1
|
Kuhn YA, Egger S, Bugnon M, Lehmann N, Taubert M, Taube W. Age-related decline in GABAergic intracortical inhibition can be counteracted by long-term learning of balance skills. J Physiol 2024; 602:3737-3753. [PMID: 38949035 DOI: 10.1113/jp285706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
Ageing induces a decline in GABAergic intracortical inhibition, which seems to be associated not only with decremental changes in well-being, sleep quality, cognition and pain management but also with impaired motor control. So far, little is known regarding whether targeted interventions can prevent the decline of intracortical inhibition in the primary motor cortex in the elderly. Therefore, the present study investigated whether age-related cortical dis-inhibition could be reversed after 6 months of balance learning and whether improvements in postural control correlated with the extent of reversed dis-inhibition. The results demonstrated that intracortical inhibition can be upregulated in elderly subjects after long-term balance learning and revealed a correlation between changes in balance performance and intracortical inhibition. This is the first study to show physical activity-related upregulation of GABAergic inhibition in a population with chronic dis-inhibition and may therefore be seminal for many pathologies in which the equilibrium between inhibitory and excitatory neurotransmitters is disturbed. KEY POINTS: Ageing induces a decline in GABAergic intracortical inhibition. So far, little is known regarding whether targeted interventions can prevent the decline of intracortical inhibition in the primary motor cortex in the elderly. After 6 months of balance learning, intracortical inhibition can be upregulated in elderly subjects. The results of this study also revealed a correlation between changes in balance performance and intracortical inhibition. This is the first study to show physical activity-related upregulation of GABAergic inhibition in a population with chronic dis-inhibition.
Collapse
Affiliation(s)
- Yves-Alain Kuhn
- Department of Neurosciences and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Sven Egger
- Department of Neurosciences and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Matteo Bugnon
- Department of Neurosciences and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Nico Lehmann
- Department of Neurosciences and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Department of Sport Science, Institute III, Faculty of Humanities, Otto von Guericke University, Magdeburg, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Collaborative Research Center 1436 Neural Resources of Cognition, Otto von Guericke University, Magdeburg, Germany
| | - Marco Taubert
- Department of Sport Science, Institute III, Faculty of Humanities, Otto von Guericke University, Magdeburg, Germany
- Collaborative Research Center 1436 Neural Resources of Cognition, Otto von Guericke University, Magdeburg, Germany
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, Magdeburg, Germany
| | - Wolfgang Taube
- Department of Neurosciences and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
2
|
Long-lasting Postnatal Sensory Deprivation Alters Dendritic Morphology of Pyramidal Neurons in the Rat Hippocampus: Behavioral Correlates. Neuroscience 2022; 480:79-96. [PMID: 34785272 DOI: 10.1016/j.neuroscience.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/20/2022]
Abstract
The role of normal sensory inputs in the development of sensory cortices is well known, however, their impacts on the hippocampus, an integrator of sensory modalities with important roles in cognitive functions, has received much less attention. Here, we applied a long-term sensory deprivation paradigm by trimming the rats' whiskers bilaterally, from postnatal day 3 to 59. Female sensory-deprived (SD) rats showed more on-wall rearing and visits to the center of the open-field box, shorter periods of grooming, less defecation and less anxiety-like behaviors in the elevated plus-maze compared to controls, who had their intact whiskers brushed. Passive avoidance memory retention was sex-dependently impaired in the female SD rats. In the radial arm maze, however, reference spatial memory was impaired only in the male SD rats. Nonetheless, working memory errors increased in both sexes of SD rats. Besides depletion of CA1 and CA3 pyramidal neurons in SD rats, Sholl analysis of Golgi-Cox stained neurons revealed that prolonged sensory deprivation has retracted the arborization of CA1 basal dendrites in SD group, while solely female SD rats had diminished CA1 apical dendrites. Sholl analysis of CA3 neurons in SD animals also disclosed significantly more branched apical dendrites in males and basal dendrites in females. Sensory deprivation also led to a considerable spine loss and variation of different spine types in a sex-dependent manner. Our findings suggest that experience-dependent structural plasticity is capable of spreading far beyond the manipulated sensory zones and the inevitable functional alterations can be expressed in a multifactorial sex-dependent manner.
Collapse
|
3
|
Kowalski JL, Nemanich ST, Nawshin T, Chen M, Peyton C, Zorn E, Hickey M, Rao R, Georgieff M, Rudser K, Gillick BT. Motor Evoked Potentials as Potential Biomarkers of Early Atypical Corticospinal Tract Development in Infants with Perinatal Stroke. J Clin Med 2019; 8:jcm8081208. [PMID: 31412592 PMCID: PMC6723226 DOI: 10.3390/jcm8081208] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/31/2019] [Accepted: 08/09/2019] [Indexed: 11/16/2022] Open
Abstract
Diagnosis of cerebral palsy (CP) after perinatal stroke is often delayed beyond infancy, a period of rapid neuromotor development with heightened potential for rehabilitation. This study sought to assess whether the presence or absence of motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) could be an early biomarker of atypical development within the first year of life. In 10 infants with perinatal stroke, motor outcome was assessed with a standardized movement assessment. Single-pulse TMS was utilized to assess presence of MEPs. Younger infants (3-6 months CA, n = 5, 4/5 (80%)) were more likely to present with an MEP from the more-affected hemisphere (MAH) compared to older infants (7-12 months CA, n = 5, 0/5, (0%)) (p = 0.048). Atypical movement was demonstrated in the majority of infants with an absent MEP from the MAH (5/6, 83%) compared to those with a present MEP (1/4, 25%) (p = 0.191). We found that age influences the ability to elicit an MEP from the MAH, and motor outcome may be related to MAH MEP absence. Assessment of MEPs in conjunction with current practice of neuroimaging and motor assessments could promote early detection and intervention in infants at risk of CP.
Collapse
Affiliation(s)
- Jesse L Kowalski
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samuel T Nemanich
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tanjila Nawshin
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mo Chen
- Department of Psychiatry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Colleen Peyton
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth Zorn
- Division of Neonatology, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN 55455, USA
| | - Marie Hickey
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Raghavendra Rao
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Georgieff
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kyle Rudser
- Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bernadette T Gillick
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
4
|
Dooley JC, Blumberg MS. Developmental 'awakening' of primary motor cortex to the sensory consequences of movement. eLife 2018; 7:41841. [PMID: 30574868 PMCID: PMC6320070 DOI: 10.7554/elife.41841] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/19/2018] [Indexed: 11/23/2022] Open
Abstract
Before primary motor cortex (M1) develops its motor functions, it functions like a somatosensory area. Here, by recording from neurons in the forelimb representation of M1 in postnatal day (P) 8–12 rats, we demonstrate a rapid shift in its sensory responses. At P8-10, M1 neurons respond overwhelmingly to feedback from sleep-related twitches of the forelimb, but the same neurons do not respond to wake-related movements. By P12, M1 neurons suddenly respond to wake movements, a transition that results from opening the sensory gate in the external cuneate nucleus. Also at P12, fewer M1 neurons respond to individual twitches, but the full complement of twitch-related feedback observed at P8 is unmasked through local disinhibition. Finally, through P12, M1 sensory responses originate in the deep thalamorecipient layers, not primary somatosensory cortex. These findings demonstrate that M1 initially establishes a sensory framework upon which its later-emerging role in motor control is built.
Collapse
Affiliation(s)
- James C Dooley
- Department of Psychological & Brain Sciences, University of Iowa, Iowa, United States.,DeLTA Center, University of Iowa, Iowa, United States
| | - Mark S Blumberg
- Department of Psychological & Brain Sciences, University of Iowa, Iowa, United States.,DeLTA Center, University of Iowa, Iowa, United States.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa, United States.,Department of Biology, University of Iowa, Iowa, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa, United States
| |
Collapse
|
5
|
Mohammed H, Hollis ER. Cortical Reorganization of Sensorimotor Systems and the Role of Intracortical Circuits After Spinal Cord Injury. Neurotherapeutics 2018; 15:588-603. [PMID: 29882081 PMCID: PMC6095783 DOI: 10.1007/s13311-018-0638-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
The plasticity of sensorimotor systems in mammals underlies the capacity for motor learning as well as the ability to relearn following injury. Spinal cord injury, which both deprives afferent input and interrupts efferent output, results in a disruption of cortical somatotopy. While changes in corticospinal axons proximal to the lesion are proposed to support the reorganization of cortical motor maps after spinal cord injury, intracortical horizontal connections are also likely to be critical substrates for rehabilitation-mediated recovery. Intrinsic connections have been shown to dictate the reorganization of cortical maps that occurs in response to skilled motor learning as well as after peripheral injury. Cortical networks incorporate changes in motor and sensory circuits at subcortical or spinal levels to induce map remodeling in the neocortex. This review focuses on the reorganization of cortical networks observed after injury and posits a role of intracortical circuits in recovery.
Collapse
Affiliation(s)
- Hisham Mohammed
- Burke Neurological Institute, 785 Mamaroneck Avenue, White Plains, NY, 10605, USA
| | - Edmund R Hollis
- Burke Neurological Institute, 785 Mamaroneck Avenue, White Plains, NY, 10605, USA.
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Abe Y, Kato C, Uchima Koecklin KH, Okihara H, Ishida T, Fujita K, Yabushita T, Kokai S, Ono T. Unilateral nasal obstruction affects motor representation development within the face primary motor cortex in growing rats. J Appl Physiol (1985) 2017; 122:1494-1503. [PMID: 28336541 DOI: 10.1152/japplphysiol.01130.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/09/2017] [Accepted: 03/20/2017] [Indexed: 12/30/2022] Open
Abstract
Postnatal growth is influenced by genetic and environmental factors. Nasal obstruction during growth alters the electromyographic activity of orofacial muscles. The facial primary motor area represents muscles of the tongue and jaw, which are essential in regulating orofacial motor functions, including chewing and jaw opening. This study aimed to evaluate the effect of chronic unilateral nasal obstruction during growth on the motor representations within the face primary motor cortex (M1). Seventy-two 6-day-old male Wistar rats were randomly divided into control (n = 36) and experimental (n = 36) groups. Rats in the experimental group underwent unilateral nasal obstruction after cauterization of the external nostril at 8 days of age. Intracortical microstimulation (ICMS) mapping was performed when the rats were 5, 7, 9, and 11 wk old in control and experimental groups (n = 9 per group per time point). Repeated-measures multivariate ANOVA was used for intergroup and intragroup statistical comparisons. In the control and experimental groups, the total number of positive ICMS sites for the genioglossus and anterior digastric muscles was significantly higher at 5, 7, and 9 wk, but there was no significant difference between 9 and 11 wk of age. Moreover, the total number of positive ICMS sites was significantly smaller in the experimental group than in the control at each age. It is possible that nasal obstruction induced the initial changes in orofacial motor behavior in response to the altered respiratory pattern, which eventually contributed to face-M1 neuroplasticity.NEW & NOTEWORTHY Unilateral nasal obstruction in rats during growth periods induced changes in arterial oxygen saturation (SpO2) and altered development of the motor representation within the face primary cortex. Unilateral nasal obstruction occurring during growth periods may greatly affect not only respiratory function but also craniofacial function in rats. Nasal obstruction should be treated as soon as possible to avoid adverse effects on normal growth, development, and physiological functions.
Collapse
Affiliation(s)
- Yasunori Abe
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chiho Kato
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Karin Harumi Uchima Koecklin
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidemasa Okihara
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayoshi Ishida
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichi Fujita
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tadachika Yabushita
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Kokai
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Ono
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
7
|
Abstract
Scientists and philosophers have long appreciated that active somatosensation requires the sensory and motor systems to exchange information about body the body's movements as well as touch in order to accurately interpret incoming somatosensory information and plan future movements. However, the circuitry underlying this sensory and motor integration is complicated and is difficult to study without tools to label specific cellular components in the various brain regions involved. Here, I review the general pathways that convey ascending sensory and descending motor information, using the rodent whisker system as a model to take advantage of the cell type specificity possible in this model. I then detail the circuits in motor cortex in which incoming information from somatosensory cortex and thalamus is integrated. I close with a brief description of changes in these circuits during motor learning.
Collapse
Affiliation(s)
- Bryan M Hooks
- 1 Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Synaptic plasticity in the facial nucleus in rats following infraorbital nerve manipulation after facial nerve injury. Eur Arch Otorhinolaryngol 2016; 273:3135-42. [DOI: 10.1007/s00405-016-3939-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/12/2016] [Indexed: 10/22/2022]
|
9
|
Rigas P, Adamos DA, Sigalas C, Tsakanikas P, Laskaris NA, Skaliora I. Spontaneous Up states in vitro: a single-metric index of the functional maturation and regional differentiation of the cerebral cortex. Front Neural Circuits 2015; 9:59. [PMID: 26528142 PMCID: PMC4603250 DOI: 10.3389/fncir.2015.00059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/22/2015] [Indexed: 12/12/2022] Open
Abstract
Understanding the development and differentiation of the neocortex remains a central focus of neuroscience. While previous studies have examined isolated aspects of cellular and synaptic organization, an integrated functional index of the cortical microcircuit is still lacking. Here we aimed to provide such an index, in the form of spontaneously recurring periods of persistent network activity -or Up states- recorded in mouse cortical slices. These coordinated network dynamics emerge through the orchestrated regulation of multiple cellular and synaptic elements and represent the default activity of the cortical microcircuit. To explore whether spontaneous Up states can capture developmental changes in intracortical networks we obtained local field potential recordings throughout the mouse lifespan. Two independent and complementary methodologies revealed that Up state activity is systematically modified by age, with the largest changes occurring during early development and adolescence. To explore possible regional heterogeneities we also compared the development of Up states in two distinct cortical areas and show that primary somatosensory cortex develops at a faster pace than primary motor cortex. Our findings suggest that in vitro Up states can serve as a functional index of cortical development and differentiation and can provide a baseline for comparing experimental and/or genetic mouse models.
Collapse
Affiliation(s)
- Pavlos Rigas
- Neurophysiology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of AthensAthens, Greece
| | - Dimitrios A. Adamos
- Neuroinformatics Group, Aristotle University of ThessalonikiThessaloniki, Greece
- School of Music Studies, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Charalambos Sigalas
- Neurophysiology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of AthensAthens, Greece
| | - Panagiotis Tsakanikas
- Neurophysiology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of AthensAthens, Greece
| | - Nikolaos A. Laskaris
- Neuroinformatics Group, Aristotle University of ThessalonikiThessaloniki, Greece
- AIIA Lab, Department of Informatics, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Irini Skaliora
- Neurophysiology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of AthensAthens, Greece
| |
Collapse
|
10
|
Avivi-Arber L, Lee JC, Sood M, Lakschevitz F, Fung M, Barashi-Gozal M, Glogauer M, Sessle BJ. Long-term neuroplasticity of the face primary motor cortex and adjacent somatosensory cortex induced by tooth loss can be reversed following dental implant replacement in rats. J Comp Neurol 2015; 523:2372-89. [DOI: 10.1002/cne.23793] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 04/10/2015] [Accepted: 04/15/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Limor Avivi-Arber
- Department of Prosthodontic; Faculty of Dentistry; University of Toronto; Ontario Canada
- Department of Oral Physiology; Faculty of Dentistry; University of Toronto; Ontario Canada
| | - Jye-Chang Lee
- Department of Oral Physiology; Faculty of Dentistry; University of Toronto; Ontario Canada
| | - Mandeep Sood
- Department of Oral Physiology; Faculty of Dentistry; University of Toronto; Ontario Canada
- Department of Orthodontics; Faculty of Dentistry; University of Toronto; Ontario Canada
| | - Flavia Lakschevitz
- Department of Periodontics; Faculty of Dentistry; University of Toronto; Ontario Canada
| | - Michelle Fung
- Department of Oral Physiology; Faculty of Dentistry; University of Toronto; Ontario Canada
| | - Maayan Barashi-Gozal
- Department of Periodontics; Faculty of Dentistry; University of Toronto; Ontario Canada
| | - Michael Glogauer
- Department of Periodontics; Faculty of Dentistry; University of Toronto; Ontario Canada
| | - Barry J. Sessle
- Department of Oral Physiology; Faculty of Dentistry; University of Toronto; Ontario Canada
| |
Collapse
|
11
|
Abstract
Our tactile perception of external objects depends on skin-object interactions. The mechanics of contact dictates the existence of fundamental spatiotemporal input features—contact initiation and cessation, slip, and rolling contact—that originate from the fact that solid objects do not interpenetrate. However, it is unknown whether these features are represented within the brain. We used a novel haptic interface to deliver such inputs to the glabrous skin of finger/digit pads and recorded from neurons of the cuneate nucleus (the brain’s first level of tactile processing) in the cat. Surprisingly, despite having similar receptive fields and response properties, each cuneate neuron responded to a unique combination of these inputs. Hence, distinct haptic input features are encoded already at subcortical processing stages. This organization maps skin-object interactions into rich representations provided to higher cortical levels and may call for a re-evaluation of our current understanding of the brain’s somatosensory systems. Specific haptic input features were selectively delivered to glabrous skin The input features were segregated in the neurons of the cuneate nucleus These observations may call for a shift in current views of tactile processing
Collapse
|
12
|
Jiang YQ, Williams PTJA, Martin JH. Rapid and persistent impairments of the forelimb motor representations following cervical deafferentation in rats. Eur J Neurosci 2013; 38:3702-11. [PMID: 24329730 DOI: 10.1111/ejn.12372] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 08/29/2013] [Accepted: 09/02/2013] [Indexed: 11/28/2022]
Abstract
Skilled motor control is regulated by the convergence of somatic sensory and motor signals in brain and spinal motor circuits. Cervical deafferentation is known to diminish forelimb somatic sensory representations rapidly and to impair forelimb movements. Our focus was to determine what effect deafferentation has on the motor representations in motor cortex, knowledge of which could provide new insights into the locus of impairment following somatic sensory loss, such as after spinal cord injury or stroke. We hypothesized that somatic sensory information is important for cortical motor map topography. To investigate this we unilaterally transected the dorsal rootlets in adult rats from C4 to C8 and mapped the forelimb motor representations using intracortical microstimulation, immediately after rhizotomy and following a 2-week recovery period. Immediately after deafferentation we found that the size of the distal representation was reduced. However, despite this loss of input there were no changes in motor threshold. Two weeks after deafferentation, animals showed a further distal representation reduction, an expansion of the elbow representation, and a small elevation in distal movement threshold. These changes were specific to the forelimb map in the hemisphere contralateral to deafferentation; there were no changes in the hindlimb or intact-side forelimb representations. Degradation of the contralateral distal forelimb representation probably contributes to the motor control deficits after deafferentation. We propose that somatic sensory inputs are essential for the maintenance of the forelimb motor map in motor cortex and should be considered when rehabilitating patients with peripheral or spinal cord injuries or after stroke.
Collapse
Affiliation(s)
- Yu-Qiu Jiang
- Department of Physiology, Pharmacology and Neuroscience, City College of the City University of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | | | | |
Collapse
|
13
|
Avivi-Arber L, Martin R, Lee JC, Sessle BJ. Face sensorimotor cortex and its neuroplasticity related to orofacial sensorimotor functions. Arch Oral Biol 2011; 56:1440-65. [DOI: 10.1016/j.archoralbio.2011.04.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 12/20/2022]
|
14
|
Rocco-Donovan M, Ramos RL, Giraldo S, Brumberg JC. Characteristics of synaptic connections between rodent primary somatosensory and motor cortices. Somatosens Mot Res 2011; 28:63-72. [PMID: 21879990 DOI: 10.3109/08990220.2011.606660] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The reciprocal connections between primary motor (M1) and primary somatosensory cortices (S1) are hypothesized to play a crucial role in the ability to update motor plans in response to changes in the sensory periphery. These interactions provide M1 with information about the sensory environment that in turn signals S1 with anticipatory knowledge of ongoing motor plans. In order to examine the synaptic basis of sensorimotor feedforward (S1-M1) and feedback (M1-S1) connections directly, we utilized whole-cell recordings in slices that preserve these reciprocal sensorimotor connections. Our findings indicate that these regions are connected via direct monosynaptic connections in both directions. Larger magnitude responses were observed in the feedforward direction (S1-M1), while the feedback (M1-S1) responses occurred at shorter latencies. The morphology as well as the intrinsic firing properties of the neurons in these pathways indicates that both excitatory and inhibitory neurons are targeted. Differences in synaptic physiology suggest that there exist specializations within the sensorimotor pathway that may allow for the rapid updating of sensory-motor processing within the cortex in response to changes in the sensory periphery.
Collapse
Affiliation(s)
- Mary Rocco-Donovan
- Neuropsychology PhD Subprogram (Psychology), The Graduate Center, CUNY, New York, USA
| | | | | | | |
Collapse
|
15
|
Avivi-Arber L, Lee JC, Sessle BJ. Face sensorimotor cortex neuroplasticity associated with intraoral alterations. PROGRESS IN BRAIN RESEARCH 2011; 188:135-50. [DOI: 10.1016/b978-0-444-53825-3.00014-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Neuroplasticity of face sensorimotor cortex and implications for control of orofacial movements. JAPANESE DENTAL SCIENCE REVIEW 2010. [DOI: 10.1016/j.jdsr.2009.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Shishelova AY, Raevskii VV. Effects of vibrissectomy during early postnatal ontogenesis in rat pups on behavioral development. ACTA ACUST UNITED AC 2010; 40:671-7. [PMID: 20535568 DOI: 10.1007/s11055-010-9310-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 10/20/2008] [Indexed: 10/19/2022]
Abstract
The effects of daily trimming of the whiskers in rat pups from day 2 or day 9 to day 20 on eye opening time and the formation of early behavioral reactions, i.e., walking, rearing, grooming, and manipulatory activity, were studied in rat pups subjected to deprivation and siblings reared with them. Rat pups subjected to vibrissectomy from day 2 of life and their siblings showed acceleration of eye opening, maturation of grooming, and rearing without support; the formation of manipulatory activity was delayed, as were changes in the structures of correlational relationships between the times at which behavioral reactions formed and eye opening occurred. Vibrissectomy from day 9 of life eliminated most correlational relationships in deprived animals without impairing the dynamics of the development of early behavioral reactions. Siblings showed delayed formation of manipulatory activity, though changes in the structure of correlational relationships were less significant than in deprived animals.
Collapse
Affiliation(s)
- A Y Shishelova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.
| | | |
Collapse
|
18
|
Quairiaux C, Sizonenko SV, Mégevand P, Michel CM, Kiss JZ. Functional deficit and recovery of developing sensorimotor networks following neonatal hypoxic-ischemic injury in the rat. Cereb Cortex 2010; 20:2080-91. [PMID: 20051355 DOI: 10.1093/cercor/bhp281] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neonatal hypoxia-ischemia (HI) is the most important cause of brain injury in the newborn. Here we studied structural alterations and functional perturbations of developing large-scale sensorimotor cortical networks in a rat model of moderate HI at postnatal day 3 (P3). At the morphological level, HI led to a disorganized barrel pattern in the somatosensory cortex without detectable histological changes in the motor cortex. Functional effects were addressed by means of epicranial mapping of somatosensory-evoked potentials (SEPs) during the postischemic recovery period. At P10, SEPs were immature and evoked activity was almost restricted to the somatosensory and motor cortices of the contralateral hemisphere. Peak and topographic analyses of epicranial potentials revealed that responses were profoundly depressed in both sensory and motor areas of HI-lesioned animals. At the end of the postnatal period at P21, responses involved networks in both hemispheres. SEP amplitude was still depressed in the injured sensory region, but it completely recovered in the motor area. These results suggest a process of large-scale network plasticity in sensorimotor circuits after perinatal ischemic injury. The model provides new perspectives for investigating the temporal and spatial characteristics of the recovery process following HI and eventually developing therapeutic interventions.
Collapse
Affiliation(s)
- Charles Quairiaux
- Faculty of Medicine, Department of Fundamental Neurosciences, University of Geneva, 1211 Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
19
|
Ring A, Rajandran H, Harvey A, Ghosh S. Changes in electrical thresholds for evoking movements from the cat cerebral cortex following lesions of the sensori-motor area. Somatosens Mot Res 2009; 21:117-36. [PMID: 15370092 DOI: 10.1080/08990220410001721275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We evaluated motor maps in the cerebral cortex and motor performance in cats before and after lesions of the forelimb representation in the primary motor area. After the lesion there was a reduction in the use of the affected forelimb and loss of accuracy in prehension tasks using the forelimb; some recovery occurred during the mapping study. Electrode tracts and lesion sites were located in cytoarchitectonically identified cortical areas 4gamma, 4delta, 6aalpha, 6agamma, 3a. The lesions were mainly in area 4gamma. In the lesioned hemisphere there were many points around the lesion site (in areas 4gamma and 3a) from which movements could not be evoked. In some areas distant from the lesion site (e.g. area 6agamma) the mean thresholds for evoking forelimb movements were significantly elevated. Mean thresholds for evoking hindlimb and facial movements were not different from before. In the contralateral hemisphere mean thresholds for evoking forelimb, but not hindlimb or facial movements, were significantly elevated in several sensorimotor areas (area 4gamma, 6agamma and 3a). Mean thresholds for evoking forelimb movements appeared to progressively increase during the time of study. Minimal currents required to evoke forelimb movements from the cerebral cortex increase (possibly progressively) following a lesion of the forelimb representation in the primary motor area, affecting many interconnected motor areas in the hemispheres ipsilateral and contralateral to the lesioned site. This increase in thresholds may play a role in the changes in cortical control of the affected and contralateral limbs following brain lesions and explain the increased sense of effort required to produce movements.
Collapse
Affiliation(s)
- A Ring
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Perth, WA 6009, Australia
| | | | | | | |
Collapse
|
20
|
Adachi K, Lee JC, Hu JW, Yao D, Sessle BJ. Motor cortex neuroplasticity associated with lingual nerve injury in rats. Somatosens Mot Res 2009; 24:97-109. [PMID: 17853058 DOI: 10.1080/08990220701470451] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The aim of this study was to determine if lingual nerve trauma affects the features of face primary motor cortex (MI) defined by intracortical microstimulation (ICMS). The left lingual nerve was transected in adult male rats by an oral surgical procedure; sham rats (oral surgery but no nerve transection) as well as naive intact rats served as control groups. ICMS was applied at post-operative days 0, 7, 14, 21, and 28 to map the jaw and tongue motor representations in face MI by analyzing ICMS-evoked movements and electromyographic activity recorded in the genioglossus (GG) and anterior digastric (AD) muscles. There were no statistically significant effects of acute (day 0) nerve transection or sham procedure (p > 0.05). The surgery in the sham animals was associated with limited post-operative change; this was reflected in a significant (p < 0.05) increase in the number of GG sites in left MI at post-operative day 14 compared to day 0. However, nerve transection was associated with significant increases in the total number of AD and GG sites in left or right MI or specifically the number of GG sites in rats at post-operative days 21 or 28 compared to earlier time periods. There were also significant differences between nerve-transected and sham groups at post-operative days 7, 14, or 21. These findings suggest that lingual nerve transection is associated with significant time-dependent neuroplastic changes in the tongue motor representations in face MI.
Collapse
Affiliation(s)
- Kazunori Adachi
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
21
|
Lesser RP, Lee HW, Webber WRS, Prince B, Crone NE, Miglioretti DL. Short-term variations in response distribution to cortical stimulation. ACTA ACUST UNITED AC 2008; 131:1528-39. [PMID: 18337272 PMCID: PMC2408939 DOI: 10.1093/brain/awn044] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patterns of responses in the cerebral cortex can vary, and are influenced by pre-existing cortical function, but it is not known how rapidly these variations can occur in humans. We investigated how rapidly response patterns to electrical stimulation can vary in intact human brain. We also investigated whether the type of functional change occurring at a given location with stimulation would help predict the distribution of responses elsewhere over the cortex to stimulation at that given location. We did this by studying cortical afterdischarges following electrical stimulation of the cortex in awake humans undergoing evaluations for brain surgery. Response occurrence and location could change within seconds, both nearby to and distant from stimulation sites. Responses might occur at a given location during one trial but not the next. They could occur at electrodes adjacent or not adjacent to those directly stimulated or to other electrodes showing afterdischarges. The likelihood of an afterdischarge at an individual site after stimulation was predicted by spontaneous electroencephalographic activity at that specific site just prior to stimulation, but not by overall cortical activity. When stimulation at a site interrupted motor, sensory or language function, afterdischarges were more likely to occur at other sites where stimulation interrupted similar functions. These results show that widespread dynamic changes in cortical responses can occur in intact cortex within short periods of time, and that the distribution of these responses depends on local brain states and functional brain architecture at the time of stimulation. Similar rapid variations may occur during normal intracortical communication and may underlie changes in the cortical organization of function. Possibly these variations, and the occurrence and distribution of responses to cortical stimulation, could be predicted. If so, interventions such as stimulation might be used to alter spread of epileptogenic activity, accelerate learning or enhance cortical reorganization after brain injury.
Collapse
Affiliation(s)
- Ronald P Lesser
- Department of Neurology, Johns Hopkins Uiversity, Baltimore, MD 21287-7247, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
PURPOSE To determine whether seizure activity, repeatedly elicited in the hippocampus, could alter the functional organization of neocortical movement representations (motor maps) and whether a relation exists between the number of afterdischarges recorded in the sensorimotor neocortex and the size of the motor maps. METHODS We electrically kindled the right ventral hippocampus of Long-Evans hooded rats, twice daily, for 40 sessions and recorded the afterdischarges in the stimulated hippocampus and right sensorimotor neocortex. Between 3 and 7 days after the last seizure, we used high-resolution intracortical microstimulation to derive the forelimb-movement representations in the left (un-implanted) sensorimotor neocortex. RESULTS In the hippocampal kindled rats, we observed a dramatic expansion of the area of neocortex that would elicit forelimb movements compared with sham-kindled controls. The number of afterdischarges recorded in the neocortex was significantly and positively correlated with the size of the motor maps. CONCLUSIONS Seizures propagating from the hippocampus have long-distance effects on the functional organization of motor maps.
Collapse
Affiliation(s)
- Francine van Rooyen
- Behavioural Neuroscience Research Group, Department of Psychology, and Calgary Epilepsy Program, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
23
|
Brecht M, Grinevich V, Jin TE, Margrie T, Osten P. Cellular mechanisms of motor control in the vibrissal system. Pflugers Arch 2006; 453:269-81. [PMID: 16736208 DOI: 10.1007/s00424-006-0101-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Accepted: 05/02/2006] [Indexed: 11/28/2022]
Abstract
In this article we discuss the experimental advantages that the vibrissal motor system offers for analysis of motor control and the specializations of this system related to the unique characteristics of whisker movements. Whisker movements are often rhythmic, fast, and bilateral. Movements of individual whiskers have simple characteristics, whereas, movements of the entire vibrissae array are complex and sophisticated. In the last few years, powerful methods for high precision tracking of whisker movements have become available. The whisker musculature is arranged to permit forward movements of individual whiskers and consists-depending on the species-mainly or exclusively of fast contracting, fast fatigable muscle fibers. Whisker motor neurons are located in the lateral facial nucleus and their cellular properties might contribute to the rhythmicity of whisking. Numerous structures provide input to the lateral facial nucleus, the most mysterious and important one being the putative central pattern generator (CPG). Although recent studies identified candidate structures for the CPG, the precise identity and the functional organization of this structure remains uncertain. The vibrissa motor cortex (VMC) is the largest motor representation in the rodent brain, and recent work has clarified its localization, subdivisions, cytoarchitectonics, and connectivity. Single-cell stimulation experiments in VMC allow determining the cellular basis of cortical motor control with unprecedented precision. The functional significance of whisker movements remains to be determined.
Collapse
Affiliation(s)
- Michael Brecht
- Department of Neuroscience, Erasmus MC, Postbus 17388, 3000 DR, Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
24
|
Franchi G, Veronesi C. Short-term reorganization of input-deprived motor vibrissae representation following motor disconnection in adult rats. J Physiol 2006; 574:457-76. [PMID: 16690708 PMCID: PMC1817759 DOI: 10.1113/jphysiol.2006.109116] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
It has been proposed that abnormal vibrissae input to the motor cortex (M1) mediates short-term cortical reorganization after facial nerve lesion. To test this hypothesis, we cut first the infraorbital nerve (ION cut) and then the facial nerve (VII cut) in order to evaluate M1 reorganization without any aberrant, facial-nerve-lesion-induced sensory feedback. In each animal, M1 output was assessed in both hemispheres by mapping movements induced by intracortical microstimulation. M1 output was compared in different types of peripheral manipulations: (i) contralateral intact vibrissal pad (intact hemispheres), (ii) contralateral VII cut (VII hemispheres), (iii) contralateral ION cut (ION hemispheres), (iv) contralateral VII cut after contralateral ION cut (ION + VII hemispheres), (v) contralateral pad botulinum-toxin-injected after ION cut (ION + BTX hemispheres). Right and left hemispheres in untouched animals were the reference for normal M1 map (control hemispheres). Findings demonstrated that: (1) in ION hemispheres, the mean size of the vibrissae representation was not significantly different from those in intact and control hemispheres; (2) reorganization of the vibrissae movement representation clearly emerged only in hemispheres where the contralateral vibrissae pad had undergone motor output disconnection (VII cut hemispheres); (3) the persistent loss of vibrissae input did not change the M1 reorganization pattern during the first 48 h after motor paralysis (ION + VII cut and ION + BTX hemispheres). Thus, after motor paralysis, vibrissa input does not provide the gating signal necessary to trigger M1 reorganization.
Collapse
Affiliation(s)
- Gianfranco Franchi
- Dipartimento di Scienze Biomediche e Terapie Avanzate, Sezione di Fisiologia umana, Università di Ferrara, 44100 Ferrara, Italy.
| | | |
Collapse
|
25
|
Veronesi C, Maggiolini E, Franchi G. Postnatal development of vibrissae motor output following neonatal infraorbital nerve manipulation. Exp Neurol 2006; 200:332-42. [PMID: 16626707 DOI: 10.1016/j.expneurol.2006.02.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 02/14/2006] [Accepted: 02/17/2006] [Indexed: 10/24/2022]
Abstract
Using the model of infraorbital nerve (IoN) injury, we have studied the role IoN signals have on the developing vibrissal motor system. To this end, in ten rats, the IoN was severed on the day of birth: in five rats, the IoN was repaired to promote axon regeneration (Reinnervated group) while axon regeneration was prevented in the remaining five rats (Deafferented group). In another five rats, the isolated IoN was left intact (Sham group) and still another group of five rats was left untouched (Control group). After these rats had reached adulthood, the compound muscle action potential (MAP) was recorded from the vibrissa muscle and intracortical microstimulation (ICMS)-evoked movements were mapped in the frontal cortex contralateral to the operated side. We found: (i) no difference between Control, Sham and Reinnervated groups in the integrated MAPs and in the size and excitability of the M1 vibrissal representation. (ii) the Deafferented group showed a 42.9% decrease in the integrated MAP plus a 47.2% and 36.9% reduction, respectively, in the size and excitability of the M1 vibrissae representation. We conclude that, during perinatal life, IoN signals regulate the development of both the peripheral and central vibrissal motor system and that IoN reinnervation restores sensory signals able to stabilize normal development of the vibrissal motor system.
Collapse
Affiliation(s)
- Carlo Veronesi
- Dipartimento di Scienze Biomediche e Terapie Avanzate, Sezione di Fisiologia umana e Centro di Neuroscienze, Università di Ferrara, 44100 Ferrara, Italy
| | | | | |
Collapse
|
26
|
Weiss SJ. Haptic perception and the psychosocial functioning of preterm, low birth weight infants. Infant Behav Dev 2005. [DOI: 10.1016/j.infbeh.2005.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Chakrabarty S, Martin JH. Motor but not sensory representation in motor cortex depends on postsynaptic activity during development and in maturity. J Neurophysiol 2005; 94:3192-8. [PMID: 16033940 DOI: 10.1152/jn.00424.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The movement representation in the primary motor cortex (M1) of the cat develops between postnatal weeks 7-12. The somatosensory representation in motor cortex is present by the age that the motor map begins to develop. In this study we examined the role of neural activity in development and maintenance of the M1 movement and somatosensory representations. We blocked activity of M1 neurons unilaterally for one month by intracortical infusion of the GABA agonist muscimol during the motor map development period in kittens and in mature cats. After the drug effects were no longer present, we used microstimulation and multiunit recording in the forelimb areas of M1 to determine the motor and somatosensory representations in the infused and noninfused sides. In both kittens and adults, there was a severe reduction or elimination of sites where microstimulation evoked a motor response in the inactivated compared with the control side. In contrast, there was no difference in the percentage, topography or receptive field modality of sites receiving somatosensory inputs on the inactivated and control sides. Moreover, the pattern of somatosensory input to M1 was similar before and after inactivation. This suggests that somatosensory input to M1 is stable after the connections initially develop. Since activity blockade had the same effects on the motor representation of kittens and adult cats, M1 neuronal activity, while possibly important in map development, is equally necessary for map maintenance.
Collapse
Affiliation(s)
- Samit Chakrabarty
- Center for Neurobiology and Behavior, Columbia University, 1051 Riverside Dr., New York, NY 10032, USA
| | | |
Collapse
|
28
|
Brecht M, Krauss A, Muhammad S, Sinai-Esfahani L, Bellanca S, Margrie TW. Organization of rat vibrissa motor cortex and adjacent areas according to cytoarchitectonics, microstimulation, and intracellular stimulation of identified cells. J Comp Neurol 2005; 479:360-73. [PMID: 15514982 DOI: 10.1002/cne.20306] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The relationship between motor maps and cytoarchitectonic subdivisions in rat frontal cortex is not well understood. We use cytoarchitectonic analysis of microstimulation sites and intracellular stimulation of identified cells to develop a cell-based partitioning scheme of rat vibrissa motor cortex and adjacent areas. The results suggest that rat primary motor cortex (M1) is composed of three cytoarchitectonic areas, the agranular medial field (AGm), the agranular lateral field (AG1), and the cingulate area 1 (Cg1), each of which represents movements of different body parts. Vibrissa motor cortex corresponds entirely and for the most part exclusively to AGm. In area AG1 body/head movements can be evoked. In posterior area Cg1 periocular/eye movements and in anterior area Cg1 nose movements can be evoked. In all of these areas stimulation thresholds are very low, and together they form a complete representation of the rat's body surface. A strong myelinization and an expanded layer 5 characterize area AGm. We suggest that both the strong myelinization and the expanded layer 5 of area AGm may represent cytoarchitectonic specializations related to control of high-speed whisking behavior.
Collapse
Affiliation(s)
- Michael Brecht
- Department of Cell Physiology, Max-Planck Institute for Medical Research, D-69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Ghosh S, Koh AH, Ring A. Comparison of electrical thresholds for evoking movements from sensori-motor areas of the cat cerebral cortex and its relation to motor training. Somatosens Mot Res 2005; 21:99-115. [PMID: 15370091 DOI: 10.1080/08990220410001721266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Motor maps and electrical thresholds for evoking movements from motor areas of the cerebral cortex were evaluated in normal cats by using intracortical microstimulation techniques. Stainless steel chambers were implanted over craniotomies in adult cats trained to perform reaching and retrieval movements with their forelimbs. Prehensile motor training was continued and movement performance monitored for about 6-10 weeks during which the cortex was progressively explored with sharp tungsten electrodes inserted into cortical gyri (anterior and posterior sigmoid, and coronal) and the banks of sulci (cruciate, presylvian and coronal). Twice weekly, under light general anaesthesia, 3-4 tracks were made in either hemisphere till about 50 tracks were made in each hemisphere. Mean thresholds for evoking forelimb movements from different cytoarchitectonic areas (4gamma, 4delta, 6agamma and 3a) were compared and no consistent or significant differences were observed between the different areas. In the animals (4/6) which used either forelimb to perform the tasks, there were no consistent differences in the mean thresholds for evoking forelimb movements from the two hemispheres. However, in 2 animals, which used their right forelimbs predominantly or exclusively to perform all the tasks, mean thresholds for evoking forelimb movements was significantly higher in areas 4gamma and 6agamma of the left hemisphere (compared to the right); no consistent differences in the mean thresholds for evoking hindlimb or facial movements were observed between the two hemispheres. These findings suggest that ICMS thresholds for evoking forelimb movements may be similar in different sensorimotor areas of the cat cerebral cortex, and these thresholds could be influenced by motor training.
Collapse
Affiliation(s)
- S Ghosh
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Perth, WA 6009, Australia.
| | | | | |
Collapse
|
30
|
Abstract
Neuronal circuits are shaped by experience during critical periods of early postnatal life. The ability to control the timing, duration, and closure of these heightened levels of brain plasticity has recently become experimentally accessible, especially in the developing visual system. This review summarizes our current understanding of known critical periods across several systems and species. It delineates a number of emerging principles: functional competition between inputs, role for electrical activity, structural consolidation, regulation by experience (not simply age), special role for inhibition in the CNS, potent influence of attention and motivation, unique timing and duration, as well as use of distinct molecular mechanisms across brain regions and the potential for reactivation in adulthood. A deeper understanding of critical periods will open new avenues to "nurture the brain"-from international efforts to link brain science and education to improving recovery from injury and devising new strategies for therapy and lifelong learning.
Collapse
Affiliation(s)
- Takao K Hensch
- Laboratory for Neuronal Circuit Development, Critical Period Mechanisms Research Group, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| |
Collapse
|
31
|
Franchi G, Veronesi C. Long-term motor cortex reorganization after facial nerve severing in newborn rats. Eur J Neurosci 2004; 20:1885-96. [PMID: 15380010 DOI: 10.1111/j.1460-9568.2004.03635.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using the model of facial nerve injury, we have compared the effect of injury in newborn and adult rats on the adult rat motor cortex (M1). To this end, the facial nerve was severed in 10 newborn rats 2 days after birth (Newborn group) and in 10 adult rats (Adult group). In both the Control (contralateral to untouched nerve) and the Experimental (contralateral to severed nerve) hemisphere of each rat, the M1 output organization was assessed by intracortical microstimulation. Our findings demonstrated that: (i) there is no statistical difference in the percentage of movement sites and in current thresholds required to evoke movement in Control hemispheres between the Adult and Newborn groups of rats; (ii) in Adult Experimental hemispheres, neck sites expand in the medial part of the vibrissae representation more extensively than shown in Newborn Experimental hemispheres; (iii) in Newborn Experimental hemispheres eye sites expand in the medial part of the vibrissae representation more extensively than in Adult Experimental hemispheres (these sites overlap the cortical region where electrical stimulation evokes neck movement in Adult Experimental hemispheres) and (iv) in both Newborn and Adult Experimental hemispheres, forelimb sites expand similarly thereby overlapping the same cortical region, corresponding to the lateral part of the vibrissae representation. We conclude that, when the facial nerve injury is performed in the newborn rat, the pattern of movement representation differs from that obtained with the same lesion in the mature brain only in the frontal cortex corresponding to the medial part of the normal vibrissae representation.
Collapse
Affiliation(s)
- Gianfranco Franchi
- Centro di Neuroscienze e Dipartimento di Scienze Biomediche e Terapie Avanzate, Sezione di Fisiologia umana, Università di Ferrara, 44100 Ferrara, Italy.
| | | |
Collapse
|
32
|
Weiss SJ, Wilson P, Morrison D. Maternal Tactile Stimulation and the Neurodevelopment of Low Birth Weight Infants. INFANCY 2004. [DOI: 10.1207/s15327078in0501_4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
33
|
Kleim JA, Bruneau R, Calder K, Pocock D, VandenBerg PM, MacDonald E, Monfils MH, Sutherland RJ, Nader K. Functional organization of adult motor cortex is dependent upon continued protein synthesis. Neuron 2003; 40:167-76. [PMID: 14527441 DOI: 10.1016/s0896-6273(03)00592-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The functional organization of adult cerebral cortex is characterized by the presence of highly ordered sensory and motor maps. Despite their archetypical organization, the maps maintain the capacity to rapidly reorganize, suggesting that the neural circuitry underlying cortical representations is inherently plastic. Here we show that the circuitry supporting motor maps is dependent upon continued protein synthesis. Injections of two different protein synthesis inhibitors into adult rat forelimb motor cortex caused an immediate and enduring loss of movement representations. The disappearance of the motor map was accompanied by a significant reduction in synapse number, synapse size, and cortical field potentials and caused skilled forelimb movement impairments. Further, motor skill training led to a reappearance of movement representations. We propose that the circuitry of adult motor cortex is perpetually labile and requires continued protein synthesis in order to maintain its functional organization.
Collapse
Affiliation(s)
- Jeffrey A Kleim
- Canadian Centre for Behavioural Neuroscience, Department of Psychology and Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Barlow JZ, Kelley KA, Bozdagi O, Huntley GW. Testing the role of the cell-surface molecule Thy-1 in regeneration and plasticity of connectivity in the CNS. Neuroscience 2002; 111:837-52. [PMID: 12031407 DOI: 10.1016/s0306-4522(02)00023-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Thy-1 is a cell-surface signaling molecule of the Ig superfamily implicated in the regulation of neurite outgrowth, synaptic function and plasticity. There is, however, no consensus as to its precise function in the nervous system, and it remains unclear or untested as to what its role is in the development, maintenance and plasticity of neuronal connectivity in the intact brain and whether it is essential for any of the purported functions which have been attributed to it based largely on in vitro bioassays. Here, we have engineered transgenic mice with a targeted deletion of the Thy-1 gene and, after characterizing the development of their corticospinal and thalamocortical pathways, subjected them at adulthood to paradigms of axonal regeneration and plasticity which can be readily induced during development. Quantitative analyses of the brains and spinal cords of adult null mutants showed normal cellular organization, normal anatomical features of the corticospinal and thalamocortical pathways, and basic neurophysiological properties of thalamocortical synaptic transmission which were quantitatively indistinguishable from wild-type mice. Despite the absence of Thy-1, corticospinal axons in adult mutants failed to exhibit overt regeneration following spinal cord lesion; likewise, the terminal arbors of ventrobasal thalamocortical axons also failed to reorganize in adult barrel cortex in response to whisker cautery, although they did so during a developmental critical period identical to that displayed by wild-type mice.Taken together, these results suggest that Thy-1 is not essential for the normal development and maintenance of major axon pathways and functional synaptic connections, nor would it appear to be critically important for inhibiting or promoting axonal growth, regeneration and plasticity in the developing and mature CNS.
Collapse
Affiliation(s)
- J Z Barlow
- Fishberg Research Center for Neurobiology and Program in Cell Adhesion, Box 1065, The Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029-6574, USA
| | | | | | | |
Collapse
|
35
|
Kleim JA, Cooper NR, VandenBerg PM. Exercise induces angiogenesis but does not alter movement representations within rat motor cortex. Brain Res 2002; 934:1-6. [PMID: 11937064 DOI: 10.1016/s0006-8993(02)02239-4] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effects of exercise on the topography of movement representations and blood vessel density within the rat forelimb motor cortex was examined. Adult male rats were allocated to either a Voluntary eXercise (VX) or Inactive Condition (IC). VX animals were housed for 30 days with unlimited access to running wheels while IC animals were housed in standard laboratory cages. VX animals exhibited a progressive increase in the distance traveled per day and ran an average of 58.3 km across the 30-day training period. Microelectrode stimulation was used to derive high resolution maps of the forelimb representations within the motor cortex of animals from both conditions. No significant differences in the area of either distal (wrist/digit) or proximal (elbow/shoulder) movement representations were found between VX and IC animals. However, VX animals did have a significantly greater density of blood vessels within layer V of the forelimb motor cortex. These results demonstrate that increases in forelimb motor activity sufficient to induce cortical angiogenesis does not alter the topography of forelimb movement representations within forelimb motor cortex.
Collapse
Affiliation(s)
- Jeffrey A Kleim
- Department of Psychology and Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Dr., Lethbridge, Alberta T1K 3M4, Canada.
| | | | | |
Collapse
|
36
|
Jones EG. Cortical and subcortical contributions to activity-dependent plasticity in primate somatosensory cortex. Annu Rev Neurosci 2000; 23:1-37. [PMID: 10845057 DOI: 10.1146/annurev.neuro.23.1.1] [Citation(s) in RCA: 230] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
After manipulations of the periphery that reduce or enhance input to the somatosensory cortex, affected parts of the body representation will contract or expand, often over many millimeters. Various mechanisms, including divergence of preexisting connections, expression of latent synapses, and sprouting of new synapses, have been proposed to explain such phenomena, which probably underlie altered sensory experiences associated with limb amputation and peripheral nerve injury in humans. Putative cortical mechanisms have received the greatest emphasis but there is increasing evidence for substantial reorganization in subcortical structures, including the brainstem and thalamus, that may be of sufficient extent to account for or play a large part in representational plasticity in somatosensory cortex. Recent studies show that divergence of ascending connections is considerable and sufficient to ensure that small alterations in map topography at brainstem and thalamic levels will be amplified in the projection to the cortex. In the long term, slow, deafferentation-dependent transneuronal atrophy at brainstem, thalamic, and even cortical levels are operational in promoting reorganizational changes, and the extent to which surviving connections can maintain a map is a key to understanding differences between central and peripheral deafferentation.
Collapse
Affiliation(s)
- E G Jones
- Center for Neuroscience, University of California, Davis 95616, USA.
| |
Collapse
|
37
|
Kleim JA, Barbay S, Nudo RJ. Functional reorganization of the rat motor cortex following motor skill learning. J Neurophysiol 1998; 80:3321-5. [PMID: 9862925 DOI: 10.1152/jn.1998.80.6.3321] [Citation(s) in RCA: 553] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Functional reorganization of the rat motor cortex following motor skill learning. J. Neurophysiol. 80: 3321-3325, 1998. Adult rats were allocated to either a skilled or unskilled reaching condition (SRC and URC, respectively). SRC animals were trained for 10 days on a skilled reaching task while URC animals were trained on a simple bar pressing task. After training, microelectrode stimulation was used to derive high resolution maps of the forelimb and hindlimb representations within the motor cortex. In comparison with URC animals, SRC animals exhibited a significant increase in mean area of the wrist and digit representations but a decrease in elbow/shoulder representation within the caudal forelimb area. No between-group differences in areal representation were found in either the hindlimb or rostral forelimb areas. These results demonstrate that motor skill learning is associated with a reorganization of movement representations within the rodent motor cortex.
Collapse
Affiliation(s)
- J A Kleim
- Department of Molecular and Integrative Physiology and The Center on Aging, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | |
Collapse
|