1
|
Shi X, Zhou Z, Wang L, Wang M, Shi S, Wang Z, Song L. The immunomodulation of nicotinic acetylcholine receptor subunits in Zhikong scallop Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2015; 47:611-622. [PMID: 26455648 DOI: 10.1016/j.fsi.2015.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
Nicotinic acetylcholine receptor (nAChR), the best-studied ionotropic neuron receptor protein, is a key player in neuronal communication, and it has been reported to play an important role in immunomodulation of vertebrates. Although nAChRs have also been identified in most invertebrates, the knowledge about their immunomodulation is still limited. In the present study, two scallop nAChR genes were identified from Chlamys farreri (designed as CfnAChR1 and CfnAChR2), which encoded 384 and 443 amino acids, respectively. The conserved disulfide-linked cystines, ion selectivity residues and the hydrophobic gating residues (L251, V255 and V259) were identified in CfnAChR1 and CfnAChR2. The immunoreactivities of CfnAChR1 and CfnAChR2 were observed in all the tested scallop tissues, including adductor muscle, mantle, gill, hepatopancreas, kidney and gonad. After LPS (0.5 mg mL(-1)) stimulation, the expression of CfnAChR1 mRNA in haemocytes increased significantly by 9.83-fold (P < 0.05) and 12.93-fold (P < 0.05) at 3 h and 24 h, respectively. While the expression level of CfnAChR2 mRNA increased 43.94% at 12 h after LPS stimulation (P < 0.05). After TNF-α (50 ng mL(-1)) stimulation, the expression levels of CfnAChR1 and CfnAChR2 both increased significantly at 1 h, which were 21.33-fold (P < 0.05) and 2.44-fold (P < 0.05) of that in the PBS group, respectively. The results collectively indicated that the cholinergic nervous system in scallops could be activated by immune stimulations through CfnAChR1 and CfnAChR2, which function as the links between the cholinergic nervous system and immune system.
Collapse
Affiliation(s)
- Xiaowei Shi
- Linyi University, Linyi 276000, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, University of Chinese Academy of Sciences, Qingdao 266071, China; Shandong Provincial Engineering Technology Research Center for Lunan Chinese Herbal Medicine, Linyi 276000, China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, University of Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, University of Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, University of Chinese Academy of Sciences, Qingdao 266071, China
| | | | - Zhen Wang
- Linyi University, Linyi 276000, China; Shandong Provincial Engineering Technology Research Center for Lunan Chinese Herbal Medicine, Linyi 276000, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
2
|
Liu Q, Kuo YP, Shen J, Lukas RJ, Wu J. Roles of nicotinic acetylcholine receptor β subunit cytoplasmic loops in acute desensitization and single-channel features. Neuroscience 2015; 289:315-23. [PMID: 25536046 DOI: 10.1016/j.neuroscience.2014.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/12/2014] [Accepted: 12/13/2014] [Indexed: 01/11/2023]
Abstract
To evaluate physiological roles of the large, second cytoplasmic loops (C2) situated between the M3 and M4 transmembrane domains of nicotinic acetylcholine receptor (nAChR) subunits. We have constructed chimeric β2 (β2χ) and β4 (β4χ) subunits in which the "nested" C2 domains (but not the "proximal" sequences of ∼14 residues immediately adjacent to the M3 or M4 domains) of these β subunits were replaced by the corresponding sequence from the serotonin 5-HT3A receptor subunit. We previously reported that heterologously expressed nAChR containing α4 and β2χ subunits displayed a faster whole-cell current decay in its agonist response compared to responses of all-wild-type α4β2-nAChR. This suggests an unexpected, functional role for the C2 domain of the β2 subunit in α4β2-nAChR acute desensitization. Here we report that there also is faster desensitization of α4β4χ-nAChR relative to α4β4-nAChR stably and heterologously expressed in the human SH-EP1 cell-line. In addition, cell-attached, single-channel recording shows that both acetylcholine-activated α4β2χ- and α4β4χ-nAChR have a significantly lower mean open probability, shorter mean open-time, and a longer mean closed-time than their fully wild-type counterparts while not having different conductance amplitudes. These findings reveal microscopic bases for the faster desensitization of α4(∗)-nAChR containing chimeric instead of wild-type β subunits. Our findings also remain consistent with novel and unexpected roles of β subunit-nested C2 domains in modulation of α4(∗)-nAChR function.
Collapse
Affiliation(s)
- Q Liu
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013-4496, United States.
| | - Y-P Kuo
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013-4496, United States
| | - J Shen
- Department of Physiology, Shantou University of Medical College, Shantou, Guangdong, China
| | - R J Lukas
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013-4496, United States
| | - J Wu
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013-4496, United States; Department of Physiology, Shantou University of Medical College, Shantou, Guangdong, China.
| |
Collapse
|
3
|
Paulo JA, Brucker WJ, Hawrot E. Proteomic analysis of an alpha7 nicotinic acetylcholine receptor interactome. J Proteome Res 2009; 8:1849-58. [PMID: 19714875 DOI: 10.1021/pr800731z] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The alpha7 nicotinic acetylcholine receptor (nAChR) is well established as the principal high-affinity alpha-bungarotoxin-binding protein in the mammalian brain. We isolated carbachol-sensitive alpha-bungarotoxin-binding complexes from total mouse brain tissue by affinity immobilization followed by selective elution, and these proteins were fractionated by SDS-PAGE. The proteins in subdivided gel lane segments were tryptically digested, and the resulting peptides were analyzed by standard mass spectrometry. We identified 55 proteins in wild-type samples that were not present in comparable brain samples from alpha7 nAChR knockout mice that had been processed in a parallel fashion. Many of these 55 proteins are novel proteomic candidates for interaction partners of the alpha7 nAChR, and many are associated with multiple signaling pathways that may be implicated in alpha7 function in the central nervous system. The newly identified potential protein interactions, together with the general methodology that we introduce for alpha-bungarotoxin-binding protein complexes, form a new platform for many interesting follow-up studies aimed at elucidating the physiological role of neuronal alpha7 nAChRs.
Collapse
Affiliation(s)
- Joao A Paulo
- Graduate Program in Molecular Biology, Cell Biology and Biochemistry and Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
4
|
Zouridakis M, Zisimopoulou P, Poulas K, Tzartos SJ. Recent advances in understanding the structure of nicotinic acetylcholine receptors. IUBMB Life 2009; 61:407-23. [PMID: 19319967 DOI: 10.1002/iub.170] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs), members of the Cys-loop ligand-gated ion channels (LGICs) superfamily, are involved in signal transduction upon binding of the neurotransmitter acetylcholine or exogenous ligands, such as nicotine. nAChRs are pentameric assemblies of homologous subunits surrounding a central pore that gates cation flux, and are expressed at the neuromuscular junction and in the nervous system and several nonneuronal cell types. The 17 known nAChR subunits assemble into a variety of pharmacologically distinct receptor subtypes. nAChRs are implicated in a range of physiological functions and pathophysiological conditions related to muscle contraction, learning and memory, reward, motor control, arousal, and analgesia, and therefore present an important target for drug research. Such studies would be greatly facilitated by knowledge of the high-resolution structure of the nAChR. Although this information is far from complete, important progress has been made mainly based on electron microscopy studies of Torpedo nAChR and the high-resolution X-ray crystal structures of the homologous molluscan acetylcholine-binding proteins, the extracellular domain of the mouse nAChR alpha1 subunit, and two prokaryotic pentameric LGICs. Here, we review some of the latest advances in our understanding of nAChR structure and gating.
Collapse
Affiliation(s)
- Marios Zouridakis
- Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| | | | | | | |
Collapse
|
5
|
Wells GB. Structural answers and persistent questions about how nicotinic receptors work. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2008; 13:5479-510. [PMID: 18508600 PMCID: PMC2430769 DOI: 10.2741/3094] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The electron diffraction structure of nicotinic acetylcholine receptor (nAChR) from Torpedo marmorata and the X-ray crystallographic structure of acetylcholine binding protein (AChBP) are providing new answers to persistent questions about how nAChRs function as biophysical machines and as participants in cellular and systems physiology. New high-resolution information about nAChR structures might come from advances in crystallography and NMR, from extracellular domain nAChRs as high fidelity models, and from prokaryotic nicotinoid proteins. At the level of biophysics, structures of different nAChRs with different pharmacological profiles and kinetics will help describe how agonists and antagonists bind to orthosteric binding sites, how allosteric modulators affect function by binding outside these sites, how nAChRs control ion flow, and how large cytoplasmic domains affect function. At the level of cellular and systems physiology, structures of nAChRs will help characterize interactions with other cellular components, including lipids and trafficking and signaling proteins, and contribute to understanding the roles of nAChRs in addiction, neurodegeneration, and mental illness. Understanding nAChRs at an atomic level will be important for designing interventions for these pathologies.
Collapse
Affiliation(s)
- Gregg B Wells
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA.
| |
Collapse
|
6
|
Petrakis S, Irinopoulou T, Panagiotidis CH, Engelstein R, Lindstrom J, Orr-Urtreger A, Gabizon R, Grigoriadis N, Sklaviadis T. Cellular prion protein co-localizes with nAChR beta4 subunit in brain and gastrointestinal tract. Eur J Neurosci 2008; 27:612-20. [PMID: 18279314 DOI: 10.1111/j.1460-9568.2008.06037.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PrP(C), the cellular isoform of prion protein, is widely expressed in most tissues, including brain, muscle and gastrointestinal tract. Despite its involvement in several bioprocesses, PrP has still no apparent physiological role. During propagation of transmissible spongiform encephalopathies (TSE), prion protein is converted to the pathological isoform, PrP(Sc), in a process believed to be mediated by unknown host factors. The identification of proteins associated with PrP may provide information about both the biology of prions and the pathogenesis of TSE. Thus far, PrP(C) has been shown to interact with synaptic proteins, components of the cytoskeleton and intracellular proteins involved in signalling pathways. Here, we describe the association of PrP with the beta4 subunit of nicotinic acetylcholine receptor (nAChR), as indicated by co-immunoprecipitation assays and double-label immunofluorescence. The interaction between prion protein and native beta4 subunit was further studied by affinity chromatography, using immobilized and refolded recombinant PrP as a bait and brain homogenates from normal individuals. Additionally, the participation of beta4 subunit in the pathogenesis of TSE was studied by in vivo assays. beta4(-/-) and wild-type mice were challenged with the RML (Rocky Mountain Laboratories) infectious agent. Transgenic animals displayed altered incubation times but the deletion of beta4 subunit did not result in a significant change of the incubation period of the disease. Our results suggest that PrP(C) is a member of a multiprotein membrane complex participating in the formation and function of alpha3beta4 nAChR.
Collapse
Affiliation(s)
- S Petrakis
- Prion Disease Research Group, Laboratory of Pharmacology, School of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lee Y, Rudell J, Yechikhov S, Taylor R, Swope S, Ferns M. Rapsyn carboxyl terminal domains mediate muscle specific kinase-induced phosphorylation of the muscle acetylcholine receptor. Neuroscience 2008; 153:997-1007. [PMID: 18436384 DOI: 10.1016/j.neuroscience.2008.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 03/03/2008] [Accepted: 03/06/2008] [Indexed: 11/17/2022]
Abstract
At the developing vertebrate neuromuscular junction, postsynaptic localization of the acetylcholine receptor (AChR) is regulated by agrin signaling via the muscle specific kinase (MuSK) and requires an intracellular scaffolding protein called rapsyn. In addition to its structural role, rapsyn is also necessary for agrin-induced tyrosine phosphorylation of the AChR, which regulates some aspects of receptor localization. Here, we have investigated the molecular mechanism by which rapsyn mediates AChR phosphorylation at the rodent neuromuscular junction. In a heterologous COS cell system, we show that MuSK and rapsyn induced phosphorylation of beta subunit tyrosine 390 (Y390) and delta subunit Y393, as in muscle cells. Mutation of beta Y390 or delta Y393 did not inhibit MuSK/rapsyn-induced phosphorylation of the other subunit in COS cells, and mutation of beta Y390 did not inhibit agrin-induced phosphorylation of the delta subunit in Sol8 muscle cells; thus, their phosphorylation occurs independently, downstream of MuSK activation. In COS cells, we further show that MuSK-induced phosphorylation of the beta subunit was mediated by rapsyn, as MuSK plus rapsyn increased beta Y390 phosphorylation more than rapsyn alone and MuSK alone had no effect. Intriguingly, MuSK also induced tyrosine phosphorylation of rapsyn itself. We then used deletion mutants to map the rapsyn domains responsible for activation of cytoplasmic tyrosine kinases that phosphorylate the AChR subunits. We found that rapsyn C-terminal domains (amino acids 212-412) are both necessary and sufficient for activation of tyrosine kinases and induction of cellular tyrosine phosphorylation. Moreover, deletion of the rapsyn RING domain (365-412) abolished MuSK-induced tyrosine phosphorylation of the AChR beta subunit. Together, these findings suggest that rapsyn facilitates AChR phosphorylation by activating or localizing tyrosine kinases via its C-terminal domains.
Collapse
Affiliation(s)
- Y Lee
- Departments of Anesthesiology and Physiology and Membrane Biology, One Shields Avenue, University of California-Davis, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
8
|
Friese MB, Blagden CS, Burden SJ. Synaptic differentiation is defective in mice lacking acetylcholine receptor beta-subunit tyrosine phosphorylation. Development 2007; 134:4167-76. [PMID: 17959719 DOI: 10.1242/dev.010702] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Agrin activates MuSK, a receptor tyrosine kinase expressed in skeletal muscle, leading to tyrosine phosphorylation of the acetylcholine receptor (AChR) beta-subunit and clustering of AChRs. The importance of AChR beta-subunit tyrosine phosphorylation in clustering AChRs and regulating synaptic differentiation is poorly understood. We generated mice with targeted mutations in the three intracellular tyrosines of the AChR beta-subunit (AChR-beta(3F/3F)). Mice lacking AChR beta-subunit tyrosine phosphorylation thrive postnatally and have no overt behavioral defects, indicating that AChR beta-subunit tyrosine phosphorylation is not essential for the formation of neuromuscular synapses. Nonetheless, the size of synapses and the density of synaptic AChRs are reduced in AChR- beta(3F/3F) mutant mice. Moreover, synapses are structurally simplified and the organization of postjunctional folds is aberrant in mice lacking tyrosine phosphorylation of the AChR beta-subunit. Furthermore, mutant AChRs cluster poorly in response to agrin and are readily extracted from the cell surface of cultured myotubes by non-ionic detergent. These data indicate that tyrosine phosphorylation of the AChR beta-subunit has an important role in organizing AChRs and regulating synaptic differentiation.
Collapse
Affiliation(s)
- Matthew B Friese
- Molecular Neurobiology Program, The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, NYU Medical School, 540 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
9
|
Shin JH, Guedj F, Delabar JM, Lubec G. Dysregulation of growth factor receptor-bound protein 2 and fascin in hippocampus of mice polytransgenic for chromosome 21 structures. Hippocampus 2007; 17:1180-92. [PMID: 17696169 DOI: 10.1002/hipo.20351] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nonchimeric polytransgenic 152F7 mice encompassing four human chromosome 21 genes (DSCR3, DSCR5, TTC3, and DYRK1A) within the Down syndrome critical region present with learning and memory impairment. However, no abnormalities were shown by in vitro electrophysiological or neuroanatomical findings in hippocampus of 152F7 mice. To search for molecular changes that may be linked to cognitive impairment, we compared hippocampal protein levels between nontransgenic (WT) and 152F7 mice by a proteomic approach. Protein extracts were run on two-dimensional gel electrophoresis, protein spots were analyzed by mass spectrometry (MALDI-TOF-TOF) followed by quantification by specific software. Three hundred and nineteen different gene products were identified, and 48 proteins were assigned as signaling-related proteins. Stringent statistical analysis considering P < 0.005 as statistically significant based upon multiple testing revealed that growth factor receptor-bound protein 2 (Grb2) levels were decreased and an expression form of fascin 1 was increased in 152F7 mice when compared with WT. A series of proteins showed trends for increased and decreased hippocampal levels (P > 0.005 and P < 0.05). Only 2 out of 319 different gene products were dysregulated, pointing to the specificity of the analysis. Decreased Grb2 levels in the hippocampus of 152F7 mice may contribute to impaired cytoskeleton functions because dynamin 1 binds to Grb2 and involved in the formation of the endocytic process. Fascin dysregulation is of relevance for actin bundling in vesicle trafficking and may represent or lead to impaired neurotransmission that, in turn, may lead to the cognitive defect observed in this mouse model of Down syndrome.
Collapse
Affiliation(s)
- Joo-Ho Shin
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
10
|
Kukhtina V, Kottwitz D, Strauss H, Heise B, Chebotareva N, Tsetlin V, Hucho F. Intracellular domain of nicotinic acetylcholine receptor: the importance of being unfolded. J Neurochem 2006; 97 Suppl 1:63-7. [PMID: 16635251 DOI: 10.1111/j.1471-4159.2005.03468.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bioinformatics methods with subsequent verification by experimental data were applied to the structural investigation of the intracellular loop of the delta-subunit of the nicotinic acetylcholine receptor (nAChR). Three complementary methods were used: prediction of secondary structure elements, prediction of ordered/disordered protein regions and prediction of short functional binding motifs. The output of five different algorithms was used for the secondary structure construction. Most of the intracellular domain is predicted to be unfolded. The predictions correlate well with the experimental data of limited proteolysis and NMR performed on the mostly monomeric fraction of heterologously expressed Torpedo intracellular domain protein. Twelve functional binding motifs within the disordered regions of the nAChR intracellular domain are predicted. Identification of proteins that interact with the intracellular domain will provide a better understanding of protein-protein interactions involved in nAChR assembly, trafficking and clustering.
Collapse
Affiliation(s)
- V Kukhtina
- Institute of Biochemistry, Free University of Berlin, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
11
|
Kuo YP, Xu L, Eaton JB, Zhao L, Wu J, Lukas RJ. Roles for Nicotinic Acetylcholine Receptor Subunit Large Cytoplasmic Loop Sequences in Receptor Expression and Function. J Pharmacol Exp Ther 2005; 314:455-66. [PMID: 15833891 DOI: 10.1124/jpet.105.084954] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To evaluate possible physiological roles of the large cytoplasmic loops (C2) and neighboring transmembrane domains of nicotinic acetylcholine receptor (nAChR) subunits, we generated novel fusion constructs in which human nAChR alpha4, beta2, or beta4 subunit C2 or C2 and neighboring sequences were replaced by corresponding sequences from the mouse serotonin type 3A (5-HT3A) receptor subunit. Following stable expression in human SH-EP1 cells, we found that extensive sequence substitutions involving third and fourth transmembrane domains and neighboring "proximal" C2 sequences (e.g., beta2 H322-V335 and V449-R460) did not allow functional expression of nAChR containing chimeric subunits. However, expression of functional nAChR was achieved containing wild-type alpha4 subunits and chimeric beta2 (beta2chi) subunits whose "nested" C2 domain sequences K336-S448 were replaced with the corresponding 5-HT3A subunit sequences. Whereas these findings suggested indispensable roles for M3/M4 transmembrane and/or proximal C2 sequences in alpha4beta2-nAChR function, nested C2 sequences in the beta2 subunit are not essential for functional receptor expression. Ligand-binding analyses also revealed only subtle differences in pharmacological profiles of alpha4beta2-nAChR compared with alpha4beta2chi-nAChR. Nevertheless, there was heightened emergence of agonist-mediated self-inhibition of alpha4beta2chi function, greater sensitivity to functional blockade by a number of antagonists, and faster and more complete acute desensitization of alpha4beta2chi-nAChR than for alpha4beta2-nAChR. These studies are consistent with unexpected roles of nested C2 sequences in nAChR function.
Collapse
Affiliation(s)
- Yen-Ping Kuo
- Department of Neurobiology, Barrow Neurological Institute, 350 West Thomas Road, Phoenix, AZ 85013, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Oak SA, Zhou YW, Jarrett HW. Skeletal muscle signaling pathway through the dystrophin glycoprotein complex and Rac1. J Biol Chem 2003; 278:39287-95. [PMID: 12885773 DOI: 10.1074/jbc.m305551200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dystrophin glycoprotein complex has been proposed to be involved in signal transduction. Here we have shown that laminin binding causes syntrophin to recruit Rac1 from the rabbit skeletal muscle. Laminin-Sepharose and syntrophin-Sepharose bind a protein complex containing Rac1 from the muscle membranes. The presence of heparin, which inhibits laminin interactions, prevents recruitment of Rac1. The dystrophin glycoprotein complex recruits Rac1 via syntrophin through a Grb2.Sos1 complex. A syntrophin antibody also prevents recruitment of Rac1, suggesting that the signaling complex requires syntrophin. PAK1 is in turn bound by Rac1. c-Jun NH2-terminal kinase-p46 is phosphorylated and activated only when laminin is present, and the p54 isoform is activated when laminin is depleted or binding is inhibited with heparin. In the presence of laminin, c-Jun is activated in both skeletal muscle microsomes and in C2C12 myoblasts, and proliferation increases in C2C12 myoblasts. We postulate that this pathway signals muscle homeostasis and hypertrophy.
Collapse
Affiliation(s)
- Shilpa A Oak
- Department of Biochemistry, University of Tennessee, Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|
13
|
Trailovic SM, Robertson AP, Clark CL, Martin RJ. Levamisole receptor phosphorylation: effects of kinase antagonists on membrane potential responses in Ascaris suum suggest that CaM kinase and tyrosine kinase regulate sensitivity to levamisole. J Exp Biol 2002; 205:3979-88. [PMID: 12432019 DOI: 10.1242/jeb.205.24.3979] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
A two-micropipette current-clamp technique was used to record electrophysiological responses from the somatic muscle of Ascaris suum. Levamisole and acetylcholine were applied to the bag region of the muscle using a microperfusion system. Depolarizations produced by 10 s applications of 10 μmol l-1 levamisole or 20 s applications of 10 μmol l-1 acetylcholine were recorded. The effect on the peak membrane potential change of the kinase antagonists H-7, staurosporine, KN-93 and genistein was observed. H-7 (30 μmol l-1), a non-selective antagonist of protein kinases A, C and G but which has little effect on Ca2+/calmodulin-dependent kinase II (CaM kinase II), did not produce a significant effect on the peak response to levamisole or acetylcholine. Staurosporine (1 μmol l-1), a non-selective kinase antagonist that has effects on protein kinases A, C and G, CaM kinase and tyrosine kinase, reduced the mean peak membrane potential response to levamisole from 6.8 mV to 3.9 mV (P<0.0001) and the mean response to acetylcholine from 5.5 mV to 2.8 mV (P=0.0016). The difference between the effects of H-7 and staurosporine suggested the involvement of CaM kinase II and/or tyrosine kinase. KN-93, a selective CaM kinase II antagonist,reduced the mean peak response to levamisole from 6.2 mV to 2.7 mV(P=0.035) and the mean peak response of acetylcholine from 4.7 mV to 2.0 mV (P=0.0004). The effects indicated the involvement of CaM kinase II in the phosphorylation of levamisole and acetylcholine receptors. The effect of extracellular Ca2+ on the response to levamisole was assessed by comparing responses to levamisole in normal and in low-Ca2+ bathing solutions. The response to levamisole was greater in the presence of Ca2+, an effect that may be explained by stimulation of CaM kinase II. Genistein (90 μmol l-1), a selective tyrosine kinase antagonist, reduced peak membrane potential responses to levamisole from a mean of 6.4 mV to 3.3 mV (P=0.001). This effect indicated the involvement of tyrosine kinase in maintaining the receptor.
Collapse
Affiliation(s)
- Sasa M Trailovic
- Department of Biomedical Sciences, Iowa State University, Ames 50011, USA
| | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Steven J Burden
- Molecular Neurobiology Program, Skirball Institute, NYU Medical School, 540 First Avenue, New York City, New York 10016, USA.
| |
Collapse
|
15
|
Valor LM, Mulet J, Sala F, Sala S, Ballesta JJ, Criado M. Role of the large cytoplasmic loop of the alpha 7 neuronal nicotinic acetylcholine receptor subunit in receptor expression and function. Biochemistry 2002; 41:7931-8. [PMID: 12069582 DOI: 10.1021/bi025831r] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of the large intracellular loop of the nicotinic acetylcholine receptor (nAChR) alpha7 subunit in the expression of functional channels was studied. For this purpose, systematic deletions and substitutions were made throughout the loop and the ability of the mutated alpha7 subunits to support expression of functional nAChRs at the Xenopus oocyte membrane was tested. Surface nAChR expression was abolished upon removal of sequences at two regions, a 29-amino acid segment close to the N-terminus of the loop (amino acids 297-325) and adjacent to the third transmembrane region and an 11-amino acid segment near the fourth transmembrane region. Some residues (amino acids 317-322) within the 29 amino acids N-terminal segment could be substituted by others but not deleted without loss of expression, suggesting that a certain structure, determined by the number of amino acids rather than by their identity, has to be maintained in this region. The contiguous sequence M323 K324 R325 did not tolerate deletions and substitutions. Removal of the rest of the cytoplasmic loop was not deleterious; even higher expression levels (2-4-fold) were obtained upon large deletions of the loop (Delta399-432 and Delta339-370). High expression levels were observed provided that a minimal sequence of three amino acids (E371, G372, and M373) was present. In addition, some electrophysiological properties of mutant nAChRs were modified. Substitution of the EGM sequence by other protein segments produced a variety of effects, but, in general, insertions were not well tolerated, suggesting the existence of tight structural restrictions in the large cytoplasmic region of the rat alpha7 subunit.
Collapse
Affiliation(s)
- Luis M Valor
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Campus de San Juan, 03550-San Juan (Alicante) Spain
| | | | | | | | | | | |
Collapse
|
16
|
Davis MJ, Wu X, Nurkiewicz TR, Kawasaki J, Gui P, Hill MA, Wilson E. Regulation of ion channels by protein tyrosine phosphorylation. Am J Physiol Heart Circ Physiol 2001; 281:H1835-62. [PMID: 11668044 DOI: 10.1152/ajpheart.2001.281.5.h1835] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ion channels are regulated by protein phosphorylation and dephosphorylation of serine, threonine, and tyrosine residues. Evidence for the latter process, tyrosine phosphorylation, has increased substantially since this topic was last reviewed. In this review, we present a comprehensive summary and synthesis of the literature regarding the mechanism and function of ion channel regulation by protein tyrosine kinases and phosphatases. Coverage includes the majority of voltage-gated, ligand-gated, and second messenger-gated channels as well as several types of channels that have not yet been cloned, including store-operated Ca2+ channels, nonselective cation channels, and epithelial Na+ and Cl- channels. Additionally, we discuss the critical roles that channel-associated scaffolding proteins may play in localizing protein tyrosine kinases and phosphatases to the vicinity of ion channels.
Collapse
Affiliation(s)
- M J Davis
- Department of Medical Physiology, Cardiovascular Research Institute, Texas A&M University System Health Science Center, College Station, Texas 77845, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Oak SA, Russo K, Petrucci TC, Jarrett HW. Mouse alpha1-syntrophin binding to Grb2: further evidence of a role for syntrophin in cell signaling. Biochemistry 2001; 40:11270-8. [PMID: 11551227 DOI: 10.1021/bi010490n] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Syntrophins have been proposed to serve as adapter proteins. Syntrophins are found in the dystrophin glycoprotein complex (DGC); defects in the constituents of this complex are linked to various muscular dystrophies. Blot overlay experiments demonstrate that alpha-dystroglycan, beta-dystroglycan, and syntrophins all bind Grb2, the growth factor receptor bound adapter protein. Mouse alpha1-syntrophin sequences were produced as chimeric fusion proteins in bacteria and found to also bind Grb2 in a Ca2+-independent manner. This binding was localized to the proline rich sequences adjacent to and overlapping with the N-terminal pleckstrin homology domain (PH1). Grb2 bound syntrophin with an apparent KD of 563 +/- 15 nM. Grb2-C-SH3 domain bound syntrophin with slightly higher affinity than Grb2-N-SH3 domain. Crk-L, an SH2/SH3 protein of similar domain structure but different specificity, does not bind these syntrophin sequences.
Collapse
Affiliation(s)
- S A Oak
- Department of Biochemistry, 858 Madison Avenue, University of Tennessee, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
18
|
Huang YZ, Wang Q, Xiong WC, Mei L. Erbin is a protein concentrated at postsynaptic membranes that interacts with PSD-95. J Biol Chem 2001; 276:19318-26. [PMID: 11279080 DOI: 10.1074/jbc.m100494200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Neuregulin is a factor essential for synapse-specific transcription of acetylcholine receptor genes at the neuromuscular junction. Its receptors, ErbB receptor tyrosine kinases, are localized at the postjunctional membrane presumably to ensure localized signaling. However, the molecular mechanisms underlying synaptic localization of ErbBs are unknown. Our recent studies indicate that ErbB4 interacts with postsynaptic density (PSD)-95 (SAP90), a PDZ domain-containing protein that does not interact with ErbB2 or ErbB3. Using as bait the ErbB2 C terminus, we identified Erbin, another PDZ domain-containing protein that interacts specifically with ErbB2. Erbin is concentrated in postsynaptic membranes at the neuromuscular junction and in the central nervous system, where ErbB2 is concentrated. Expression of Erbin increases the amount of ErbB2 labeled by biotin in transfected cells, suggesting that Erbin is able to increase ErbB2 surface expression. Furthermore, we provide evidence that Erbin interacts with PSD-95 in both transfected cells and synaptosomes. Thus ErbB proteins can interact with a network of PDZ domain-containing proteins. This interaction may play an important role in regulation of neuregulin signaling and/or subcellular localization of ErbB proteins.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Biotin/metabolism
- Blotting, Northern
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Cell Line
- Cell Membrane/metabolism
- Cells, Cultured
- Cloning, Molecular
- DNA, Complementary/metabolism
- Disks Large Homolog 4 Protein
- ErbB Receptors/metabolism
- Fungal Proteins/metabolism
- Glutathione Transferase/metabolism
- Hippocampus/metabolism
- Humans
- Immunoblotting
- Immunohistochemistry
- Intracellular Signaling Peptides and Proteins
- Membrane Proteins
- Muscles/embryology
- Muscles/metabolism
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/metabolism
- Neuromuscular Junction/metabolism
- Precipitin Tests
- Protein Binding
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Rats
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/metabolism
- Receptor, ErbB-4
- Signal Transduction
- Subcellular Fractions
- Tissue Distribution
- Transcription, Genetic
- Transfection
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Y Z Huang
- Departments of Neurobiology, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
19
|
Mittaud P, Marangi PA, Erb-Vögtli S, Fuhrer C. Agrin-induced activation of acetylcholine receptor-bound Src family kinases requires Rapsyn and correlates with acetylcholine receptor clustering. J Biol Chem 2001; 276:14505-13. [PMID: 11278328 DOI: 10.1074/jbc.m007024200] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During neuromuscular synaptogenesis, neurally released agrin induces aggregation and tyrosine phosphorylation of acetylcholine receptors (AChRs) by acting through both the receptor tyrosine kinase MuSK (muscle-specific kinase) and the AChR-associated protein, rapsyn. To elucidate this signaling mechanism, we examined tyrosine phosphorylation of AChR-associated proteins, particularly addressing whether agrin activates Src family kinases bound to the AChR. In C2 myotubes, agrin induced tyrosine phosphorylation of these kinases, of AChR-bound MuSK, and of the AChR beta and delta subunits, as observed in phosphotyrosine immunoblotting experiments. Kinase assays revealed that the activity of AChR-associated Src kinases was increased by agrin, whereas phosphorylation of the total cellular kinase pool was unaffected. In both rapsyn-deficient myotubes and staurosporine-treated C2 myotubes, where AChRs are not clustered, agrin activated MuSK but did not cause either Src family or AChR phosphorylation. In S27 mutant myotubes, which fail to aggregate AChRs, no agrin-induced phosphorylation of AChR-bound Src kinases, MuSK, or AChRs was observed. These results demonstrate first that agrin leads to phosphorylation and activation of AChR-associated Src-related kinases, which requires rapsyn, occurs downstream of MuSK, and causes AChR phosphorylation. Second, this activation intimately correlates with AChR clustering, suggesting that these kinases may play a role in agrin-induced AChR aggregation by forming an AChR-bound signaling cascade.
Collapse
Affiliation(s)
- P Mittaud
- Brain Research Institute, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
20
|
Poea S, Guyon T, Bidault J, Bruand C, Mouly V, Berrih-Aknin S. Modulation of acetylcholine receptor expression in seronegative myasthenia gravis. Ann Neurol 2001. [DOI: 10.1002/1531-8249(200011)48:5<696::aid-ana2>3.0.co;2-s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Dai Z, Luo X, Xie H, Peng HB. The actin-driven movement and formation of acetylcholine receptor clusters. J Cell Biol 2000; 150:1321-34. [PMID: 10995438 PMCID: PMC2150690 DOI: 10.1083/jcb.150.6.1321] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2000] [Accepted: 07/18/2000] [Indexed: 11/22/2022] Open
Abstract
A new method was devised to visualize actin polymerization induced by postsynaptic differentiation signals in cultured muscle cells. This entails masking myofibrillar filamentous (F)-actin with jasplakinolide, a cell-permeant F-actin-binding toxin, before synaptogenic stimulation, and then probing new actin assembly with fluorescent phalloidin. With this procedure, actin polymerization associated with newly induced acetylcholine receptor (AChR) clustering by heparin-binding growth-associated molecule-coated beads and by agrin was observed. The beads induced local F-actin assembly that colocalized with AChR clusters at bead-muscle contacts, whereas both the actin cytoskeleton and AChR clusters induced by bath agrin application were diffuse. By expressing a green fluorescent protein-coupled version of cortactin, a protein that binds to active F-actin, the dynamic nature of the actin cytoskeleton associated with new AChR clusters was revealed. In fact, the motive force generated by actin polymerization propelled the entire bead-induced AChR cluster with its attached bead to move in the plane of the membrane. In addition, actin polymerization is also necessary for the formation of both bead and agrin-induced AChR clusters as well as phosphotyrosine accumulation, as shown by their blockage by latrunculin A, a toxin that sequesters globular (G)-actin and prevents F-actin assembly. These results show that actin polymerization induced by synaptogenic signals is necessary for the movement and formation of AChR clusters and implicate a role of F-actin as a postsynaptic scaffold for the assembly of structural and signaling molecules in neuromuscular junction formation.
Collapse
Affiliation(s)
- Z Dai
- Department of Cell Biology and Anatomy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
22
|
Cartaud J, Cartaud A, Kordeli E, Ludosky MA, Marchand S, Stetzkowski-Marden F. The torpedo electrocyte: a model system to study membrane-cytoskeleton interactions at the postsynaptic membrane. Microsc Res Tech 2000; 49:73-83. [PMID: 10757880 DOI: 10.1002/(sici)1097-0029(20000401)49:1<73::aid-jemt8>3.0.co;2-l] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many aspects of the organization of the electromotor synapse of electric fish resemble the nerve-muscle junction. In particular, the postsynaptic membrane in both systems share most of their proteins. As a remarquable source of cholinergic synapses, the Torpedo electrocyte model has served to identify the most important components involved in synaptic transmission such as the nicotinic acetylcholine receptor and the enzyme acetylcholinesterase, as well as proteins associated with the subsynaptic cytoskeleton and the extracellular matrix involved in the assembly of the postsynaptic membrane, namely the 43-kDa protein-rapsyn, the dystrophin/utrophin complex, agrin, and others. This review encompasses some representative experiments that helped to clarify essential aspects of the supramolecular organization and assembly of the postsynaptic apparatus of cholinergic synapses.
Collapse
Affiliation(s)
- J Cartaud
- Biologie Cellulaire des Membranes, Institut Jacques Monod, UMR 9275, CNRS, Universités Paris 6 et Paris7, 75251 Paris Cedex 05, France.
| | | | | | | | | | | |
Collapse
|
23
|
Won S, Si J, Colledge M, Ravichandran KS, Froehner SC, Mei L. Neuregulin-increased expression of acetylcholine receptor epsilon-subunit gene requires ErbB interaction with Shc. J Neurochem 1999; 73:2358-68. [PMID: 10582594 DOI: 10.1046/j.1471-4159.1999.0732358.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Selective transcription of acetylcholine receptor (AChR) subunit genes by neuregulin is one of the mechanisms involved in the synaptic localization of AChRs to the neuromuscular junction. Neuregulin stimulates ErbB receptor tyrosine kinases and subsequently activates the Ras/ERK pathway, which is required for neuregulin-mediated induction of AChR subunit genes in muscle cells and synapse-specific expression in vivo. Here we investigated the neuregulin transduction mechanism that leads to ERK activation after ErbB receptor tyrosine phosphorylation. Neuregulin increases the association of the adaptor proteins Grb2 and Shc with both ErbB2 and ErbB3 in C2C12 muscle cells. Dephosphorylation of the tyrosine-phosphorylated ErbB proteins abolished their association with both Grb2 and Shc, suggesting a tyrosine phosphorylation-dependent interaction. The interaction of Shc with the ErbB receptors is mediated by Shc's phosphotyrosine-binding domain. In addition, neuregulin increased tyrosine phosphorylation of Shc. Mutagenesis approaches demonstrated that tyrosine phosphorylation of Shc is required for neuregulin induction of AChR subunit gene expression. Taken together, these data indicate that the interaction of ErbB receptors with Grb2 alone is insufficient for neuregulin-activated transcription, but that ErbB receptor signaling via Shc is necessary and important.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Amino Acid Substitution
- Animals
- COS Cells
- Cells, Cultured/drug effects
- Chlorocebus aethiops
- Dimerization
- GRB2 Adaptor Protein
- Genes, Reporter
- Genes, erbB-2
- MAP Kinase Signaling System/drug effects
- Macromolecular Substances
- Mice
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Mutagenesis, Site-Directed
- Neuregulin-1/pharmacology
- Neuromuscular Junction/metabolism
- Proteins/genetics
- Proteins/metabolism
- Proteins/physiology
- Receptor, ErbB-2/chemistry
- Receptor, ErbB-2/physiology
- Receptor, ErbB-3/chemistry
- Receptor, ErbB-3/physiology
- Receptors, Cholinergic/biosynthesis
- Receptors, Cholinergic/genetics
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/pharmacology
- Shc Signaling Adaptor Proteins
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Transfection
Collapse
Affiliation(s)
- S Won
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, USA
| | | | | | | | | | | |
Collapse
|
24
|
Madhavan R, Jarrett HW. Phosphorylation of dystrophin and alpha-syntrophin by Ca(2+)-calmodulin dependent protein kinase II. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1434:260-74. [PMID: 10525145 DOI: 10.1016/s0167-4838(99)00193-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A Ca(2+)-calmodulin dependent protein kinase activity (DGC-PK) was previously shown to associate with skeletal muscle dystrophin glycoprotein complex (DGC) preparations, and phosphorylate dystrophin and a protein with the same electrophoretic mobility as alpha-syntrophin (R. Madhavan, H.W. Jarrett, Biochemistry 33 (1994) 5797-5804). Here, we show that DGC-PK and Ca(2+)-calmodulin dependent protein kinase II (CaM kinase II) phosphorylate a common site (RSDS(3616)) within the dystrophin C terminal domain that fits the consensus CaM kinase II phosphorylation motif (R/KXXS/T). Furthermore, both kinase activities phosphorylate exactly the same three fusion proteins (dystrophin fusions DysS7 and DysS9, and the syntrophin fusion) out of a panel of eight fusion proteins (representing nearly 100% of syntrophin and 80% of dystrophin protein sequences), demonstrating that DGC-PK and CaM kinase II have the same substrate specificity. Complementing these results, anti-CaM kinase II antibodies specifically stained purified DGC immobilized on nitrocellulose membranes. Renaturation of electrophoretically resolved DGC proteins revealed a single protein kinase band (M(r) approximately 60,000) that, like CaM kinase II, underwent Ca(2+)-calmodulin dependent autophosphorylation. Based on these observations, we conclude DGC-PK represents a dystrophin-/syntrophin-phosphorylating skeletal muscle isoform of CaM kinase II. We also show that phosphorylation of the dystrophin C terminal domain sequences inhibits their syntrophin binding in vitro, suggesting a regulatory role for phosphorylation.
Collapse
Affiliation(s)
- R Madhavan
- Department of Biochemistry, University of Tennessee-Memphis, 858 Madison Ave., Memphis, TN 38163, USA
| | | |
Collapse
|
25
|
Buday L. Membrane-targeting of signalling molecules by SH2/SH3 domain-containing adaptor proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1422:187-204. [PMID: 10393272 DOI: 10.1016/s0304-4157(99)00005-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
SH2/SH3 domain-containing adaptor proteins play a critical role in regulating tyrosine kinase signalling pathways. The major function of these adaptors, such as Grb2, Nck, and Crk, is to recruit proline-rich effector molecules to tyrosine-phosphorylated kinases or their substrates. In recent years dozens of novel proteins have emerged that are capable of associating with the SH2 and the SH3 domains of adaptors. In this review, the author attempts to summarise these novel binding partners of Grb2, Nck, and Crk, and to discuss current controversies regarding function and regulation of protein multicomplexes held together by SH2/SH3 adaptor molecules at the plasma membrane.
Collapse
Affiliation(s)
- L Buday
- Department of Medical Chemistry, Semmelweis University Medical School, 9 Puskin Street, 1088, Budapest, Hungary.
| |
Collapse
|
26
|
Zhou Y, Schopperle WM, Murrey H, Jaramillo A, Dagan D, Griffith LC, Levitan IB. A dynamically regulated 14-3-3, Slob, and Slowpoke potassium channel complex in Drosophila presynaptic nerve terminals. Neuron 1999; 22:809-18. [PMID: 10230800 DOI: 10.1016/s0896-6273(00)80739-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Slob is a novel protein that binds to the carboxy-terminal domain of the Drosophila Slowpoke (dSlo) calcium-dependent potassium (K(Ca)) channel. A yeast two-hybrid screen with Slob as bait identifies the zeta isoform of 14-3-3 as a Slob-binding protein. Coimmunoprecipitation experiments from Drosophila heads and transfected cells confirm that 14-3-3 interacts with dSlo via Slob. All three proteins are colocalized presynaptically at Drosophila neuromuscular junctions. Two serine residues in Slob are required for 14-3-3 binding, and the binding is dynamically regulated in Drosophila by calcium/calmodulin-dependent kinase II (CaMKII) phosphorylation. 14-3-3 coexpression dramatically alters dSlo channel properties when wild-type Slob is present but not when a double serine mutant Slob that is incapable of binding 14-3-3 is present. The results provide evidence for a dSlo/Slob/14-3-3 regulatory protein complex.
Collapse
Affiliation(s)
- Y Zhou
- Department of Biochemistry, Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Narisawa-Saito M, Silva AJ, Yamaguchi T, Hayashi T, Yamamoto T, Nawa H. Growth factor-mediated Fyn signaling regulates alpha-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor expression in rodent neocortical neurons. Proc Natl Acad Sci U S A 1999; 96:2461-6. [PMID: 10051665 PMCID: PMC26807 DOI: 10.1073/pnas.96.5.2461] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Src-family protein tyrosine kinases (PTKs) transduce signals to regulate neuronal development and synaptic plasticity. However, the nature of their activators and molecular mechanisms underlying these neural processes are unknown. Here, we show that brain-derived neurotrophic factor (BDNF) and platelet-derived growth factor enhance expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor 1 and 2/3 proteins in rodent neocortical neurons via the Src-family PTK(s). The increase in AMPA receptor levels was blocked in cultured neocortical neurons by addition of a Src-family-selective PTK inhibitor. Accordingly, neocortical cultures from Fyn-knockout mice failed to respond to BDNF whereas those from wild-type mice responded. Moreover, the neocortex of young Fyn mutants exhibited a significant in vivo reduction in these AMPA receptor proteins but not in their mRNA levels. In vitro kinase assay revealed that BDNF can indeed activate the Fyn kinase: It enhanced tyrosine phosphorylation of Fyn as well as that of enolase supplemented exogenously. All of these results suggest that the Src-family kinase Fyn, activated by the growth factors, plays a crucial role in modulating AMPA receptor expression during brain development.
Collapse
MESH Headings
- Animals
- Brain-Derived Neurotrophic Factor/pharmacology
- Cells, Cultured
- Crosses, Genetic
- Epidermal Growth Factor/pharmacology
- Fibroblast Growth Factor 2/pharmacology
- Gene Expression Regulation/drug effects
- Growth Substances/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neocortex/physiology
- Neurons/cytology
- Neurons/physiology
- Platelet-Derived Growth Factor/pharmacology
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins/deficiency
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-fyn
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptors, AMPA/genetics
- Receptors, Glutamate/genetics
- Receptors, N-Methyl-D-Aspartate/genetics
- Signal Transduction/physiology
- Transcription, Genetic
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- M Narisawa-Saito
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Meyer G, Wallace BG. Recruitment of a nicotinic acetylcholine receptor mutant lacking cytoplasmic tyrosine residues in its beta subunit into agrin-induced aggregates. Mol Cell Neurosci 1998; 11:324-33. [PMID: 9698397 DOI: 10.1006/mcne.1998.0689] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During synaptogenesis at the vertebrate skeletal neuromuscular junction, acetylcholine receptors (AChRs) form high-density aggregates opposite the presynaptic terminal in response to nerve-derived agrin. Agrin has been shown to stimulate tyrosine phosphorylation of a muscle-specific receptor tyrosine kinase MuSK and of the AChR beta subunit, and tyrosine kinase inhibitors and a tyrosine kinase-deficient mutant of MuSK prevent AChR aggregation. To evaluate the role of tyrosine phosphorylation of the AChR beta subunit in receptor aggregation, we replaced all three putative cytoplasmic tyrosine residues of the AChR beta subunit with phenylalanine residues and expressed the mutant receptors in cultured myotubes. Upon agrin treatment, transfected myotubes formed AChR aggregates that contained receptors with mutant beta subunits. Thus, AChRs can be recruited into agrin-induced specializations by protein-protein interactions that do not depend on tyrosine phosphorylation of the AChR beta subunit.
Collapse
Affiliation(s)
- G Meyer
- Department of Physiology and Biophysics, C240, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, Colorado, 80262, USA
| | | |
Collapse
|
29
|
Meier T, Ruegg MA, Wallace BG. Muscle-specific agrin isoforms reduce phosphorylation of AChR gamma and delta subunits in cultured muscle cells. Mol Cell Neurosci 1998; 11:206-16. [PMID: 9675052 DOI: 10.1006/mcne.1998.0685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The accumulation of nicotinic acetylcholine receptors (AChRs) at neuromuscular synapses is triggered by agrin, a protein that is synthesized by both nerve and muscle. Nerve-derived agrin, which contains an amino acid insert at a conserved splice site in the carboxy-terminal part of the protein, induces AChR aggregation and causes tyrosine phosphorylation of the AChR beta subunit. In contrast, agrin isoforms synthesized by muscle cells lack such an insert and have no effect on AChR distribution. In order to identify possible functional roles of muscle-derived agrin we have analyzed further the effect of various fragments of recombinant agrin on AChR phosphorylation. A carboxy-terminal fragment of muscle agrin, c95A0B0, reduced AChR gamma and delta subunit phosphorylation when added to C2C12 myotubes in culture. Although c95A0B0 had no effect on AChR beta subunit phosphorylation when added alone, it inhibited AChR beta subunit phosphorylation and AChR aggregation by the nerve-specific agrin isoform c95A4B8. We conclude that muscle-derived agrin can influence, both directly and indirectly, AChR phosphorylation. Such changes may play a role in the formation, maintenance, or function of the neuromuscular junction.
Collapse
Affiliation(s)
- T Meier
- Department of Physiology and Biophysics, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | | | | |
Collapse
|
30
|
Colledge M, Froehner SC. Signals mediating ion channel clustering at the neuromuscular junction. Curr Opin Neurobiol 1998; 8:357-63. [PMID: 9687350 DOI: 10.1016/s0959-4388(98)80061-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
High densities of acetylcholine receptors and sodium channels in the crests and troughs of the postsynaptic folds, respectively, ensure reliable neuromuscular signalling. Clustering of both ion channels is mediated by agrin. In the case of acetylcholine receptors, agrin activates the tyrosine kinase receptor muscle-specific kinase (MuSK), initiating a process requiring rapsyn and possibly also receptor phosphorylation. In many respects, the interactions between agrin and MuSK and their downstream effectors are atypical of conventional receptor tyrosine kinase signalling systems. A new understanding of the structural features of rapsyn involved in receptor clustering, as well as syntrophin's role in sodium channel targeting, has recently been revealed. Perhaps the most surprising result of the past year with regard to synaptogenesis is a negative one--mice lacking both dystrophin and utrophin have nearly normal neuromuscular junctions.
Collapse
Affiliation(s)
- M Colledge
- Department of Physiology, University of North Carolina at Chapel Hill 27599-7545, USA
| | | |
Collapse
|
31
|
Colledge M, Froehner SC. Interaction between the nicotinic acetylcholine receptor and Grb2. Implications for signaling at the neuromuscular junction. Ann N Y Acad Sci 1998; 841:17-27. [PMID: 9668219 DOI: 10.1111/j.1749-6632.1998.tb10907.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M Colledge
- Department of Physiology, University of North Carolina at Chapel Hill 27599-7545, USA
| | | |
Collapse
|
32
|
Moffett J, Kratz E, Stachowiak MK. Increased tyrosine phosphorylation and novel cis-acting element mediate activation of the fibroblast growth factor-2 (FGF-2) gene by nicotinic acetylcholine receptor. New mechanism for trans-synaptic regulation of cellular development and plasticity. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 55:293-305. [PMID: 9582440 DOI: 10.1016/s0169-328x(98)00010-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
FGF-2, a mitogenic/neurotrophic protein, controls the development and plasticity of many types of neural cells. In neural crest-derived adrenal pheochromatocytes, induction of FGF-2 coincides with the establishment of functional innervation and is reproduced in vitro by stimulating acetylcholine receptors (AChR). The mechanisms by which AChR activate the FGF-2 gene were examined in cultured bovine adrenal medullary chromaffin (BAMC) cells in which AChR induce expression and nuclear accumulation of growth-promoting FGF-2 and FGF-2 receptors. Carbachol or nicotine increased expression of transfected FGF-2 gene promoter-luciferase constructs and were more potent than the muscarinic agonist ABMCB. Deletion analysis has identified a unique -555/-512 bp element that confers AChR stimulation and basal activity to the downstream FGF-2 promoter, and a separate protein kinase C/cAMP-responsive sequence (-625/-555 bp). Stimulation of AChR increased in vitro formation of protein complexes with the AChR-responsive element which were not displaced by target oligonucleotides for common trans-activators. Southwestern analysis identified 50-55, 125, 140 and 170 kDa proteins that interact with the AChR-responsive element in a manner stimulated by AChR. Nicotine increased tyrosine phosphorylation of cytoplasmic and nuclear proteins, including 50-55 kDa promoter-binding factors. Activation of the FGF-2 promoter was reduced by genistein. Thus, nicotinic AChR activate the FGF-2 gene via a new signaling mechanism separate from the cAMP/PKC pathways. It utilizes tyrosine phosphorylation and interaction of trans-activating factors with a novel cis-acting element. It offers a new pathway through which trans-synaptic signals may control neural development and plasticity.
Collapse
Affiliation(s)
- J Moffett
- Laboratory of Molecular Neurobiology, Barrow Neurological Institute, 350 West Thomas Road, Phoenix, AZ 85013, USA
| | | | | |
Collapse
|
33
|
Buisson B, Bertrand D. Allosteric modulation of neuronal nicotinic acetylcholine receptors. JOURNAL OF PHYSIOLOGY, PARIS 1998; 92:89-100. [PMID: 9782450 DOI: 10.1016/s0928-4257(98)80144-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure-function relationship of the neuronal nicotinic acetylcholine receptor is examined in the light of the allosteric concepts. Effects of site-directed mutagenesis as well as those caused by allosteric effector of the physiological and pharmacological receptor properties are discussed.
Collapse
Affiliation(s)
- B Buisson
- Department of Physiology, Medical Faculty, Geneva, Switzerland
| | | |
Collapse
|
34
|
Ruegg MA, Bixby JL. Agrin orchestrates synaptic differentiation at the vertebrate neuromuscular junction. Trends Neurosci 1998; 21:22-7. [PMID: 9464682 DOI: 10.1016/s0166-2236(97)01154-5] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The synapse is a key structure that is involved in perception, learning and memory. Understanding the sequence of steps that is involved in establishing synapses during development might also help to understand mechanisms that cause changes in synapses during learning and memory. For practical reasons, most of our current knowledge of synapse development is derived from studies of the vertebrate neuromuscular junction (NMJ). Several lines of evidence strongly suggest that motor axons release the molecule agrin to induce the formation of the postsynaptic apparatus in muscle fibers. Recent advances implicate proteins such as dystroglycan, MuSK, and rapsyn in the transduction of agrin signals. Recently, additional functions of agrin have been discovered, including the upregulation of gene transcription in myonuclei and the control of presynaptic differentiation. Agrin therefore appears to play a unique role in controlling synaptic differentiation on both sides of the NMJ.
Collapse
Affiliation(s)
- M A Ruegg
- Dept of Pharmacology, Biozentrum, University of Basel, Switzerland
| | | |
Collapse
|
35
|
Hell JW. Phosphorylation of receptors and ion channels and their interaction with structural proteins. Neurochem Int 1997; 31:651-8. [PMID: 9364451 DOI: 10.1016/s0197-0186(97)00023-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J W Hell
- Department of Pharmacology, University of Wisconsin, Madison 53706-1532, USA
| |
Collapse
|