1
|
Zhu S, Shen Z, Wu X, Han W, Jia B, Lu W, Zhang M. Demixing is a default process for biological condensates formed via phase separation. Science 2024; 384:920-928. [PMID: 38781377 DOI: 10.1126/science.adj7066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Excitatory and inhibitory synapses do not overlap even when formed on one submicron-sized dendritic protrusion. How excitatory and inhibitory postsynaptic cytomatrices or densities (e/iPSDs) are segregated is not understood. Broadly, why membraneless organelles are naturally segregated in cellular subcompartments is unclear. Using biochemical reconstitutions in vitro and in cells, we demonstrate that ePSDs and iPSDs spontaneously segregate into distinct condensed molecular assemblies through phase separation. Tagging iPSD scaffold gephyrin with a PSD-95 intrabody (dissociation constant ~4 nM) leads to mistargeting of gephyrin to ePSD condensates. Unexpectedly, formation of iPSD condensates forces the intrabody-tagged gephyrin out of ePSD condensates. Thus, instead of diffusion-governed spontaneous mixing, demixing is a default process for biomolecules in condensates. Phase separation can generate biomolecular compartmentalization specificities that cannot occur in dilute solutions.
Collapse
Affiliation(s)
- Shihan Zhu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zeyu Shen
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiandeng Wu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20824, USA
| | - Bowen Jia
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20824, USA
| | - Mingjie Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Quantifying postsynaptic receptor dynamics: insights into synaptic function. Nat Rev Neurosci 2023; 24:4-22. [PMID: 36352031 DOI: 10.1038/s41583-022-00647-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
The molecular composition of presynaptic and postsynaptic neuronal terminals is dynamic, and yet long-term stabilizations in postsynaptic responses are necessary for synaptic development and long-term plasticity. The need to reconcile these concepts is further complicated by learning- and memory-related plastic changes in the molecular make-up of synapses. Advances in single-particle tracking mean that we can now quantify the number and diffusive properties of specific synaptic molecules, while statistical thermodynamics provides a framework to analyse these molecular fluctuations. In this Review, we discuss the use of these approaches to gain quantitative descriptions of the processes underlying the turnover, long-term stability and plasticity of postsynaptic receptors and show how these can help us to understand the balance between local molecular turnover and synaptic structural identity and integrity.
Collapse
|
3
|
Control of Synapse Structure and Function by Actin and Its Regulators. Cells 2022; 11:cells11040603. [PMID: 35203254 PMCID: PMC8869895 DOI: 10.3390/cells11040603] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 02/07/2023] Open
Abstract
Neurons transmit and receive information at specialized junctions called synapses. Excitatory synapses form at the junction between a presynaptic axon terminal and a postsynaptic dendritic spine. Supporting the shape and function of these junctions is a complex network of actin filaments and its regulators. Advances in microscopic techniques have enabled studies of the organization of actin at synapses and its dynamic regulation. In addition to highlighting recent advances in the field, we will provide a brief historical perspective of the understanding of synaptic actin at the synapse. We will also highlight key neuronal functions regulated by actin, including organization of proteins in the pre- and post- synaptic compartments and endocytosis of ion channels. We review the evidence that synapses contain distinct actin pools that differ in their localization and dynamic behaviors and discuss key functions for these actin pools. Finally, whole exome sequencing of humans with neurodevelopmental and psychiatric disorders has identified synaptic actin regulators as key disease risk genes. We briefly summarize how genetic variants in these genes impact neurotransmission via their impact on synaptic actin.
Collapse
|
4
|
Yang X, Annaert W. The Nanoscopic Organization of Synapse Structures: A Common Basis for Cell Communication. MEMBRANES 2021; 11:248. [PMID: 33808285 PMCID: PMC8065904 DOI: 10.3390/membranes11040248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022]
Abstract
Synapse structures, including neuronal and immunological synapses, can be seen as the plasma membrane contact sites between two individual cells where information is transmitted from one cell to the other. The distance between the two plasma membranes is only a few tens of nanometers, but these areas are densely populated with functionally different proteins, including adhesion proteins, receptors, and transporters. The narrow space between the two plasma membranes has been a barrier for resolving the synaptic architecture due to the diffraction limit in conventional microscopy (~250 nm). Various advanced super-resolution microscopy techniques, such as stimulated emission depletion (STED), structured illumination microscopy (SIM), and single-molecule localization microscopy (SMLM), bypass the diffraction limit and provide a sub-diffraction-limit resolving power, ranging from 10 to 100 nm. The studies using super-resolution microscopy have revealed unprecedented details of the nanoscopic organization and dynamics of synaptic molecules. In general, most synaptic proteins appear to be heterogeneously distributed and form nanodomains at the membranes. These nanodomains are dynamic functional units, playing important roles in mediating signal transmission through synapses. Herein, we discuss our current knowledge on the super-resolution nanoscopic architecture of synapses and their functional implications, with a particular focus on the neuronal synapses and immune synapses.
Collapse
Affiliation(s)
| | - Wim Annaert
- VIB Center for Brain and Disease Research and KU Leuven, Department of Neurosciences, Gasthuisberg, B-3000 Leuven, Belgium;
| |
Collapse
|
5
|
Parato J, Bartolini F. The microtubule cytoskeleton at the synapse. Neurosci Lett 2021; 753:135850. [PMID: 33775740 DOI: 10.1016/j.neulet.2021.135850] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
In neurons, microtubules (MTs) provide routes for transport throughout the cell and structural support for dendrites and axons. Both stable and dynamic MTs are necessary for normal neuronal functions. Research in the last two decades has demonstrated that MTs play additional roles in synaptic structure and function in both pre- and postsynaptic elements. Here, we review current knowledge of the functions that MTs perform in excitatory and inhibitory synapses, as well as in the neuromuscular junction and other specialized synapses, and discuss the implications that this knowledge may have in neurological disease.
Collapse
Affiliation(s)
- Julie Parato
- Columbia University Medical Center, Department of Pathology & Cell Biology, 630 West 168(th)Street, P&S 15-421, NY, NY, 10032, United States; SUNY Empire State College, Department of Natural Sciences, 177 Livingston Street, Brooklyn, NY, 11201, United States
| | - Francesca Bartolini
- Columbia University Medical Center, Department of Pathology & Cell Biology, 630 West 168(th)Street, P&S 15-421, NY, NY, 10032, United States.
| |
Collapse
|
6
|
Leterrier C. A Pictorial History of the Neuronal Cytoskeleton. J Neurosci 2021; 41:11-27. [PMID: 33408133 PMCID: PMC7786211 DOI: 10.1523/jneurosci.2872-20.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022] Open
Affiliation(s)
- Christophe Leterrier
- Aix Marseille Université, Centre National de la Recherche Scientifique, INP Unité Mixte de Recherche 7051, NeuroCyto, Marseille 13005, France
| |
Collapse
|
7
|
Fricke S, Metzdorf K, Ohm M, Haak S, Heine M, Korte M, Zagrebelsky M. Fast Regulation of GABA AR Diffusion Dynamics by Nogo-A Signaling. Cell Rep 2020; 29:671-684.e6. [PMID: 31618635 DOI: 10.1016/j.celrep.2019.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/02/2019] [Accepted: 09/06/2019] [Indexed: 12/29/2022] Open
Abstract
Precisely controlling the excitatory and inhibitory balance is crucial for the stability and information-processing ability of neuronal networks. However, the molecular mechanisms maintaining this balance during ongoing sensory experiences are largely unclear. We show that Nogo-A signaling reciprocally regulates excitatory and inhibitory transmission. Loss of function for Nogo-A signaling through S1PR2 rapidly increases GABAAR diffusion, thereby decreasing their number at synaptic sites and the amplitude of GABAergic mIPSCs at CA3 hippocampal neurons. This increase in GABAAR diffusion rate is correlated with an increase in Ca2+ influx and requires the calcineurin-mediated dephosphorylation of the γ2 subunit at serine 327. These results suggest that Nogo-A signaling rapidly strengthens inhibitory GABAergic transmission by restricting the diffusion dynamics of GABAARs. Together with the observation that Nogo-A signaling regulates excitatory transmission in an opposite manner, these results suggest a crucial role for Nogo-A signaling in modulating the excitation and inhibition balance to restrict synaptic plasticity.
Collapse
Affiliation(s)
- Steffen Fricke
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig 38108, Germany
| | - Kristin Metzdorf
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig 38108, Germany
| | - Melanie Ohm
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig 38108, Germany
| | - Stefan Haak
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig 38108, Germany
| | - Martin Heine
- Molecular Physiology Group, Leibniz Institute of Neurobiology, Magdeburg 39118, Germany; Functional Neurobiology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz 55128, Germany
| | - Martin Korte
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig 38108, Germany; Helmholtz Centre for Infection Research, AG NIND, Inhoffenstr. 7, Braunschweig 38124, Germany
| | - Marta Zagrebelsky
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig 38108, Germany.
| |
Collapse
|
8
|
Rey-Suarez I, Wheatley BA, Koo P, Bhanja A, Shu Z, Mochrie S, Song W, Shroff H, Upadhyaya A. WASP family proteins regulate the mobility of the B cell receptor during signaling activation. Nat Commun 2020; 11:439. [PMID: 31974357 PMCID: PMC6978525 DOI: 10.1038/s41467-020-14335-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Regulation of membrane receptor mobility tunes cellular response to external signals, such as in binding of B cell receptors (BCR) to antigen, which initiates signaling. However, whether BCR signaling is regulated by BCR mobility, and what factors mediate this regulation, are not well understood. Here we use single molecule imaging to examine BCR movement during signaling activation and a novel machine learning method to classify BCR trajectories into distinct diffusive states. Inhibition of actin dynamics downstream of the actin nucleating factors, Arp2/3 and formin, decreases BCR mobility. Constitutive loss or acute inhibition of the Arp2/3 regulator, N-WASP, which is associated with enhanced signaling, increases the proportion of BCR trajectories with lower diffusivity. Furthermore, loss of N-WASP reduces the diffusivity of CD19, a stimulatory co-receptor, but not that of FcγRIIB, an inhibitory co-receptor. Our results implicate a dynamic actin network in fine-tuning receptor mobility and receptor-ligand interactions for modulating B cell signaling. B cell receptors (BCR) capture antigen and initiate downstream antibody responses, but whether and how BCR signaling is regulated by BCR mobility is still unclear. Here the authors show, using single molecule imaging and machine learning analyses, that BCR and CD19 mobility is modulated by the actin nucleation regulators Arp2/3 and N-WASP to control BCR signaling.
Collapse
Affiliation(s)
- Ivan Rey-Suarez
- Biophysics Program, University of Maryland, College Park, MD, 20742, USA.,National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Brittany A Wheatley
- Department of Physics, University of Maryland, College Park, MD, 20742, USA.,Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | - Peter Koo
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Anshuman Bhanja
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Zhou Shu
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.,Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Simon Mochrie
- Department of Physics, Yale University, New Haven, CT, 06520, USA
| | - Wenxia Song
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Hari Shroff
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Arpita Upadhyaya
- Biophysics Program, University of Maryland, College Park, MD, 20742, USA. .,Department of Physics, University of Maryland, College Park, MD, 20742, USA. .,Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
9
|
Maynard SA, Triller A. Inhibitory Receptor Diffusion Dynamics. Front Mol Neurosci 2019; 12:313. [PMID: 31920541 PMCID: PMC6930922 DOI: 10.3389/fnmol.2019.00313] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/04/2019] [Indexed: 11/13/2022] Open
Abstract
The dynamic modulation of receptor diffusion-trapping at inhibitory synapses is crucial to synaptic transmission, stability, and plasticity. In this review article, we will outline the progression of understanding of receptor diffusion dynamics at the plasma membrane. We will discuss how regulation of reversible trapping of receptor-scaffold interactions in combination with theoretical modeling approaches can be used to quantify these chemical interactions at the postsynapse of living cells.
Collapse
Affiliation(s)
- Stephanie A Maynard
- Institute of Biology of Ecole Normale Supérieure (IBENS), PSL Research University, CNRS, Inserm, Paris, France
| | - Antoine Triller
- Institute of Biology of Ecole Normale Supérieure (IBENS), PSL Research University, CNRS, Inserm, Paris, France
| |
Collapse
|
10
|
Chein M, Perlson E, Roichman Y. Flow Arrest in the Plasma Membrane. Biophys J 2019; 117:810-816. [PMID: 31326106 DOI: 10.1016/j.bpj.2019.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/28/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022] Open
Abstract
The arrangement of receptors in the plasma membrane strongly affects the ability of a cell to sense its environment both in terms of sensitivity and in terms of spatial resolution. The spatial and temporal arrangement of the receptors is affected in turn by the mechanical properties and the structure of the cell membrane. Here, we focus on characterizing the flow of the membrane in response to the motion of a protein embedded in it. We do so by measuring the correlated diffusion of extracellularly tagged transmembrane neurotrophin receptors TrkB and p75 on transfected neuronal cells. In accord with previous reports, we find that the motion of single receptors exhibits transient confinement to submicron domains. We confirm predictions based on hydrodynamics of fluid membranes, finding long-range correlations in the motion of the receptors in the plasma membrane. However, we discover that these correlations do not persist for long ranges, as predicted, but decay exponentially, with a typical decay length on the scale of the average confining domain size.
Collapse
Affiliation(s)
- Michael Chein
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Yael Roichman
- School of Chemistry, School of Physics & Astronomy, and the Tel Aviv Center for Light Matter Interaction, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
11
|
Zhang S, Reinhard BM. Characterizing Large-Scale Receptor Clustering on the Single Cell Level: A Comparative Plasmon Coupling and Fluorescence Superresolution Microscopy Study. J Phys Chem B 2019; 123:5494-5505. [PMID: 31244098 DOI: 10.1021/acs.jpcb.9b05176] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Spatial clustering of cell membrane receptors has been indicated to play a regulatory role in signal initiation, and the distribution of receptors on the cell surface may represent a potential biomarker. To realize its potential for diagnostic purposes, scalable assays capable of mapping spatial receptor heterogeneity with high throughput are needed. In this work, we use gold nanoparticle (NP) labels with an average diameter of 72.17 ± 2.16 nm as bright markers for large-scale epidermal growth factor receptor (EGFR) clustering in hyperspectral plasmon coupling microscopy and compare the obtained clustering maps with those obtained through fluorescence superresolution microscopy (direct stochastic optical reconstruction microscopy, dSTORM). Our dSTORM experiments reveal average EGFR cluster sizes of 172 ± 99 and 150 ± 90 nm for MDA-MB-468 and HeLa, respectively. The cluster sizes decrease after EGFR activation. Hyperspectral imaging of the NP labels shows that differences in the EGFR cluster sizes are accompanied by differences in the average separations between electromagnetically coupled NPs. Because of the distance dependence of plasmon coupling, changes in the average interparticle separation result in significant spectral shifts. For the experimental conditions investigated in this work, hyperspectral plasmon coupling microscopy of NP labels identified the same trends in large-scale EGFR clustering as dSTORM, but the NP imaging approach provided the information in a fraction of the time. Both dSTORM and hyperspectral plasmon coupling microscopy confirm the cortical actin network as one structural component that determines the average size of EGFR clusters.
Collapse
Affiliation(s)
- Sandy Zhang
- Department of Chemistry and The Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
| | - Björn M Reinhard
- Department of Chemistry and The Photonics Center , Boston University , Boston , Massachusetts 02215 , United States
| |
Collapse
|
12
|
Groeneweg FL, Trattnig C, Kuhse J, Nawrotzki RA, Kirsch J. Gephyrin: a key regulatory protein of inhibitory synapses and beyond. Histochem Cell Biol 2018; 150:489-508. [DOI: 10.1007/s00418-018-1725-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2018] [Indexed: 12/26/2022]
|
13
|
Morini R, Ferrara S, Perrucci F, Zambetti S, Pelucchi S, Marcello E, Gardoni F, Antonucci F, Matteoli M, Menna E. Lack of the Actin Capping Protein, Eps8, Affects NMDA-Type Glutamate Receptor Function and Composition. Front Mol Neurosci 2018; 11:313. [PMID: 30233314 PMCID: PMC6133960 DOI: 10.3389/fnmol.2018.00313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/15/2018] [Indexed: 11/26/2022] Open
Abstract
Actin-based remodeling underlines spine morphogenesis and plasticity and is crucially involved in the processes that constantly reshape the circuitry of the adult brain in response to external stimuli, leading to learning and memory formation and supporting cognitive functions. Hence spine morphology and synaptic strength are tightly linked and indeed abnormalities in spine number and morphology have been described in a number of neurological disorders such as autism spectrum disorders (ASDs), schizophrenia and intellectual disabilities. We have recently demonstrated that the actin regulating protein, Epidermal growth factor receptor pathway substrate 8 (Eps8), is essential for spine growth and long term potentiation. Indeed, mice lacking Eps8 display immature filopodia-like spines, which are unable to undergo potentiation, and are impaired in cognitive functions. Furthermore, reduced levels of Eps8 have been found in the brain of a cohort of patients affected by ASD compared to controls. Here we investigated whether the lack of Eps8, which is also part of the N-methyl-d-aspartate (NMDA) receptor complex, affects the functional maturation of the postsynaptic compartment. Our results demonstrate that Eps8 knock out mice (Eps8 KO) neurons display altered synaptic expression and subunit composition of NMDA receptors (i.e., increased GluN2B-, decreased GluN2A-containing receptors) and impaired GluN2B to GluN2A subunit shift. Indeed Eps8 KO neurons display increased content of GluN2B containing NMDA receptors both at the synaptic and extrasynaptic level. Furthermore, Eps8 KO neurons display an increased content of extra-synaptic GluN2B-containing receptors, suggesting that also the synaptic targeting of NMDA receptors is affected by the lack of Eps8. These data demonstrate that, besides regulation of spine morphogenesis, Eps8 also regulates the synaptic balance of NMDA receptors subunits GluN2A and GluN2B.
Collapse
Affiliation(s)
- Raffaella Morini
- Laboratory of Pharmacology and Brain Pathology, Neurocenter IRCCS Humanitas, Milan, Italy
| | - Silvia Ferrara
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, Milan, Italy
| | - Fabio Perrucci
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Stefania Zambetti
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, Milan, Italy
| | - Silvia Pelucchi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università di Milano, Milan, Italy.,NEUROFARBA, Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Università degli Studi di Firenze, Florence, Italy
| | - Elena Marcello
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università di Milano, Milan, Italy
| | - Fabrizio Gardoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università di Milano, Milan, Italy
| | - Flavia Antonucci
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, Milan, Italy
| | - Michela Matteoli
- Laboratory of Pharmacology and Brain Pathology, Neurocenter IRCCS Humanitas, Milan, Italy.,CNR-Istituto di Neuroscienze (IN), Milan, Italy
| | - Elisabetta Menna
- Laboratory of Pharmacology and Brain Pathology, Neurocenter IRCCS Humanitas, Milan, Italy.,CNR-Istituto di Neuroscienze (IN), Milan, Italy
| |
Collapse
|
14
|
Abstract
The galectin family of secreted lectins have emerged as important regulators of immune cell function; however, their role in B-cell responses is poorly understood. Here we identify IgM-BCR as a ligand for galectin-9. Furthermore, we show enhanced BCR microcluster formation and signaling in galectin-9-deficient B cells. Notably, treatment with exogenous recombinant galectin-9 nearly completely abolishes BCR signaling. We investigated the molecular mechanism for galectin-9-mediated inhibition of BCR signaling using super-resolution imaging and single-particle tracking. We show that galectin-9 merges pre-existing nanoclusters of IgM-BCR, immobilizes IgM-BCR, and relocalizes IgM-BCR together with the inhibitory molecules CD45 and CD22. In resting naive cells, we use dual-color super-resolution imaging to demonstrate that galectin-9 mediates the close association of IgM and CD22, and propose that the loss of this association provides a mechanism for enhanced activation of galectin-9-deficient B cells. The galectin family of secreted lectins are important regulators of immune cell function; however, their role in B cell responses is poorly understood. Here, the authors identify IgM-BCR as a ligand for galectin-9. In resting naive cells, they show that galectin-9 mediates a close association between IgM and CD22.
Collapse
|
15
|
Heubl M, Zhang J, Pressey JC, Al Awabdh S, Renner M, Gomez-Castro F, Moutkine I, Eugène E, Russeau M, Kahle KT, Poncer JC, Lévi S. GABA A receptor dependent synaptic inhibition rapidly tunes KCC2 activity via the Cl --sensitive WNK1 kinase. Nat Commun 2017; 8:1776. [PMID: 29176664 PMCID: PMC5701213 DOI: 10.1038/s41467-017-01749-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/13/2017] [Indexed: 02/08/2023] Open
Abstract
The K+-Cl- co-transporter KCC2 (SLC12A5) tunes the efficacy of GABAA receptor-mediated transmission by regulating the intraneuronal chloride concentration [Cl-]i. KCC2 undergoes activity-dependent regulation in both physiological and pathological conditions. The regulation of KCC2 by synaptic excitation is well documented; however, whether the transporter is regulated by synaptic inhibition is unknown. Here we report a mechanism of KCC2 regulation by GABAA receptor (GABAAR)-mediated transmission in mature hippocampal neurons. Enhancing GABAAR-mediated inhibition confines KCC2 to the plasma membrane, while antagonizing inhibition reduces KCC2 surface expression by increasing the lateral diffusion and endocytosis of the transporter. This mechanism utilizes Cl- as an intracellular secondary messenger and is dependent on phosphorylation of KCC2 at threonines 906 and 1007 by the Cl--sensing kinase WNK1. We propose this mechanism contributes to the homeostasis of synaptic inhibition by rapidly adjusting neuronal [Cl-]i to GABAAR activity.
Collapse
Affiliation(s)
- Martin Heubl
- Inserm UMR-S 839, 75005, Paris, France
- Université Pierre & Marie Curie, Sorbonne Universités, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Jinwei Zhang
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, EX4 4PS, UK
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology, NIH-Yale Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Jessica C Pressey
- Inserm UMR-S 839, 75005, Paris, France
- Université Pierre & Marie Curie, Sorbonne Universités, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Sana Al Awabdh
- Inserm UMR-S 839, 75005, Paris, France
- Université Pierre & Marie Curie, Sorbonne Universités, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Marianne Renner
- Inserm UMR-S 839, 75005, Paris, France
- Université Pierre & Marie Curie, Sorbonne Universités, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Ferran Gomez-Castro
- Inserm UMR-S 839, 75005, Paris, France
- Université Pierre & Marie Curie, Sorbonne Universités, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Imane Moutkine
- Inserm UMR-S 839, 75005, Paris, France
- Université Pierre & Marie Curie, Sorbonne Universités, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Emmanuel Eugène
- Inserm UMR-S 839, 75005, Paris, France
- Université Pierre & Marie Curie, Sorbonne Universités, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Marion Russeau
- Inserm UMR-S 839, 75005, Paris, France
- Université Pierre & Marie Curie, Sorbonne Universités, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology, NIH-Yale Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Jean Christophe Poncer
- Inserm UMR-S 839, 75005, Paris, France
- Université Pierre & Marie Curie, Sorbonne Universités, 75005, Paris, France
- Institut du Fer à Moulin, 75005, Paris, France
| | - Sabine Lévi
- Inserm UMR-S 839, 75005, Paris, France.
- Université Pierre & Marie Curie, Sorbonne Universités, 75005, Paris, France.
- Institut du Fer à Moulin, 75005, Paris, France.
| |
Collapse
|
16
|
Scofield MD, Heinsbroek JA, Gipson CD, Kupchik YM, Spencer S, Smith ACW, Roberts-Wolfe D, Kalivas PW. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis. Pharmacol Rev 2017; 68:816-71. [PMID: 27363441 DOI: 10.1124/pr.116.012484] [Citation(s) in RCA: 379] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The nucleus accumbens is a major input structure of the basal ganglia and integrates information from cortical and limbic structures to mediate goal-directed behaviors. Chronic exposure to several classes of drugs of abuse disrupts plasticity in this region, allowing drug-associated cues to engender a pathologic motivation for drug seeking. A number of alterations in glutamatergic transmission occur within the nucleus accumbens after withdrawal from chronic drug exposure. These drug-induced neuroadaptations serve as the molecular basis for relapse vulnerability. In this review, we focus on the role that glutamate signal transduction in the nucleus accumbens plays in addiction-related behaviors. First, we explore the nucleus accumbens, including the cell types and neuronal populations present as well as afferent and efferent connections. Next we discuss rodent models of addiction and assess the viability of these models for testing candidate pharmacotherapies for the prevention of relapse. Then we provide a review of the literature describing how synaptic plasticity in the accumbens is altered after exposure to drugs of abuse and withdrawal and also how pharmacological manipulation of glutamate systems in the accumbens can inhibit drug seeking in the laboratory setting. Finally, we examine results from clinical trials in which pharmacotherapies designed to manipulate glutamate systems have been effective in treating relapse in human patients. Further elucidation of how drugs of abuse alter glutamatergic plasticity within the accumbens will be necessary for the development of new therapeutics for the treatment of addiction across all classes of addictive substances.
Collapse
Affiliation(s)
- M D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - J A Heinsbroek
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - C D Gipson
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - Y M Kupchik
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - S Spencer
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - A C W Smith
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - D Roberts-Wolfe
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - P W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| |
Collapse
|
17
|
Chow DM, Zuchowski KA, Fetcho JR. In Vivo Measurement of Glycine Receptor Turnover and Synaptic Size Reveals Differences between Functional Classes of Motoneurons in Zebrafish. Curr Biol 2017; 27:1173-1183. [PMID: 28416115 DOI: 10.1016/j.cub.2017.03.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/12/2017] [Accepted: 03/15/2017] [Indexed: 01/18/2023]
Abstract
The interplay between binding and unbinding of synaptic receptor proteins at synapses plays an important role in determining receptor concentration and synaptic strength, with known links between changes in binding kinetics and synaptic plasticity. The regulation of such kinetics may subserve the specific functional requirements of neurons in intact circuits. However, the majority of studies of synaptic turnover kinetics have been performed in cultured neurons outside the context of normal circuits, and synaptic receptor turnover has not been measured at individual synaptic sites in vivo. We quantified the distribution of glycinergic receptor dynamics using fluorescence recovery after photoconversion of synapses in intact zebrafish and correlated recovery kinetics to synaptic volume in two functionally distinct classes of cells: primary and secondary motoneurons. The rate of fluorescence recovery after photoconversion decreased with synaptic volume in both types of motoneurons, with larger synapses having slower recovery. Primary motoneurons had both larger synapses and associated slower recovery times than secondary motoneurons. Our results suggest that synaptic kinetics are regulated in concert with synaptic sizes and reflect the functional role played by neurons within their circuit.
Collapse
Affiliation(s)
- Dawnis M Chow
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14850, USA.
| | - Kathryn A Zuchowski
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14850, USA
| | - Joseph R Fetcho
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
18
|
Abstract
For more than 20 years, we have known that Ca(2+)/calmodulin-dependent protein kinase (CaMKII) activation is both necessary and sufficient for the induction of long-term potentiation (LTP). During this time, tremendous effort has been spent in attempting to understand how CaMKII activation gives rise to this phenomenon. Despite such efforts, there is much to be learned about the molecular mechanisms involved in LTP induction downstream of CaMKII activation. In this review, we highlight recent developments that have shaped our current thinking about the molecular mechanisms underlying LTP and discuss important questions that remain in the field.
Collapse
Affiliation(s)
| | - Roger A Nicoll
- Department of Cellular and Molecular Pharmacology and.,Department of Physiology, University of California, San Francisco, California 94143; ,
| |
Collapse
|
19
|
Garas FN, Shah RS, Kormann E, Doig NM, Vinciati F, Nakamura KC, Dorst MC, Smith Y, Magill PJ, Sharott A. Secretagogin expression delineates functionally-specialized populations of striatal parvalbumin-containing interneurons. eLife 2016; 5. [PMID: 27669410 PMCID: PMC5036963 DOI: 10.7554/elife.16088] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/25/2016] [Indexed: 11/13/2022] Open
Abstract
Corticostriatal afferents can engage parvalbumin-expressing (PV+) interneurons to rapidly curtail the activity of striatal projection neurons (SPNs), thus shaping striatal output. Schemes of basal ganglia circuit dynamics generally consider striatal PV+ interneurons to be homogenous, despite considerable heterogeneity in both form and function. We demonstrate that the selective co-expression of another calcium-binding protein, secretagogin (Scgn), separates PV+ interneurons in rat and primate striatum into two topographically-, physiologically- and structurally-distinct cell populations. In rats, these two interneuron populations differed in their firing rates, patterns and relationships with cortical oscillations in vivo. Moreover, the axons of identified PV+/Scgn+ interneurons preferentially targeted the somata of SPNs of the so-called 'direct pathway', whereas PV+/Scgn- interneurons preferentially targeted 'indirect pathway' SPNs. These two populations of interneurons could therefore provide a substrate through which either of the striatal output pathways can be rapidly and selectively inhibited to subsequently mediate the expression of behavioral routines.
Collapse
Affiliation(s)
- Farid N Garas
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Rahul S Shah
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Eszter Kormann
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Natalie M Doig
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Federica Vinciati
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Kouichi C Nakamura
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Matthijs C Dorst
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yoland Smith
- Yerkes National Primate Research Center, Department of Neurology, Emory University, Atlanta, United States.,Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, United States
| | - Peter J Magill
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Andrew Sharott
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Alvarez FJ. Gephyrin and the regulation of synaptic strength and dynamics at glycinergic inhibitory synapses. Brain Res Bull 2016; 129:50-65. [PMID: 27612963 DOI: 10.1016/j.brainresbull.2016.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/23/2016] [Accepted: 09/05/2016] [Indexed: 01/23/2023]
Abstract
Glycinergic synapses predominate in brainstem and spinal cord where they modulate motor and sensory processing. Their postsynaptic mechanisms have been considered rather simple because they lack a large variety of glycine receptor isoforms and have relatively simple postsynaptic densities at the ultrastructural level. However, this simplicity is misleading being their postsynaptic regions regulated by a variety of complex mechanisms controlling the efficacy of synaptic inhibition. Early studies suggested that glycinergic inhibitory strength and dynamics depend largely on structural features rather than on molecular complexity. These include regulation of the number of postsynaptic glycine receptors, their localization and the amount of co-localized GABAA receptors and GABA-glycine co-transmission. These properties we now know are under the control of gephyrin. Gephyrin is the first postsynaptic scaffolding protein ever discovered and it was recently found to display a large degree of variation and regulation by splice variants, posttranslational modifications, intracellular trafficking and interactions with the underlying cytoskeleton. Many of these mechanisms are governed by converging excitatory activity and regulate gephyrin oligomerization and receptor binding, the architecture of the postsynaptic density (and by extension the whole synaptic complex), receptor retention and stability. These newly uncovered molecular mechanisms define the size and number of gephyrin postsynaptic regions and the numbers and proportions of glycine and GABAA receptors contained within. All together, they control the emergence of glycinergic synapses of different strength and temporal properties to best match the excitatory drive received by each individual neuron or local dendritic compartment.
Collapse
Affiliation(s)
- Francisco J Alvarez
- Department of Physiology, Emory University, Atlanta, GA 30322-3110, United States.
| |
Collapse
|
21
|
Mattila PK, Batista FD, Treanor B. Dynamics of the actin cytoskeleton mediates receptor cross talk: An emerging concept in tuning receptor signaling. J Cell Biol 2016; 212:267-80. [PMID: 26833785 PMCID: PMC4748574 DOI: 10.1083/jcb.201504137] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent evidence implicates the actin cytoskeleton in the control of receptor signaling. This may be of particular importance in the context of immune receptors, such as the B cell receptor, where dysregulated signaling can result in autoimmunity and malignancy. Here, we discuss the role of the actin cytoskeleton in controlling receptor compartmentalization, dynamics, and clustering as a means to regulate receptor signaling through controlling the interactions with protein partners. We propose that the actin cytoskeleton is a point of integration for receptor cross talk through modulation of protein dynamics and clustering. We discuss the implication of this cross talk via the cytoskeleton for both ligand-induced and low-level constitutive (tonic) signaling necessary for immune cell survival.
Collapse
Affiliation(s)
- Pieta K Mattila
- Institute of Biomedicine, MediCity, University of Turku, 20520 Turku, Finland
| | - Facundo D Batista
- Lymphocyte Interaction Laboratory, The Francis Crick Institute, Cancer Research UK, London WC2A 3LY, England, UK
| | - Bebhinn Treanor
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M5T 1C6, Canada
| |
Collapse
|
22
|
Bannai H, Niwa F, Sherwood MW, Shrivastava AN, Arizono M, Miyamoto A, Sugiura K, Lévi S, Triller A, Mikoshiba K. Bidirectional Control of Synaptic GABAAR Clustering by Glutamate and Calcium. Cell Rep 2015; 13:2768-80. [PMID: 26711343 PMCID: PMC4700050 DOI: 10.1016/j.celrep.2015.12.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 08/13/2015] [Accepted: 11/19/2015] [Indexed: 11/22/2022] Open
Abstract
GABAergic synaptic transmission regulates brain function by establishing the appropriate excitation-inhibition (E/I) balance in neural circuits. The structure and function of GABAergic synapses are sensitive to destabilization by impinging neurotransmitters. However, signaling mechanisms that promote the restorative homeostatic stabilization of GABAergic synapses remain unknown. Here, by quantum dot single-particle tracking, we characterize a signaling pathway that promotes the stability of GABAA receptor (GABAAR) postsynaptic organization. Slow metabotropic glutamate receptor signaling activates IP3 receptor-dependent calcium release and protein kinase C to promote GABAAR clustering and GABAergic transmission. This GABAAR stabilization pathway counteracts the rapid cluster dispersion caused by glutamate-driven NMDA receptor-dependent calcium influx and calcineurin dephosphorylation, including in conditions of pathological glutamate toxicity. These findings show that glutamate activates distinct receptors and spatiotemporal patterns of calcium signaling for opposing control of GABAergic synapses. Bidirectional synaptic control system by glutamate and Ca2+ signaling Stabilization of GABA synapses by mGluR-dependent Ca2+ release from IP3R via PKC Synaptic GABAAR clusters stabilized through regulation of GABAAR lateral diffusion Competition with an NMDAR-dependent Ca2+ pathway driving synaptic destabilization
Collapse
Affiliation(s)
- Hiroko Bannai
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8602, Japan; Nagoya Research Center for Brain & Neural Circuits, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8602, Japan; École Normale Supérieure, Institut de Biologie de l'ENS (IBENS), INSERM, CNRS, Ecole Normale Supérieure, PSL Research University, 46 rue d'Ulm, 75005 Paris, France
| | - Fumihiro Niwa
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mark W Sherwood
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Amulya Nidhi Shrivastava
- École Normale Supérieure, Institut de Biologie de l'ENS (IBENS), INSERM, CNRS, Ecole Normale Supérieure, PSL Research University, 46 rue d'Ulm, 75005 Paris, France
| | - Misa Arizono
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akitoshi Miyamoto
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kotomi Sugiura
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Sabine Lévi
- École Normale Supérieure, Institut de Biologie de l'ENS (IBENS), INSERM, CNRS, Ecole Normale Supérieure, PSL Research University, 46 rue d'Ulm, 75005 Paris, France; Institut du Fer à Moulin, INSERM, Unité Mixte de Recherche-S 839, Sorbonne Universités, Université Pierre et Marie Curie, 75005 Paris, France
| | - Antoine Triller
- École Normale Supérieure, Institut de Biologie de l'ENS (IBENS), INSERM, CNRS, Ecole Normale Supérieure, PSL Research University, 46 rue d'Ulm, 75005 Paris, France.
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
23
|
Schreiber J, Végh MJ, Dawitz J, Kroon T, Loos M, Labonté D, Li KW, Van Nierop P, Van Diepen MT, De Zeeuw CI, Kneussel M, Meredith RM, Smit AB, Van Kesteren RE. Ubiquitin ligase TRIM3 controls hippocampal plasticity and learning by regulating synaptic γ-actin levels. J Cell Biol 2015; 211:569-86. [PMID: 26527743 PMCID: PMC4639863 DOI: 10.1083/jcb.201506048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/06/2015] [Indexed: 12/24/2022] Open
Abstract
TRIM3 regulates synaptic γ-actin levels. TRIM3-deficient mice consequently have higher hippocampal spine densities, increased long-term potentiation, and enhanced contextual fear memory consolidation, indicating that temporal control of ACTG1 levels by TRIM3 is required to constrain hippocampal plasticity within physiological boundaries. Synaptic plasticity requires remodeling of the actin cytoskeleton. Although two actin isoforms, β- and γ-actin, are expressed in dendritic spines, the specific contribution of γ-actin in the expression of synaptic plasticity is unknown. We show that synaptic γ-actin levels are regulated by the E3 ubiquitin ligase TRIM3. TRIM3 protein and Actg1 transcript are colocalized in messenger ribonucleoprotein granules responsible for the dendritic targeting of messenger RNAs. TRIM3 polyubiquitylates γ-actin, most likely cotranslationally at synaptic sites. Trim3−/− mice consequently have increased levels of γ-actin at hippocampal synapses, resulting in higher spine densities, increased long-term potentiation, and enhanced short-term contextual fear memory consolidation. Interestingly, hippocampal deletion of Actg1 caused an increase in long-term fear memory. Collectively, our findings suggest that temporal control of γ-actin levels by TRIM3 is required to regulate the timing of hippocampal plasticity. We propose a model in which TRIM3 regulates synaptic γ-actin turnover and actin filament stability and thus forms a transient inhibitory constraint on the expression of hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Joerg Schreiber
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, Netherlands
| | - Marlene J Végh
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, Netherlands
| | - Julia Dawitz
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, Netherlands
| | - Tim Kroon
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, Netherlands
| | - Maarten Loos
- Sylics (Synaptologics BV), 1008 BA Amsterdam, Netherlands
| | - Dorthe Labonté
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, Netherlands
| | - Pim Van Nierop
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, Netherlands
| | - Michiel T Van Diepen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, 3000 DR Rotterdam, Netherlands Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Science, 1105 BA Amsterdam, Netherlands
| | - Matthias Kneussel
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Rhiannon M Meredith
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, Netherlands
| | - Ronald E Van Kesteren
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
24
|
Luo B, Hu L, Liu C, Guo Y, Wang H. Activation of 5-HT2A/C receptor reduces glycine receptor-mediated currents in cultured auditory cortical neurons. Amino Acids 2015; 48:349-56. [PMID: 26371055 DOI: 10.1007/s00726-015-2086-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/25/2015] [Indexed: 01/28/2023]
Abstract
Glycine receptors (GlyRs) permeable to chloride only mediate tonic inhibition in the cerebral cortex where glycinergic projection is completely absent. The functional modulation of GlyRs was largely studied in subcortical brain regions with glycinergic transmissions, but the function of cortical GlyRs was rarely addressed. Serotonin could broadly modulate many ion channels through activating 5-HT2 receptor, but whether cortical GlyRs are subjected to serotonergic modulation remains unexplored. The present study adopted patch clamp recordings to examine functional regulation of strychnine-sensitive GlyRs currents in cultured cortical neurons by DOI (2,5-Dimethoxy-4-iodoamphetamine), a 5-HT2A/C receptor agonist. DOI caused a concentration-dependent reduction of GlyR currents with unchanged reversal potential. This reduction was blocked by the selective receptor antagonists (ritanserin and risperidone) and G protein inhibitor (GDP-β-s) demonstrated that the reducing effect of DOI on GlyR current required the activation of 5-HT2A/C receptors. Strychnine-sensitive tonic currents revealed the inhibitory tone mediated by nonsynaptic GlyRs, and DOI similarly reduced the tonic inhibition. The impaired microtube-dependent trafficking or clustering of GlyRs was thought to be involved in that nocodazole as a microtube depolymerizing drug largely blocked the inhibition mediated by 5-HT2A/C receptors. Our results suggested that activation of 5-HT2A/C receptors might suppress cortical tonic inhibition mediated by GlyRs, and the findings would provide important insight into serotonergic modulation of tonic inhibition mediated by GlyRs, and possibly facilitate to develop the therapeutic treatment of neurological diseases such as tinnitus through regulating cortical GlyRs.
Collapse
Affiliation(s)
- Bin Luo
- Department of Otolaryngology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, China
| | - Lingli Hu
- Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, Guangdong, China
| | - Chunhua Liu
- Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, Guangdong, China
| | - Yiping Guo
- Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, Guangdong, China
| | - Haitao Wang
- Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, Guangdong, China.
| |
Collapse
|
25
|
Nadjar Y, Triller A, Bessereau JL, Dumoulin A. The Susd2 protein regulates neurite growth and excitatory synaptic density in hippocampal cultures. Mol Cell Neurosci 2015; 65:82-91. [PMID: 25724483 DOI: 10.1016/j.mcn.2015.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 12/12/2014] [Accepted: 02/12/2015] [Indexed: 10/24/2022] Open
Abstract
Complement control protein (CCP) domains have adhesion properties and are commonly found in proteins that control the complement immune system. However, an increasing number of proteins containing CCP domains have been reported to display neuronal functions. Susd2 is a transmembrane protein containing one CCP domain. It was previously identified as a tumor-reversing protein, but has no characterized function in the CNS. The present study investigates the expression and function of Susd2 in the rat hippocampus. Characterization of Susd2 during development showed a peak in mRNA expression two weeks after birth. In hippocampal neuronal cultures, the same expression profile was observed at 15days in vitro for both mRNA and protein, a time consistent with synaptogenesis in our model. At the subcellular level, Susd2 was located on the soma, axons and dendrites, and appeared to associate preferentially with excitatory synapses. Inhibition of Susd2 by shRNAs led to decreased numbers of excitatory synaptic profiles, exclusively. Also, morphological parameters were studied on young (5DIV) developing neurons. After Susd2 inhibition, an increase in dendritic tree length but a decrease in axon elongation were observed, suggesting changes in adhesion properties. Our results demonstrate a dual role for Susd2 at different developmental stages, and raise the question whether Susd2 and other CCP-containing proteins expressed in the CNS could be function-related.
Collapse
Affiliation(s)
- Yann Nadjar
- Ecole Normale Supérieure, IBENS, INSERM U1024, 75005 Paris, France
| | - Antoine Triller
- Ecole Normale Supérieure, IBENS, INSERM U1024, 75005 Paris, France
| | | | - Andrea Dumoulin
- Ecole Normale Supérieure, IBENS, INSERM U1024, 75005 Paris, France.
| |
Collapse
|
26
|
Marchetti L, Luin S, Bonsignore F, de Nadai T, Beltram F, Cattaneo A. Ligand-induced dynamics of neurotrophin receptors investigated by single-molecule imaging approaches. Int J Mol Sci 2015; 16:1949-79. [PMID: 25603178 PMCID: PMC4307343 DOI: 10.3390/ijms16011949] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 01/05/2015] [Indexed: 01/14/2023] Open
Abstract
Neurotrophins are secreted proteins that regulate neuronal development and survival, as well as maintenance and plasticity of the adult nervous system. The biological activity of neurotrophins stems from their binding to two membrane receptor types, the tropomyosin receptor kinase and the p75 neurotrophin receptors (NRs). The intracellular signalling cascades thereby activated have been extensively investigated. Nevertheless, a comprehensive description of the ligand-induced nanoscale details of NRs dynamics and interactions spanning from the initial lateral movements triggered at the plasma membrane to the internalization and transport processes is still missing. Recent advances in high spatio-temporal resolution imaging techniques have yielded new insight on the dynamics of NRs upon ligand binding. Here we discuss requirements, potential and practical implementation of these novel approaches for the study of neurotrophin trafficking and signalling, in the framework of current knowledge available also for other ligand-receptor systems. We shall especially highlight the correlation between the receptor dynamics activated by different neurotrophins and the respective signalling outcome, as recently revealed by single-molecule tracking of NRs in living neuronal cells.
Collapse
Affiliation(s)
- Laura Marchetti
- National Enterprise for nanoScience and nanoTechnology (NEST) Laboratory, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, Pisa I-56127, Italy.
| | - Stefano Luin
- National Enterprise for nanoScience and nanoTechnology (NEST) Laboratory, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, Pisa I-56127, Italy.
| | - Fulvio Bonsignore
- National Enterprise for nanoScience and nanoTechnology (NEST) Laboratory, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, Pisa I-56127, Italy.
| | - Teresa de Nadai
- Biology Laboratory (BioSNS), Scuola Normale Superiore and Istituto di Neuroscienze-CNR, via Moruzzi 1, Pisa I-56100, Italy.
| | - Fabio Beltram
- National Enterprise for nanoScience and nanoTechnology (NEST) Laboratory, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, Pisa I-56127, Italy.
| | - Antonino Cattaneo
- Biology Laboratory (BioSNS), Scuola Normale Superiore and Istituto di Neuroscienze-CNR, via Moruzzi 1, Pisa I-56100, Italy.
| |
Collapse
|
27
|
Abstract
The B-cell antigen receptor (BCR) is one of the most abundant receptors on the surface of B cells with roughly 100,000-200,000 copies per cell. Signaling through the BCR is crucial for the activation and differentiation of B cells. Unlike other receptors, the BCR can be activated by a large set of structurally different ligands, but the molecular mechanism of BCR activation is still a matter of controversy. Although dominant for a long time, the cross-link model (CLM) of BCR activation is not supported by recent studies of the nanoscale organization of the BCR on the surface of resting B cells. In contrast to the prediction of CLM, the numerous BCR complexes on these cells are not randomly distributed monomers but rather form oligomers which reside within membrane confinements. This finding is more in line with the dissociation activation model (DAM), wherein B-cell activation is accompanied by an opening of the auto-inhibited BCR oligomers instead of a cross-linking of the BCR monomers. In this review, we discuss in detail the new findings and their implications for BCR signaling.
Collapse
|
28
|
Maity PC, Yang J, Klaesener K, Reth M. The nanoscale organization of the B lymphocyte membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:830-40. [PMID: 25450974 PMCID: PMC4547082 DOI: 10.1016/j.bbamcr.2014.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 10/30/2014] [Accepted: 11/07/2014] [Indexed: 12/13/2022]
Abstract
The fluid mosaic model of Singer and Nicolson correctly predicted that the plasma membrane (PM) forms a lipid bi-layer containing many integral trans-membrane proteins. This model also suggested that most of these proteins were randomly dispersed and freely diffusing moieties. Initially, this view of a dynamic and rather unorganized membrane was supported by early observations of the cell surfaces using the light microscope. However, recent studies on the PM below the diffraction limit of visible light (~250nm) revealed that, at nanoscale dimensions, membranes are highly organized and compartmentalized structures. Lymphocytes are particularly useful to study this nanoscale membrane organization because they grow as single cells and are not permanently engaged in cell:cell contacts within a tissue that can influence membrane organization. In this review, we describe the methods that can be used to better study the protein:protein interaction and nanoscale organization of lymphocyte membrane proteins, with a focus on the B cell antigen receptor (BCR). Furthermore, we discuss the factors that may generate and maintain these membrane structures.
Collapse
Affiliation(s)
- Palash Chandra Maity
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany; Department of Molecular Immunology, Biology III, University of Freiburg, Germany; Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - Jianying Yang
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany; Department of Molecular Immunology, Biology III, University of Freiburg, Germany; Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Kathrin Klaesener
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany; Department of Molecular Immunology, Biology III, University of Freiburg, Germany; Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Michael Reth
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany; Department of Molecular Immunology, Biology III, University of Freiburg, Germany; Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
29
|
Barrantes FJ. Cell-surface translational dynamics of nicotinic acetylcholine receptors. Front Synaptic Neurosci 2014; 6:25. [PMID: 25414663 PMCID: PMC4220116 DOI: 10.3389/fnsyn.2014.00025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/08/2014] [Indexed: 12/20/2022] Open
Abstract
Synapse efficacy heavily relies on the number of neurotransmitter receptors available at a given time. In addition to the equilibrium between the biosynthetic production, exocytic delivery and recycling of receptors on the one hand, and the endocytic internalization on the other, lateral diffusion and clustering of receptors at the cell membrane play key roles in determining the amount of active receptors at the synapse. Mobile receptors traffic between reservoir compartments and the synapse by thermally driven Brownian motion, and become immobilized at the peri-synaptic region or the synapse by: (a) clustering mediated by homotropic inter-molecular receptor–receptor associations; (b) heterotropic associations with non-receptor scaffolding proteins or the subjacent cytoskeletal meshwork, leading to diffusional “trapping,” and (c) protein-lipid interactions, particularly with the neutral lipid cholesterol. This review assesses the contribution of some of these mechanisms to the supramolecular organization and dynamics of the paradigm neurotransmitter receptor of muscle and neuronal cells -the nicotinic acetylcholine receptor (nAChR). Currently available information stemming from various complementary biophysical techniques commonly used to interrogate the dynamics of cell-surface components is critically discussed. The translational mobility of nAChRs at the cell surface differs between muscle and neuronal receptors in terms of diffusion coefficients and residence intervals at the synapse, which cover an ample range of time regimes. A peculiar feature of brain α7 nAChR is its ability to spend much of its time confined peri-synaptically, vicinal to glutamatergic (excitatory) and GABAergic (inhibitory) synapses. An important function of the α7 nAChR may thus be visiting the territories of other neurotransmitter receptors, differentially regulating the dynamic equilibrium between excitation and inhibition, depending on its residence time in each domain.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research, Faculty of Medical Sciences, Pontifical Catholic University of Argentina-National Scientific and Technical Research Council Buenos Aires, Argentina
| |
Collapse
|
30
|
Smith KR, Davenport EC, Wei J, Li X, Pathania M, Vaccaro V, Yan Z, Kittler JT. GIT1 and βPIX are essential for GABA(A) receptor synaptic stability and inhibitory neurotransmission. Cell Rep 2014; 9:298-310. [PMID: 25284783 PMCID: PMC4536293 DOI: 10.1016/j.celrep.2014.08.061] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/28/2014] [Accepted: 08/23/2014] [Indexed: 12/18/2022] Open
Abstract
Effective inhibitory synaptic transmission requires efficient stabilization of GABAA receptors (GABAARs) at synapses, which is essential for maintaining the correct excitatory-inhibitory balance in the brain. However, the signaling mechanisms that locally regulate synaptic GABAAR membrane dynamics remain poorly understood. Using a combination of molecular, imaging, and electrophysiological approaches, we delineate a GIT1/βPIX/Rac1/PAK signaling pathway that modulates F-actin and is important for maintaining surface GABAAR levels, inhibitory synapse integrity, and synapse strength. We show that GIT1 and βPIX are required for synaptic GABAAR surface stability through the activity of the GTPase Rac1 and downstream effector PAK. Manipulating this pathway using RNAi, dominant-negative and pharmacological approaches leads to a disruption of GABAAR clustering and decrease in the strength of synaptic inhibition. Thus, the GIT1/βPIX/Rac1/PAK pathway plays a crucial role in regulating GABAAR synaptic stability and hence inhibitory synaptic transmission with important implications for inhibitory plasticity and information processing in the brain. GIT1 and βPIX are present at inhibitory synapses and complex with GABAARs GIT1 and βPIX are important for GABAAR clustering and inhibitory transmission Rac1 and PAK activity is required for stabilization of GABAARs at synapses A GIT1/βPIX/Rac1/PAK pathway is required for inhibitory synaptic transmission
Collapse
Affiliation(s)
- Katharine R Smith
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Elizabeth C Davenport
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jing Wei
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | - Xiangning Li
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | - Manavendra Pathania
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Victoria Vaccaro
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
31
|
Linsalata AE, Chen X, Winters CA, Reese TS. Electron tomography on γ-aminobutyric acid-ergic synapses reveals a discontinuous postsynaptic network of filaments. J Comp Neurol 2014; 522:921-36. [PMID: 23982982 DOI: 10.1002/cne.23453] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 08/05/2013] [Accepted: 08/13/2013] [Indexed: 12/16/2022]
Abstract
The regulation of synaptic strength at γ-aminobutyric acid (GABA)-ergic synapses is dependent on the dynamic capture, retention, and modulation of GABA A-type receptors by cytoplasmic proteins at GABAergic postsynaptic sites. How these proteins are oriented and organized in the postsynaptic cytoplasm is not yet established. To better understand these structures and gain further insight into the mechanisms by which they regulate receptor populations at postsynaptic sites, we utilized electron tomography to examine GABAergic synapses in dissociated rat hippocampal cultures. GABAergic synapses were identified and selected for tomography by using a set of criteria derived from the structure of immunogold-labeled GABAergic synapses. Tomography revealed a complex postsynaptic network composed of filaments that extend ∼ 100 nm into the cytoplasm from the postsynaptic membrane. The distribution of these postsynaptic filaments was strikingly similar to that of the immunogold label for gephyrin. Filaments were interconnected through uniform patterns of contact, forming complexes composed of 2-12 filaments each. Complexes did not link to form an integrated, continuous scaffold, suggesting that GABAergic postsynaptic specializations are less rigidly organized than glutamatergic postsynaptic densities.
Collapse
Affiliation(s)
- Alexander E Linsalata
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892
| | | | | | | |
Collapse
|
32
|
Lévi S, Le Roux N, Eugène E, Poncer JC. Benzodiazepine ligands rapidly influence GABAA receptor diffusion and clustering at hippocampal inhibitory synapses. Neuropharmacology 2014; 88:199-208. [PMID: 24930360 DOI: 10.1016/j.neuropharm.2014.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 05/23/2014] [Accepted: 06/02/2014] [Indexed: 11/28/2022]
Abstract
Benzodiazepines (BZDs) are widely used in the treatment of a variety of neurological and psychiatric conditions including anxiety, insomnia and epilepsy. BZDs are thought to act predominantly by affecting the gating of GABAA receptor channels, resulting in enhanced GABA-mediated currents in neurons. However, mutations mimicking the effect of BZDs on GABAAR channel gating have been shown to also impact the membrane dynamics and synaptic anchoring of the receptors. Here, using single molecule tracking combined with electrophysiological recordings, we show that BZD ligands rapidly influence the dynamic behavior of GABAARs in hippocampal neurons. Application of the inverse BZD agonist DMCM rapidly increased the diffusion and reduced the clustering of GABAARs at synapses, resulting in reduced postsynaptic currents. Conversely, the BZD full agonist diazepam had little effect at rest but reduced lateral diffusion and increased synaptic stabilization and clustering of GABAARs upon sustained neuronal activity, resulting in enhanced potency of inhibitory synapses. These effects occurred in the absence of detectable changes in gephyrin clusters, suggesting they did not reflect a rapid dispersion of the synaptic scaffold. Thus, alterations of the diffusion and synaptic anchoring of GABAARs represent a novel, unsuspected mechanism through which BZDs rapidly modulate GABA signaling in central neurons.
Collapse
Affiliation(s)
- Sabine Lévi
- INSERM UMR-S 839, 75005, Paris, France; Université Pierre et Marie Curie, 75005, Paris, France; Institut du Fer a Moulin, 75005, Paris, France.
| | - Nicolas Le Roux
- INSERM UMR-S 839, 75005, Paris, France; Université Pierre et Marie Curie, 75005, Paris, France; Institut du Fer a Moulin, 75005, Paris, France
| | - Emmanuel Eugène
- INSERM UMR-S 839, 75005, Paris, France; Université Pierre et Marie Curie, 75005, Paris, France; Institut du Fer a Moulin, 75005, Paris, France
| | - Jean Christophe Poncer
- INSERM UMR-S 839, 75005, Paris, France; Université Pierre et Marie Curie, 75005, Paris, France; Institut du Fer a Moulin, 75005, Paris, France.
| |
Collapse
|
33
|
Abstract
The neurotransmitters GABA and glycine mediate fast synaptic inhibition by activating ligand-gated chloride channels--namely, type A GABA (GABA(A)) and glycine receptors. Both types of receptors are anchored postsynaptically by gephyrin, which self-assembles into a scaffold and interacts with the cytoskeleton. Current research indicates that postsynaptic gephyrin clusters are dynamic assemblies that are held together and regulated by multiple protein-protein interactions. Moreover, post-translational modifications of gephyrin regulate the formation and plasticity of GABAergic synapses by altering the clustering properties of postsynaptic scaffolds and thereby the availability and function of receptors and other signalling molecules. Here, we discuss the formation and regulation of the gephyrin scaffold, its role in GABAergic and glycinergic synaptic function and the implications for the pathophysiology of brain disorders caused by abnormal inhibitory neurotransmission.
Collapse
|
34
|
Del Pino I, Koch D, Schemm R, Qualmann B, Betz H, Paarmann I. Proteomic analysis of glycine receptor β subunit (GlyRβ)-interacting proteins: evidence for syndapin I regulating synaptic glycine receptors. J Biol Chem 2014; 289:11396-11409. [PMID: 24509844 DOI: 10.1074/jbc.m113.504860] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glycine receptors (GlyRs) mediate inhibitory neurotransmission in spinal cord and brainstem. They are clustered at inhibitory postsynapses via a tight interaction of their β subunits (GlyRβ) with the scaffolding protein gephyrin. In an attempt to isolate additional proteins interacting with GlyRβ, we performed pulldown experiments with rat brain extracts using a glutathione S-transferase fusion protein encompassing amino acids 378-455 of the large intracellular loop of GlyRβ as bait. This identified syndapin I (SdpI) as a novel interaction partner of GlyRβ that coimmunoprecipitates with native GlyRs from brainstem extracts. Both SdpI and SdpII bound efficiently to the intracellular loop of GlyRβ in vitro and colocalized with GlyRβ upon coexpression in COS-7 cells. The SdpI-binding site was mapped to a proline-rich sequence of 22 amino acids within the intracellular loop of GlyRβ. Deletion and point mutation analysis disclosed that SdpI binding to GlyRβ is Src homology 3 domain-dependent. In cultured rat spinal cord neurons, SdpI immunoreactivity was found to partially colocalize with marker proteins of inhibitory and excitatory synapses. When SdpI was acutely knocked down in cultured spinal cord neurons by viral miRNA expression, postsynaptic GlyR clusters were significantly reduced in both size and number. Similar changes in GlyR cluster properties were found in spinal cultures from SdpI-deficient mice. Our results are consistent with a role of SdpI in the trafficking and/or cytoskeletal anchoring of synaptic GlyRs.
Collapse
Affiliation(s)
- Isabel Del Pino
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, D-60438 Frankfurt/Main
| | - Dennis Koch
- Institute for Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, D-07743 Jena
| | - Rudolf Schemm
- Department for Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chemistry, D-37077 Göttingen, and
| | - Britta Qualmann
- Institute for Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, D-07743 Jena
| | - Heinrich Betz
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, D-60438 Frankfurt/Main,; Max-Planck Institute for Medical Research, 69120 Heidelberg, Germany.
| | - Ingo Paarmann
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, D-60438 Frankfurt/Main,.
| |
Collapse
|
35
|
Constals A, Hosy E, Choquet D. Investigating AMPA Receptor Diffusion and Nanoscale Organization at Synapses with High-Density Single-Molecule Tracking Methods. NEUROMETHODS 2014. [DOI: 10.1007/978-1-4614-9179-8_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
36
|
Gipson CD, Kupchik YM, Kalivas PW. Rapid, transient synaptic plasticity in addiction. Neuropharmacology 2014; 76 Pt B:276-86. [PMID: 23639436 PMCID: PMC3762905 DOI: 10.1016/j.neuropharm.2013.04.032] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/10/2013] [Accepted: 04/16/2013] [Indexed: 12/20/2022]
Abstract
Chronic use of addictive drugs produces enduring neuroadaptations in the corticostriatal glutamatergic brain circuitry. The nucleus accumbens (NAc), which integrates cortical information and regulates goal-directed behavior, undergoes long-term morphological and electrophysiological changes that may underlie the increased susceptibility for relapse in drug-experienced individuals even after long periods of withdrawal. Additionally, it has recently been shown that exposure to cues associated with drug use elicits rapid and transient morphological and electrophysiological changes in glutamatergic synapses in the NAc. This review highlights these dynamic drug-induced changes in this pathway that are specific to a drug seeking neuropathology, as well as how these changes impair normal information processing and thereby contribute to the uncontrollable motivation to relapse. Future directions for relapse prevention and pharmacotherapeutic targeting of the rapid, transient synaptic plasticity in relapse are discussed. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Cassandra D Gipson
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Ave., BSB 403, Charleston, SC 29425, USA.
| | | | | |
Collapse
|
37
|
Collybistin activation by GTP-TC10 enhances postsynaptic gephyrin clustering and hippocampal GABAergic neurotransmission. Proc Natl Acad Sci U S A 2013; 110:20795-800. [PMID: 24297911 DOI: 10.1073/pnas.1309078110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In many brain regions, gephyrin and GABAA receptor clustering at developing inhibitory synapses depends on the guanine nucleotide exchange factor collybistin (Cb). The vast majority of Cb splice variants contain an autoinhibitory src homology 3 domain, and several synaptic proteins are known to bind to this SH3 domain and to thereby activate gephyrin clustering. However, many functional GABAergic synapses form independently of the known Cb-activating proteins, indicating that additional Cb activators must exist. Here we show that the small Rho-like GTPase TC10 stimulates Cb-dependent gephyrin clustering by binding in its active, GTP-bound state to the pleckstrin homology domain of Cb. Overexpression of a constitutively active TC10 variant in neurons causes an increase in the density of synaptic gephyrin clusters and mean miniature inhibitory postsynaptic current amplitudes, whereas a dominant negative TC10 variant has opposite effects. The enhancement of Cb-induced gephyrin clustering by GTP-TC10 does not depend on the guanine nucleotide exchange activity of Cb but involves an interaction that resembles reported interactions of other small GTPases with their effectors. Our data indicate that GTP-TC10 activates the major src homology 3 domain-containing Cb variants by relieving autoinhibition and thus define an alternative GTPase-driven signaling pathway in the genesis of inhibitory synapses.
Collapse
|
38
|
Activity-dependent regulation of the K/Cl transporter KCC2 membrane diffusion, clustering, and function in hippocampal neurons. J Neurosci 2013; 33:15488-503. [PMID: 24068817 DOI: 10.1523/jneurosci.5889-12.2013] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neuronal K/Cl transporter KCC2 exports chloride ions and thereby influences the efficacy and polarity of GABA signaling in the brain. KCC2 is also critical for dendritic spine morphogenesis and the maintenance of glutamatergic transmission in cortical neurons. Because KCC2 plays a pivotal role in the function of central synapses, it is of particular importance to understand the cellular and molecular mechanisms underlying its regulation. Here, we studied the impact of membrane diffusion and clustering on KCC2 function. KCC2 forms clusters in the vicinity of both excitatory and inhibitory synapses. Using quantum-dot-based single-particle tracking on rat primary hippocampal neurons, we show that KCC2 is slowed down and confined at excitatory and inhibitory synapses compared with extrasynaptic regions. However, KCC2 escapes inhibitory synapses faster than excitatory synapses, reflecting stronger molecular constraints at the latter. Interfering with KCC2-actin interactions or inhibiting F-actin polymerization releases diffusion constraints on KCC2 at excitatory but not inhibitory synapses. Thus, F-actin constrains KCC2 diffusion at excitatory synapses, whereas KCC2 is confined at inhibitory synapses by a distinct mechanism. Finally, increased neuronal activity rapidly increases the diffusion coefficient and decreases the dwell time of KCC2 at excitatory synapses. This effect involves NMDAR activation, Ca(2+) influx, KCC2 S940 dephosphorylation and calpain protease cleavage of KCC2 and is accompanied by reduced KCC2 clustering and ion transport function. Thus, activity-dependent regulation of KCC2 lateral diffusion and clustering allows for a rapid regulation of chloride homeostasis in neurons.
Collapse
|
39
|
Kwakowsky A, Potapov D, Abrahám IM. Tracking of single receptor molecule mobility in neuronal membranes: a quick theoretical and practical guide. J Neuroendocrinol 2013; 25:1231-7. [PMID: 23927034 DOI: 10.1111/jne.12083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/29/2013] [Accepted: 08/03/2013] [Indexed: 11/28/2022]
Abstract
Single-molecule detection enables us to visualise the real-time dynamics of individual molecules in live cells. We review the recent advancements in single-molecule fluorescence tracking of receptor protein mobility in the neuronal membrane. First, we discuss the practical consideration of single-molecule tracking in neurones, including the choice of cells and possible fluorescent labelling, as well as the appropriate optical set-up and imaging technology. We then describe the analysis of the single-molecule imaging data, including its theoretical and practical aspects of and relevant estimations of the biophysical parameters. Finally, we provide an example of a single-molecule tracking study in neuroendocrinology and highlight the next frontiers of single-molecule detection technologies.
Collapse
Affiliation(s)
- A Kwakowsky
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
40
|
Differential control of thrombospondin over synaptic glycine and AMPA receptors in spinal cord neurons. J Neurosci 2013; 33:11432-9. [PMID: 23843515 DOI: 10.1523/jneurosci.5247-12.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thrombospondin-1 (TSP-1) is a large extracellular matrix protein secreted by astrocytes during development and inflammation. In the developing CNS, TSP-1 is involved in neuronal migration and adhesion, neurite outgrowth, and synaptogenesis. We investigated the effects of TSP-1 on neurons with mature synapses using immunocytochemistry, single-particle tracking, surface biotinylation, and calcium imaging. We show that in cultured rat spinal cord neurons TSP-1 decreased neuronal excitability by reducing the accumulation of excitatory AMPA receptors (AMPARs) and increasing that of inhibitory glycine receptors (GlyRs) in synapses. The effects of TSP-1 on GlyRs were dependent on the activation of excitatory receptors. These changes were abolished by blocking β1-integrins and mimicked by blocking β3-integrins. In the presence of TSP-1, AMPARs were less stabilized at synapses, increasing their lateral diffusion and endocytosis. Interestingly, TSP-1 counteracted the increased neuronal excitability and neuronal death induced by TNFα. These results suggest a role of TSP-1 in controlling the balance between excitation and inhibition which could help the recovery of normal synaptic activity after injury responses.
Collapse
|
41
|
Effects of two elongation factor 1A isoforms on the formation of gephyrin clusters at inhibitory synapses in hippocampal neurons. Histochem Cell Biol 2013; 140:603-9. [DOI: 10.1007/s00418-013-1122-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2013] [Indexed: 10/26/2022]
|
42
|
Weltzien F, Puller C, O'Sullivan GA, Paarmann I, Betz H. Distribution of the glycine receptor β-subunit in the mouse CNS as revealed by a novel monoclonal antibody. J Comp Neurol 2013; 520:3962-81. [PMID: 22592841 DOI: 10.1002/cne.23139] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Inhibitory glycine receptors (GlyRs) are composed of homologous α- (α1-4) and β-subunits. The β-subunits (GlyRβ) interact via their large cytosolic loops with the postsynaptic scaffolding protein gephyrin and are therefore considered essential for synaptic localization. In situ hybridization studies indicate a widespread distribution of GlyRβ transcripts throughout the mammalian central nervous system (CNS), whereas GlyRα mRNAs and proteins display more restricted expression patterns. Here we report the generation of a monoclonal antibody that specifically recognizes rodent GlyRβ (mAb-GlyRβ) and does not exhibit crossreactivity with any of the GlyRα1-4 subunits. Immunostaining with this antibody revealed high densities of punctate GlyRβ immunoreactivity at inhibitory synapses in mouse spinal cord, brainstem, midbrain, and olfactory bulb but not in the neocortex, cerebellum, or hippocampus. This contrasts the abundance of GlyRβ transcripts in all major regions of the rodent brain and suggests that GlyRβ protein levels are regulated posttranscriptionally. When mAb-GlyRβ was used in double-labeling experiments with GlyRα1-, α2-, α3-, or α4-specific antibodies to examine the colocalization of GlyRβ with these GlyR subunits in the mouse retina, >90% of the GlyRα1-3 clusters detected were found to be GlyRβ-immunoreactive. A subset (about 50%) of the GlyRα4 puncta in the inner plexiform layer, however, was found to lack GlyRβ and gephyrin immunostaining. These GlyRα4-only clusters were apposed to bassoon immunoreactivity and hence synaptically localized. Their existence points to a gephyrin-independent synaptic localization mechanism for a minor subset of GlyRs.
Collapse
Affiliation(s)
- Felix Weltzien
- Department of Neurochemistry, Max-Planck Institute for Brain Research, 60528 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
43
|
Narayan P, Ganzinger KA, McColl J, Weimann L, Meehan S, Qamar S, Carver JA, Wilson MR, St. George-Hyslop P, Dobson CM, Klenerman D. Single molecule characterization of the interactions between amyloid-β peptides and the membranes of hippocampal cells. J Am Chem Soc 2013; 135:1491-8. [PMID: 23339742 PMCID: PMC3561772 DOI: 10.1021/ja3103567] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Indexed: 12/22/2022]
Abstract
Oligomers of the 40 and 42 residue amyloid-β peptides (Aβ40 and Aβ42) have been implicated in the neuronal damage and impaired cognitive function associated with Alzheimer's disease. However, little is known about the specific mechanisms by which these misfolded species induce such detrimental effects on cells. In this work, we use single-molecule imaging techniques to examine the initial interactions between Aβ monomers and oligomers and the membranes of live cells. This highly sensitive method enables the visualization of individual Aβ species on the cell surface and characterization of their oligomerization state, all at biologically relevant, nanomolar concentrations. The results indicate that oligomers preferentially interact with cell membranes, relative to monomers and that the oligomers become immobilized on the cell surface. Additionally, we observe that the interaction of Aβ species with the cell membrane is inhibited by the presence of ATP-independent molecular chaperones. This study demonstrates the power of this methodology for characterizing the interactions between protein aggregates and the membranes of live neuronal cells at physiologically relevant concentrations and opens the door to quantitative studies of the cellular responses to potentially pathogenic oligomers.
Collapse
Affiliation(s)
- Priyanka Narayan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge,
United Kingdom CB2 1EW
| | - Kristina A. Ganzinger
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge,
United Kingdom CB2 1EW
| | - James McColl
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge,
United Kingdom CB2 1EW
| | - Laura Weimann
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge,
United Kingdom CB2 1EW
| | - Sarah Meehan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge,
United Kingdom CB2 1EW
| | - Seema Qamar
- Cambridge Institute
for Medical Research, Wellcome Trust/MRC Building, Addenbrooke’s
Hospital, Hills Road, Cambridge, United Kingdom CB2 0XY
| | - John A. Carver
- School of Chemistry and
Physics, University of Adelaide, Adelaide,
South Australia 5005, Australia
| | - Mark R. Wilson
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales
2522, Australia
| | - Peter St. George-Hyslop
- Cambridge Institute
for Medical Research, Wellcome Trust/MRC Building, Addenbrooke’s
Hospital, Hills Road, Cambridge, United Kingdom CB2 0XY
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge,
United Kingdom CB2 1EW
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge,
United Kingdom CB2 1EW
| |
Collapse
|
44
|
Thoreson WB, Mercer AJ, Cork KM, Szalewski RJ. Lateral mobility of L-type calcium channels in synaptic terminals of retinal bipolar cells. Mol Vis 2013; 19:16-24. [PMID: 23335847 PMCID: PMC3548577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 01/02/2013] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Efficient and precise release of glutamate from retinal bipolar cells is ensured by the positioning of L-type Ca(2+) channels close to release sites at the base of the synaptic ribbon. We investigated whether Ca(2+) channels at bipolar cell ribbon synapses are fixed in position or capable of moving in the membrane. METHODS We tracked the movements of individual L-type Ca(2+) channels in bipolar cell terminals after labeling channels with quantum dots (QDs) attached to α(2)δ(4) accessory Ca(2+) channel subunits via intermediary antibodies. RESULTS We found that individual Ca(2+) channels moved within a confined domain of 0.13-0.15 μm(2) in bipolar cell terminals, similar to ultrastructural estimates of the surface area of the active zone beneath the ribbon. Disruption of actin expanded the confinement domain indicating that cytoskeletal interactions help to confine channels at the synapse, but the relatively large diffusion coefficients of 0.3-0.45 μm(2)/s suggest that channels are not directly anchored to actin. Unlike photoreceptor synapses, removing membrane cholesterol did not change domain size, indicating that lipid rafts are not required to confine Ca(2+) channels at bipolar cell ribbon synapses. CONCLUSIONS The ability of Ca(2+) channels to move within the presynaptic active zone suggests that regulating channel mobility may affect release from bipolar cell terminals.
Collapse
Affiliation(s)
- Wallace B. Thoreson
- Departments of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE,Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Aaron J. Mercer
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Karlene M. Cork
- Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Robert J. Szalewski
- Departments of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
45
|
Mercer AJ, Thoreson WB. Tracking quantum dot-tagged calcium channels at vertebrate photoreceptor synapses: retinal slices and dissociated cells. CURRENT PROTOCOLS IN NEUROSCIENCE 2013; Chapter 2:Unit 2.18. [PMID: 23315944 PMCID: PMC3707139 DOI: 10.1002/0471142301.ns0218s62] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
At synapses in the central nervous system, precisely localized assemblies of presynaptic proteins, neurotransmitter-filled vesicles, and postsynaptic receptors are required to communicate messages between neurons. Our understanding of synaptic function has been significantly advanced using electrophysiological methods, but the dynamic spatial behavior and real-time organization of synapses remains poorly understood. In this unit, we describe a method for labeling individual presynaptic calcium channels with photostable quantum dots for single-particle tracking analysis. We have used this technique to examine the mobility of L-type calcium channels in the presynaptic membrane of rod and cone photoreceptors in the retina. These channels control release of glutamate-filled synaptic vesicles at the ribbon synapses in photoreceptor terminals. This technique offers the advantage of providing a real-time biophysical readout of ion channel mobility and can be manipulated by pharmacological or electrophysiological methods. For example, the combination of electrophysiological and single-particle tracking experiments has revealed that fusion of nearby vesicles influences calcium channel mobility and changes in channel mobility can influence release. These approaches can also be readily adapted to examine membrane proteins in other systems.
Collapse
Affiliation(s)
- Aaron J Mercer
- Departments of Molecular and Integrative Physiology, University Of Michigan, Ann Arbor, USA
| | | |
Collapse
|
46
|
Alenghat FJ, Golan DE. Membrane protein dynamics and functional implications in mammalian cells. CURRENT TOPICS IN MEMBRANES 2013; 72:89-120. [PMID: 24210428 PMCID: PMC4193470 DOI: 10.1016/b978-0-12-417027-8.00003-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The organization of the plasma membrane is both highly complex and highly dynamic. One manifestation of this dynamic complexity is the lateral mobility of proteins within the plane of the membrane, which is often an important determinant of intermolecular protein-binding interactions, downstream signal transduction, and local membrane mechanics. The mode of membrane protein mobility can range from random Brownian motion to immobility and from confined or restricted motion to actively directed motion. Several methods can be used to distinguish among the various modes of protein mobility, including fluorescence recovery after photobleaching, single-particle tracking, fluorescence correlation spectroscopy, and variations of these techniques. Here, we present both a brief overview of these methods and examples of their use to elucidate the dynamics of membrane proteins in mammalian cells-first in erythrocytes, then in erythroblasts and other cells in the hematopoietic lineage, and finally in non-hematopoietic cells. This multisystem analysis shows that the cytoskeleton frequently governs modes of membrane protein motion by stably anchoring the proteins through direct-binding interactions, by restricting protein diffusion through steric interactions, or by facilitating directed protein motion. Together, these studies have begun to delineate mechanisms by which membrane protein dynamics influence signaling sequelae and membrane mechanical properties, which, in turn, govern cell function.
Collapse
Affiliation(s)
- Francis J. Alenghat
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - David E. Golan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Hematology Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Picas L, Milhiet PE, Hernández-Borrell J. Atomic force microscopy: a versatile tool to probe the physical and chemical properties of supported membranes at the nanoscale. Chem Phys Lipids 2012. [PMID: 23194897 DOI: 10.1016/j.chemphyslip.2012.10.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Atomic force microscopy (AFM) was developed in the 1980s following the invention of its precursor, scanning tunneling microscopy (STM), earlier in the decade. Several modes of operation have evolved, demonstrating the extreme versatility of this method for measuring the physicochemical properties of samples at the nanoscopic scale. AFM has proved an invaluable technique for visualizing the topographic characteristics of phospholipid monolayers and bilayers, such as roughness, height or laterally segregated domains. Implemented modes such as phase imaging have also provided criteria for discriminating the viscoelastic properties of different supported lipid bilayer (SLB) regions. In this review, we focus on the AFM force spectroscopy (FS) mode, which enables determination of the nanomechanical properties of membrane models. The interpretation of force curves is presented, together with newly emerging techniques that provide complementary information on physicochemical properties that may contribute to our understanding of the structure and function of biomembranes. Since AFM is an imaging technique, some basic indications on how real-time AFM imaging is evolving are also presented at the end of this paper.
Collapse
Affiliation(s)
- Laura Picas
- Institut Curie, CNRS UMR 144, 26 rue d'Ulm, 75248 Paris, France
| | | | | |
Collapse
|
48
|
Vlachos A, Reddy-Alla S, Papadopoulos T, Deller T, Betz H. Homeostatic regulation of gephyrin scaffolds and synaptic strength at mature hippocampal GABAergic postsynapses. ACTA ACUST UNITED AC 2012; 23:2700-11. [PMID: 22918984 DOI: 10.1093/cercor/bhs260] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Gephyrin is a scaffolding protein important for the postsynaptic clustering of inhibitory neurotransmitter receptors. Here, we investigated the properties of gephyrin scaffolds at γ-aminobutyric acid- (GABA-)ergic synapses in organotypic entorhino-hippocampal cultures prepared from a transgenic mouse line, which expresses green fluorescent protein-tagged gephyrin under the control of the Thy1.2 promoter. Fluorescence recovery after photobleaching revealed a developmental stabilization of postsynaptic gephyrin clusters concomitant with an increase in cluster size and synaptic strength between 1 and 4 weeks in vitro. Prolonged treatment of the slice cultures with diazepam or a GABAA receptor antagonist disclosed a homeostatic regulation of both inhibitory synaptic strength and gephyrin cluster size and stability in 4-weeks-old cultures, whereas at 1 week in vitro, the same drug treatments modulated GABAergic postsynapse and gephyrin cluster properties following a Hebbian mode of synaptic plasticity. Our data are consistent with a model in which the postnatal maturation of the hippocampal network endows CA1 pyramidal neurons with the ability to homeostatically adjust the strength of their inhibitory postsynapses to afferent GABAergic drive by regulating gephyrin scaffold properties.
Collapse
Affiliation(s)
- Andreas Vlachos
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University, 60590 Frankfurt am Main, Germany and
| | | | | | | | | |
Collapse
|
49
|
Notelaers K, Smisdom N, Rocha S, Janssen D, Meier JC, Rigo JM, Hofkens J, Ameloot M. Ensemble and single particle fluorimetric techniques in concerted action to study the diffusion and aggregation of the glycine receptor α3 isoforms in the cell plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:3131-40. [PMID: 22906711 DOI: 10.1016/j.bbamem.2012.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/03/2012] [Accepted: 08/11/2012] [Indexed: 10/28/2022]
Abstract
The spatio-temporal membrane behavior of glycine receptors (GlyRs) is known to be of influence on receptor homeostasis and functionality. In this work, an elaborate fluorimetric strategy was applied to study the GlyR α3K and L isoforms. Previously established differential clustering, desensitization and synaptic localization of these isoforms imply that membrane behavior is crucial in determining GlyR α3 physiology. Therefore diffusion and aggregation of homomeric α3 isoform-containing GlyRs were studied in HEK 293 cells. A unique combination of multiple diffraction-limited ensemble average methods and subdiffraction single particle techniques was used in order to achieve an integrated view of receptor properties. Static measurements of aggregation were performed with image correlation spectroscopy (ICS) and, single particle based, direct stochastic optical reconstruction microscopy (dSTORM). Receptor diffusion was measured by means of raster image correlation spectroscopy (RICS), temporal image correlation spectroscopy (TICS), fluorescence recovery after photobleaching (FRAP) and single particle tracking (SPT). The results show a significant difference in diffusion coefficient and cluster size between the isoforms. This reveals a positive correlation between desensitization and diffusion and disproves the notion that receptor aggregation is a universal mechanism for accelerated desensitization. The difference in diffusion coefficient between the clustering GlyR α3L and the non-clustering GlyR α3K cannot be explained by normal diffusion. SPT measurements indicate that the α3L receptors undergo transient trapping and directed motion, while the GlyR α3K displays mild hindered diffusion. These findings are suggestive of differential molecular interaction of the isoforms after incorporation in the membrane.
Collapse
Affiliation(s)
- Kristof Notelaers
- Biomedical Research Institute, Hasselt University and School of Life Sciences, Transnational University Limburg, Agoralaan gebouw C, 3590 Diepenbeek, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
50
|
PMCA2 via PSD-95 controls calcium signaling by α7-containing nicotinic acetylcholine receptors on aspiny interneurons. J Neurosci 2012; 32:6894-905. [PMID: 22593058 DOI: 10.1523/jneurosci.5972-11.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Local control of calcium concentration within neurons is critical for signaling and regulation of synaptic communication in neural circuits. How local control can be achieved in the absence of physical compartmentalization is poorly understood. Challenging examples are provided by nicotinic acetylcholine receptors that contain α7 nicotinic receptor subunits (α7-nAChRs). These receptors are highly permeable to calcium and are concentrated on aspiny dendrites of interneurons, which lack obvious physical compartments for constraining calcium diffusion. Using functional proteomics on rat brain, we show that α7-nAChRs are associated with plasma membrane calcium-ATPase pump isoform 2 (PMCA2). Analysis of α7-nAChR function in hippocampal interneurons in culture shows that PMCA2 activity limits the duration of calcium elevations produced by the receptors. Unexpectedly, PMCA2 inhibition triggers rapid calcium-dependent loss of α7-nAChR clusters. This extreme regulatory response is mediated by CaMKII, involves proteasome activity, depends on the second intracellular loop of α7-nAChR subunits, and is specific in that it does not alter two other classes of calcium-permeable ionotropic receptors on the same neurons. A critical link is provided by the scaffold protein PSD-95 (postsynaptic density-95), which is associated with α7-nAChRs and constrains their mobility as revealed by single-particle tracking on neurons. The PSD-95 link is required for PMCA2-mediated removal of α7-nAChR clusters. This three-component combination of PMCA2, PSD-95, and α7-nAChR offers a novel mechanism for tight control of calcium dynamics in neurons.
Collapse
|