1
|
Jukić MM, Opel N, Ström J, Carrillo-Roa T, Miksys S, Novalen M, Renblom A, Sim SC, Peñas-Lledó EM, Courtet P, Llerena A, Baune BT, de Quervain DJ, Papassotiropoulos A, Tyndale RF, Binder EB, Dannlowski U, Ingelman-Sundberg M. Elevated CYP2C19 expression is associated with depressive symptoms and hippocampal homeostasis impairment. Mol Psychiatry 2017; 22:1155-1163. [PMID: 27895323 DOI: 10.1038/mp.2016.204] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/21/2016] [Accepted: 10/04/2016] [Indexed: 01/17/2023]
Abstract
The polymorphic CYP2C19 enzyme metabolizes psychoactive compounds and is expressed in the adult liver and fetal brain. Previously, we demonstrated that the absence of CYP2C19 is associated with lower levels of depressive symptoms in 1472 Swedes. Conversely, transgenic mice carrying the human CYP2C19 gene (2C19TG) have shown an anxious phenotype and decrease in hippocampal volume and adult neurogenesis. The aims of this study were to: (1) examine whether the 2C19TG findings could be translated to humans, (2) evaluate the usefulness of the 2C19TG strain as a tool for preclinical screening of new antidepressants and (3) provide an insight into the molecular underpinnings of the 2C19TG phenotype. In humans, we found that the absence of CYP2C19 was associated with a bilateral hippocampal volume increase in two independent healthy cohorts (N=386 and 1032) and a lower prevalence of major depressive disorder and depression severity in African-Americans (N=3848). Moreover, genetically determined high CYP2C19 enzymatic capacity was associated with higher suicidality in depressed suicide attempters (N=209). 2C19TG mice showed high stress sensitivity, impaired hippocampal Bdnf homeostasis in stress, and more despair-like behavior in the forced swim test (FST). After the treatment with citalopram and 5-HT1A receptor agonist 8OH-DPAT, the reduction in immobility time in the FST was more pronounced in 2C19TG mice compared with WTs. Conversely, in the 2C19TG hippocampus, metabolic turnover of serotonin was reduced, whereas ERK1/2 and GSK3β phosphorylation was increased. Altogether, this study indicates that elevated CYP2C19 expression is associated with depressive symptoms, reduced hippocampal volume and impairment of hippocampal serotonin and BDNF homeostasis.
Collapse
Affiliation(s)
- M M Jukić
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - N Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - J Ström
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - T Carrillo-Roa
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - S Miksys
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - M Novalen
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - A Renblom
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - S C Sim
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - E M Peñas-Lledó
- CICAB Clinical Research Center, Extremadura University Hospital and Medical School, Badajoz, Spain.,CIBERSAM, Madrid, Spain
| | - P Courtet
- CHU Montpellier, Hôpital Lapeyronie, Psychiatric Emergency and Post-Acute Care Department, Pole Urgence, Montpellier, France
| | - A Llerena
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - B T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - D J de Quervain
- Transfaculty Research Platform, Department of Psychology, University Psychiatric Clinics, University of Basel, Basel, Switzerland
| | - A Papassotiropoulos
- Transfaculty Research Platform, Department of Psychology, University Psychiatric Clinics, University of Basel, Basel, Switzerland.,Life Sciences Training Facility, Department Biozentrum, University of Basel, Basel, Switzerland
| | - R F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - E B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - U Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany.,Department of Psychiatry, University of Marburg, Marburg, Germany
| | - M Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Nozaki K, Kubo R, Furukawa Y. Serotonin modulates the excitatory synaptic transmission in the dentate granule cells. J Neurophysiol 2016; 115:2997-3007. [PMID: 26961099 DOI: 10.1152/jn.00064.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/04/2016] [Indexed: 01/23/2023] Open
Abstract
Serotonergic fibers from the raphe nuclei project to the hippocampal formation, the activity of which is known to modulate the inhibitory interneurons in the dentate gyrus. On the other hand, serotonergic modulation of the excitatory synapses in the dentate gyrus is not well examined. In the present study, we examined the effects of 5-HT on the excitatory postsynaptic potentials (EPSPs) in the dentate granule cells evoked by the selective stimulation of the lateral perforant path (LPP), the medial perforant path (MPP), or the mossy cell fibers (MCF). 5-HT depressed the amplitude of unitary EPSPs (uEPSPs) evoked by the stimulation of LPP or MPP, whereas uEPSPs evoked by MCF stimulation were little affected. The effect was partly explained by the decrease of the resting membrane resistance following the activation of 5-HT1A receptors, which was confirmed by computer simulations. We also found that the probability of evoking uEPSP by LPP stimulation but not MPP or MCF stimulation was reduced by 5-HT and that the paired-pulse ratio of LPP-evoked EPSP but not that of MPP- or MCF-evoked ones was increased by 5-HT. These effects were blocked by 5-HT2 antagonist, suggesting that the transmitter release in the LPP-granule cell synapse is inhibited by the activation of 5-HT2 receptors. The present results suggest that 5-HT can modulate the EPSPs in the dentate granule cells by at least two distinct mechanisms.
Collapse
Affiliation(s)
- Kanako Nozaki
- Laboratory of Neurobiology, Faculty of Integrated Arts and Sciences, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan; and
| | - Reika Kubo
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi, Naka-ku, Hiroshima, Japan
| | - Yasuo Furukawa
- Laboratory of Neurobiology, Faculty of Integrated Arts and Sciences, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan; and
| |
Collapse
|
3
|
Leiser SC, Li Y, Pehrson AL, Dale E, Smagin G, Sanchez C. Serotonergic Regulation of Prefrontal Cortical Circuitries Involved in Cognitive Processing: A Review of Individual 5-HT Receptor Mechanisms and Concerted Effects of 5-HT Receptors Exemplified by the Multimodal Antidepressant Vortioxetine. ACS Chem Neurosci 2015; 6:970-86. [PMID: 25746856 DOI: 10.1021/cn500340j] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has been known for several decades that serotonergic neurotransmission is a key regulator of cognitive function, mood, and sleep. Yet with the relatively recent discoveries of novel serotonin (5-HT) receptor subtypes, as well as an expanding knowledge of their expression level in certain brain regions and localization on certain cell types, their involvement in cognitive processes is still emerging. Of particular interest are cognitive processes impacted in neuropsychiatric and neurodegenerative disorders. The prefrontal cortex (PFC) is critical to normal cognitive processes, including attention, impulsivity, planning, decision-making, working memory, and learning or recall of learned memories. Furthermore, serotonergic dysregulation within the PFC is implicated in many neuropsychiatric disorders associated with prominent symptoms of cognitive dysfunction. Thus, it is important to better understand the overall makeup of serotonergic receptors in the PFC and on which cell types these receptors mediate their actions. In this Review, we focus on 5-HT receptor expression patterns within the PFC and how they influence cognitive behavior and neurotransmission. We further discuss the net effects of vortioxetine, an antidepressant acting through multiple serotonergic targets given the recent findings that vortioxetine improves cognition by modulating multiple neurotransmitter systems.
Collapse
Affiliation(s)
| | - Yan Li
- Lundbeck Research USA, Paramus, New Jersey 07650, United States
| | - Alan L. Pehrson
- Lundbeck Research USA, Paramus, New Jersey 07650, United States
| | - Elena Dale
- Lundbeck Research USA, Paramus, New Jersey 07650, United States
| | - Gennady Smagin
- Lundbeck Research USA, Paramus, New Jersey 07650, United States
| | - Connie Sanchez
- Lundbeck Research USA, Paramus, New Jersey 07650, United States
| |
Collapse
|
4
|
Ghosh M, Pearse DD. The role of the serotonergic system in locomotor recovery after spinal cord injury. Front Neural Circuits 2015; 8:151. [PMID: 25709569 PMCID: PMC4321350 DOI: 10.3389/fncir.2014.00151] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/28/2014] [Indexed: 11/30/2022] Open
Abstract
Serotonin (5-HT), a monoamine neurotransmitter synthesized in various populations of brainstem neurons, plays an important role in modulating the activity of spinal networks involved in vertebrate locomotion. Following spinal cord injury (SCI) there is a disruption of descending serotonergic projections to spinal motor areas, which results in a subsequent depletion in 5-HT, the dysregulation of 5-HT transporters as well as the elevated expression, super-sensitivity and/or constitutive auto-activation of specific 5-HT receptors. These changes in the serotonergic system can produce varying degrees of locomotor dysfunction through to paralysis. To date, various approaches targeting the different components of the serotonergic system have been employed to restore limb coordination and improve locomotor function in experimental models of SCI. These strategies have included pharmacological modulation of serotonergic receptors, through the administration of specific 5-HT receptor agonists, or by elevating the 5-HT precursor 5-hydroxytryptophan, which produces a global activation of all classes of 5-HT receptors. Stimulation of these receptors leads to the activation of the locomotor central pattern generator (CPG) below the site of injury to facilitate or improve the quality and frequency of movements, particularly when used in concert with the activation of other monoaminergic systems or coupled with electrical stimulation. Another approach has been to employ cell therapeutics to replace the loss of descending serotonergic input to the CPG, either through transplanted fetal brainstem 5-HT neurons at the site of injury that can supply 5-HT to below the level of the lesion or by other cell types to provide a substrate at the injury site for encouraging serotonergic axon regrowth across the lesion to the caudal spinal cord for restoring locomotion.
Collapse
Affiliation(s)
- Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA ; Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA ; Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA ; The Neuroscience Program, University of Miami Miller School of Medicine Miami, FL, USA ; The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine Miami, FL, USA
| |
Collapse
|
5
|
Improving cognition in schizophrenia with antipsychotics that elicit neurogenesis through 5-HT1A receptor activation. Neurobiol Learn Mem 2014; 110:72-80. [DOI: 10.1016/j.nlm.2013.12.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/21/2013] [Accepted: 12/27/2013] [Indexed: 01/20/2023]
|
6
|
Abstract
Monoamine-based treatments for depression have evolved greatly over the past several years, but shortcomings such as suboptimal efficacy, treatment lag, and residual cognitive dysfunction are still significant. Preclinical and clinical studies using compounds directly targeting glutamatergic neurotransmission present new opportunities for antidepressant treatment, with ketamine having a surprisingly rapid and sustained antidepressant effect that is presumably mediated through glutamate-dependent mechanisms. While direct modulation of glutamate transmission for antidepressant and cognition-enhancing actions may be hampered by nonspecific effects, indirect modulation through the serotonin (5-HT) system may be a viable alternative approach. Based on localization and function, 5-HT can modulate glutamate neurotransmission at least through the 5-HT1A, 5-HT1B, 5-HT3, and 5-HT7 receptors, which presents a rational pharmacological opportunity for modulating glutamatergic transmission without the direct use of glutamatergic compounds. Combining one or more of these glutamate-modulating 5-HT targets with 5-HT transporter inhibition may offer new therapeutic opportunities. The multimodal compounds vortioxetine and vilazodone are examples of this approach with diverse mechanisms, and their different clinical effects will provide valuable insights into serotonergic modulation of glutamate transmission for the potential treatment of depression and associated cognitive dysfunction.
Collapse
|
7
|
Handa RJ, Weiser MJ. Gonadal steroid hormones and the hypothalamo-pituitary-adrenal axis. Front Neuroendocrinol 2014; 35:197-220. [PMID: 24246855 PMCID: PMC5802971 DOI: 10.1016/j.yfrne.2013.11.001] [Citation(s) in RCA: 296] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 10/04/2013] [Accepted: 11/07/2013] [Indexed: 12/17/2022]
Abstract
The hypothalamo-pituitary-adrenal (HPA) axis represents a complex neuroendocrine feedback loop controlling the secretion of adrenal glucocorticoid hormones. Central to its function is the paraventricular nucleus of the hypothalamus (PVN) where neurons expressing corticotropin releasing factor reside. These HPA motor neurons are a primary site of integration leading to graded endocrine responses to physical and psychological stressors. An important regulatory factor that must be considered, prior to generating an appropriate response is the animal's reproductive status. Thus, PVN neurons express androgen and estrogen receptors and receive input from sites that also express these receptors. Consequently, changes in reproduction and gonadal steroid levels modulate the stress response and this underlies sex differences in HPA axis function. This review examines the make up of the HPA axis and hypothalamo-pituitary-gonadal (HPG) axis and the interactions between the two that should be considered when exploring normal and pathological responses to environmental stressors.
Collapse
Affiliation(s)
- Robert J Handa
- Department of Basic Medical Science, The University of Arizona College of Medicine, Phoenix, AZ 85004, United States.
| | - Michael J Weiser
- DSM Nutritional Products Ltd., R&D Human Nutrition and Health, Boulder, CO 80301, United States
| |
Collapse
|
8
|
Li Y, Raaby KF, Sánchez C, Gulinello M. Serotonergic receptor mechanisms underlying antidepressant-like action in the progesterone withdrawal model of hormonally induced depression in rats. Behav Brain Res 2013; 256:520-8. [PMID: 24016840 DOI: 10.1016/j.bbr.2013.09.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 08/27/2013] [Accepted: 09/01/2013] [Indexed: 11/16/2022]
Abstract
Hormonally induced mood disorders such as premenstrual dysphoric disorder (PMDD) are characterized by a range of physical and affective symptoms including anxiety, irritability, anhedonia, social withdrawal and depression. Studies demonstrated rodent models of progesterone withdrawal (PWD) have a high level of constructive and descriptive validity to model hormonally-induced mood disorders in women. Here we evaluate the effects of several classes of antidepressants in PWD female Long-Evans rats using the forced swim test (FST) as a measure of antidepressant activity. The study included fluoxetine, duloxetine, amitriptyline and an investigational multimodal antidepressant, vortioxetine (5-HT(3), 5-HT(7) and 5-HT(1D) receptor antagonist; 5-HT(1B) receptor partial agonist; 5-HT(1A) receptor agonist; inhibitor of the serotonin transporter (SERT)). After 14 days of administration, amitriptyline and vortioxetine significantly reduced immobility in the FST whereas fluoxetine and duloxetine were ineffective. After 3 injections over 48 h, neither fluoxetine nor duloxetine reduced immobility, whereas amitriptyline and vortioxetine significantly reduced FST immobility during PWD. When administered acutely during PWD, the 5-HT(1A) receptor agonist, flesinoxan, significantly reduced immobility, whereas the 5-HT(1A) receptor antagonist, WAY-100635, increased immobility. The 5-HT(3) receptor antagonist, ondansetron, significantly reduced immobility, whereas the 5-HT(3) receptor agonist, SR-57227, increased immobility. The 5-HT(7) receptor antagonist, SB-269970, was inactive, although the 5-HT(7) receptor agonist, AS-19, significantly increased PWD-induced immobility. None of the compounds investigated (ondansetron, flesinoxan and SB-269970) improved the effect of fluoxetine during PWD. These data indicate that modulation of specific 5-HT receptor subtypes is critical for manipulating FST immobility in this model of hormone-induced depression.
Collapse
Affiliation(s)
- Yan Li
- External Sourcing and Scientific Excellence, Lundbeck Research USA, United States.
| | | | | | | |
Collapse
|
9
|
High dose of 8-OH-DPAT decreases maximal dentate gyrus activation and facilitates granular cell plasticity in vivo. Exp Brain Res 2013; 230:441-51. [DOI: 10.1007/s00221-013-3594-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/17/2013] [Indexed: 10/26/2022]
|
10
|
Du J, Machado-Vieira R, Khairova R. Synaptic plasticity in the pathophysiology and treatment of bipolar disorder. Curr Top Behav Neurosci 2011; 5:167-185. [PMID: 25236555 DOI: 10.1007/7854_2010_65] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Emerging evidence suggests that synaptic plasticity is intimately involved in the pathophysiology and treatment of bipolar disorder (BPD). Under certain conditions, over-strengthened and/or weakened synapses at different circuits in the brain could disturb brain functions in parallel, causing manic-like or depressive-like behaviors in animal models. In this chapter, we summarize the regulation of synaptic plasticity by medications, psychological conditions, hormones, and neurotrophic factors, and their correlation with mood-associated animal behaviors. We conclude that increased serotonin, norepinephrine, dopamine, brain-derived neurotrophic factor (BDNF), acute corticosterone, and antidepressant treatments lead to enhanced synaptic strength in the hippocampus and also correlate with antidepressant-like behaviors. In contrast, inhibiting monoaminergic signaling, long-term stress, and pathophysiological concentrations of cytokines weakens glutamatergic synaptic strength in the hippocampus and is associated with depressive-like symptoms.
Collapse
Affiliation(s)
- Jing Du
- Laboratory of Molecular Pathophysiology, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Building 35, 1BC909, Bethesda, MD, 20892, USA,
| | | | | |
Collapse
|
11
|
Polter AM, Li X. 5-HT1A receptor-regulated signal transduction pathways in brain. Cell Signal 2010; 22:1406-12. [PMID: 20363322 PMCID: PMC2903656 DOI: 10.1016/j.cellsig.2010.03.019] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
Abstract
Serotonin is an influential monoamine neurotransmitter that signals through a number of receptors to modulate brain function. Among different serotonin receptors, the serotonin 1A (5-HT1A) receptors have been tied to a variety of physiological and pathological processes, notably in anxiety, mood, and cognition. 5-HT1A receptors couple not only to the classical inhibitory G protein-regulated signaling pathway, but also to signaling pathways traditionally regulated by growth factors. Despite the importance of 5-HT1A receptors in brain function, little is known about how these signaling mechanisms link 5-HT1A receptors to regulation of brain physiology and behavior. Following a brief summary of the known physiological and behavioral effects of 5-HT1A receptors, this article will review the signaling pathways regulated by 5-HT1A receptors, and discuss the potential implication of these signaling pathways in 5-HT1A receptor-regulated physiological processes and behaviors.
Collapse
Affiliation(s)
- Abigail M. Polter
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Xiaohua Li
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
12
|
Bergado JA, Scherf T, Almaguer-Melian W, Frey S, López J, Frey JU. Stimulation of the nucleus raphe medialis modifies basal synaptic transmission at the dentate gyrus, but not long-term potentiation or its reinforcement by stimulation of the basolateral amygdala. Neurosci Lett 2009; 464:179-83. [DOI: 10.1016/j.neulet.2009.08.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Revised: 08/12/2009] [Accepted: 08/14/2009] [Indexed: 10/20/2022]
|
13
|
Sil’kis IG. Characteristics of the functioning of the hippocampal formation in waking and paradoxical sleep. ACTA ACUST UNITED AC 2009; 39:523-34. [DOI: 10.1007/s11055-009-9163-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 11/12/2007] [Indexed: 10/20/2022]
|
14
|
Sierra-Mercado D, Dieguez D, Barea-Rodriguez EJ. Brief novelty exposure facilitates dentate gyrus LTP in aged rats. Hippocampus 2008; 18:835-43. [PMID: 18481283 DOI: 10.1002/hipo.20447] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aging is associated with a decreased capacity for dentate gyrus (DG) granule cell depolarization as well as reduced perforant path activation. Although it is well established that the maintenance of DG long-term potentiation (LTP) over days is impaired in aged, as compared to young animals, the threshold for inducing this LTP has never been investigated in aged, awake animals. In addition, although exposure to novelty prior to theta-burst stimulation (TBS) increases both the induction and longevity of DG LTP in adult rats, the effects of exposure to novelty on LTP in aged rats have never been investigated. Here, we report that although TBS delivered in the home cage induces robust and long-lasting DG LTP in young rats, TBS fails to induce DG LTP in aged rats. Interestingly, delivery of TBS to aged rats exploring novel environments induces robust and long-lasting LTP, with the induction, but not the longevity, of this LTP being similar in magnitude to that observed in young rats delivered TBS in the home cage. These results indicate that although TBS-induced DG LTP is impaired in aged, as compared to young rats, TBS during exploration of novel environments is sufficient to rescue age-related deficits in DG LTP. We discuss these observations in the context of previous findings suggesting that the facilitation of LTP by exposure to novel environments results as a consequence of reduced network inhibition in the DG and we suggest that, in spite of age-related changes in the DG, this capacity persists in aged rats and represents a nondietary and nonpharmacological way to facilitate DG LTP during aging.
Collapse
Affiliation(s)
- Demetrio Sierra-Mercado
- Neurobiology of Aging Laboratory, Department of Biology, The University of Texas, San Antonio, Texas 78249-0662, USA
| | | | | |
Collapse
|
15
|
Kim DS, Kim JE, Kwak SE, Kim DW, Choi SY, Kwon OS, Kang TC. Seizure activity selectively reduces 5-HT1A receptor immunoreactivity in CA1 interneurons in the hippocampus of seizure-prone gerbils. Brain Res 2007; 1154:181-93. [PMID: 17493597 DOI: 10.1016/j.brainres.2007.03.084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 03/29/2007] [Accepted: 03/29/2007] [Indexed: 10/23/2022]
Abstract
Since the correlation between the serotonin (5-hydroxytryptamine, 5-HT) system and seizure activity remains to be clarified, we investigated the 5-HT system in the hippocampus of seizure-resistant (SR) and seizure-sensitive (SS) gerbils. There was no difference of the 5-HT system in the hippocampi of young animals (predisposed and juvenile gerbils) in both SR and SS gerbils. 5-HT immunoreactivity in the dorsal raphe nucleus and the median raphe nucleus was also similarly detected in both animal groups. As compared to SR adult gerbils, only 5-HT1A receptor immunoreactivity was selectively reduced in CA1 interneurons within SS adult gerbils. (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin (a 5-HT1A receptor agonist, 1 and 2 mg/kg) markedly reduced paired-pulse inhibition in the CA1 region of SS adult gerbils only. These findings suggest that the selective reduction in 5-HT1A receptor expression on CA1 interneurons of SS adult gerbil may not be developmental defects, but be an acquired compensatory change induced by repeated seizure activity.
Collapse
Affiliation(s)
- Duk-Soo Kim
- Department of Anatomy, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
Schiller L, Jähkel M, Oehler J. The influence of sex and social isolation housing on pre- and postsynaptic 5-HT1A receptors. Brain Res 2006; 1103:76-87. [PMID: 16814751 DOI: 10.1016/j.brainres.2006.05.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 05/12/2006] [Accepted: 05/12/2006] [Indexed: 10/24/2022]
Abstract
Serotonergic (5-HT) receptors are crucial for different brain functions and play an important role in several pathological conditions. We analysed [3H]8-OH-DPAT-specific binding to 5-HT1A receptors in male and female mice after group or isolation housing by in vitro autoradiography (n = 6 per group). Females displayed higher postsynaptic 5-HT1A receptor binding compared to males, especially in the cortex. In contrast, lower [3H]8-OH-DPAT-specific binding was found in the female hippocampus. No sex difference was seen for the somatodendritic 5-HT1A autoreceptor. Sex differences in postsynaptic 5-HT1A receptor binding should be relevant to behavioural sex differences, especially in locomotor activity and hippocampus-dependent behaviours. Six weeks isolation housing caused an increase in 5-HT1A receptor binding in most of the brain regions analysed and was more pronounced in males. In isolated males, the increases were detected in the CA1 field of the hippocampus (+16.8%), in the septum (+76.8%), in the cortical amygdala (+24.6%), in the periaqueductal gray (+67.2%) and in the different cortical regions analysed (+61.8-81.4%). [3H]8-OH-DPAT-specific binding increased significantly in the dentate gyrus (+47.1%), the supramammillary nucleus (+31.2%) and in the ventromedial hypothalamus (+34.4%) of isolated females. Sex-dependent isolation-induced alterations in [3H]8-OH-DPAT-specific binding were also found in the raphe nuclei. Isolation-induced increases in 5-HT1A receptor binding could be relevant to the behavioural disinhibition with heightened arousal, impulsivity and activity often observed in isolates. The male-specific alterations in the corticolimbic system as well as in the midbrain could be crucial for isolation-induced aggression.
Collapse
Affiliation(s)
- Lydia Schiller
- AG Neurobiologie, Klinik für Psychiatrie, Universitätsklinikum der TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | | | | |
Collapse
|
17
|
Gos T, Becker K, Bock J, Malecki U, Bogerts B, Poeggel G, Braun K. Early neonatal and postweaning social emotional deprivation interferes with the maturation of serotonergic and tyrosine hydroxylase-immunoreactive afferent fiber systems in the rodent nucleus accumbens, hippocampus and amygdala. Neuroscience 2006; 140:811-21. [PMID: 16632206 DOI: 10.1016/j.neuroscience.2006.02.078] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 12/23/2005] [Accepted: 02/24/2006] [Indexed: 11/26/2022]
Abstract
The impact of early emotional experience on the development of serotonergic and dopaminergic fiber innervation of the nucleus accumbens, hippocampal formation and the amygdala was quantitatively investigated in the precocious rodent Octodon degus. Two animal groups were compared: 1) degus which were repeatedly separated from their parents during the first three postnatal weeks, after weaning they were individually reared in chronic social isolation and 2) controls which were reared undisturbed with their families. In the deprived animals 5-hydroxytryptamine-immunoreactive fiber densities were increased in the core region of the nucleus accumbens (up to 126%), in the central nucleus of the amygdala (up to 112%) and in the outer subregion of the dentate gyrus stratum moleculare (up to 149%), whereas decreased fiber densities were detected in the dentate subgranular layer (down to 86%) and in the stratum lacunosum of the hippocampal cornu ammonis region 1 (down to 86%). Tyrosine hydroxylase-immunoreactive fiber densities were increased in the core (up to 115%) and shell region (up to 113%) of the nucleus accumbens of deprived animals, whereas decreased fiber densities (down to 84%) were observed in the hilus of the dentate gyrus. In the stratum granulosum and subgranular layer the fiber densities increased up to 168% and 127% respectively. In summary, these results indicate that the postnatal establishment of the monoaminergic innervation of limbic areas is modulated in response to early emotional experience, and that this environmental morphological adaptation is highly region specific.
Collapse
Affiliation(s)
- T Gos
- Institute of Forensic Medicine, Medical University of Gdansk, ul. Debowa 23, 80-204, Gdansk, Poland
| | | | | | | | | | | | | |
Collapse
|
18
|
Sanberg CD, Jones FL, Do VH, Dieguez D, Derrick BE. 5-HT1a receptor antagonists block perforant path-dentate LTP induced in novel, but not familiar, environments. Learn Mem 2006; 13:52-62. [PMID: 16452654 PMCID: PMC1360133 DOI: 10.1101/lm.126306] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Numerous studies suggest roles for monoamines in modulating long-term potentiation (LTP). Previously, we reported that both induction and maintenance of perforant path-dentate gyrus LTP is enhanced when induced while animals explore novel environments. Here we investigate the contribution of serotonin and 5-HT1a receptors to the novelty-mediated enhancement of LTP. In freely moving animals, systemic administration of the selective 5-HT1a antagonist WAY-100635 (WAY) attenuated LTP in a dose-dependent manner when LTP was induced while animals explored novel cages. In contrast, LTP was completely unaffected by WAY when induced in familiar environments. LTP was also blocked in anesthetized animals by direct application of WAY to the dentate gyrus, but not to the median raphe nucleus (MRN), suggesting the effect of systemic WAY is mediated by a block of dentate 5-HT1a receptors. Paradoxically, systemic administration of the 5-HT1a agonist 8-OH-DPAT also attenuated LTP. This attenuation was mimicked in anesthetized animals following application of 8-OH-DPAT to the MRN, but not the dentate gyrus. In addition, application of a 5-HT1a agonist to the dentate gyrus reduced somatic GABAergic inhibition. Because serotonergic projections from the MRN terminate on dentate inhibitory interneurons, these data suggest 5-HT1a receptors contribute to LTP induction via inhibition of GABAergic interneurons. Moreover, activation of raphe 5-HT1a autoreceptors, which inhibits serotonin release, attenuated LTP induction even in familiar environments. This suggests that serotonin normally contributes to dentate LTP induction in a variety of behavioral states. Together, these data suggest that serotonin and dentate 5-HT1a receptors play a permissive role in dentate LTP induction, particularly in novel conditions, and presumably, during the encoding of novel, hippocampus-relevant information.
Collapse
Affiliation(s)
- Cyndy Davis Sanberg
- The Department of Biology, The Cajal Neuroscience Research Institute, The University of Texas at San Antonio, Texas 78249, USA
| | | | | | | | | |
Collapse
|
19
|
Keuker JIH, Keijser JN, Nyakas C, Luiten PGM, Fuchs E. Aging is accompanied by a subfield-specific reduction of serotonergic fibers in the tree shrew hippocampal formation. J Chem Neuroanat 2005; 30:221-9. [PMID: 16169187 DOI: 10.1016/j.jchemneu.2005.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 07/07/2005] [Accepted: 08/15/2005] [Indexed: 10/25/2022]
Abstract
The hippocampal formation is a crucial structure for learning and memory, and serotonin together with other neurotransmitters is essential in these processes. Although the effects of aging on various neurotransmitter systems in the hippocampus have been extensively investigated, it is not entirely clear whether or how the hippocampal serotonergic innervation changes during aging. Rat studies, which have mostly focused on aging-related changes in the dentate gyrus, have implied a loss of hippocampal serotonergic fibers. We used the tree shrew (Tupaia belangeri), an intermediate between insectivores and primates, as a model of aging. We applied immunocytochemistry with an antibody against serotonin to assess serotonergic fiber densities in the various hippocampal subfields of adult (0.9-1.3 years) and old (5-7 years) tree shrews. Our results have revealed a reduction of serotonergic fiber densities in the stratum radiatum of CA1 and CA3, and in the stratum oriens of CA3. A partial depletion of serotonin in the hippocampal formation, as can be expected from our current observations, will probably have an impact on the functioning of hippocampal principal neurons. Our findings also indicate that the rat and the tree shrew hippocampal serotonergic innervation show some variations that seem to be differentially affected during aging.
Collapse
Affiliation(s)
- Jeanine I H Keuker
- Clinical Neurobiology Laboratory, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany.
| | | | | | | | | |
Collapse
|
20
|
Torres-Escalante JL, Barral JA, Ibarra-Villa MD, Pérez-Burgos A, Góngora-Alfaro JL, Pineda JC. 5-HT1A, 5-HT2, and GABAB receptors interact to modulate neurotransmitter release probability in layer 2/3 somatosensory rat cortex as evaluated by the paired pulse protocol. J Neurosci Res 2004; 78:268-78. [PMID: 15378508 DOI: 10.1002/jnr.20247] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activation of gamma-aminobutyric acid B (GABA(B)) and 5-hydroxytryptamine (5-HT) receptors produces presynaptic inhibition at glutamatergic terminals in the rat neocortex. To evaluate interactions between these metabotropic receptors, field potentials were recorded in layer 2/3 of somatosensory cortex. In addition, the paired pulse (PP) protocol was used to measure changes in the ratio of the second/first extracellular synaptic potentials (S(2)/S(1) ratio) as an index of glutamate release probability in the area. Lowering extracellular [Ca(2+)](o) to 0.5 mM, increased the S(2)/S(1) ratio by 318 +/- 134%. 5-HT (1 microM) increased the S(2)/S(1) ratio by 61 +/- 15%. In presence of the GABA(A) antagonist bicuculline (10 microM), 5-HT increased the S(2)/S(1) ratio by 98 +/- 15%. This effect did not desensitize after two consecutive applications of the amine, and was dose dependent in the concentration range between 0.03-1 microM (EC(50) = 2.36 x 10(-7) mol/L). The increase of S(2)/S(1) ratio induced by 5-HT (1 microM) was blocked reversibly by the 5-HT(1A) antagonist NAN-190 (10-30 microM), but was unaffected by the selective GABA(B) antagonist CGP 52432 (1 microM). The action of 5-HT was mimicked by the 5-HT(1A/7) agonist 8OH-DPAT (10 microM), increasing the S(2)/S(1) ratio by 84 +/- 2%, a response that was unaffected by the 5-HT(2/7) antagonist ritanserin (2 microM). The 5-HT(1B) agonist CP93129 (10 microM) had no effect. The GABA(B) agonist baclofen (1 microM) increased the S(2)/S(1) ratio up to 308 +/- 33%, which is similar to that produced by low [Ca(2+)](o). When the effect of baclofen was maximal, application of 5-HT (1 microM) reversed the S(2)/S(1) ratio back to 78 +/- 27%, a result that was blocked by the 5-HT(2/7) antagonist ritanserin (100 nM). Notably, the interaction between the GABA(B) agonist and 5-HT was order dependent, because enhancement of the S(2)/S(1) ratio elicited by baclofen was not inhibited if 5-HT was applied first. These results suggest a complex interaction between GABA(B), 5-HT(1A), and 5-HT(2) receptors in layer 2/3 of rat somatosensory cortex. Activation of GABA(B) receptors induces PP facilitation (inhibits glutamate release) more efficiently than does activation of 5-HT(1A) receptors. When the effect of GABA(B) receptor activation is maximal, however, the influence of 5-HT changes to the opposite direction, inhibiting PP facilitation (increasing glutamate release) through activation of 5-HT(2) receptors.
Collapse
MESH Headings
- Animals
- Baclofen/antagonists & inhibitors
- Baclofen/pharmacology
- Cadmium/pharmacology
- Calcium/physiology
- Female
- In Vitro Techniques
- Male
- Neurotransmitter Agents/metabolism
- Rats
- Rats, Wistar
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/physiology
- Receptors, GABA-B/drug effects
- Receptors, GABA-B/physiology
- Receptors, Serotonin, 5-HT2/drug effects
- Receptors, Serotonin, 5-HT2/physiology
- Serotonin/pharmacology
- Somatosensory Cortex/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Time Factors
Collapse
Affiliation(s)
- José L Torres-Escalante
- Departamento de Neurociencias, Centro de Investigaciones Regionales Dr. Hideyo Noguchi de la Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | | | | | | | | | | |
Collapse
|
21
|
Martinez G, Di Giacomo C, Sorrenti V, Carnazza ML, Bisceglie V, Vanella A. Effects of norepinephrine depletion in rats during cerebral post-ischemic reperfusion. Neurotoxicology 2004; 25:877-84. [PMID: 15288518 DOI: 10.1016/j.neuro.2003.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2003] [Accepted: 11/20/2003] [Indexed: 11/20/2022]
Abstract
The present paper reports the effects of norepinephrine depletion in rats, after treatment with N-(2-chloroethyl)-N-ethyl 2-bromobenzylamine (DSP-4) neurotoxin, on partial cerebral ischemia and reperfusion. Histological observations made under experimental conditions of noradrenergic (NA)-depletion demonstrated that neuronal lesions were not exacerbated; in fact, in DSP-4-treated ischemic animals, a minor number of neurons appeared damaged. Our results suggest that neuronal recovery after post-ischemic reperfusion is not affected by NA-depletion. DSP-4 neurotoxin does not induce 5-hydroxy-triptamine (5-HT) depletion.
Collapse
Affiliation(s)
- G Martinez
- Department of Anatomy, Diagnostic Pathology, Legal Medicine and Public Health (G. Ingrassia 1510-1589 Anatomist), Faculty of Medicine, University of Catania, Via S. Sofia 87 (Comparto 10), 95123 Catania, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Schneider AM, Wilkins E, Firestone A, Everbach EC, Naylor JC, Simson PE. Enhanced retention in the passive-avoidance task by 5-HT(1A) receptor blockade is not associated with increased activity of the central nucleus of the amygdala. Learn Mem 2003; 10:394-400. [PMID: 14557612 PMCID: PMC218005 DOI: 10.1101/lm.54903] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effect of blockade of 5-HT1A receptors was investigated on (1). retention in a mildly aversive passive-avoidance task, and (2). spontaneous single-unit activity of central nucleus of the amygdala (CeA) neurons, a brain site implicated in modulation of retention. Systemic administration of the selective 5-HT1A antagonist NAN-190 immediately after training markedly-and dose-dependently-facilitated retention in the passive-avoidance task; enhanced retention was time-dependent and was not attributable to variations in wattages of shock received by animals. Systemic administration of NAN-190 had mixed effects on spontaneous single-unit activity of CeA neurons recorded extracellularly in vivo; microiontophoretic application of 5-HT, in contrast, consistently and potently suppressed CeA activity. The present findings-that 5-HT1A receptor blockade by NAN-190 (1). enhances retention in the passive-avoidance task, and (2). does not consistently increase spontaneous neuronal activity of the CeA-provide evidence that a serotonergic system tonically inhibits modulation of retention in the passive-avoidance task through activation of the 5-HT1A receptor subtype at brain sites located outside the CeA.
Collapse
Affiliation(s)
- Allen M Schneider
- Department of Psychology, Swarthmore College, Swarthmore, Pennsylvania 19081, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Katsurabayashi S, Kubota H, Tokutomi N, Akaike N. A distinct distribution of functional presynaptic 5-HT receptor subtypes on GABAergic nerve terminals projecting to single hippocampal CA1 pyramidal neurons. Neuropharmacology 2003; 44:1022-30. [PMID: 12763095 DOI: 10.1016/s0028-3908(03)00103-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
5-HT is known to modify the excitability of GABAergic interneurons projecting to hippocampal CA1 neurons. In this study we investigate the presence and functionally characterize the 5-HT receptor subtypes found on the presynaptic nerve terminals of these GABAergic neurons. Using conventional whole-cell patch recording, we confirmed that the 5-HT(1A) agonist, 8-hydroxy-2-dipropylaminotetralin, presynaptically decreased electrically evoked GABA release while the 5-HT(3) agonist, m-chlorophenylbiguanide (mCPBG), presynaptically facilitated release. Using the 'synaptic bouton preparation', where CA1 neurons are acutely isolated with functional nerve terminals/boutons remaining adherent, we next showed that these receptor subtypes are found presynaptically. We next used the technique of focal stimulation of a single bouton in this preparation to further investigate the distribution of these 5-HT receptor subtypes. We found that all boutons contained inhibitory 5-HT(1A) receptors while a subset of boutons showed both 5-HT(1A) and excitatory 5-HT(3) receptors. No boutons were detected which contained only 5-HT(3) receptors. Our studies show that presynaptic 5-HT receptor subtypes are found presynaptically and are not uniformly distributed. This provides another potential mechanism whereby 5-HT can modulate GABA release and hence the excitability of hippocampal neurons.
Collapse
Affiliation(s)
- S Katsurabayashi
- Cellular and System Physiology, Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan
| | | | | | | |
Collapse
|
24
|
Flügge G, Kramer M, Rensing S, Fuchs E. 5HT1A-receptors and behaviour under chronic stress: selective counteraction by testosterone. Eur J Neurosci 2003. [DOI: 10.1046/j.1460-9568.1998.00280.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Aznar S, Qian Z, Shah R, Rahbek B, Knudsen GM. The 5-HT1A serotonin receptor is located on calbindin- and parvalbumin-containing neurons in the rat brain. Brain Res 2003; 959:58-67. [PMID: 12480158 DOI: 10.1016/s0006-8993(02)03727-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The 5-HT(1A) receptor is a well-characterized serotonin receptor playing a role in many central nervous functions and known to be involved in depression and other mental disorders. In situ hybridization, immunocytochemical, and binding studies have shown that the 5-HT(1A) receptor is widely distributed in the rat brain, with a particularly high density in the limbic system. The receptor's localization in the different neuronal subtypes, which may be of importance for understanding its role in neuronal circuitries, is, however, unknown. In this study we show by immunocytochemical double-labeling techniques, that the 5-HT(1A) receptor is present on both pyramidal and principal cells, and calbindin- and parvalbumin-containing neurons, which generally define two different subtypes of interneurons. Moreover, semiquantitative analysis showed that the receptor's distribution in the different neuronal types varies between brain areas. In cortex, hippocampus, hypothalamus, and amygdala the receptor was located on both principal cells and calbindin- and parvalbumin-containing neurons. In septum and thalamus, the receptor was mostly present on calbindin- and parvalbumin-containing cells. Especially in the medial septum and thalamic reticular nucleus, the receptor highly colocalized with parvalbumin-positive neurons. These results suggest a diverse function of the 5-HT(1A) receptor in modulating neuronal circuitry in different brain areas, that may depend on the type of neuron the receptor is predominantly located on.
Collapse
Affiliation(s)
- Susana Aznar
- Neurobiology Research Unit, Unit 9201, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
26
|
Levkovitz Y, Segal M. Aging affects transcranial magnetic modulation of hippocampal evoked potentials. Neurobiol Aging 2001; 22:255-63. [PMID: 11182475 DOI: 10.1016/s0197-4580(00)00195-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Transcranial magnetic stimulation (TMS) is being proposed as a method of choice for the treatment of clinical depression, yet its action in the brain is still not well understood. In previous studies we found that TMS has a long-term effect on reactivity of the hippocampus to perforant path stimulation. Since the efficacy of antidepressants is highly age-dependent, we studied possible age-related effects of TMS on hippocampal evoked responses. Young adult (3 months), aging (10 months) and aged (24-26 months) awake rats were subjected to daily TMS for one week, followed by measurements of several parameters of reactivity to perforant path stimulation in the anesthetized rat. TMS did not affect responses of the hippocampus to single perforant path stimulation, but reduced drastically paired-pulse and frequency dependent depression in the young and aging but not the old rats. Likewise, TMS increased LTP expression in the young but not the old rats, and reduced the efficacy of serotonin modulation of reactivity of the hippocampus, in the young but not the old rats. Thus, long term effects of chronic TMS on local GABAergic inhibition are highly age dependent.
Collapse
Affiliation(s)
- Y Levkovitz
- Department of Neurobiology, The Weizmann Institute, 76100, Rehovot, Israel
| | | |
Collapse
|
27
|
Broderick PA, Pacia SV, Doyle WK, Devinsky O. Monoamine neurotransmitters in resected hippocampal subparcellations from neocortical and mesial temporal lobe epilepsy patients: in situ microvoltammetric studies. Brain Res 2000; 878:48-63. [PMID: 10996135 DOI: 10.1016/s0006-8993(00)02678-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It is known that epilepsy patients diagnosed with neocortical temporal lobe epilepsy (NTLE), differ from those diagnosed with mesial temporal lobe epilepsy (MTLE), e.g., in hippocampal (HPC) pathology. In the present studies, we tested the hypothesis that NTLE and MTLE subtypes of human epilepsy might differ in regards to their HPC monoamine neurochemistry. Monoamine neurotransmitters were studied in separate signals and within s with semiderivative microvoltammetry, used in combination with stearate indicator, Ag-AgCl reference and stainless steel auxiliary microelectrodes. Anterior HPC specimens from the patients' epileptogenic zone, defined by electrocorticography, were resected neurosurgically from 13 consecutive patients with intractable temporal lobe epilepsy. Four patients were diagnosed with NTLE and nine with MTLE. The criteria for the diagnosis of NTLE versus MTLE was absence versus presence of HPC sclerosis, respectively, based on MRI examination of resected tissue. In addition, NTLE patients demonstrated seizure onset in anterolateral temporal neocortex on electroencephalography (EEG). HPC subparcellations studied were: (a) Granular Cells of the Dentate Gyrus (DG), (b) Polymorphic Layer of DG and (c) Pyramidal Layer: subfields, CA1 and CA2. Dopamine (DA), serotonin (5-HT), norepinephrine (NE) and ascorbic acid (AA) (co-factor in DA to NE synthesis), exhibited separate and characteristic half-wave potentials in millivolts. Each half-wave potential, i.e., the potential at which maximum current was generated, was experimentally established in vitro. Concentrations of neurotransmitters found in HPC subparcellations were interpolated from calibration curves derived in vitro from electrochemical detection of monoamines and AA in saline phosphate buffer. Significant differences between subtypes in concentration of monoamines were analyzed by the Mann Whitney rank sum test and those differences in probability distribution of monoamines were analyzed by the Fisher Exact test; in each case, P<0.01 was the criteria selected for determining statistical significance. DA concentrations were higher in NTLE compared with MTLE in each HPC subparcellation [P=0.037, 0.024 and 0.007, respectively (P<0.01)] and DA occurred more frequently in NTLE in the Pyramidal Layer [P=0.077 (P<0.01)]. AA was present in one NTLE patient. NE concentrations were higher in MTLE vs. NTLE in each subparcellation [P=0.012, 0.067 and 0.07, respectively (P<0.01)] and NE occurred more frequently in MTLE in Granular Cells of DG and Pyramidal Layer [P=0.052 and 0.014, respectively (P<0.01)]. In MTLE, NE concentrations in the CA1 subfield of the Pyramidal Layer were decreased vs. the CA2 subfield [P=0.063 (P<0.01)]. Serotonin was found in every HPC subparcellation of each subtype but 5-HT concentrations were higher in NTLE vs. MTLE in the Granular Cells of DG and the Pyramidal Layer (CA1 subfield) [P=0.076 and 0.095, respectively (P<0.01)]. Thus, this preliminary study showed that marked differences in HPC monoamine neurochemistry occurred in NTLE patients as compared with MTLE patients.
Collapse
Affiliation(s)
- P A Broderick
- Department of Physiology and Pharmacology, The City University of New York Medical School, New York, NY 10031, USA.
| | | | | | | |
Collapse
|
28
|
Flügge G. Regulation of monoamine receptors in the brain: dynamic changes during stress. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 195:145-213. [PMID: 10603576 DOI: 10.1016/s0074-7696(08)62705-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Monoamine receptors are membrane-bound receptors that are coupled to G-proteins. Upon stimulation by agonists, they initiate a cascade of intracellular events that guide biochemical reactions of the cell. In the central nervous system, they undergo diverse regulatory processes, among which are receptor desensitization, internalization into the cell, and downregulation. These processes vary among different types of monoamine receptors. alpha 2-Adrenoceptors are often downregulated by agonists, and beta-adrenoceptors are internalized rapidly. Others, such as serotonin1A-receptors, are controlled tightly by steroid hormones. Expression of these receptors is reduced by the "stress hormones" glucocorticoids, whereas gonadal hormones such as testosterone can counterbalance the glucocorticoid effects. Because of this, the pattern of monoamine receptors in certain brain regions undergoes dynamic changes when there are elevated concentrations of agonists or when the hormonal milieu changes. Stress is a physiological situation accompanied by the high activity of brain monoaminergic systems and dramatic changes in peripheral hormones. Resulting alterations in monoamine receptors are considered to be in part responsible for changes in the behavior of an individual.
Collapse
Affiliation(s)
- G Flügge
- German Primate Center, Göttingen, Germany
| |
Collapse
|
29
|
Levkovitz Y, Avignone E, Groner Y, Segal M. Upregulation of GABA neurotransmission suppresses hippocampal excitability and prevents long-term potentiation in transgenic superoxide dismutase-overexpressing mice. J Neurosci 1999; 19:10977-84. [PMID: 10594078 PMCID: PMC6784966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Cu/Zn superoxide dismutase (SOD-1) is a key enzyme in oxygen metabolism in the brain. Overexpression of SOD-1 in transgenic (Tg) mice has been used to study the functional roles of this enzyme in oxidative stress, lipid peroxidation, and neurotoxicity. We found that Tg-SOD-1 mice are strikingly less sensitive to kainic acid-induced behavioral seizures than control mice. Furthermore, the hippocampus of Tg-SOD-1 mice was far less sensitive to local application of bicuculline, a GABA-A antagonist, than the hippocampus of control mice. GABAergic functions, expressed in extracellular paired-pulse depression, and in IPSCs recorded in dentate granular cells were enhanced in Tg-SOD-1 mice. Finally, long-term potentiation (LTP), not found in the dentate gyrus of Tg-SOD-1 mice, could be restored by local blockade of inhibition and could be blocked in control mice by injection of diazepam, which amplifies inhibition. These results indicate that constitutive elevation of SOD-1 activity exerts a major effect on neuronal excitability in the hippocampus, which, in turn, controls hippocampal ability to express LTP.
Collapse
Affiliation(s)
- Y Levkovitz
- Department of Neurobiology, The Weizmann Institute, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
30
|
Zhou FC, Patel TD, Swartz D, Xu Y, Kelley MR. Production and characterization of an anti-serotonin 1A receptor antibody which detects functional 5-HT1A binding sites. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 69:186-201. [PMID: 10366740 DOI: 10.1016/s0169-328x(99)00101-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We describe the production and characterization of a specific anti-5-HT1A receptor antibody made against a fusion protein consisting of glutathione-S-transferase (GST) coupled to a 75-amino acid sequence from the middle portion of the third intracellular loop (5-HT1A-m3i, serine253-arginine327) of the rat 5-HT1A receptor protein. This region was chosen to avoid putative phosphorylation and glycosylation sites and regions of known homology with other 5-HT receptors. Western blot analysis indicated that the polyclonal anti-5-HT1A-m3i antibody accurately recognized the fusion protein expressed in bacteria and labeled a prominent 67 kDa protein band in the hippocampus, cortex, brainstem, cerebellum and kidney with a density profile corresponding to the relative abundance of the 5-HT1A receptor in these tissues. No protein was detected in liver or muscle tissue preparations, and no protein bands were labeled in any of the above tissues following preabsorption of the antibody with the 5-HT1A-m3i fusion protein. Immunohistochemistry revealed prominent labeling in limbic structures including the hippocampus, amygdala, entorhinal cortex, and septum as well as in raphe nuclei. In the hippocampus, 5-HT1A-m3i labeling revealed a characteristic laminar pattern that coincided with that seen by autoradiographic binding of the 5-HT1A agonist [3H]-8-OH-DPAT in all strata of the hippocampal formation. In the dorsal and medial raphe nuclei, anti-5-HT1A-m3i antibodies labeled the somatodendritic membranes of 5-HT neurons, consistent with its role as an autoreceptor. The detailed matching of the anti-5-HT1A-m3i antibody with [3H]-8-OH-DPAT binding suggests that the antibody recognizes a functionally active form of the 5-HT1A receptor protein capable of binding 5-HT1A agonist ligands. These anti-5-HT1A antibodies may therefore be useful tools in localizing functional 5-HT1A receptors in specific regions of the brain as well as in studying the plasticity and ontogeny of the 5-HT1A receptor at the cellular and subcellular level.
Collapse
Affiliation(s)
- F C Zhou
- Department of Anatomy, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA.
| | | | | | | | | |
Collapse
|
31
|
Haring JH, Yan W. Dentate granule cell function after neonatal treatment with parachloroamphetamine or 5,7-dihydroxytryptamine. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 114:269-72. [PMID: 10320767 DOI: 10.1016/s0165-3806(99)00032-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In vitro, extracellular electrophysiological recording was used to test granule cell responses in P60 rats after neonatal PCA and 5, 7-DHT. Granule cell population EPSP and spike responses were in the normal range for both PCA and 5,7-DHT groups. However, the degree of paired pulse facilitation was reduced in both of these groups relative to control, reflecting a diminished synaptic drive. Synaptic potentiation in the 5,7-DHT group was not different from control, but was significantly reduced in slices from PCA-treated rats.
Collapse
Affiliation(s)
- J H Haring
- Department of Anatomy and Neurobiology, Saint Louis University Health Sciences Center, 1402 S. Grand Boulevard, St. Louis, MO 63122, USA.
| | | |
Collapse
|
32
|
Levkovitz Y, Marx J, Grisaru N, Segal M. Long-term effects of transcranial magnetic stimulation on hippocampal reactivity to afferent stimulation. J Neurosci 1999; 19:3198-203. [PMID: 10191332 PMCID: PMC6782291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/1998] [Revised: 12/02/1998] [Accepted: 02/01/1999] [Indexed: 02/11/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) has become a promising treatment of affective disorders in humans, yet the neuronal basis of its long-lasting effects in the brain is still unknown. We studied acute and lasting effects of TMS on reactivity of the rat hippocampus to stimulation of the perforant path. Application of TMS to the brain of the anesthetized rat caused a dose-dependent transient increase in population spike (PS) response of the dentate gyrus to perforant path stimulation. In addition, TMS caused a marked decrease in inhibition and an increase in paired-pulse potentiation of reactivity to stimulation of the perforant path. Also, TMS suppressed the ability of fenfluramine (FFA), a serotonin releaser, to potentiate PS response to perforant path stimulation. Chronic TMS did not affect single population spikes but caused an increase in paired-pulse potentiation, which was still evident 3 weeks after the last of seven daily TMS treatments. After chronic TMS, FFA was ineffective in enhancing reactivity to perforant path stimulation, probably because it lost the ability to release serotonin. In addition, the beta adrenergic receptor agonist isoproterenol, which caused an increase in PS in the control rats, failed to do so in the TMS-treated rats. These results indicate that TMS produces a long-term reduction in efficacy of central modulatory systems.
Collapse
Affiliation(s)
- Y Levkovitz
- Department of Neurobiology, The Weizmann Institute, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
33
|
Levkovitz Y, Segal M. Age-dependent local modulation of hippocampal-evoked responses to perforant path stimulation. Neurobiol Aging 1998; 19:317-24. [PMID: 9733164 DOI: 10.1016/s0197-4580(98)00068-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Local modulation of hippocampal-evoked responses to perforant path stimulation was studied by leaking drugs from the recording pipette placed in the dentate gyrus of anesthetized young (3 months old), aging (17 months old) and old (28 months old) rats. In old rats, the excitatory postsynaptic potential (EPSP) slope was much reduced compared to young and aging rats. The population spike (PS) size was similar in all age groups. Bicuculline caused a marked increase in PS size relative to population EPSP, and reversed the response to the second pulse in a paired-pulse paradigm from inhibition to facilitation. The effect of bicuculline was only slightly reduced in old rats. The 5-HT1a agonist 8-OH-DPAT potentiated PSs in the dentate gyrus, while not affecting paired-pulse inhibition. The effect of 8-OH-DPAT was slightly reduced in old rats. Carbachol, a cholinergic agonist, reversed paired-pulse inhibition into facilitation in the young brain, but not in aging and old rats. These results demonstrate that age affects differentially the action of biogenic amines on hippocampal reactivity to afferent stimulation.
Collapse
Affiliation(s)
- Y Levkovitz
- Department of Neurobiology, The Weizmann Institute, Rehovot, Israel
| | | |
Collapse
|