1
|
Vincent PFY, Young ED, Edge ASB, Glowatzki E. Auditory hair cells and spiral ganglion neurons regenerate synapses with refined release properties in vitro. Proc Natl Acad Sci U S A 2024; 121:e2315599121. [PMID: 39058581 PMCID: PMC11294990 DOI: 10.1073/pnas.2315599121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Ribbon synapses between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs) in the inner ear are damaged by noise trauma and with aging, causing "synaptopathy" and hearing loss. Cocultures of neonatal denervated organs of Corti and newly introduced SGNs have been developed to find strategies for improving IHC synapse regeneration, but evidence of the physiological normality of regenerated synapses is missing. This study utilizes IHC optogenetic stimulation and SGN recordings, showing that, when P3-5 denervated organs of Corti are cocultured with SGNs, newly formed IHC/SGN synapses are indeed functional, exhibiting glutamatergic excitatory postsynaptic currents. When using older organs of Corti at P10-11, synaptic activity probed by deconvolution showed more mature release properties, closer to the specialized mode of IHC synaptic transmission crucial for coding the sound signal. This functional assessment of newly formed IHC synapses developed here, provides a powerful tool for testing approaches to improve synapse regeneration.
Collapse
Affiliation(s)
- Philippe F. Y. Vincent
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, MD21205
| | - Eric D. Young
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD21205
| | - Albert S. B. Edge
- Department of Otolaryngology, Harvard Medical School, Boston, MA02115
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA02114
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA02115
- Harvard Stem Cell Institute, Cambridge, MA02139
| | - Elisabeth Glowatzki
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, MD21205
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, MD21205
| |
Collapse
|
2
|
Vincent PF, Young ED, Edge AS, Glowatzki E. Auditory Hair Cells and Spiral Ganglion Neurons Regenerate Synapses with Refined Release Properties In Vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.561095. [PMID: 38076928 PMCID: PMC10705289 DOI: 10.1101/2023.10.05.561095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Ribbon synapses between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs) in the inner ear are damaged by noise trauma and with aging, causing 'synaptopathy 'and hearing loss. Co-cultures of neonatal denervated organs of Corti and newly introduced SGNs have been developed to find strategies for improving IHC synapse regeneration, but evidence of the physiological normality of regenerated synapses is missing. This study utilizes IHC optogenetic stimulation and SGN recordings, showing that newly formed IHC synapses are indeed functional, exhibiting glutamatergic excitatory postsynaptic currents. When older organs of Corti were plated, synaptic activity probed by deconvolution, showed more mature release properties, closer to the highly specialized mode of IHC synaptic transmission that is crucial for coding the sound signal. This newly developed functional assessment of regenerated IHC synapses provides a powerful tool for testing approaches to improve synapse regeneration.
Collapse
Affiliation(s)
- Philippe F.Y. Vincent
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Eric D. Young
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Albert S.B. Edge
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Elisabeth Glowatzki
- The Center for Hearing and Balance, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Otolaryngology Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
3
|
Iyer MR, Ventura C, Bronson D, Nowak N, Regalado K, Kalluri R. Isolating and Culturing Vestibular and Spiral Ganglion Somata from Neonatal Rodents for Patch-Clamp Recordings. J Vis Exp 2023:10.3791/64908. [PMID: 37154564 PMCID: PMC11020343 DOI: 10.3791/64908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
The compact morphology of isolated and cultured inner ear ganglion neurons allows for detailed characterizations of the ion channels and neurotransmitter receptors that contribute to cell diversity across this population. This protocol outlines the steps necessary for successful dissecting, dissociating, and short-term culturing of the somata of inner ear bipolar neurons for the purpose of patch-clamp recordings. Detailed instructions for preparing vestibular ganglion neurons are provided with the necessary modifications needed for plating spiral ganglion neurons. The protocol includes instructions for performing whole-cell patch-clamp recordings in the perforated-patch configuration. Example results characterizing the voltage-clamp recordings of hyperpolarization-activated cyclic nucleotide-gated (HCN)-mediated currents highlight the stability of perforated-patch recording configuration in comparison to the more standard ruptured-patch configuration. The combination of these methods, isolated somata plus perforated-patch-clamp recordings, can be used to study cellular processes that require long, stable recordings and the preservation of intracellular milieu, such as signaling through G-protein coupled receptors.
Collapse
Affiliation(s)
- Megana R Iyer
- Caruso Department of Otolaryngology Head & Neck Surgery, Zilkha Neurogenetics Institute, Hearing and Communications Neuroscience Training Program, University of Southern California
| | - Christopher Ventura
- Caruso Department of Otolaryngology Head & Neck Surgery, Zilkha Neurogenetics Institute, Hearing and Communications Neuroscience Training Program, University of Southern California
| | - Daniel Bronson
- Caruso Department of Otolaryngology Head & Neck Surgery, Zilkha Neurogenetics Institute, Hearing and Communications Neuroscience Training Program, University of Southern California
| | - Nathaniel Nowak
- Caruso Department of Otolaryngology Head & Neck Surgery, Zilkha Neurogenetics Institute, Hearing and Communications Neuroscience Training Program, University of Southern California
| | - Katherine Regalado
- Caruso Department of Otolaryngology Head & Neck Surgery, Zilkha Neurogenetics Institute, Hearing and Communications Neuroscience Training Program, University of Southern California
| | - Radha Kalluri
- Caruso Department of Otolaryngology Head & Neck Surgery, Zilkha Neurogenetics Institute, Hearing and Communications Neuroscience Training Program, University of Southern California;
| |
Collapse
|
4
|
Kalluri R. Similarities in the Biophysical Properties of Spiral-Ganglion and Vestibular-Ganglion Neurons in Neonatal Rats. Front Neurosci 2021; 15:710275. [PMID: 34712112 PMCID: PMC8546178 DOI: 10.3389/fnins.2021.710275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
The membranes of auditory and vestibular afferent neurons each contain diverse groups of ion channels that lead to heterogeneity in their intrinsic biophysical properties. Pioneering work in both auditory- and vestibular-ganglion physiology have individually examined this remarkable diversity, but there are few direct comparisons between the two ganglia. Here the firing patterns recorded by whole-cell patch-clamping in neonatal vestibular- and spiral ganglion neurons are compared. Indicative of an overall heterogeneity in ion channel composition, both ganglia exhibit qualitatively similar firing patterns ranging from sustained-spiking to transient-spiking in response to current injection. The range of resting potentials, voltage thresholds, current thresholds, input-resistances, and first-spike latencies are similarly broad in both ganglion groups. The covariance between several biophysical properties (e.g., resting potential to voltage threshold and their dependence on postnatal age) was similar between the two ganglia. Cell sizes were on average larger and more variable in VGN than in SGN. One sub-group of VGN stood out as having extra-large somata with transient-firing patterns, very low-input resistance, fast first-spike latencies, and required large current amplitudes to induce spiking. Despite these differences, the input resistance per unit area of the large-bodied transient neurons was like that of smaller-bodied transient-firing neurons in both VGN and SGN, thus appearing to be size-scaled versions of other transient-firing neurons. Our analysis reveals that although auditory and vestibular afferents serve very different functions in distinct sensory modalities, their biophysical properties are more closely related by firing pattern and cell size than by sensory modality.
Collapse
Affiliation(s)
- Radha Kalluri
- Caruso Department of Otolaryngology-Head and Neck Surgery, Zilkha Neurogenetics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
5
|
Kohrman D, Borges BC, Cassinotti L, Ji L, Corfas G. Axon-glia interactions in the ascending auditory system. Dev Neurobiol 2021; 81:546-567. [PMID: 33561889 PMCID: PMC9004231 DOI: 10.1002/dneu.22813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/25/2020] [Accepted: 02/05/2021] [Indexed: 11/09/2022]
Abstract
The auditory system detects and encodes sound information with high precision to provide a high-fidelity representation of the environment and communication. In mammals, detection occurs in the peripheral sensory organ (the cochlea) containing specialized mechanosensory cells (hair cells) that initiate the conversion of sound-generated vibrations into action potentials in the auditory nerve. Neural activity in the auditory nerve encodes information regarding the intensity and frequency of sound stimuli, which is transmitted to the auditory cortex through the ascending neural pathways. Glial cells are critical for precise control of neural conduction and synaptic transmission throughout the pathway, allowing for the precise detection of the timing, frequency, and intensity of sound signals, including the sub-millisecond temporal fidelity is necessary for tasks such as sound localization, and in humans, for processing complex sounds including speech and music. In this review, we focus on glia and glia-like cells that interact with hair cells and neurons in the ascending auditory pathway and contribute to the development, maintenance, and modulation of neural circuits and transmission in the auditory system. We also discuss the molecular mechanisms of these interactions, their impact on hearing and on auditory dysfunction associated with pathologies of each cell type.
Collapse
Affiliation(s)
- David Kohrman
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Beatriz C. Borges
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Luis Cassinotti
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Lingchao Ji
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Gabriel Corfas
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Abstract
Neurotrophin-3 (NT-3) belongs to a family of growth factors called neurotrophins whose actions are centered in the nervous system. NT-3 is structurally related to other neurotrophins like brain-derived neurotrophic factor. The expression of NT-3 starts with the onset of neurogenesis and continues throughout life. A wealth of information links NT-3 to the growth, differentiation, and survival of hippocampal cells as well as sympathetic and sensory neurons. These studies have described the distribution of NT-3 and its receptors throughout development and in the mature nervous system. Prior works has begun to cell-type specific impact of NT-3 as well as identify the signaling pathways involved. However, much less is known about how NT-3 regulates synaptic transmission. This chapter focuses role of NT-3 in the modulation of synaptic transmission.
Collapse
|
7
|
Time-dependent activity of primary auditory neurons in the presence of neurotrophins and antibiotics. Hear Res 2017; 350:122-132. [DOI: 10.1016/j.heares.2017.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 03/16/2017] [Accepted: 04/23/2017] [Indexed: 12/19/2022]
|
8
|
Benítez-Temiño B, Davis-López de Carrizosa MA, Morcuende S, Matarredona ER, de la Cruz RR, Pastor AM. Functional Diversity of Neurotrophin Actions on the Oculomotor System. Int J Mol Sci 2016; 17:E2016. [PMID: 27916956 PMCID: PMC5187816 DOI: 10.3390/ijms17122016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/24/2016] [Accepted: 11/25/2016] [Indexed: 11/16/2022] Open
Abstract
Neurotrophins play a principal role in neuronal survival and differentiation during development, but also in the maintenance of appropriate adult neuronal circuits and phenotypes. In the oculomotor system, we have demonstrated that neurotrophins are key regulators of developing and adult neuronal properties, but with peculiarities depending on each neurotrophin. For instance, the administration of NGF (nerve growth factor), BDNF (brain-derived neurotrophic factor) or NT-3 (neurotrophin-3) protects neonatal extraocular motoneurons from cell death after axotomy, but only NGF and BDNF prevent the downregulation in ChAT (choline acetyltransferase). In the adult, in vivo recordings of axotomized extraocular motoneurons have demonstrated that the delivery of NGF, BDNF or NT-3 recovers different components of the firing discharge activity of these cells, with some particularities in the case of NGF. All neurotrophins have also synaptotrophic activity, although to different degrees. Accordingly, neurotrophins can restore the axotomy-induced alterations acting selectively on different properties of the motoneuron. In this review, we summarize these evidences and discuss them in the context of other motor systems.
Collapse
Affiliation(s)
- Beatriz Benítez-Temiño
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | | | - Sara Morcuende
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Esperanza R Matarredona
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Rosa R de la Cruz
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| |
Collapse
|
9
|
Altschuler RA, Wys N, Prieskorn D, Martin C, DeRemer S, Bledsoe S, Miller JM. Treatment with Piribedil and Memantine Reduces Noise-Induced Loss of Inner Hair Cell Synaptic Ribbons. Sci Rep 2016; 6:30821. [PMID: 27686418 PMCID: PMC5043183 DOI: 10.1038/srep30821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/16/2016] [Indexed: 11/18/2022] Open
Abstract
Noise overstimulation can induce loss of synaptic ribbons associated with loss of Inner Hair Cell – Auditory Nerve synaptic connections. This study examined if systemic administration of Piribedil, a dopamine agonist that reduces the sound evoked auditory nerve compound action potential and/or Memantine, an NMDA receptor open channel blocker, would reduce noise-induced loss of Inner Hair Cell ribbons. Rats received systemic Memantine and/or Piribedil for 3 days before and 3 days after a 3 hour 4 kHz octave band noise at 117 dB (SPL). At 21 days following the noise there was a 26% and 38% loss of synaptic ribbons in regions 5.5 and 6.5 mm from apex, respectively, elevations in 4-, 8- and 20 kHz tonal ABR thresholds and reduced dynamic output at higher intensities of stimulation. Combined treatment with Piribedil and Memantine produced a significant reduction in the noise-induced loss of ribbons in both regions and changes in ABR sensitivity and dynamic responsiveness. Piribedil alone gave significant reduction in only the 5.5 mm region and Memantine alone did not reach significance in either region. Results identify treatments that could prevent the hearing loss and hearing disorders that result from noise-induced loss of Inner Hair Cell – Auditory Nerve synaptic connections.
Collapse
Affiliation(s)
- Richard A Altschuler
- Kresge Hearing Research Institute, Department of Otolaryngology Head &Neck Surgery, University of Michigan, MI, USA.,Department of Cell &Developmental Biology, University of Michigan, MI, USA
| | - Noel Wys
- Kresge Hearing Research Institute, Department of Otolaryngology Head &Neck Surgery, University of Michigan, MI, USA
| | - Diane Prieskorn
- Kresge Hearing Research Institute, Department of Otolaryngology Head &Neck Surgery, University of Michigan, MI, USA
| | - Cathy Martin
- Kresge Hearing Research Institute, Department of Otolaryngology Head &Neck Surgery, University of Michigan, MI, USA
| | - Susan DeRemer
- Kresge Hearing Research Institute, Department of Otolaryngology Head &Neck Surgery, University of Michigan, MI, USA
| | - Sanford Bledsoe
- Kresge Hearing Research Institute, Department of Otolaryngology Head &Neck Surgery, University of Michigan, MI, USA
| | - Josef M Miller
- Kresge Hearing Research Institute, Department of Otolaryngology Head &Neck Surgery, University of Michigan, MI, USA
| |
Collapse
|
10
|
Firing frequency and entrainment maintained in primary auditory neurons in the presence of combined BDNF and NT3. Sci Rep 2016; 6:28584. [PMID: 27335179 PMCID: PMC4917828 DOI: 10.1038/srep28584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/07/2016] [Indexed: 12/16/2022] Open
Abstract
Primary auditory neurons rely on neurotrophic factors for development and survival. We previously determined that exposure to brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) alters the activity of hyperpolarization-activated currents (Ih) in this neuronal population. Since potassium channels are sensitive to neurotrophins, and changes in Ih are often accompanied by a shift in voltage-gated potassium currents (IK), this study examined IK with exposure to both BDNF and NT3 and the impact on firing entrainment during high frequency pulse trains. Whole-cell patch-clamp recordings revealed significant changes in action potential latency and duration, but no change in firing adaptation or total outward IK. Dendrotoxin-I (DTX-I), targeting voltage-gated potassium channel subunits KV1.1 and KV1.2, uncovered an increase in the contribution of DTX-I sensitive currents with exposure to neurotrophins. No difference in Phrixotoxin-1 (PaTX-1) sensitive currents, mediated by KV4.2 and KV4.3 subunits, was observed. Further, no difference was seen in firing entrainment. These results show that combined BDNF and NT3 exposure influences the contribution of KV1.1 and KV1.2 to the low voltage-activated potassium current (IKL). Whilst this is accompanied by a shift in spike latency and duration, both firing frequency and entrainment to high frequency pulse trains are preserved.
Collapse
|
11
|
Hahnewald S, Tscherter A, Marconi E, Streit J, Widmer HR, Garnham C, Benav H, Mueller M, Löwenheim H, Roccio M, Senn P. Response profiles of murine spiral ganglion neurons on multi-electrode arrays. J Neural Eng 2015; 13:016011. [PMID: 26656212 DOI: 10.1088/1741-2560/13/1/016011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Cochlear implants (CIs) have become the gold standard treatment for deafness. These neuroprosthetic devices feature a linear electrode array, surgically inserted into the cochlea, and function by directly stimulating the auditory neurons located within the spiral ganglion, bypassing lost or not-functioning hair cells. Despite their success, some limitations still remain, including poor frequency resolution and high-energy consumption. In both cases, the anatomical gap between the electrode array and the spiral ganglion neurons (SGNs) is believed to be an important limiting factor. The final goal of the study is to characterize response profiles of SGNs growing in intimate contact with an electrode array, in view of designing novel CI devices and stimulation protocols, featuring a gapless interface with auditory neurons. APPROACH We have characterized SGN responses to extracellular stimulation using multi-electrode arrays (MEAs). This setup allows, in our view, to optimize in vitro many of the limiting interface aspects between CIs and SGNs. MAIN RESULTS Early postnatal mouse SGN explants were analyzed after 6-18 days in culture. Different stimulation protocols were compared with the aim to lower the stimulation threshold and the energy needed to elicit a response. In the best case, a four-fold reduction of the energy was obtained by lengthening the biphasic stimulus from 40 μs to 160 μs. Similarly, quasi monophasic pulses were more effective than biphasic pulses and the insertion of an interphase gap moderately improved efficiency. Finally, the stimulation with an external electrode mounted on a micromanipulator showed that the energy needed to elicit a response could be reduced by a factor of five with decreasing its distance from 40 μm to 0 μm from the auditory neurons. SIGNIFICANCE This study is the first to show electrical activity of SGNs on MEAs. Our findings may help to improve stimulation by and to reduce energy consumption of CIs and thereby contribute to the development of fully implantable devices with better auditory resolution in the future.
Collapse
Affiliation(s)
- Stefan Hahnewald
- Inner Ear Research Laboratory, University Departments of Clinical Research and Otorhinolaryngology, Head & Neck Surgery, Inselspital, University of Bern, Switzerland. Regenerative Neuroscience Cluster, Department of Clinical Research, University of Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Galicia S, Cortes C, Cebada J, Méndez‐Balbuena I, Flores A. Firing properties of auditory primary afferents from the basilar papilla in the chick. Int J Dev Neurosci 2015; 44:92-101. [DOI: 10.1016/j.ijdevneu.2015.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/31/2015] [Accepted: 05/31/2015] [Indexed: 12/30/2022] Open
Affiliation(s)
- Salvador Galicia
- Escuela de BiologíaBenemérita Universidad Autónoma de Puebla (BUAP)Blvd. Valsequillo y Av. San Claudio, Edif. 112‐A C.U. Colonia Jardines de San ManuelCP72570Puebla, Pue.Mexico
| | - Celso Cortes
- Facultad de MedicinaBUAPAv. 13 Sur 2702 Colonia VolcanesCP72410Puebla, Pue.Mexico
| | - Jorge Cebada
- Facultad de MedicinaBUAPAv. 13 Sur 2702 Colonia VolcanesCP72410Puebla, Pue.Mexico
- Hospital Universitario de PueblaBUAPAv. 25 poniente 1301 Colonia VolcanesCP72410Puebla, Pue.Mexico
| | | | - Amira Flores
- Instituto de FisiologíaBUAPAv. 14 Sur 6301 Colonia Jardines de San ManuelCP72570Puebla, Pue.Mexico
| |
Collapse
|
13
|
Zuo WQ, Hu YJ, Yang Y, Zhao XY, Zhang YY, Kong W, Kong WJ. Sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation will increase in lipopolysaccharide-induced inflammation in vitro model. J Neuroinflammation 2015; 12:105. [PMID: 26022358 PMCID: PMC4458026 DOI: 10.1186/s12974-015-0300-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/10/2015] [Indexed: 01/12/2023] Open
Abstract
Background With the increasing popularity of mobile phones, the potential hazards of radiofrequency electromagnetic radiation (RF-EMR) on the auditory system remain unclear. Apart from RF-EMR, humans are also exposed to various physical and chemical factors. We established a lipopolysaccharide (LPS)-induced inflammation in vitro model to investigate whether the possible sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation (at specific absorption rates: 2, 4 W/kg) will increase. Methods Spiral ganglion neurons (SGN) were obtained from neonatal (1- to 3-day-old) Sprague Dawley® (SD) rats. After the SGN were treated with different concentrations (0, 20, 40, 50, 100, 200, and 400 μg/ml) of LPS, the Cell Counting Kit-8 (CCK-8) and alkaline comet assay were used to quantify cellular activity and DNA damage, respectively. The SGN were treated with the moderate LPS concentrations before RF-EMR exposure. After 24 h intermittent exposure at an absorption rate of 2 and 4 W/kg, DNA damage was examined by alkaline comet assay, ultrastructure changes were detected by transmission electron microscopy, and expression of the autophagy markers LC3-II and Beclin1 were examined by immunofluorescence and confocal laser scanning microscopy. Reactive oxygen species (ROS) production was quantified by the dichlorofluorescin-diacetate assay. Results LPS (100 μg/ml) induced DNA damage and suppressed cellular activity (P < 0.05). LPS (40 μg/ml) did not exhibit cellular activity changes or DNA damage (P > 0.05); therefore, 40 μg/ml was used to pretreat the concentration before exposure to RF-EMR. RF-EMR could not directly induce DNA damage. However, the 4 W/kg combined with LPS (40 μg/ml) group showed mitochondria vacuoles, karyopyknosis, presence of lysosomes and autophagosome, and increasing expression of LC3-II and Beclin1. The ROS values significantly increased in the 4 W/kg exposure, 4 W/kg combined with LPS (40 μg/ml) exposure, and H2O2 groups (P < 0.05, 0.01). Conclusions Short-term exposure to radiofrequency electromagnetic radiation could not directly induce DNA damage in normal spiral ganglion neurons, but it could cause the changes of cellular ultrastructure at special SAR 4.0 W/kg when cells are in fragile or micro-damaged condition. It seems that the sensitivity of SGN to damage caused by mobile phone electromagnetic radiation will increase in a lipopolysaccharide-induced inflammation in vitro model.
Collapse
Affiliation(s)
- Wen-Qi Zuo
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| | - Yu-Juan Hu
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| | - Yang Yang
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| | - Xue-Yan Zhao
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| | - Yuan-Yuan Zhang
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| | - Wei-Jia Kong
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China. .,Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
14
|
Davis RL, Crozier RA. Dynamic firing properties of type I spiral ganglion neurons. Cell Tissue Res 2015; 361:115-27. [PMID: 25567109 DOI: 10.1007/s00441-014-2071-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
Spiral ganglion neurons, the first neural element in the auditory system, possess complex intrinsic properties, possibly required to process frequency-specific sensory input that is integrated with extensive efferent regulation. Together with their tonotopically-graded sizes, the somata of these neurons reveal a sophisticated electrophysiological profile. Type I neurons, which make up ~95 % of the ganglion, have myriad voltage-gated ion channels that not only vary along the frequency contour of the cochlea, but also can be modulated by regulators such as voltage, calcium, and second messengers. The resultant developmentally- and tonotopically-regulated neuronal firing patterns conform to three distinct response modes (unitary, rapid, and slow) based on threshold and accommodation. This phenotype, however, is not static for any individual type I neuron. Recent observations have shown that, as neurons become less excitable with age, they demonstrate enhanced plasticity enabling them to change from one response mode to another depending upon resting membrane potential and the presence of neurotrophin-3. Thus, the primary auditory afferents utilized to encode dynamic acoustic stimuli possess the intrinsic specializations that allow them dynamically to alter their firing pattern.
Collapse
Affiliation(s)
- Robin L Davis
- Department of Cell Biology and Neuroscience, Nelson Laboratories, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA,
| | | |
Collapse
|
15
|
Crozier RA, Davis RL. Unmasking of spiral ganglion neuron firing dynamics by membrane potential and neurotrophin-3. J Neurosci 2014; 34:9688-702. [PMID: 25031408 PMCID: PMC4099546 DOI: 10.1523/jneurosci.4552-13.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 05/25/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
Type I spiral ganglion neurons have a unique role relative to other sensory afferents because, as a single population, they must convey the richness, complexity, and precision of auditory information as they shape signals transmitted to the brain. To understand better the sophistication of spiral ganglion response properties, we compared somatic whole-cell current-clamp recordings from basal and apical neurons obtained during the first 2 postnatal weeks from CBA/CaJ mice. We found that during this developmental time period neuron response properties changed from uniformly excitable to differentially plastic. Low-frequency, apical and high-frequency basal neurons at postnatal day 1 (P1)-P3 were predominantly slowly accommodating (SA), firing at low thresholds with little alteration in accommodation response mode induced by changes in resting membrane potential (RMP) or added neurotrophin-3 (NT-3). In contrast, P10-P14 apical and basal neurons were predominately rapidly accommodating (RA), had higher firing thresholds, and responded to elevation of RMP and added NT-3 by transitioning to the SA category without affecting the instantaneous firing rate. Therefore, older neurons appeared to be uniformly less excitable under baseline conditions yet displayed a previously unrecognized capacity to change response modes dynamically within a remarkably stable accommodation framework. Because the soma is interposed in the signal conduction pathway, these specializations can potentially lead to shaping and filtering of the transmitted signal. These results suggest that spiral ganglion neurons possess electrophysiological mechanisms that enable them to adapt their response properties to the characteristics of incoming stimuli and thus have the capacity to encode a wide spectrum of auditory information.
Collapse
Affiliation(s)
- Robert A Crozier
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Robin L Davis
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| |
Collapse
|
16
|
Neural progenitor cell implants in the lesioned medial longitudinal fascicle of adult cats regulate synaptic composition and firing properties of abducens internuclear neurons. J Neurosci 2014; 34:7007-17. [PMID: 24828653 DOI: 10.1523/jneurosci.4231-13.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transplants of neural progenitor cells (NPCs) into the injured CNS have been proposed as a powerful tool for brain repair, but, to date, few studies on the physiological response of host neurons have been reported. Therefore, we explored the effects of NPC implants on the discharge characteristics and synaptology of axotomized abducens internuclear neurons, which mediate gaze conjugacy for horizontal eye movements. NPCs were isolated from the subventricular zone of neonatal cats and implanted at the site of transection in the medial longitudinal fascicle of adult cats. Abducens internuclear neurons of host animals showed a complete restoration of axotomy-induced alterations in eye position sensitivity, but eye velocity sensitivity was only partially regained. Analysis of the inhibitory and excitatory components of the discharge revealed a normal re-establishment of inhibitory inputs, but only partial re-establishment of excitatory inputs. Moreover, their inhibitory terminal coverage was similar to that in controls, indicating that there was ultimately no loss of inhibitory synaptic inputs. Somatic coverage by synaptophysin-positive contacts, however, showed intermediate values between control animals and animals that had undergone axotomy, likely due to partial loss of excitatory inputs. We also demonstrated that severed axons synaptically contacted NPCs, most of which were VEGF immunopositive, and that abducens internuclear neurons expressed the VEGF receptor Flk1. Together, our results suggest that VEGF neurotrophic support might underlie the increased inhibitory-to-excitatory balance observed in the postimplant cells. The noteworthy improvement of firing properties of injured neurons following NPC implants indicates that these cells might provide a promising therapeutic strategy after neuronal lesions.
Collapse
|
17
|
Needham K, Hyakumura T, Gunewardene N, Dottori M, Nayagam BA. Electrophysiological properties of neurosensory progenitors derived from human embryonic stem cells. Stem Cell Res 2013; 12:241-9. [PMID: 24280418 DOI: 10.1016/j.scr.2013.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/30/2013] [Accepted: 10/30/2013] [Indexed: 01/19/2023] Open
Abstract
In severe cases of sensorineural hearing loss where the numbers of auditory neurons are significantly depleted, stem cell-derived neurons may provide a potential source of replacement cells. The success of such a therapy relies upon producing a population of functional neurons from stem cells, to enable precise encoding of sound information to the brainstem. Using our established differentiation assay to produce sensory neurons from human stem cells, patch-clamp recordings indicated that all neurons examined generated action potentials and displayed both transient sodium and sustained potassium currents. Stem cell-derived neurons reliably entrained to stimuli up to 20 pulses per second (pps), with 50% entrainment at 50 pps. A comparison with cultured primary auditory neurons indicated similar firing precision during low-frequency stimuli, but significant differences after 50 pps due to differences in action potential latency and width. The firing properties of stem cell-derived neurons were also considered relative to time in culture (31-56 days) and revealed no change in resting membrane potential, threshold or firing latency over time. Thus, while stem cell-derived neurons did not entrain to high frequency stimulation as effectively as mammalian auditory neurons, their electrical phenotype was stable in culture and consistent with that reported for embryonic auditory neurons.
Collapse
Affiliation(s)
- Karina Needham
- Department of Otolaryngology, University of Melbourne, Royal Victorian Eye and Ear Hospital, Level 2, 32 Gisborne Street, East Melbourne, VIC 3002, Australia; Department of Medicine, St Vincent's Hospital, University of Melbourne, Level 4, Clinical Sciences Building, 29 Regent Street, Fitzroy, VIC 3065, Australia.
| | - Tomoko Hyakumura
- Department of Otolaryngology, University of Melbourne, Royal Victorian Eye and Ear Hospital, Level 2, 32 Gisborne Street, East Melbourne, VIC 3002, Australia.
| | - Niliksha Gunewardene
- Department of Otolaryngology, University of Melbourne, Royal Victorian Eye and Ear Hospital, Level 2, 32 Gisborne Street, East Melbourne, VIC 3002, Australia.
| | - Mirella Dottori
- Centre for Neural Engineering, NICTA, University of Melbourne, 203 Bouverie Street, Parkville, VIC 3010, Australia.
| | - Bryony A Nayagam
- Department of Otolaryngology, University of Melbourne, Royal Victorian Eye and Ear Hospital, Level 2, 32 Gisborne Street, East Melbourne, VIC 3002, Australia; Department of Audiology and Speech Pathology, University of Melbourne, 550 Swanston Street, Parkville, VIC 3010, Australia; Bionics Institute, 384-388 Albert Street, East Melbourne, VIC 3002, Australia.
| |
Collapse
|
18
|
Liu Q, Lee E, Davis RL. Heterogeneous intrinsic excitability of murine spiral ganglion neurons is determined by Kv1 and HCN channels. Neuroscience 2013; 257:96-110. [PMID: 24200924 DOI: 10.1016/j.neuroscience.2013.10.065] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 10/02/2013] [Accepted: 10/26/2013] [Indexed: 02/03/2023]
Abstract
The spiral ganglion conveys afferent auditory information predominantly through a single class of type I neurons that receive signals from inner hair cell sensory receptors. These auditory primary afferents, like in other systems (Puopolo and Belluzzi, 1998; Gascon and Moqrich, 2010; Leao et al., 2012) possess a marked diversity in their electrophysiological features (Taberner and Liberman, 2005). Consistent with these observations, when the auditory primary afferents were assessed in neuronal explants separated from their peripheral and central targets it was found that individual neurons were markedly heterogeneous in their endogenous electrophysiological features. One aspect of this heterogeneity, obvious throughout the ganglion, was their wide range of excitability as assessed by voltage threshold measurements (Liu and Davis, 2007). Thus, while neurons in the base differed significantly from apical and middle neurons in their voltage thresholds, each region showed distinctly wide ranges of values. To determine whether the resting membrane potentials (RMPs) of these neurons correlate with the threshold distribution and to identify the ion channel regulatory elements underlying heterogeneous neuronal excitability in the ganglion, patch-clamp recordings were made from postnatal day (P5-8) murine spiral ganglion neurons in vitro. We found that RMP mirrored the tonotopic threshold distribution, and contributed an additional level of heterogeneity in each cochlear location. Pharmacological experiments further indicated that threshold and RMP was coupled through the Kv1 current, which had a dual impact on both electrophysiological parameters. Whereas, hyperpolarization-activated cationic channels decoupled these two processes by primarily affecting RMP without altering threshold level. Thus, beyond mechanical and synaptic specializations, ion channel regulation of intrinsic membrane properties imbues spiral ganglion neurons with different excitability levels, a feature that contributes to primary auditory afferent diversity.
Collapse
Affiliation(s)
- Q Liu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - E Lee
- Rutgers University, New Jersey Medical School, Newark, NJ 07746, USA
| | - R L Davis
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
19
|
Semaan MT, Zheng QY, Han F, Zheng Y, Yu H, Heaphy JC, Megerian CA. Characterization of neuronal cell death in the spiral ganglia of a mouse model of endolymphatic hydrops. Otol Neurotol 2013; 34:559-69. [PMID: 23462289 PMCID: PMC3628741 DOI: 10.1097/mao.0b013e3182868312] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Spiral ganglion neurons (SGN) in the Phex male mouse, a murine model of postnatal endolymphatic hydrops (ELH) undergo progressive deterioration reminiscent of human and other animal models of ELH with features suggesting apoptosis as an important mechanism. BACKGROUND Histologic analysis of the mutant's cochlea demonstrates ELH by postnatal Day (P) 21 and SGN loss by P90. The SGN loss seems to occur in a consistent topographic pattern beginning at the cochlear apex. METHODS SGN were counted at P60, P90, and P120. Semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR), quantitative PCR, and immunohistochemical analyses of activated caspase-3, caspase-8, and caspase-9 were performed on cochlear sections obtained from mutants and controls. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling assay (TUNEL) was carried out on 2 mutants and 2 controls. RESULTS Corrected SGN counts in control mice were greater in the apical turn of the cochleae at P90 and P120, respectively (p < 0.01). Increased expression of activated caspase-3, caspase-8, and caspase-9 was seen in the mutant. At later time points, activated caspase expression gradually declined in the apical turns and increased in basal turns of the cochlea. Quantitative and semiquantitative PCR analysis confirmed increased expression of caspase-3, caspase-8, and caspase-9 at P21 and P40. TUNEL staining demonstrated apoptosis at P90 in the apical and basal turns of the mutant cochleae. CONCLUSION SGN degeneration in the Phex /Y mouse seems to mimic patterns observed in other animals with ELH. Apoptosis plays an important role in the degeneration of the SGN in the Phex male mouse.
Collapse
Affiliation(s)
- Maroun T Semaan
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Needham K, Minter RL, Shepherd RK, Nayagam BA. Challenges for stem cells to functionally repair the damaged auditory nerve. Expert Opin Biol Ther 2013; 13:85-101. [PMID: 23094991 PMCID: PMC3543850 DOI: 10.1517/14712598.2013.728583] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION In the auditory system, a specialized subset of sensory neurons are responsible for correctly relaying precise pitch and temporal cues to the brain. In individuals with severe-to-profound sensorineural hearing impairment these sensory auditory neurons can be directly stimulated by a cochlear implant, which restores sound input to the brainstem after the loss of hair cells. This neural prosthesis therefore depends on a residual population of functional neurons in order to function effectively. AREAS COVERED In severe cases of sensorineural hearing loss where the numbers of auditory neurons are significantly depleted, the benefits derived from a cochlear implant may be minimal. One way in which to restore function to the auditory nerve is to replace these lost neurons using differentiated stem cells, thus re-establishing the neural circuit required for cochlear implant function. Such a therapy relies on producing an appropriate population of electrophysiologically functional neurons from stem cells, and on these cells integrating and reconnecting in an appropriate manner in the deaf cochlea. EXPERT OPINION Here we review progress in the field to date, including some of the key functional features that stem cell-derived neurons would need to possess and how these might be enhanced using electrical stimulation from a cochlear implant.
Collapse
Affiliation(s)
- Karina Needham
- University of Melbourne, Department of Otolaryngology, East Melbourne, Australia.
| | | | | | | |
Collapse
|
21
|
Budenz CL, Pfingst BE, Raphael Y. The use of neurotrophin therapy in the inner ear to augment cochlear implantation outcomes. Anat Rec (Hoboken) 2012; 295:1896-908. [PMID: 23044834 DOI: 10.1002/ar.22586] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 12/12/2022]
Abstract
Severe to profound deafness is most often secondary to a loss of or injury to cochlear mechanosensory cells, and there is often an associated loss of the peripheral auditory neural structures, specifically the spiral ganglion neurons and peripheral auditory fibers. Cochlear implantation is currently our best hearing rehabilitation strategy for severe to profound deafness. These implants work by directly electrically stimulating the remnant auditory neural structures within the deafened cochlea. When administered to the deafened cochlea in animal models, neurotrophins, specifically brain derived neurotrophic factor and neurotrophin-3, have been shown to dramatically improve spiral ganglion neuron survival and stimulate peripheral auditory fiber regrowth. In animal models, neurotrophins administered in combination with cochlear implantation has resulted in significant improvements in the electrophysiological and psychophysical measures of outcome. While further research must be done before these therapies can be applied clinically, neurotrophin therapies for the inner ear show great promise in enhancing CI outcomes and the treatment of hearing loss.
Collapse
Affiliation(s)
- Cameron L Budenz
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
22
|
Green SH, Bailey E, Wang Q, Davis RL. The Trk A, B, C's of Neurotrophins in the Cochlea. Anat Rec (Hoboken) 2012; 295:1877-95. [DOI: 10.1002/ar.22587] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 12/20/2022]
|
23
|
Purcell EK, Yang A, Liu L, Velkey JM, Morales MM, Duncan RK. BDNF profoundly and specifically increases KCNQ4 expression in neurons derived from embryonic stem cells. Stem Cell Res 2012; 10:29-35. [PMID: 23089626 DOI: 10.1016/j.scr.2012.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 08/15/2012] [Accepted: 08/27/2012] [Indexed: 01/10/2023] Open
Abstract
Neurons resembling the spiral ganglion neurons (SGNs) of the auditory nerve can be generated from embryonic stem cells through induced overexpression of the transcription factor Neurogenin-1 (Neurog1). While recapitulating this developmental pathway produces glutamatergic, bipolar neurons reminiscent of SGNs, these neurons are functionally immature, being characterized by a depolarized resting potential and limited excitability. We explored the effects of two neurotrophins known to be present in the inner ear, brain derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), on the electrophysiology of neurons following Neurog1 induction. Our data reveal a significant reduction in resting membrane potential (RMP) following neurotrophin exposure, with BDNF producing a more robust effect than NT-3. This effect was accompanied by a profound and specific upregulation of the KCNQ4 subtype, where a 9-fold increase was observed with quantitative PCR. The other neuronally expressed KCNQ subtypes (2, 3, and 5) exhibited upregulation which was 3-fold or less in magnitude. Quantitative immunohistochemistry confirmed the increase in KCNQ4 expression at the protein level. The present data show a novel link between BDNF and KCNQ4 expression, yielding insight into the restricted expression pattern of a channel known to play special roles in setting the resting potential of auditory cells and in the etiology of progressive high-frequency hearing loss.
Collapse
|
24
|
Needham K, Nayagam BA, Minter RL, O'Leary SJ. Combined application of brain-derived neurotrophic factor and neurotrophin-3 and its impact on spiral ganglion neuron firing properties and hyperpolarization-activated currents. Hear Res 2012; 291:1-14. [PMID: 22796476 DOI: 10.1016/j.heares.2012.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 06/29/2012] [Accepted: 07/03/2012] [Indexed: 01/11/2023]
Abstract
Neurotrophins provide an effective tool for the rescue and regeneration of spiral ganglion neurons (SGNs) following sensorineural hearing loss. However, these nerve growth factors are also potent modulators of ion channel activity and expression, and in the peripheral auditory system brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) have previously been shown to alter the firing properties of auditory neurons and differentially regulate the expression of some potassium channels in vitro. In this study we examined the activity of the hyperpolarization-mediated mixed-cation current (I(h)) in early post-natal cultured rat SGNs following exposure to combined BDNF and NT3. Whole-cell patch-clamp recordings made after 1 or 2 days in vitro revealed no change in the firing adaptation of neurons in the presence of BDNF and NT3. Resting membrane potentials were also maintained, but spike latency and firing threshold was subject to regulation by both neurotrophins and time in vitro. Current clamp recordings revealed an activity profile consistent with activation of the hyperpolarization-activated current. Rapid membrane hyperpolarization was followed by a voltage- and time-dependent depolarizing voltage sag. In voltage clamp, membrane hyperpolarization evoked a slowly-activating inward current that was reversibly blocked with cesium and inhibited by ZD7288. The amplitude and current density of I(h) was significantly larger in BDNF and NT3 supplemented cultures, but this did not translate to a significant alteration in voltage sag magnitude. Neurotrophins provided at 50 ng/ml produced a hyperpolarizing shift in the voltage-dependence and slower time course of I(h) activation compared to SGNs in control groups or cultured with 10 ng/ml BDNF and NT3. Our results indicate that combined BDNF and NT3 increase the activity of hyperpolarization-activated currents and that the voltage-dependence and activation kinetics of I(h) in SGNs are sensitive to changes in neurotrophin concentration. In addition, BDNF and NT3 applied together induce a decrease in firing threshold, but does not generate a shift in firing adaptation.
Collapse
Affiliation(s)
- Karina Needham
- Department of Otolaryngology, University of Melbourne, Royal Victorian Eye & Ear Hospital, Level 2, 32 Gisborne St., East Melbourne, Victoria 3002, Australia.
| | | | | | | |
Collapse
|
25
|
Barclay M, Ryan AF, Housley GD. Type I vs type II spiral ganglion neurons exhibit differential survival and neuritogenesis during cochlear development. Neural Dev 2011; 6:33. [PMID: 21989106 PMCID: PMC3207869 DOI: 10.1186/1749-8104-6-33] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/11/2011] [Indexed: 11/10/2022] Open
Abstract
Background The mechanisms that consolidate neural circuitry are a major focus of neuroscience. In the mammalian cochlea, the refinement of spiral ganglion neuron (SGN) innervation to the inner hair cells (by type I SGNs) and the outer hair cells (by type II SGNs) is accompanied by a 25% loss of SGNs. Results We investigated the segregation of neuronal loss in the mouse cochlea using β-tubulin and peripherin antisera to immunolabel all SGNs and selectively type II SGNs, respectively, and discovered that it is the type II SGN population that is predominately lost within the first postnatal week. Developmental neuronal loss has been attributed to the decline in neurotrophin expression by the target hair cells during this period, so we next examined survival of SGN sub-populations using tissue culture of the mid apex-mid turn region of neonatal mouse cochleae. In organotypic culture for 48 hours from postnatal day 1, endogenous trophic support from the organ of Corti proved sufficient to maintain all type II SGNs; however, a large proportion of type I SGNs were lost. Culture of the spiral ganglion as an explant, with removal of the organ of Corti, led to loss of the majority of both SGN sub-types. Brain-derived neurotrophic factor (BDNF) added as a supplement to the media rescued a significant proportion of the SGNs, particularly the type II SGNs, which also showed increased neuritogenesis. The known decline in BDNF production by the rodent sensory epithelium after birth is therefore a likely mediator of type II neuron apoptosis. Conclusion Our study thus indicates that BDNF supply from the organ of Corti supports consolidation of type II innervation in the neonatal mouse cochlea. In contrast, type I SGNs likely rely on additional sources for trophic support.
Collapse
Affiliation(s)
- Meagan Barclay
- Department of Physiology, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | |
Collapse
|
26
|
Flores-Otero J, Davis RL. Synaptic proteins are tonotopically graded in postnatal and adult type I and type II spiral ganglion neurons. J Comp Neurol 2011; 519:1455-75. [PMID: 21452215 DOI: 10.1002/cne.22576] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inherent in the design of the mammalian auditory system is the precision necessary to transduce complex sounds and transmit the resulting electrical signals to higher neural centers. Unique specializations in the organ of Corti are required to make this conversion, such that mechanical and electrical properties of hair cell receptors are tailored to their specific role in signal coding. Electrophysiological and immunocytochemical characterizations have shown that this principle also applies to neurons of the spiral ganglion, as evidenced by distinctly different firing features and synaptic protein distributions of neurons that innervate high- and low-frequency regions of the cochlea. However, understanding the fine structure of how these properties are distributed along the cochlear partition and within the type I and type II classes of spiral ganglion neurons is necessary to appreciate their functional significance fully. To address this issue, we assessed the localization of the postsynaptic AMPA receptor subunits GluR2 and GluR3 and the presynaptic protein synaptophysin by using immunocytochemical labeling in both postnatal and adult tissue. We report that these presynaptic and postsynaptic proteins are distributed oppositely in relation to the tonotopic map and that they are equally distributed in each neuronal class, thus having an overall gradation from one end of the cochlea to the other. For synaptophysin, an additional layer of heterogeneity was superimposed orthogonal to the tonotopic axis. The highest anti-synaptophysin antibody levels were observed within neurons located close to the scala tympani compared with those located close to the scala vestibuli. Furthermore, we noted that the protein distribution patterns observed in postnatal preparations were largely retained in adult tissue sections, indicating that these features characterize spiral ganglion neurons in the fully developed ear.
Collapse
Affiliation(s)
- Jacqueline Flores-Otero
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
27
|
Functional role of neurotrophin-3 in synapse regeneration by spiral ganglion neurons on inner hair cells after excitotoxic trauma in vitro. J Neurosci 2011; 31:7938-49. [PMID: 21613508 DOI: 10.1523/jneurosci.1434-10.2011] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Spiral ganglion neurons (SGNs) are postsynaptic to hair cells and project to the brainstem. The inner hair cell (IHC) to SGN synapse is susceptible to glutamate excitotoxicity and to acoustic trauma, with potentially adverse consequences to long-term SGN survival. We used a cochlear explant culture from P6 rat pups consisting of a portion of organ of Corti maintained intact with the corresponding portion of spiral ganglion to investigate excitotoxic damage to IHC-SGN synapses in vitro. The normal innervation pattern is preserved in vitro. Brief treatment with NMDA and kainate results in loss of IHC-SGN synapses and degeneration of the distal type 1 SGN peripheral axons, mimicking damage to SGN peripheral axons caused by excitotoxicity or noise in vivo. The number of IHC presynaptic ribbons is not significantly altered. Reinnervation of IHCs occurs and regenerating axons remain restricted to the IHC row. However, the number of postsynaptic densities (PSDs) does not fully recover and not all axons regrow to the IHCs. Addition of either neurotrophin-3 (NT-3) or BDNF increases axon growth and synaptogenesis. Selective blockade of endogenous NT-3 signaling with TrkC-IgG reduced regeneration of axons and PSDs, but TrkB-IgG, which blocks BDNF, has no such effect, indicating that endogenous NT-3 is necessary for SGN axon growth and synaptogenesis. Remarkably, TrkC-IgG reduced axon growth and synaptogenesis even in the presence of BDNF, indicating that endogenous NT-3 has a distinctive role, not mimicked by BDNF, in promoting SGN axon growth in the organ of Corti and synaptogenesis on IHCs.
Collapse
|
28
|
Yang T, Kersigo J, Jahan I, Pan N, Fritzsch B. The molecular basis of making spiral ganglion neurons and connecting them to hair cells of the organ of Corti. Hear Res 2011; 278:21-33. [PMID: 21414397 DOI: 10.1016/j.heares.2011.03.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 03/01/2011] [Accepted: 03/07/2011] [Indexed: 11/28/2022]
Abstract
The bipolar spiral ganglion neurons apparently delaminate from the growing cochlear duct and migrate to Rosenthal's canal. They project radial fibers to innervate the organ of Corti (type I neurons to inner hair cells, type II neurons to outer hair cells) and also project tonotopically to the cochlear nuclei. The early differentiation of these neurons requires transcription factors to regulate migration, pathfinding and survival. Neurog1 null mice lack formation of neurons. Neurod1 null mice show massive neuronal death combined with aberrant central and peripheral projections. Prox1 protein is necessary for proper type II neuron process navigation, which is also affected by the neurotrophins Bdnf and Ntf3. Neurotrophin null mutants show specific patterns of neuronal loss along the cochlea but remaining neurons compensate by expanding their target area. All neurotrophin mutants have reduced radial fiber growth proportional to the degree of loss of neurotrophin alleles. This suggests a simple dose response effect of neurotrophin concentration. Keeping overall concentration constant, but misexpressing one neurotrophin under regulatory control of another one results in exuberant fiber growth not only of vestibular fibers to the cochlea but also of spiral ganglion neurons to outer hair cells suggesting different effectiveness of neurotrophins for spiral ganglion neurite growth. Finally, we report here for the first time that losing all neurons in double null mutants affects extension of the cochlear duct and leads to formation of extra rows of outer hair cells in the apex, possibly by disrupting the interaction of the spiral ganglion with the elongating cochlea.
Collapse
Affiliation(s)
- Tian Yang
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, 143 BB, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
29
|
Davis RL, Liu Q. Complex primary afferents: What the distribution of electrophysiologically-relevant phenotypes within the spiral ganglion tells us about peripheral neural coding. Hear Res 2011; 276:34-43. [PMID: 21276843 DOI: 10.1016/j.heares.2011.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 01/19/2011] [Accepted: 01/20/2011] [Indexed: 01/17/2023]
Abstract
Spiral ganglion neurons are the first neural element of the auditory system. They receive precise synaptic signals which represent features of sound stimuli encoded by hair cell receptors and they deliver a digital representation of this information to the central nervous system. It is well known that spiral ganglion neurons are selectively responsive to specific sound frequencies, and that numerous structural and physiological specializations in the inner ear increase the quality of this tuning, beyond what could be accomplished by the passive properties of the basilar membrane. Further, consistent with what we know about other sensory systems, it is becoming clear that the parallel divergent innervation pattern of type I spiral ganglion neurons has the potential to encode additional features of sound stimuli. To date, we understand the most about the sub-modalities of frequency and intensity coding in the peripheral auditory system. Work reviewed herein will address the issue of how intrinsic electrophysiological features of the neurons themselves have the potential to contribute to the precision of coding and transmitting information about these two parameters to higher auditory centers for further processing.
Collapse
Affiliation(s)
- Robin L Davis
- Department of Cell Biology & Neuroscience, 604 Allison Road, Nelson Laboratories, Rutgers University, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
30
|
Epp B, Verhey JL, Mauermann M. Modeling cochlear dynamics: interrelation between cochlea mechanics and psychoacoustics. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 128:1870-1883. [PMID: 20968359 DOI: 10.1121/1.3479755] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A model of the cochlea was used to bridge the gap between model approaches commonly used to investigate phenomena related to otoacoustic emissions and more filter-based model approaches often used in psychoacoustics. In the present study, a nonlinear and active one-dimensional transmission line model was developed that accounts for several aspects of physiological data with a single fixed parameter set. The model shows plausible excitation patterns and an input-output function similar to the linear-compressive-linear function as hypothesized in psychoacoustics. The model shows realistic results in a two-tone suppression paradigm and a plausible growth function of the 2f(1)-f(2) component of distortion product otoacoustic emissions. Finestructure was found in simulated stimulus-frequency otoacoustic emissions (SFOAE) with realistic levels and rapid phase rotation. A plausible "threshold in quiet" including finestructure and spontaneous otoacoustic emissions (SOAE) could be simulated. It is further shown that psychoacoustical data of modulation detection near threshold can be explained by the mechanical dynamics of the modeled healthy cochlea. It is discussed that such a model can be used to investigate the representation of acoustic signals in healthy and impaired cochleae at this early stage of the auditory pathway for both, physiological as well as psychoacoustical paradigms.
Collapse
Affiliation(s)
- Bastian Epp
- Neuroacoustics, Institute of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, Oldenburg 26111, Germany.
| | | | | |
Collapse
|
31
|
Staecker H, Garnham C. Neurotrophin therapy and cochlear implantation: translating animal models to human therapy. Exp Neurol 2010; 226:1-5. [PMID: 20654616 DOI: 10.1016/j.expneurol.2010.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 12/31/2022]
Abstract
Cochlear implantation is a highly successful intervention for the treatment of deafness that depends on electrical stimulation of the inner ear's surviving spiral ganglion neurons. It is thought that some of the variability in hearing outcomes that is seen in patients receiving implants may be a reflection of the number or health of surviving neurons. A variety of studies have demonstrated a relationship between hair cell loss and degeneration of the spiral ganglion. This has been attributed to the loss of neurotrophin production with destruction of the spiral ganglion's target, the hair cell. Delivery of neurotrophins either through a device or through gene therapy has been shown to improve spiral ganglion survival after hair cell loss and additionally improves the function of cochlear implants in animal models. Translation of these observations to human therapy will require a clear understanding of the relationship between human spiral ganglion health and cochlear implant outcomes as well as the development of novel pre- and post-implantation outcomes measures.
Collapse
Affiliation(s)
- Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas, Kansas City, KS 66160, USA.
| | | |
Collapse
|
32
|
Luther JA, Birren SJ. Neurotrophins and target interactions in the development and regulation of sympathetic neuron electrical and synaptic properties. Auton Neurosci 2009; 151:46-60. [PMID: 19748836 DOI: 10.1016/j.autneu.2009.08.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The electrical and synaptic properties of neurons are essential for determining the function of the nervous system. Thus, understanding the mechanisms that control the appropriate developmental acquisition and maintenance of these properties is a critical problem in neuroscience. A great deal of our understanding of these developmental mechanisms comes from studies of soluble growth factor signaling between cells in the peripheral nervous system. The sympathetic nervous system has provided a model for studying the role of these factors both in early development and in the establishment of mature properties. In particular, neurotrophins produced by the targets of sympathetic innervation regulate the synaptic and electrophysiological properties of postnatal sympathetic neurons. In this review we examine the role of neurotrophin signaling in the regulation of synaptic strength, neurotransmitter phenotype, voltage-gated currents and repetitive firing properties of sympathetic neurons. Together, these properties determine the level of sympathetic drive to target organs such as the heart. Changes in this sympathetic drive, which may be linked to dysfunctions in neurotrophin signaling, are associated with devastating diseases such as high blood pressure, arrhythmias and heart attack. Neurotrophins appear to play similar roles in modulating the synaptic and electrical properties of other peripheral and central neuronal systems, suggesting that information provided from studies in the sympathetic nervous system will be widely applicable for understanding the neurotrophic regulation of neuronal function in other systems.
Collapse
Affiliation(s)
- Jason A Luther
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA.
| | | |
Collapse
|
33
|
Complementary actions of BDNF and neurotrophin-3 on the firing patterns and synaptic composition of motoneurons. J Neurosci 2009; 29:575-87. [PMID: 19144857 DOI: 10.1523/jneurosci.5312-08.2009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neurotrophins, as target-derived factors, are essential for neuronal survival during development, but during adulthood, their scope of actions widens to become also mediators of synaptic and morphological plasticity. Target disconnection by axotomy produces an initial synaptic stripping ensued by synaptic rearrangement upon target reinnervation. Using abducens motoneurons of the oculomotor system as a model for axotomy, we report that trophic support by brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) or a mixture of both, delivered to the stump of severed axons, results in either the prevention of synaptic stripping when administered immediately after lesion or in a promotion of reinnervation of afferents to abducens motoneurons once synaptic stripping had occurred, in concert with the recovery of synaptic potentials evoked from the vestibular nerve. Synaptotrophic effects, however, were larger when both neurotrophins were applied together. The axotomy-induced reduction in firing sensitivities related to eye movements were also restored to normal values when BDNF and NT-3 were administered, but discharge characteristics recovered in a complementary manner when only one neurotrophin was used. This is the first report to show selective retrograde trophic dependence of circuit-driven firing properties in vivo indicating that NT-3 restored the phasic firing, whereas BDNF supported the tonic firing of motoneurons during eye movement performance. Therefore, our data report a link between the synaptotrophic actions of neurotrophins, retrogradely delivered, and the alterations of neuronal firing patterns during motor behaviors. These trophic actions could be responsible, in part, for synaptic rearrangements that alter circuit stability and synaptic balance during plastic events of the brain.
Collapse
|
34
|
Rusznák Z, Szucs G. Spiral ganglion neurones: an overview of morphology, firing behaviour, ionic channels and function. Pflugers Arch 2008; 457:1303-25. [PMID: 18777041 DOI: 10.1007/s00424-008-0586-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 08/22/2008] [Accepted: 08/26/2008] [Indexed: 11/29/2022]
Abstract
The spiral ganglion cells provide the afferent innervation of the hair cells of the organ of Corti. Ninety-five percent of these cells (termed type I spiral ganglion neurones) are in synaptic contact with the inner hair cells, whereas about 5% of them are type II cells, which are responsible for the sensory innervation of the outer hair cells. To understand the function of the spiral ganglion neurones, it is important to explore their membrane properties, understand their activity patterns and describe the variety of ionic channels determining their behaviour. In this review, a brief description is given of the various experimental methods that allow the investigation of the spiral ganglion cells, followed by the discussion of their action potential firing patterns and ionic conductances. The presence, distribution and significance of the K(+) currents of the spiral ganglion cells are specifically addressed, along with the introduction of the putative subunit compositions of the relevant voltage-gated K(+) channels.
Collapse
Affiliation(s)
- Zoltán Rusznák
- Department of Physiology, Medical and Health Science Centre, University of Debrecen, Debrecen, P O Box 22, H-4012, Hungary.
| | | |
Collapse
|
35
|
Bakondi G, Pór A, Kovács I, Szucs G, Rusznák Z. Voltage-gated K+ channel (Kv) subunit expression of the guinea pig spiral ganglion cells studied in a newly developed cochlear free-floating preparation. Brain Res 2008; 1210:148-62. [PMID: 18410910 DOI: 10.1016/j.brainres.2008.02.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 02/11/2008] [Accepted: 02/20/2008] [Indexed: 12/01/2022]
Abstract
The spiral ganglion accommodates the cell bodies of the acoustic nerve fibres connecting the hair cells to the central nervous system. As the ionic channels containing various voltage-gated K+ channel (Kv) subunits play pivotal roles in determining the functional properties and firing behaviour of the spiral ganglion cells (SGCs), every piece of information concerning the Kv expression of the SGCs is valuable. In the present work a comprehensive immunohistochemical analysis was performed to describe the expression of 9 Kv subunits in the guinea pig cochlea on traditional wax-embedded sections as well as employing a newly developed preparation that allowed confocal analysis, reconstruction of the three-dimensional appearance and precise morphological characterisation of the SGCs. Besides determining their Kv expression patterns, differences between type I and type II SGCs were sought. SGCs showed positivity for 8 out of the 9 Kv subunit-specific antibodies with varying intensity and proportion of the immunopositive cells; whereas no obvious Kv3.2 positivity could be noted. Type I and type II cells demonstrated similar expression patterns for all subunits tested, with the exception of Kv1.2, whose presence was confirmed in only 50% of the type II cells. Although the present findings suggest that type I and type II cells do not differ fundamentally in the Kv subunits they possess; they also imply that SGCs may not form a homogeneous cell population, and might provide explanation of the previously noted heterogeneity of the membrane properties of the SGCs.
Collapse
Affiliation(s)
- Gábor Bakondi
- Department of Physiology, Medical and Health Science Centre, University of Debrecen, Debrecen, P.O. Box 22, H-4012, Hungary
| | | | | | | | | |
Collapse
|
36
|
Reciprocal regulation of presynaptic and postsynaptic proteins in bipolar spiral ganglion neurons by neurotrophins. J Neurosci 2008; 27:14023-34. [PMID: 18094241 DOI: 10.1523/jneurosci.3219-07.2007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A unifying principle of sensory system organization is feature extraction by modality-specific neuronal maps in which arrays of neurons show systematically varied response properties and receptive fields. Only beginning to be understood, however, are the mechanisms by which these graded systems are established. In the peripheral auditory system, we have shown previously that the intrinsic firing features of spiral ganglion neurons are influenced by brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3). We now show that is but a part of a coordinated package of neurotrophin actions that also includes effects on presynaptic and postsynaptic proteins, thus encompassing the input, transmission, and output functions of the spiral ganglion neurons. Using immunocytochemical methods, we determined that proteins targeted to opposite ends of the neuron were organized and regulated in a reciprocal manner. AMPA receptor subunits GluR2 and GluR3 were enriched in base neurons compared with their apex counterparts. This distribution pattern was enhanced by exposure to BDNF but reduced by NT-3. SNAP-25 and synaptophysin were distributed and regulated in the mirror image: enriched in the apex, enhanced by NT-3 and reduced by BDNF. Moreover, we used a novel coculture to identify potential endogenous sources of neurotrophins by showing that sensory receptors from different cochlear regions were capable of altering presynaptic and postsynaptic protein levels in these neurons. From these studies, we suggest that BDNF and NT-3, which are systematically distributed in complementary gradients, are responsible for orchestrating a comprehensive set of electrophysiological specializations along the frequency contour of the cochlea.
Collapse
|
37
|
Liu Q, Davis RL. Regional Specification of Threshold Sensitivity and Response Time in CBA/CaJ Mouse Spiral Ganglion Neurons. J Neurophysiol 2007; 98:2215-22. [PMID: 17715200 DOI: 10.1152/jn.00284.2007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies of spiral ganglion neuron electrophysiology have shown that specific parameters differ according to cochlear location, with apical neurons being distinctly different from basal neurons. To align these features more precisely along the tonotopic axis of the cochlea, we developed a novel spiral ganglion culture system in which positional information is retained. Patch-clamp recordings made from neurons of known gangliotopic location revealed two basic firing pattern distributions. Membrane characteristics related to spike timing, such as accommodation, latency and onset tau, were distinctly heterogeneous, yet when averaged, they were distributed in a graded manner along the length of the cochlea. Action potential threshold levels also displayed a wide range, the averages of which were distributed nonmonotonically such that neurons with the greatest sensitivity were localized to the mid-regions of the ganglion. These studies shed new light on the complexity and sophistication of the intrinsic firing features of spiral ganglion neurons. Because timing-related elements are organized in an overall tonotopic manner, it is hypothesized that they contribute to aspects of frequency-dependent acoustic processing. On the other hand, the different distribution of threshold levels, with the greatest sensitivity in the middle region of the tonotopic map, suggests that this neuronal parameter is regulated differently and thus may contribute a distinct realm of auditory sensory processing.
Collapse
Affiliation(s)
- Qing Liu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | | |
Collapse
|
38
|
Chen WC, Davis RL. Voltage-gated and two-pore-domain potassium channels in murine spiral ganglion neurons. Hear Res 2006; 222:89-99. [PMID: 17079103 DOI: 10.1016/j.heares.2006.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Revised: 09/02/2006] [Accepted: 09/06/2006] [Indexed: 11/21/2022]
Abstract
The systematically varied firing features of spiral ganglion neurons provide an excellent model system for the exploration of how graded ion channel distributions can be used to organize neuronal firing across a population of neurons. Elucidating the underlying mechanisms that determine neuronal response properties requires a complete understanding of the combination of ion channels, auxiliary proteins, modulators, and second messengers that form this highly organized system in the auditory periphery. Toward this goal, we built upon previous studies of voltage-gated K+-selective ion channels (Kv), and expanded our analysis to K+-selective leak channels (KCNK), which can play a major role in setting the basic firing characteristics of spiral ganglion neurons. To begin a more comprehensive analysis of Kv and KCNK channels, a screening approach was employed. RT-PCR was utilized to examine gene expression, the major results of which were confirmed with immunocytochemistry. Initial studies validated this approach by accurately detecting voltage-dependent K+ channels that were documented previously in the spiral ganglion. Furthermore, an additional channel type within the Kv3 family, Kv3.3, was identified and further characterized. The major focus of the study, however, was to systematically examine gene expression levels of the KCNK family of K+-selective leak channels. These channel types determine the resting membrane potential which has a major impact on setting the level of neuronal excitation. TWIK-1, TASK-3, TASK-1, and TREK-1 were expressed in the spiral ganglion; TWIK-1 was specifically localized with immunocytochemistry to the neuronal somata and initial processes of spiral ganglion neurons in vitro.
Collapse
Affiliation(s)
- Wei Chun Chen
- Department of Cell Biology and Neuroscience, Nelson Laboratories, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| | | |
Collapse
|
39
|
Dulon D, Jagger DJ, Lin X, Davis RL. Neuromodulation in the Spiral Ganglion: Shaping Signals from the Organ of Corti to the CNS. J Membr Biol 2006; 209:167-75. [PMID: 16773500 DOI: 10.1007/s00232-005-0841-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Indexed: 11/25/2022]
Affiliation(s)
- D Dulon
- Laboratoire de Biologie Cellulaire et Moléculaire de l'Audition, Hôpital Pellegrin, INSERM et EA 3665 Université de Bordeaux 2, 33076, Bordeaux, France
| | | | | | | |
Collapse
|