated by applying a cholinomimetic onto the cerebral ganglion. Feedback from buccal muscles increased the response variability and response rate. Repeated application of the cholinomimetic caused decreased responses, expressed in part by lengthening protractions. Swallowing strips of "edible" food, which in intact animals induces learning that enhances ingestion, increased the response rate, and shortened the protraction length, reflecting more swallowing. Testing memory by repeating the procedure prevented the decrease in response rate observed with the cholinomimetic alone, and shortened protractions. Training with "inedible" food that in intact animals produces learning expressed by decreased responses caused lengthened protractions. Testing memory by repeating the procedure did not cause decreased responses or lengthened protractions. After training and testing with edible or inedible food, all preparations were exposed to the cholinomimetic alone. Preparations previously trained with edible food displayed memory expressed as decreased protraction length. Preparations previously trained with inedible food showed decreases in many response parameters. Memory for inedible food may arise in part via a postsynaptic decrease in response to acetylcholine released by afferents sensing food. The lack of change in response number, and in the time that responses are maintained during the two training sessions preceding application of the cholinomimetic alone suggests that memory expression may differ from behavioral changes during training.
Collapse
Affiliation(s)
- Jeffrey M McManus
- Departments of Biology, Case Western Reserve University, Cleveland, Ohio 44106-7080, USA
| | - Hillel J Chiel
- Departments of Biology, Case Western Reserve University, Cleveland, Ohio 44106-7080, USA.,Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106-7080, USA.,Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7080, USA
| | - Abraham J Susswein
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900, Israel.,The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, 52900, Israel
| |
Collapse
|
3
|
Walters ET. Nociceptive Biology of Molluscs and Arthropods: Evolutionary Clues About Functions and Mechanisms Potentially Related to Pain. Front Physiol 2018; 9:1049. [PMID: 30123137 PMCID: PMC6085516 DOI: 10.3389/fphys.2018.01049] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/16/2018] [Indexed: 01/15/2023] Open
Abstract
Important insights into the selection pressures and core molecular modules contributing to the evolution of pain-related processes have come from studies of nociceptive systems in several molluscan and arthropod species. These phyla, and the chordates that include humans, last shared a common ancestor approximately 550 million years ago. Since then, animals in these phyla have continued to be subject to traumatic injury, often from predators, which has led to similar adaptive behaviors (e.g., withdrawal, escape, recuperative behavior) and physiological responses to injury in each group. Comparisons across these taxa provide clues about the contributions of convergent evolution and of conservation of ancient adaptive mechanisms to general nociceptive and pain-related functions. Primary nociceptors have been investigated extensively in a few molluscan and arthropod species, with studies of long-lasting nociceptive sensitization in the gastropod, Aplysia, and the insect, Drosophila, being especially fruitful. In Aplysia, nociceptive sensitization has been investigated as a model for aversive memory and for hyperalgesia. Neuromodulator-induced, activity-dependent, and axotomy-induced plasticity mechanisms have been defined in synapses, cell bodies, and axons of Aplysia primary nociceptors. Studies of nociceptive sensitization in Drosophila larvae have revealed numerous molecular contributors in primary nociceptors and interacting cells. Interestingly, molecular contributors examined thus far in Aplysia and Drosophila are largely different, but both sets overlap extensively with those in mammalian pain-related pathways. In contrast to results from Aplysia and Drosophila, nociceptive sensitization examined in moth larvae (Manduca) disclosed central hyperactivity but no obvious peripheral sensitization of nociceptive responses. Squid (Doryteuthis) show injury-induced sensitization manifested as behavioral hypersensitivity to tactile and especially visual stimuli, and as hypersensitivity and spontaneous activity in nociceptor terminals. Temporary blockade of nociceptor activity during injury subsequently increased mortality when injured squid were exposed to fish predators, providing the first demonstration in any animal of the adaptiveness of nociceptive sensitization. Immediate responses to noxious stimulation and nociceptive sensitization have also been examined behaviorally and physiologically in a snail (Helix), octopus (Adopus), crayfish (Astacus), hermit crab (Pagurus), and shore crab (Hemigrapsus). Molluscs and arthropods have systems that suppress nociceptive responses, but whether opioid systems play antinociceptive roles in these phyla is uncertain.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
4
|
Weisz HA, Wainwright ML, Mozzachiodi R. A novel in vitro analog expressing learning-induced cellular correlates in distinct neural circuits. ACTA ACUST UNITED AC 2017; 24:331-340. [PMID: 28716953 PMCID: PMC5516688 DOI: 10.1101/lm.045229.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/12/2017] [Indexed: 01/29/2023]
Abstract
When presented with noxious stimuli, Aplysia exhibits concurrent sensitization of defensive responses, such as the tail-induced siphon withdrawal reflex (TSWR) and suppression of feeding. At the cellular level, sensitization of the TSWR is accompanied by an increase in the excitability of the tail sensory neurons (TSNs) that elicit the reflex, whereas feeding suppression is accompanied by decreased excitability of B51, a decision-making neuron in the feeding neural circuit. The goal of this study was to develop an in vitro analog coexpressing the above cellular correlates. We used a reduced preparation consisting of buccal, cerebral, and pleural-pedal ganglia, which contain the neural circuits controlling feeding and the TSWR, respectively. Sensitizing stimuli were delivered in vitro by electrical stimulation of afferent nerves. When trained with sensitizing stimuli, the in vitro analog expressed concomitant increased excitability in TSNs and decreased excitability in B51, which are consistent with the occurrence of sensitization and feeding suppression induced by in vivo training. This in vitro analog expressed both short-term (15 min) and long-term (24 h) excitability changes in TSNs and B51, depending on the amount of training administered. Finally, in vitro application of serotonin increased TSN excitability without altering B51 excitability, mirroring the in vivo application of the monoamine that induces sensitization, but not feeding suppression.
Collapse
Affiliation(s)
- Harris A Weisz
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, Texas 78412, USA
| | - Marcy L Wainwright
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, Texas 78412, USA
| | - Riccardo Mozzachiodi
- Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christi, Texas 78412, USA
| |
Collapse
|
5
|
Burrell BD. Comparative biology of pain: What invertebrates can tell us about how nociception works. J Neurophysiol 2017; 117:1461-1473. [PMID: 28053241 DOI: 10.1152/jn.00600.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 12/30/2022] Open
Abstract
The inability to adequately treat chronic pain is a worldwide health care crisis. Pain has both an emotional and a sensory component, and this latter component, nociception, refers specifically to the detection of damaging or potentially damaging stimuli. Nociception represents a critical interaction between an animal and its environment and exhibits considerable evolutionary conservation across species. Using comparative approaches to understand the basic biology of nociception could promote the development of novel therapeutic strategies to treat pain, and studies of nociception in invertebrates can provide especially useful insights toward this goal. Both vertebrates and invertebrates exhibit segregated sensory pathways for nociceptive and nonnociceptive information, injury-induced sensitization to nociceptive and nonnociceptive stimuli, and even similar antinociceptive modulatory processes. In a number of invertebrate species, the central nervous system is understood in considerable detail, and it is often possible to record from and/or manipulate single identifiable neurons through either molecular genetic or physiological approaches. Invertebrates also provide an opportunity to study nociception in an ethologically relevant context that can provide novel insights into the nature of how injury-inducing stimuli produce persistent changes in behavior. Despite these advantages, invertebrates have been underutilized in nociception research. In this review, findings from invertebrate nociception studies are summarized, and proposals for how research using invertebrates can address questions about the fundamental mechanisms of nociception are presented.
Collapse
Affiliation(s)
- Brian D Burrell
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| |
Collapse
|
6
|
Abstract
The central point of this article is that the concept of memory as information storage in the brain is inadequate for and irrelevant to understanding the nervous system. Beginning from the sensorimotor hypothesis that underlies neuroscience—that the entire function of the nervous system is to connect experience to appropriate behavior—the paper defines memories as sequences of events that connect remote experience to present behavior. Their essential components are (a) persistent events that bridge the time from remote experience to present behavior and (b) junctional events in which connections from remote experience and recent experience merge to produce behavior. The sequences comprising even the simplest memories are complex. This is both necessary—to preserve previously learned behaviors—and inevitable—due to secondary activity-driven plasticity. This complexity further highlights the inadequacy of the information storage concept and the importance of extreme simplicity in models used to study memory.
Collapse
Affiliation(s)
- Jonathan R Wolpaw
- Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA.
| |
Collapse
|
7
|
Schreurs BG. Classical Conditioning and Modification of the Rabbit's (Oryctolagus Cuniculus) Unconditioned Nictitating Membrane Response. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/1534582303002002001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A fundamental tenet of behavior is that a reflex is automatic, unconscious, involuntary, and relatively invariant. However, we have discovered that a reflex can change dramatically as a function of classical conditioning, and this change can be demonstrated independently of the conditioned stimulus. We have termed this phenomenon conditioning-specific reflex modification (CRM). Although the behavioral laws and neural substrates of nonassociative reflex changes have been identified, the behavioral laws and neural substrates of CRM are only now being revealed. For example, CRM is similar to classical conditioning in that (a) it is a function of both the strength of conditioning and (b) the strength of the unconditioned stimulus, (c) it can be extinguished, and (d) it can be generalized from one unconditioned stimulus to another. Preliminary analysis suggests that CRM may have some features in common with post-traumatic stress disorder and may provide insights into treatment of the disorder.
Collapse
|
8
|
Transcriptional analysis of a whole-body form of long-term habituation in Aplysia californica. ACTA ACUST UNITED AC 2014; 22:11-23. [PMID: 25512573 PMCID: PMC4274328 DOI: 10.1101/lm.036970.114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Habituation is the simplest form of learning, but we know little about the transcriptional mechanisms that encode long-term habituation memory. A key obstacle is that habituation is relatively stimulus-specific and is thus encoded in small sets of neurons, providing poor signal/noise ratios for transcriptional analysis. To overcome this obstacle, we have developed a protocol for producing whole-body long-term habituation of the siphon-withdrawal reflex (SWR) of Aplysia californica. Specifically, we constructed a computer-controlled brushing apparatus to apply low-intensity tactile stimulation over the entire dorsal surface of Aplysia at regular intervals. We found that 3 d of training (10 rounds of stimulation/day; each round = 15 min brushing at a 10-sec ISI; 15-min rest between rounds) produces habituation with several characteristics favorable for mechanistic investigation. First, habituation is widespread, with SWR durations reduced whether the reflex is evoked by tactile stimulation to the head, tail, or the siphon. Second, long-term habituation is sensitive to the pattern of training, occurring only when brushing sessions are spaced out over 3 d rather than massed into a single session. Using a custom-designed microarray and quantitative PCR, we show that long-term habituation produces long-term up-regulation of an apparent Aplysia homolog of cornichon, a protein important for glutamate receptor trafficking. Our training paradigm provides a promising starting point for characterizing the transcriptional mechanisms of long-term habituation memory.
Collapse
|
9
|
Herdegen S, Conte C, Kamal S, Calin-Jageman RJ, Calin-Jageman IE. Immediate and persistent transcriptional correlates of long-term sensitization training at different CNS loci in Aplysia californica. PLoS One 2014; 9:e114481. [PMID: 25486125 PMCID: PMC4259342 DOI: 10.1371/journal.pone.0114481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/10/2014] [Indexed: 11/18/2022] Open
Abstract
Repeated noxious stimulation produces long-term sensitization of defensive withdrawal reflexes in Aplysia californica, a form of long-term memory that requires changes in both transcription and translation. Previous work has identified 10 transcripts which are rapidly up-regulated after long-term sensitization training in the pleural ganglia. Here we use quantitative PCR to begin examining how these transcriptional changes are expressed in different CNS loci related to defensive withdrawal reflexes at 1 and 24 hours after long-term sensitization training. Specifically, we sample from a) the sensory wedge of the pleural ganglia, which exclusively contains the VC nociceptor cell bodies that help mediate input to defensive withdrawal circuits, b) the remaining pleural ganglia, which contain withdrawal interneurons, and c) the pedal ganglia, which contain many motor neurons. Results from the VC cluster show different temporal patterns of regulation: 1) rapid but transient up-regulation of Aplysia homologs of C/EBP, C/EBPγ, and CREB1, 2) delayed but sustained up-regulation of BiP, Tolloid/BMP-1, and sensorin, 3) rapid and sustained up-regulation of Egr, GlyT2, VPS36, and an uncharacterized protein (LOC101862095), and 4) an unexpected lack of regulation of Aplysia homologs of calmodulin (CaM) and reductase-related protein (RRP). Changes in the remaining pleural ganglia mirror those found in the VC cluster at 1 hour but with an attenuated level of regulation. Because these samples had almost no expression of the VC-specific transcript sensorin, our data suggests that sensitization training likely induces transcriptional changes in either defensive withdrawal interneurons or neurons unrelated to defensive withdrawal. In the pedal ganglia, we observed only a rapid but transient increase in Egr expression, indicating that long-term sensitization training is likely to induce transcriptional changes in motor neurons but raising the possibility of different transcriptional endpoints in this cell type.
Collapse
Affiliation(s)
- Samantha Herdegen
- Neuroscience Program, Dominican University, River Forest, Illinois, United States of America
| | - Catherine Conte
- Neuroscience Program, Dominican University, River Forest, Illinois, United States of America
| | - Saman Kamal
- Neuroscience Program, Dominican University, River Forest, Illinois, United States of America
| | - Robert J. Calin-Jageman
- Neuroscience Program, Dominican University, River Forest, Illinois, United States of America
- * E-mail: (RC-J); (IC-J)
| | - Irina E. Calin-Jageman
- Neuroscience Program, Dominican University, River Forest, Illinois, United States of America
- * E-mail: (RC-J); (IC-J)
| |
Collapse
|
10
|
Wan Q, Jiang XY, Negroiu AM, Lu SG, McKay KS, Abrams TW. Protein kinase C acts as a molecular detector of firing patterns to mediate sensory gating in Aplysia. Nat Neurosci 2012; 15:1144-52. [PMID: 22772333 PMCID: PMC4228944 DOI: 10.1038/nn.3158] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/06/2012] [Indexed: 11/24/2022]
Abstract
Habituation of a behavioral response to a repetitive stimulus enables animals to ignore irrelevant stimuli and focus on behaviorally important events. In Aplysia, habituation is mediated by rapid depression of sensory synapses, which could leave an animal unresponsive to important repetitive stimuli, making it vulnerable to injury. We identified a form of plasticity that prevents synaptic depression depending on the precise stimulus strength. Burst-dependent protection from depression is initiated by trains of 2-4 action potentials and is distinct from previously described forms of synaptic enhancement. The blockade of depression is mediated by presynaptic Ca2+ influx and protein kinase C (PKC) and requires localization of PKC via a PDZ domain interaction with Aplysia PICK1. During protection from depression, PKC acts as a highly sensitive detector of the precise pattern of sensory neuron firing. Behaviorally, burst-dependent protection reduces habituation, enabling animals to maintain responsiveness to stimuli that are functionally important.
Collapse
Affiliation(s)
- Qin Wan
- Department of Pharmacology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201-1559
| | - Xue-Ying Jiang
- Department of Pharmacology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201-1559
| | - Andreea M. Negroiu
- Department of Pharmacology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201-1559
| | - Shao-Gang Lu
- Department of Pharmacology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201-1559
| | - Kimberly S. McKay
- Program in Neuroscience, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201-1559
| | - Thomas W. Abrams
- Department of Pharmacology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201-1559
- Program in Neuroscience, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201-1559
| |
Collapse
|
11
|
Auditory cortex lesions do not disrupt habituation of HPA axis responses to repeated noise stress. Brain Res 2012; 1443:18-26. [PMID: 22290179 DOI: 10.1016/j.brainres.2012.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/03/2012] [Accepted: 01/04/2012] [Indexed: 11/21/2022]
Abstract
Previous research has suggested that sensory areas may play a role in adaptation to repeated stress. The auditory cortex was the target of the present studies because it is a major projection area of the auditory thalamus, where functional inactivation disrupts stress habituation to repeated loud noise. Large bilateral excitotoxic lesions of the auditory cortex were made in male rats 2 weeks prior to (Experiment 1) or a few days after (Experiment 2) a 5 day 30 min repeated 95 dBA noise or no noise regimen. Blood was collected immediately after exposure on days 1, 3, and 5. Two weeks after the 5th exposure, the rats were retested with 30 min noise or no noise to determine retention of the habituated responses. Animals were killed immediately after the retest and trunk blood and brains collected for lesion verification. Plasma adrenocorticotropic hormone (ACTH) and corticosterone levels were determined. In both experiments, significant between-subjects effects were found for noise (95 dBA or no noise) but not for surgery (lesion, sham, or no surgery control rats), with lesion groups exhibiting similar levels of ACTH and corticosterone across days as the sham and no surgery control groups. All noise exposed groups displayed similar habituation rates and retention levels. A third experiment indicated that similar auditory cortex lesions significantly disrupted background noise gap detection in an acoustic startle paradigm. Overall, these data suggest that the information mediating hypothalamic-pituitary-adrenal axis response habituation to repeated loud noise exposures is not derived from the auditory cortex.
Collapse
|
12
|
Evidence for a lack of phasic inhibitory properties of habituated stressors on HPA axis responses in rats. Physiol Behav 2011; 105:568-75. [PMID: 21708179 DOI: 10.1016/j.physbeh.2011.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 06/09/2011] [Accepted: 06/10/2011] [Indexed: 11/22/2022]
Abstract
This experiment tested the hypothesis that habituation to repeated stressor exposures is produced by phasic inhibitory influence on the neural circuitry that normally drives the paraventricular nucleus of the hypothalamus and subsequently the adrenocortical hormone response to psychological stress. Such a process would be expected to lower the acute response to a novel stressor when experienced concurrently with a habituated stressor. Rats were exposed to restraint or no stress conditions for 14 consecutive days. On the 15th day, the rats were exposed to the control condition (no stress), acute restraint, loud noise, or restraint and loud noise concurrently. Blood was taken and assayed for ACTH and corticosterone and brains were collected to examine c-fos messenger RNA expression in several brain areas. As predicted, the rats that received the same (homotypic) stressor repeatedly and again on the test day displayed low levels of ACTH and corticosterone, similar to the control conditions (i.e., showed habituation). All rats that received a single novel stressor on the test day, regardless of prior stress history, exhibited high levels of ACTH and corticosterone. The rats that received two novel stressors also displayed high levels of ACTH and corticosterone, but little evidence of additivity was observed. Importantly, when a novel stressor was concurrently given with a habituated stressor on the test day, no reduction of HPA axis response was observed when compared to previously habituated rats given only the novel stressor on the test day. In general, c-fos mRNA induction in several stress responsive brain areas followed the same patterns as the ACTH and corticosterone data. These data suggest that habituation of the adrenocortical hormone response to psychological stressors is not mediated by phasic inhibition of the effector system.
Collapse
|
13
|
Fischer TM, Jacobson DA, Counsell AN, Pelot MA, Demorest K. Regulation of low-threshold afferent activity may contribute to short-term habituation in Aplysia californica. Neurobiol Learn Mem 2011; 95:248-59. [DOI: 10.1016/j.nlm.2010.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/27/2010] [Accepted: 11/28/2010] [Indexed: 11/29/2022]
|
14
|
Habituation in Aplysia: The Cheshire Cat of neurobiology. Neurobiol Learn Mem 2009; 92:147-54. [DOI: 10.1016/j.nlm.2009.03.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 03/17/2009] [Accepted: 03/19/2009] [Indexed: 11/27/2022]
|
15
|
Insights into a molecular switch that gates sensory neuron synapses during habituation in Aplysia. Neurobiol Learn Mem 2009; 92:155-65. [PMID: 19345275 DOI: 10.1016/j.nlm.2009.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 03/15/2009] [Accepted: 03/16/2009] [Indexed: 11/20/2022]
Abstract
This review focuses on synaptic depression at sensory neuron-to-motor neuron synapses in the defensive withdrawal circuit of Aplysia as a model system for analysis of molecular mechanisms of sensory gating and habituation. We address the following topics: 1. Of various possible mechanisms that might underlie depression at these sensory neuron-to-motor neuron synapses in Aplysia, historically the most widely-accepted explanation has been depletion of the readily releasable pool of vesicles. Depletion is also believed to account for synaptic depression at long interstimulus intervals in a variety of other systems. 2. Multiple lines of evidence now indicate that vesicle depletion is not an important contributing mechanism to synaptic depression at Aplysia sensory neuron-to-motor neuron synapses. More generally, it appears that vesicle depletion does not contribute substantially to depression that occurs with those stimulus patterns that are typically used in studying behavioral habituation. 3. Recent evidence suggests that at these sensory neuron-to-motor neuron synapses in Aplysia, synaptic depression is mediated by an activity-dependent, but release-independent, switching of individual release sites to a silent state. This switching off of release sites is initiated by Ca2+ influx during individual action potentials. We discuss signaling proteins that may be regulated by Ca2+ during the silencing of release sites that underlies synaptic depression. 4. Bursts of 2-4 action potentials in presynaptic sensory neurons in Aplysia prevent the switching off of release sites via a mechanism called "burst-dependent protection" from synaptic depression. 5. This molecular switch may explain the sensory gating that allows animals to discriminate which stimuli are innocuous and appropriate to ignore and which stimuli are more important and should continue to elicit responses.
Collapse
|
16
|
Hawkins RD, Kandel ER, Bailey CH. Molecular mechanisms of memory storage in Aplysia. THE BIOLOGICAL BULLETIN 2006; 210:174-91. [PMID: 16801493 DOI: 10.2307/4134556] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cellular studies of implicit and explicit memory suggest that experience-dependent modulation of synaptic strength and structure is a fundamental mechanism by which these memories are encoded, processed, and stored within the brain. In this review, we focus on recent advances in our understanding of the molecular mechanisms that underlie short-term, intermediate-term, and long-term forms of implicit memory in the marine invertebrate Aplysia californica, and consider how the conservation of common elements in each form may contribute to the different temporal phases of memory storage.
Collapse
Affiliation(s)
- Robert D Hawkins
- Center for Neurobiology and Behavior, College of Physicians and Surgeons of Columbia University, 1051 Riverside Drive, New York, NY 10032, USA.
| | | | | |
Collapse
|
17
|
Glanzman DL. The cellular mechanisms of learning in Aplysia: of blind men and elephants. THE BIOLOGICAL BULLETIN 2006; 210:271-9. [PMID: 16801500 DOI: 10.2307/4134563] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Until recently, investigations of the neurobiological substrates of simple forms of learning and memory in the marine snail Aplysia have focused mostly on plastic changes that occur within the presynaptic sensory neurons. Here, I summarize the results of recent studies that indicate that exclusively presynaptic processes cannot account for simple forms of learning in Aplysia. In particular, I present evidence that postsynaptic mechanisms play a far more important role in nonassociative learning in Aplysia than has been appreciated before now. Moreover, I describe recent data that suggests the intriguing hypothesis that the persistent, learning-induced changes in Aplysia sensory neurons might depend critically on postsynaptic signals for their induction. Finally, I discuss the potential applicability of this hypothesis to learning-related synaptic plasticity in the mammalian brain.
Collapse
Affiliation(s)
- David L Glanzman
- Department of Physiological Science, UCLA College, and Department of Neurobiology and the Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
| |
Collapse
|
18
|
Hawkins RD, Cohen TE, Kandel ER. Dishabituation in Aplysia can involve either reversal of habituation or superimposed sensitization. Learn Mem 2006; 13:397-403. [PMID: 16705138 PMCID: PMC1475823 DOI: 10.1101/lm.49706] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 01/27/2006] [Indexed: 11/25/2022]
Abstract
Dishabituation has been thought to be due either to reversal of the process of habituation or to a second process equivalent to sensitization superimposed on habituation. One way to address this question is by testing whether dishabituation and sensitization can be dissociated. Previous studies using this approach in Aplysia have come to different conclusions about the nature of dishabituation, perhaps because those studies differed in many respects, including (1) whether they also observed transient behavioral inhibition, and (2) whether they used test stimuli that activated the LE siphon sensory neurons or as yet unidentified sensory neurons. To attempt to resolve the apparent contradictions between the previous studies, we have explored the importance of these two factors by performing a parametric study of dishabituation and sensitization of gill withdrawal in a simplified preparation that does not exhibit transient behavioral inhibition, using two different test stimuli that are known to activate the LE (Touch) or unidentified (Not Touch) sensory neurons. We find that dishabituation and sensitization in this preparation have similar time courses and generally similar functions of shock intensity. However, under one condition, with the Not Touch stimulus 2.5 min after the shock, dishabituation has a reverse effect of shock intensity. Additional analyses suggest that dishabituation with the Not Touch stimulus 2.5 min after the shock is due to reversal of habituation, whereas 12.5 min after the shock, dishabituation is due to superimposed sensitization. These results thus suggest that dishabituation may involve either process in the same preparation, and begin to define the conditions that favor one or the other.
Collapse
Affiliation(s)
- Robert D Hawkins
- Center for Neurobiology and Behavior, Columbia University, New York, New York 10032, USA.
| | | | | |
Collapse
|
19
|
Bristol AS, Carew TJ. Differential role of inhibition in habituation of two independent afferent pathways to a common motor output. Learn Mem 2005; 12:52-60. [PMID: 15647595 PMCID: PMC548496 DOI: 10.1101/lm.83405] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Many studies of the neural mechanisms of learning have focused on habituation, a simple form of learning in which a response decrements with repeated stimulation. In the siphon-elicited siphon withdrawal reflex (S-SWR) of the marine mollusk Aplysia, the prevailing view is that homosynaptic depression of primary sensory afferents underlies short-term habituation. Here we examined whether this mechanism is also utilized in habituation of the tail-elicited siphon withdrawal reflex (T-SWR), which is triggered by an independent, polysynaptic afferent pathway that converges onto the same siphon motor neurons (MNs). By using semi-intact preparations in which tail and/or siphon input to siphon MNs could be measured, we found that repeated tail stimuli administered in the presence of a reversible conduction block of the nerves downstream of the tail sensory neurons (SNs) completely abolished the induction of habituation. Subsequent retraining revealed no evidence of savings, indicating that the tail SNs and their immediate interneuronal targets are not the locus of plasticity underlying T-SWR habituation. The networks closely associated with the siphon MNs are modulated by cholinergic inhibition. We next examined the effects of network disinhibition on S-SWR and T-SWR habituation using an Ach receptor antagonist d-tubocurarine. We found that the resulting network disinhibition disrupted T-SWR, but not S-SWR, habituation. Indeed, repeated tail stimulation in the presence of d-tubocurarine resulted in an initial enhancement in responding. Lastly, we tested whether habituation of T-SWR generalized to S-SWR and found that it did not. Collectively, these data indicate that (1) unlike S-SWR, habituation of T-SWR does not involve homosynaptic depression of SNs; and (2) the sensitivity of T-SWR habituation to network disinhibition is consistent with an interneuronal plasticity mechanism that is unique to the T-SWR circuit, since it does not alter S-SWR.
Collapse
Affiliation(s)
- Adam S Bristol
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697-4550, USA
| | | |
Collapse
|
20
|
Walters ET, Bodnarova M, Billy AJ, Dulin MF, Díaz-Ríos M, Miller MW, Moroz LL. Somatotopic organization and functional properties of mechanosensory neurons expressing sensorin-A mRNA inAplysia californica. J Comp Neurol 2004; 471:219-40. [PMID: 14986314 DOI: 10.1002/cne.20042] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A previous study reported that a peptide, sensorin-A, is expressed exclusively in mechanosensory neurons having somata in central ganglia of Aplysia. The present study utilized in situ hybridization, staining by nerve back-fill and soma injection, and electrophysiological methods to characterize the locations, numbers, and functions of sensorin-A-expressing neurons and to define the relationships between soma locations and the locations of peripheral axons and receptive fields. Approximately 1,000 cells express sensorin-A mRNA in young adult animals (10-30 g) and 1,200 cells in larger adults (100-300 g). All of the labeled somata are in the CNS, primarily in the abdominal LE, rLE, RE and RF, pleural VC, cerebral J and K, and buccal S clusters. Expression also occurs in a few sparsely distributed cells in most ganglia. Together, receptive fields of all these mechanosensory clusters cover the entire body surface. Each VC cluster forms a somatotopic map of the ipsilateral body, a "sensory aplunculus." Cells in the pleural and cerebral clusters have partially overlapping sensory fields and synaptic targets. Buccal S cells have receptive fields on the buccal mass and lips and display notable differences in electrophysiological properties from other sensorin-A-expressing neurons. Neurons in all of the clusters have relatively high mechanosensory thresholds, responding preferentially to threatening or noxious stimuli. Synaptic outputs to target cells having defensive functions support a nociceptive role, as does peripheral sensitization following noxious stimulation, although additional functions are likely in some clusters. Interesting questions arise from observations that mRNA for sensorin-A is present not only in the somata but also in synaptic regions, connectives, and peripheral fibers.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, University of Texas-Houston Medical School, Houston, Texas 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Leonard JL, Edstrom JP. Parallel processing in an identified neural circuit: the Aplysia californica gill-withdrawal response model system. Biol Rev Camb Philos Soc 2004; 79:1-59. [PMID: 15005172 DOI: 10.1017/s1464793103006183] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The response of the gill of Aplysia calfornica Cooper to weak to moderate tactile stimulation of the siphon, the gill-withdrawal response or GWR, has been an important model system for work aimed at understanding the relationship between neural plasticity and simple forms of non-associative and associative learning. Interest in the GWR has been based largely on the hypothesis that the response could be explained adequately by parallel monosynaptic reflex arcs between six parietovisceral ganglion (PVG) gill motor neurons (GMNs) and a cluster of sensory neurons termed the LE cluster. This hypothesis, the Kupfermann-Kandel model, made clear, falsifiable predictions that have stimulated experimental work for many years. Here, we review tests of three predictions of the Kupfermann-Kandel model: (1) that the GWR is a simple, reflexive behaviour graded with stimulus intensity; (2) that central nervous system (CNS) pathways are necessary and sufficient for the GWR; and (3) that activity in six identified GMNs is sufficient to account for the GWR. The available data suggest that (1) a variety of action patterns occur in the context of the GWR; (2) the PVG is not necessary and the diffuse peripheral nervous system (PNS) is sufficient to mediate these action patterns; and (3) the role of any individual GMN in the behaviour varies. Both the control of gill-withdrawal responses, and plasticity in these responses, are broadly distributed across both PNS and CNS pathways. The Kupfermann-Kandel model is inconsistent with the available data and therefore stands rejected. There is, no known causal connection or correlation between the observed plasticity at the identified synapses in this system and behavioural changes during non-associative and associative learning paradigms. Critical examination of these well-studied central pathways suggests that they represent a 'wetware' neural network, architecturally similar to the neural network models of the widely used 'Perceptron' and/or 'Back-propagation' type. Such models may offer a more biologically realistic representation of nervous system organisation than has been thought. In this model, the six parallel GMNs of the CNS correspond to a hidden layer within one module of the gill-control system. That is, the gill-control system appears to be organised as a distributed system with several parallel modules, some of which are neural networks in their own right. A new model is presented here which predicts that the six GMNs serve as components of a 'push-pull' gain control system, along with known but largely unidentified inhibitory motor neurons from the PVG. This 'push-pull' gain control system sets the responsiveness of the peripheral gill motor system. Neither causal nor correlational links between specific forms of neural plasticity and behavioural plasticity have been demonstrated in the GWR model system. However, the GWR model system does provide an opportunity to observe and describe directly the physiological and biochemical mechanisms of distributed representation and parallel processing in a largely identifiable 'wetware' neural network.
Collapse
Affiliation(s)
- Janet L Leonard
- Joseph M. Long Marine Laboratory, University of California-Santa Cruz, Santa Cruz, CA 95060, USA.
| | | |
Collapse
|
22
|
Calin-Jageman RJ, Fischer TM. Synaptic augmentation contributes to environment-driven regulation of the aplysia siphon-withdrawal reflex. J Neurosci 2003; 23:11611-20. [PMID: 14684863 PMCID: PMC6740963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Revised: 09/23/2003] [Accepted: 09/24/2003] [Indexed: 04/27/2023] Open
Abstract
This research shows that short-term synaptic plasticity can play a critical role in shaping the behavioral response to environmental change. In Aplysia, exposure to turbulent environments produces a stable reduction in the duration of the siphon-withdrawal reflex (SWR) and the responsiveness of siphon motor neurons. Recovery takes >1 min after a brief (10 sec-5 min) exposure but <1 min after a long (10 min) exposure. Here we demonstrate that (1) in-turbulence and post-turbulence phases of regulation depend on different cellular processes and (2) the post-turbulence phase of regulation is mediated by augmentation (AUG), an activity-dependent form of short-term synaptic plasticity. In reduced preparations (tail, siphon, and CNS), we show that treatment with 100 microm d-tubocurarine has no effect on in-turbulence regulation but blocks up to 90% of post-turbulence regulation, indicating that these phases of regulation are mediated by distinct cellular process. We then show that (1) turbulence induces activity in L30 inhibitory interneurons, (2) this activation produces AUG that lasts 1 min after a brief exposure to turbulence, and (3) manipulations that attenuate L30 AUG also attenuate regulation after brief turbulence. We also found that long (10 min) exposures to turbulence do not produce a post-turbulence phase of regulation because L30 activity declines over the course of a long turbulence exposure, leading to the decay of AUG before turbulence offset. Our results demonstrate a specific behavioral function of AUG and show how interactions between cellular processes can confer temporal sensitivity in the network regulation of behavior.
Collapse
|
23
|
Antzoulatos EG, Cleary LJ, Eskin A, Baxter DA, Byrne JH. Desensitization of postsynaptic glutamate receptors contributes to high-frequency homosynaptic depression of aplysia sensorimotor connections. Learn Mem 2003; 10:309-13. [PMID: 14557602 DOI: 10.1101/lm.61403] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Withdrawal reflexes of Aplysia are mediated in part by a monosynaptic circuit of sensory (SN) and motor (MN) neurons. A brief high-frequency burst of spikes in the SN produces excitatory postsynaptic potentials (EPSPs) that rapidly decrease in amplitude during the burst of activity. It is generally believed that this and other (i.e., low-frequency) forms of homosynaptic depression are entirely caused by presynaptic mechanisms (e.g., depletion of releasable transmitter). The present study examines the contribution that desensitization of postsynaptic glutamate receptors makes to homosynaptic depression. Bath application of cyclothiazide, an agent that reduces desensitization of non-NMDA glutamate receptors, reduced high-, but not low-frequency synaptic depression. Thus, a postsynaptic mechanism, desensitization of glutamate receptors, can also contribute to homosynaptic depression of sensorimotor synapses.
Collapse
Affiliation(s)
- Evangelos G Antzoulatos
- Department of Neurobiology and Anatomy, W M Keck Center for the Neurobiology of Learning and Memory, The University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Until recently, learning and memory in invertebrate organisms was believed to be mediated by relatively simple presynaptic mechanisms. By contrast, learning and memory in vertebrate organisms is generally thought to be mediated, at least in part, by postsynaptic mechanisms. But new experimental evidence from research using a model invertebrate organism, the marine snail Aplysia, indicates that this apparent distinction between invertebrate and vertebrate synaptic mechanisms of learning is invalid: learning in Aplysia cannot be explained in terms of exclusively presynaptic mechanisms. NMDA-receptor-dependent LTP appears to be necessary for classical conditioning in Aplysia. Furthermore, modulation of trafficking of postsynaptic ionotropic glutamate receptors underlies behavioral sensitization in this snail. Exclusively presynaptic processes appear to support only relatively brief memory in Aplysia. More persistent memory is likely to be mediated by postsynaptic processes, or by presynaptic processes whose expression depends upon retrograde signals.
Collapse
Affiliation(s)
- Adam C Roberts
- Interdepartmental PhD Program in Molecular, Cellular and Integrative Physiology, UCLA, Los Angeles, CA 90095-1606, USA
| | | |
Collapse
|
25
|
Croll RP. Complexities of a simple system: new lessons, old challenges and peripheral questions for the gill withdrawal reflex of Aplysia. ACTA ACUST UNITED AC 2003; 43:266-74. [PMID: 14629929 DOI: 10.1016/j.brainresrev.2003.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The gill withdrawal reflex of Aplysia is generally depicted as a simple behaviour mediated by a simple neural circuit in a simple organism. Such a view has permitted a clear focus upon synapses between relatively small numbers of identified neurones, which are known to participate in the reflex and its plasticity. Ensuing research has provided some of the first and still among the most powerful explanations of the cellular underpinnings of learning and memory. In reality, however, the reflexive withdrawal of the gill and other mantle organs is anything but simple. First, the behaviour itself is complex and varies depending upon the strength of the tactile stimulus and where it is applied. In addition, over 100 central neurones are activated by stimuli, which elicit the withdrawal reflex and likely change their activities during learning (although not all of these cells necessarily contribute to the actual withdrawal response). Moreover, multiple mechanisms are activated at both presynaptic and postsynaptic sites to orchestrate the numerous modifications that underlie observed changes in synaptic efficacy. The picture becomes even more complicated when hundreds of additional peripheral neurones, which are known to participate in various aspects of the response, are also considered. Recent work has shifted attention back to these peripheral cells by suggesting that they might be the previously unidentified light touch receptors that mediate both central and peripheral components of the reflex. While daunting, the complexity of the total circuitry mediating the gill withdrawal reflex may provide yet another important lesson: even in simple systems, memory may not be localized to specific loci, but rather may be an emergent property of physiological mechanisms distributed throughout the entire circuitry.
Collapse
Affiliation(s)
- Roger P Croll
- Department of Physiology and Biophysics, Dalhousie University, 5859 University Ave, Halifax, Nova Scotia, Canada B3H 4H7.
| |
Collapse
|
26
|
Ezzeddine Y, Glanzman DL. Prolonged habituation of the gill-withdrawal reflex in Aplysia depends on protein synthesis, protein phosphatase activity, and postsynaptic glutamate receptors. J Neurosci 2003; 23:9585-94. [PMID: 14573538 PMCID: PMC6740459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Despite representing perhaps the simplest form of memory, habituation is not yet well understood mechanistically. We used a reduced preparation to analyze the neurobiological mechanisms of persistent habituation of a simple behavior, the defensive withdrawal reflex of the marine snail Aplysia californica. This preparation permits direct infusion of drugs into the abdominal ganglion during training via a cannula in the abdominal artery. Using siphon-elicited gill withdrawal, we demonstrate habituation of withdrawal that persists for 1-6 hr after repeated, spaced blocks of habituating stimulation. This form of habituation exhibits site specificity and requires protein synthesis because it is blocked by the presence of anisomycin, a protein synthesis inhibitor. We also find that habituation of gill withdrawal requires protein phosphatase activity, because it is blocked by okadaic acid, an inhibitor of protein phosphatase. Finally, habituation of gill withdrawal requires activation of NMDA-type and AMPA-type postsynaptic receptors within the abdominal ganglion, because it is blocked by infusion of dl-2-amino-5-phosphonovaleric acid or 6,7-dinitroquinoxaline-2,3-dione. The requirement for activation of postsynaptic glutamatergic receptors indicates that homosynaptic depression, an exclusively presynaptic mechanism that has been implicated previously in habituation in Aplysia, does not play a significant role in persistent habituation of the withdrawal reflex. Our results indicate that postsynaptic mechanisms, possibly including modulation of glutamate receptor function, play a major, heretofore unsuspected, role in habituation in Aplysia.
Collapse
Affiliation(s)
- Youssef Ezzeddine
- Department of Physiological Science and the Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1761, USA
| | | |
Collapse
|
27
|
Phares GA, Antzoulatos EG, Baxter DA, Byrne JH. Burst-induced synaptic depression and its modulation contribute to information transfer at Aplysia sensorimotor synapses: empirical and computational analyses. J Neurosci 2003; 23:8392-401. [PMID: 12968001 PMCID: PMC6740707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
The Aplysia sensorimotor synapse is a key site of plasticity for several simple forms of learning. Plasticity of this synapse has been extensively studied, albeit primarily with individual action potentials elicited at low frequencies. Yet, the mechanosensory neurons fire high-frequency bursts in response to even moderate tactile stimuli delivered to the skin. In the present study, we extend this analysis to show that sensory neurons also fire bursts in the range of 1-60 Hz in response to electrical stimuli similar to those used in behavioral studies of sensitization. Intracellular stimulation of sensory neurons to fire a burst of action potentials at 10 Hz for 1 sec led to significant homosynaptic depression of postsynaptic responses. The depression was transient and fully recovered within 10 min. During the burst, the steady-state depressed phase of the postsynaptic response, which was only 20% of the initial EPSP of the burst, still contributed to firing the motor neuron. To explore the functional contribution of transient homosynaptic depression to the response of the motor neuron, computer simulations of the sensorimotor synapse with and without depression were compared. Depression allowed the motor neuron to produce graded responses over a wide range of presynaptic input strength. In addition, enhancement of synaptic transmission throughout a burst increased motor neuron output substantially more than did preferential enhancement of the initial phase of a burst. Thus, synaptic depression increased the dynamic range of the sensorimotor synapse and can, in principle, have a profound effect on information processing.
Collapse
Affiliation(s)
- Gregg A Phares
- W. M. Keck Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Anatomy, The University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
28
|
Calin-Jageman RJ, Fischer TM. Temporal and spatial aspects of an environmental stimulus influence the dynamics of behavioral regulation of the Aplysia siphon-withdrawal response. Behav Neurosci 2003; 117:555-65. [PMID: 12802884 DOI: 10.1037/0735-7044.117.3.555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Exposure to turbulence, an environmental stimulus, produces behavioral adaptation in the Aplysia siphon-withdrawal response (SWR). The authors show that the duration and spatial extent of turbulence influence adaptation recovery. In terms of duration, recovery in whole animals and reduced preparations (tail, siphon, and CNS) was more rapid after longer exposures to turbulence (10 min) than after briefer exposures (10 s-5 min). In terms of spatial extent, recovery in reduced preparations was more rapid after diffuse turbulence (tail and siphon together) compared with focal turbulence (siphon alone). Furthermore, spatial extent and duration interact: Duration regulates recovery only when turbulence is diffuse. Results suggest that SWR adaptation reflects a composite of cellular processes, including short-term synaptic enhancement in L30 inhibitory interneurons.
Collapse
Affiliation(s)
- Robert J Calin-Jageman
- Department of Psychology, Wayne State University, 71 West Warren Avenue, Detroit, Michigan 48202, USA
| | | |
Collapse
|
29
|
Antonov I, Antonova I, Kandel ER, Hawkins RD. Activity-dependent presynaptic facilitation and hebbian LTP are both required and interact during classical conditioning in Aplysia. Neuron 2003; 37:135-47. [PMID: 12526779 DOI: 10.1016/s0896-6273(02)01129-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Using a simplified preparation of the Aplysia siphon-withdrawal reflex, we previously found that associative plasticity at synapses between sensory neurons and motor neurons contributes importantly to classical conditioning of the reflex. We have now tested the roles in that plasticity of two associative cellular mechanisms: activity-dependent enhancement of presynaptic facilitation and postsynaptically induced long-term potentiation. By perturbing molecular signaling pathways in individual neurons, we have provided the most direct evidence to date that each of these mechanisms contributes to behavioral learning. In addition, our results suggest that the two mechanisms are not independent but rather interact through retrograde signaling.
Collapse
Affiliation(s)
- Igor Antonov
- Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | | | | | | |
Collapse
|
30
|
Croll RP. Catecholamine-containing cells in the central nervous system and periphery of Aplysia californica. J Comp Neurol 2001; 441:91-105. [PMID: 11745637 DOI: 10.1002/cne.1399] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous studies have suggested the presence of numerous catecholamine-containing cells in both the central ganglia and peripheral tissues of Aplysia, but they often offered conflicting or incomplete accounts of numbers, locations, and morphologies. The current study combines aldehyde-induced histofluorescence and tyrosine hydroxylase-like immunoreactivity together with confocal microscopy to provide details of these cells. Approximately 35-50 neurones in the cerebral ganglia, 4-8 neurones in the pedal ganglia, 5 neurones in the buccal ganglia, and numerous small fibres in various nerve trunks exhibited both immunoreactivity and aldehyde-induced fluorescence. Approximately 20 cells in the pedal ganglia and 4 cells in the buccal ganglia exhibited only immunoreactivity whereas 15-20 neurons in the cerebral ganglia exhibited only aldehyde-induced fluorescence. No somata in the pleural or abdominal ganglia exhibited aldehyde-induced fluorescence or immunoreactivity. Both aldehyde-induced histofluorescence and immunoreactivity also labelled what appeared to be two classes of catecholamine-containing cells in the gill, siphon, oesophagus, rhinophore, tentacle, and reproductive organs. The more numerous, but smaller cells had subepithelial somata and processes penetrating the overlying body wall, thus suggesting a sensory function. Another class of neurones had larger somata, often located more deeply within the tissue, and occasionally appeared to be multipolar. Processes from these various peripheral cells appeared to comprise the major component of afferent fibres and to form an extensive peripheral plexus, often associated with various muscles. The morphologies of the peripheral cells thus suggest involvement in both local and centrally mediated reflexes and responses, but additional studies must test such hypothesised functions and determine the sensory modalities that the cells mediate.
Collapse
Affiliation(s)
- R P Croll
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7.
| |
Collapse
|
31
|
Antonov I, Antonova I, Kandel ER, Hawkins RD. The contribution of activity-dependent synaptic plasticity to classical conditioning in Aplysia. J Neurosci 2001; 21:6413-22. [PMID: 11487665 PMCID: PMC6763168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
Abstract
Plasticity at central synapses has long been thought to be the most likely mechanism for learning and memory, but testing that idea experimentally has proven to be difficult. For this reason, we have developed a simplified preparation of the Aplysia siphon withdrawal reflex that allows one to examine behavioral learning and memory while simultaneously monitoring synaptic connections between individual identified neurons in the CNS. We previously found that monosynaptic connections from LE siphon sensory neurons to LFS siphon motor neurons make a substantial contribution to the reflex in the siphon withdrawal preparation (Antonov et al., 1999a). We have now used that preparation to assess the contribution of various cellular mechanisms to classical conditioning of the reflex with a siphon tap conditioned stimulus (CS) and tail shock unconditioned stimulus (US). We find that, compared with unpaired training, paired training with the CS and US produces greater enhancement of siphon withdrawal and evoked firing of LFS neurons, greater facilitation of the complex PSP elicited in an LFS neuron by the siphon tap, and greater facilitation of the monosynaptic PSP elicited by stimulation of a single LE neuron. Moreover, the enhanced facilitation of monosynaptic LE-LFS PSPs is greater for LE neurons that fire during the siphon tap and correlates significantly with the enhancement of siphon withdrawal and evoked firing of the LFS neurons. These results provide the most direct evidence to date that activity-dependent plasticity at specific central synapses contributes to behavioral conditioning and support the idea that synaptic plasticity is a mechanism of learning and memory more generally.
Collapse
Affiliation(s)
- I Antonov
- Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York State Psychiatric Institute, New York, New York 10032, USA
| | | | | | | |
Collapse
|
32
|
Wiel DE, Wood ER, Weeks JC. Habituation of the proleg withdrawal reflex in Manduca sexta does not involve changes in motoneuron properties or depression at the sensorimotor synapse. Neurobiol Learn Mem 2001; 76:57-80. [PMID: 11525253 DOI: 10.1006/nlme.2000.3982] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Larvae of the hawkmoth, Manduca sexta, exhibit a defensive proleg withdrawal reflex in which deflection of mechanosensory hairs on the proleg tip (the planta) evokes retraction of the proleg. A previous behavioral study showed that this reflex habituates in response to repeated planta hair deflection and exhibits several other defining features of habituation. In a semi-intact preparation consisting of a proleg and its associated segmental ganglion, repeated deflection of a planta hair or electrical stimulation of its sensory neuron causes a neural correlate of habituation, manifested as a decrease in the number of action potentials evoked in the proleg motor nerve. Monosynaptic connections from planta hair sensory neurons to the principal planta retractor motoneuron exhibit several forms of activity-dependent plasticity. In the present study we recorded intracellularly from this motoneuron during repetitive electrical stimulation of a planta hair sensory neuron. The number of action potentials evoked in the motoneuron decreased significantly, representing a neural correlate of habituation. The motoneuron's resting membrane potential, input resistance. and spike threshold measured before and after repetitive stimulation did not differ between the stimulated group and a control group. Furthermore, the amplitude of the monosynaptic excitatory postsynaptic potential, as well as the magnitude of paired-pulse facilitation, evoked in the motoneuron by the sensory neuron did not change after repetitive stimulation. These results suggest that depression at the sensorimotor synapse does not contribute to reflex habituation. Rather, other mechanisms in the ganglion of the stimulated segment, such as changes in polysynaptic reflex pathways, appear to be responsible.
Collapse
Affiliation(s)
- D E Wiel
- Institute of Neuroscience, University of Oregon, Eugene 97403-1254, USA
| | | | | |
Collapse
|
33
|
Kitamura KI, Amano S, Hosono R. Contribution of neurons to habituation to mechanical stimulation in Caenorhabditis elegans. JOURNAL OF NEUROBIOLOGY 2001; 46:29-40. [PMID: 11108613 DOI: 10.1002/1097-4695(200101)46:1<29::aid-neu3>3.0.co;2-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In Caenorhabditis elegans, a light touch induces a locomotor response. Repeated touches, however, result in an attenuation of response, that is, habituation. Withdrawal responses elicited by anterior touch are controlled by anterior mechanosensory neurons (AVM and ALMs), and by four pairs of interneurons (AVA, AVB, AVD, and PVC) (Chalfie et al., 1985; White et al., 1986). To identify the neurons that participate in habituation, we ablated these neurons with a laser microbeam and investigated the resulting habituation of the operated animals. The animals lacking both left and right homologues AVDLR were habituated more rapidly than intact animals. We propose that chemical synapses at AVD play a critical role in the habituation of intact animals.
Collapse
Affiliation(s)
- K I Kitamura
- Department of Physical Information, Faculty of Medicine, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | | | | |
Collapse
|
34
|
Bailey CH, Giustetto M, Huang YY, Hawkins RD, Kandel ER. Is heterosynaptic modulation essential for stabilizing Hebbian plasticity and memory? Nat Rev Neurosci 2000; 1:11-20. [PMID: 11252764 DOI: 10.1038/35036191] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In 1894, Ramón y Cajal first proposed that memory is stored as an anatomical change in the strength of neuronal connections. For the following 60 years, little evidence was recruited in support of this idea. This situation changed in the middle of the twentieth century with the development of cellular techniques for the study of synaptic connections and the emergence of new formulations of synaptic plasticity that redefined Ramón y Cajal's idea, making it more suitable for testing. These formulations defined two categories of plasticity, referred to as homosynaptic or Hebbian activity-dependent, and heterosynaptic or modulatory input-dependent. Here we suggest that Hebbian mechanisms are used primarily for learning and for short-term memory but often cannot, by themselves, recruit the events required to maintain a long-term memory. In contrast, heterosynaptic plasticity commonly recruits long-term memory mechanisms that lead to transcription and to synpatic growth. When jointly recruited, homosynaptic mechanisms assure that learning is effectively established and heterosynaptic mechanisms ensure that memory is maintained.
Collapse
Affiliation(s)
- C H Bailey
- Howard Hughes Medical Institute, Center for Neurobiology and Behavior, College of Physicians and Surgeons of Columbia University, New York State Psychiatric Institute, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
35
|
Antonov I, Kandel ER, Hawkins RD. The contribution of facilitation of monosynaptic PSPs to dishabituation and sensitization of the Aplysia siphon withdrawal reflex. J Neurosci 1999; 19:10438-50. [PMID: 10575041 PMCID: PMC6782414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
To examine the relationship between synaptic plasticity and learning and memory as directly as possible, we have developed a new simplified preparation for studying the siphon-withdrawal reflex of Aplysia in which it is relatively easy to record synaptic connections between individual identified neurons during simple forms of learning. We estimated that monosynaptic EPSPs from LE siphon sensory neurons to LFS siphon motor neurons mediate approximately one-third of the reflex response measured in this preparation, which corresponds to siphon flaring in the intact animal. To investigate cellular mechanisms contributing to dishabituation and sensitization, we recorded evoked firing of LFS neurons, the siphon withdrawal produced by stimulation of an LFS neuron, the complex PSP in an LFS neuron, and the monosynaptic PSP from an "on-field" or "off-field" LE neuron to an LFS neuron during behavioral training. Unlike the simplified gill-withdrawal preparation (Cohen et al., 1997; Frost et al., 1997), in the siphon-withdrawal preparation we found no qualitative differences between the major cellular mechanisms contributing to dishabituation and sensitization, suggesting that dissociations that have been observed previously may be attributable to transient inhibition that does not occur for this component of the reflex. Furthermore, in the siphon-withdrawal preparation, all of the various cellular measures, including monosynaptic PSPs from either on-field or off-field LE neurons, changed approximately in parallel with changes in the behavior. These results provide the most direct evidence so far available that both dishabituation and sensitization involve multiple mechanisms, including heterosynaptic facilitation of sensory neuron-motor neuron PSPs.
Collapse
Affiliation(s)
- I Antonov
- Center for Neurobiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
36
|
Abstract
Previous phylogenetic analyses of learning and memory in an opisthobranch lineage uncovered a correlation between two learning-related neuromodulatory traits and their associated behavioral phenotypes. In particular, serotonin-induced increases in sensory neuron spike duration and excitability, which are thought to underlie several facilitatory forms of learning in Aplysia, appear to have been lost over the course of evolution in a distantly related aplysiid, Dolabrifera dolabrifera. This deficit is paralleled by a behavioral deficit: individuals of Dolabrifera do not express generalized sensitization (reflex enhancement of an unhabituated response after a noxious stimulus is applied outside of the reflex receptive field) or dishabituation (reflex enhancement of a habituated reflex). The goal of the present study was to confirm and extend this correlation by testing for the neuromodulatory traits and generalized sensitization in an additional species, Phyllaplysia taylori, which is closely related to Dolabrifera. Instead, our results indicated a lack of correlation between the neuromodulatory and behavioral phenotypes. In particular, sensory neuron homologues in Phyllaplysia showed the ancestral neuromodulatory phenotype typified by Aplysia. Bath-applied 10 microM serotonin significantly increased homologue spike duration and excitability. However, when trained with the identical apparatus and protocols that produced generalized sensitization in Aplysia, individuals of Phyllaplysia showed no evidence of sensitization. Thus, this species expresses the neuromodulatory phenotype of its ancestors while appearing to express the behavioral phenotype of its near relative. These results suggests that generalized sensitization can be lost during the course of evolution in the absence of a deficit in these two neuromodulatory traits, and raises the possibility that the two traits may support some other form of behavioral plasticity in Phyllaplysia. The results also raise the question of the mechanistic basis of the behavioral deficit in Phyllaplysia.
Collapse
Affiliation(s)
- N J Erixon
- Biology Department, Colorado State University, Fort Collins 80523, USA
| | | | | |
Collapse
|
37
|
Sahley C, Crow T. Invertebrate Learning. Neurobiol Learn Mem 1998. [DOI: 10.1016/b978-012475655-7/50006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
38
|
Walters ET, Cohen LB. Functions of the LE sensory neurons in Aplysia. INVERTEBRATE NEUROSCIENCE : IN 1997; 3:15-25. [PMID: 9706699 DOI: 10.1007/bf02481711] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mechanosensory neurons which innervate the siphon and have their cell bodies in the LE cluster of the abdominal ganglion of Aplysia have revealed many cellular and molecular processes that may play general roles in learning and memory. It was initially suggested that these cells are largely responsible for triggering the gill-withdrawal reflex evoked by weak siphon stimulation, and that most of this effect is mediated by their monosynaptic connections to gill motor neurons. This implied a simple link between plasticity at these synapses and modifications of the reflex during learning. We review more recent studies from several laboratories showing that the LE cells are not activated by very weak tactile stimuli that elicit the gill-withdrawal reflex, and that an unidentified population of siphon sensory neurons has lower mechanosensory thresholds and produces shorter latency responses. Furthermore, the direct connections between LE cells and gill motor neurons make a minor contribution when the reflex is elicited in pinned siphon preparations by light stimuli that weakly activate the LE cells. Because weak mechanical stimulation of the unrestrained siphon causes little or no LE cell activation, it is unlikely that, under natural conditions, sensitization or conditioning of reflex responses elicited by light siphon touch depends upon plasticity of LE cell synapses onto either motor or interneurons. The LE cells appear to function as nociceptors because they are tuned to noxious stimuli and, like mammalian nociceptors, show peripheral sensitization following nociceptive activation. This sensitization and the profound activity-dependent potentiation of LE synapses indicate that LE cell contributions to defensive reflexes should be largest during and after intense activation of the LE cells by noxious stimulation (with the LE cell plasticity contributing to long-lasting memory of peripheral injury). The LE sensory neurons offer special opportunities for direct tests of this and other hypotheses about specific mnemonic functions of fundamental mechanisms of neural plasticity.
Collapse
Affiliation(s)
- E T Walters
- Department of Integrative Biology and Pharmacology, University of Texas-Houston Medical School 77030, USA.
| | | |
Collapse
|
39
|
Cohen TE, Kaplan SW, Kandel ER, Hawkins RD. A simplified preparation for relating cellular events to behavior: mechanisms contributing to habituation, dishabituation, and sensitization of the Aplysia gill-withdrawal reflex. J Neurosci 1997; 17:2886-99. [PMID: 9092610 PMCID: PMC6573098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/1996] [Revised: 01/02/1997] [Accepted: 01/31/1997] [Indexed: 02/04/2023] Open
Abstract
To relate cellular events to behavior in a more rigorous fashion, we have developed a simplified preparation for studying the gill-withdrawal reflex of Aplysia, in which it is relatively easy to record the activity of individual neurons during simple forms of learning. Approximately 84% of the reflex in this preparation is mediated through the single motor neuron LDG1, so that changes in the firing of LDG1 can account for most of the changes in behavior. We have used this preparation to investigate cellular mechanisms contributing to habituation, dishabituation, and sensitization by recording evoked firing, the complex postsynaptic potential (PSP), and the monosynaptic component of the complex PSP in LDG1. Our results suggest that habituation is largely attributable to depression at sensory neuron synapses. By contrast, dishabituation and sensitization involve several mechanisms at different loci, including facilitation at sensory neuron synapses, enhancement in the periphery (perhaps attributable to post-tetanic potentiation at the neuromuscular junction), and both facilitation and inhibition of excitatory and inhibitory interneurons. Moreover, these different mechanisms contribute preferentially at different times after training, so that information processing in the neuronal circuit for the reflex is distributed not only in space but also in time. Nonetheless, our results also suggest that the neuronal circuit is not a highly distributed neural network. Rather, plasticity of the reflex can evidently be accounted for by several specific mechanisms and loci of plasticity in a defined neural circuit, including a limited number of neurons, some of which make a large contribution to the behavior.
Collapse
Affiliation(s)
- T E Cohen
- Center for Neurobiology and Behavior, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
40
|
Stopfer M, Carew TJ. Heterosynaptic facilitation of tail sensory neuron synaptic transmission during habituation in tail-induced tail and siphon withdrawal reflexes of Aplysia. J Neurosci 1996; 16:4933-48. [PMID: 8756425 PMCID: PMC6579301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/1996] [Revised: 05/22/1996] [Accepted: 05/24/1996] [Indexed: 02/02/2023] Open
Abstract
In cellular studies of habituation, such as in the gill and siphon withdrawal reflex to tactile stimulation of the siphon of Aplysia, a mechanism that has emerged as an explanation for response decrement during habituation is homosynaptic depression at sensory neurons mediating the behavioral response. We have examined the contribution of homosynaptic depression to habituation in sensory neurons that contribute to two reflex behaviors in Aplysia, tail withdrawal and siphon withdrawal, both elicited by threshold-level tail stimulation. In a companion paper (this issue), we reported that repeated tail stimulation, identical to that producing habituation in siphon withdrawal in freely moving animals, also produces habituation in reduced preparations. In this paper, we extend these behavioral findings by showing that in reduced preparations, identical tail stimulation also produces habituation of the tail withdrawal reflex. In addition, our cellular experiments show that (1) identified sensory and motor neurons in both reflex systems respond to identical repeated tail stimulation; in sensory neurons it produces a progressive decrease in spike number and increase in spike latency, and in motor neurons it produces progressive decrement in complex EPSPs and spike output. (2) Homosynaptic depression of the tail sensory neuron to tail motor neuron synapse does occur when the sensory neurons are activated repetitively by intracellular current. (3) Homosynaptic depression at this synapse does not occur when the sensory neurons are activated repetitively by threshold-level tail stimuli that elicit the behavioral reflex and cause habituation; rather, the sensory neurons exhibit significant heterosynaptic facilitation. Thus, in these reflexes, habituation is not accompanied by homosynaptic depression at the sensory neurons, suggesting that the plasticity underlying habituation occurs primarily at interneuronal sites.
Collapse
Affiliation(s)
- M Stopfer
- Department of Psychology, Yale University, New Haven, Connecticut 06520-8205, USA
| | | |
Collapse
|