1
|
Kuo DH, De-Miguel FF, Heath-Heckman EAC, Szczupak L, Todd K, Weisblat DA, Winchell CJ. A tale of two leeches: Toward the understanding of the evolution and development of behavioral neural circuits. Evol Dev 2020; 22:471-493. [PMID: 33226195 DOI: 10.1111/ede.12358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 11/29/2022]
Abstract
In the animal kingdom, behavioral traits encompass a broad spectrum of biological phenotypes that have critical roles in adaptive evolution, but an EvoDevo approach has not been broadly used to study behavior evolution. Here, we propose that, by integrating two leech model systems, each of which has already attained some success in its respective field, it is possible to take on behavioral traits with an EvoDevo approach. We first identify the developmental changes that may theoretically lead to behavioral evolution and explain why an EvoDevo study of behavior is challenging. Next, we discuss the pros and cons of the two leech model species, Hirudo, a classic model for invertebrate neurobiology, and Helobdella, an emerging model for clitellate developmental biology, as models for behavioral EvoDevo research. Given the limitations of each leech system, neither is particularly strong for behavioral EvoDevo. However, the two leech systems are complementary in their technical accessibilities, and they do exhibit some behavioral similarities and differences. By studying them in parallel and together with additional leech species such as Haementeria, it is possible to explore the different levels of behavioral development and evolution.
Collapse
Affiliation(s)
- Dian-Han Kuo
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Francisco F De-Miguel
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, México City, México
| | | | - Lidia Szczupak
- Departamento de Fisiología Biología Molecular y Celular, Universidad de Buenos Aires, and IFIBYNE UBA-CONICET, Buenos Aires, Argentina
| | - Krista Todd
- Department of Neuroscience, Westminster College, Salt Lake City, Utah, USA
| | - David A Weisblat
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Christopher J Winchell
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
2
|
The nociceptive withdrawal response of the tail in the spinalized rat employs a hybrid categorical-continuous spatial mapping strategy. Exp Brain Res 2019; 237:1551-1561. [PMID: 30927042 DOI: 10.1007/s00221-019-05527-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 03/22/2019] [Indexed: 10/27/2022]
Abstract
Complexity in movement planning, arising from diverse temporal and spatial sources, places a computational burden on the central nervous system. However, the efficacy with which humans can perform natural, highly trained movements suggests that they have evolved effective behavioral strategies that simplify the computational burden. The specific aim of our research was to use three-dimensional high-speed video to determine whether the tail nociceptive withdrawal response (NWR) to noxious heat stimuli delivered at locations that varied both circumferentially and rostral-caudally on the tail depended on the location of the stimulus in spinalized rats. In particular, we sought to determine whether the movement strategy was categorical (limited number of directions) or continuous (any variation in stimulus location results in a variation in response direction). In spinalized rats, localized, noxious heat stimuli were delivered at eight locations circumferentially around the tail and at five rostral-caudal levels. Our results demonstrate that at all rostral-caudal levels, response movement direction was bimodal regardless of circumferential stimulus location-either ~ 64° left or right of ventral. However, in spite of tight clustering, movement direction varied significantly but weakly according to circumferential location, in that responses to stimuli were more lateral for lateral stimulus locations. In contrast, changes in stimulus level strongly affected movement direction, in that a localized bend response closely matched the level of the stimulus. Together, our results demonstrate, based on movement analysis in spinalized rats, that the NWR employs a hybrid categorical-continuous strategy that may minimize the harmful consequences of noxious stimuli.
Collapse
|
3
|
Pirschel F, Hilgen G, Kretzberg J. Effects of Touch Location and Intensity on Interneurons of the Leech Local Bend Network. Sci Rep 2018; 8:3046. [PMID: 29445203 PMCID: PMC5813025 DOI: 10.1038/s41598-018-21272-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/24/2018] [Indexed: 11/09/2022] Open
Abstract
Touch triggers highly precise behavioural responses in the leech. The underlying network of this so-called local bend reflex consists of three layers of individually characterised neurons. While the population of mechanosensory cells provide multiplexed information about the stimulus, not much is known about how interneurons process this information. Here, we analyse the responses of two local bend interneurons (cell 157 and 159) to a mechanical stimulation of the skin and show their response characteristics to naturalistic stimuli. Intracellular dye-fills combined with structural imaging revealed that these interneurons are synaptically coupled to all three types of mechanosensory cells (T, P, and N cells). Since tactile stimulation of the skin evokes spikes in one to two cells of each of the latter types, interneurons combine inputs from up to six mechanosensory cells. We find that properties of touch location and intensity can be estimated reliably and accurately based on the graded interneuron responses. Connections to several mechanosensory cell types and specific response characteristics of the interneuron types indicate specialised filter and integration properties within this small neuronal network, thus providing evidence for more complex signal processing than previously thought.
Collapse
Affiliation(s)
- Friederice Pirschel
- Computational Neuroscience, Department for Neuroscience, University of Oldenburg, Oldenburg, Germany. .,Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA.
| | - Gerrit Hilgen
- Computational Neuroscience, Department for Neuroscience, University of Oldenburg, Oldenburg, Germany.,Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jutta Kretzberg
- Computational Neuroscience, Department for Neuroscience, University of Oldenburg, Oldenburg, Germany.,Cluster of Excellence "Hearing4all", University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
4
|
Wang Y, Burrell BD. Endocannabinoid-mediated potentiation of nonnociceptive synapses contributes to behavioral sensitization. J Neurophysiol 2018; 119:641-651. [PMID: 29118192 PMCID: PMC5867374 DOI: 10.1152/jn.00092.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 01/23/2023] Open
Abstract
Endocannabinoids, such as 2-arachidonoyl glycerol (2-AG) and anandamide, can elicit long-term depression of both excitatory and inhibitory synapses. This latter effect will result in disinhibition and would therefore be expected to produce an increase in neural circuit output. However, there have been no examples directly linking endocannabinoid-mediated disinhibition to a change in a functional neurobehavioral circuit. The present study uses the well-characterized central nervous system of the medicinal leech, Hirudo verbana, to examine the functional/behavioral relevance of endocannabinoid modulation of an identified afferent synapse. Bath application of 2-AG potentiates synaptic transmission by pressure-sensitive sensory neurons (P cells) as well as the magnitude of the defensive shortening reflex elicited by P-cell stimulation. This potentiation requires activation of TRPV-like channels. Endocannabinoid/TRPV signaling was found to produce sensitization of the shortening reflex elicited by either direct stimulation of nearby nociceptive afferents (N cells) or noxious stimulation applied to skin several segments away. In both cases, heterosynaptic potentiation of P-cell synapses was observed in parallel with an increase in the magnitude of elicited shortening and both synaptic and behavioral effects were blocked by pharmacological inhibition of 2-AG synthesis or TRPV-like channel activation. Serotonin (5-HT) is known to play a critical role in sensitization in Hirudo and other animals, and the 5-HT2 receptor antagonist ritanserin also blocked behavioral sensitization and the accompanying synaptic potentiation. These findings suggest a novel, endocannabinoid-mediated contribution to behavioral sensitization that may interact with known 5-HT-dependent modulatory processes. NEW & NOTEWORTHY There is considerable interest in the analgesic potential of cannabinoids. However, there is evidence that the cannabinoid system can have both pro- and antinociceptive effects. This study examines how an endogenous cannabinoid transmitter can potentiate nonnociceptive synapses and enhance their capacity to elicit a nocifensive behavioral response.
Collapse
Affiliation(s)
- Yanqing Wang
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Brian D Burrell
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| |
Collapse
|
5
|
Tomina Y, Wagenaar DA. A double-sided microscope to realize whole-ganglion imaging of membrane potential in the medicinal leech. eLife 2017; 6:29839. [PMID: 28944754 PMCID: PMC5656430 DOI: 10.7554/elife.29839] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/25/2017] [Indexed: 12/15/2022] Open
Abstract
Studies of neuronal network emergence during sensory processing and motor control are greatly facilitated by technologies that allow us to simultaneously record the membrane potential dynamics of a large population of neurons in single cell resolution. To achieve whole-brain recording with the ability to detect both small synaptic potentials and action potentials, we developed a voltage-sensitive dye (VSD) imaging technique based on a double-sided microscope that can image two sides of a nervous system simultaneously. We applied this system to the segmental ganglia of the medicinal leech. Double-sided VSD imaging enabled simultaneous recording of membrane potential events from almost all of the identifiable neurons. Using data obtained from double-sided VSD imaging, we analyzed neuronal dynamics in both sensory processing and generation of behavior and constructed functional maps for identification of neurons contributing to these processes. In every animal, networks of nerve cells work together to interpret signals from the environment and to coordinate responses. Being able to record the activity of all the neurons in a brain at once would greatly advance our understanding of how the brain works. Yet it is not possible to do this for a human brain, which contains several billion neurons. The medicinal leech, on the other hand, has a much simpler nervous system. It has 21 brain-like units called segmental ganglia, which control how the parts of its body move, and each one contains about 400 neurons arranged on a single layer. The activity of large populations of neurons can be monitored using a technique called fluorescent imaging. Most fluorescent dyes, however, are not sensitive enough to report low levels of activity or fast enough to track individual nerve impulses. Also, current microscopy techniques only allow one surface to be imaged at any one time. These limitations constrain the kinds of questions that neuroscientists can ask about how networks of nerve cells function. Tomina and Wagenaar have now developed a double-sided fluorescent microscope system that allows a ganglion in a medicinal leech to be viewed from both sides at once. Using a new generation of dyes, which rapidly change their brightness as individual neurons become active or are inhibited, subtle changes in the activity of hundreds of individual neurons were monitored at the same time. In a test of the system, Tomina and Wagenaar recorded activity for different leech behaviors, like bending, swimming and crawling. For the first time, the relationships between neurons on both sides of the ganglion could be seen. This new technique for examining the activity in neuronal circuitry will allow complex networks of neurons to be studied in more detail. The data that these images generate could then be analyzed mathematically to better understand how the brain processes information from its senses and generates behavior.
Collapse
Affiliation(s)
- Yusuke Tomina
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Daniel A Wagenaar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
6
|
The nociceptive withdrawal response of the foot in the spinalized rat exhibits limited dependence on stimulus location. Exp Brain Res 2017; 235:2027-2038. [PMID: 28343308 DOI: 10.1007/s00221-017-4940-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/01/2017] [Indexed: 12/31/2022]
Abstract
The nociceptive withdrawal response (NWR) of the limb is a protective, multi-joint movement in response to noxious stimulation of the homonymous limb. Previous studies in animal models differed as to the dependence of the response direction and magnitude on stimulus location. The specific aim of our research was to use three-dimensional high-speed video to determine whether movement of the foot in response to heat stimuli delivered to the foot and lower leg depended on the location of the stimulus. In particular, we sought to determine whether the movement strategy was categorical or continuous. In spinalized rats, localized, presumably nociceptive heat stimuli were delivered along three dimensions-circumferentially around the lower leg, circumferentially around the foot and along the plantar surface of the foot. Our results demonstrate that in spite of a wide range of stimulus locations over the hind foot and leg, response directions were restricted to two-rostral/medial/dorsal and caudal/medial/dorsal-directions, consistent with a categorical strategy. Further, the preference for these two directions was also reflected in the distance of the movement, which was greatest for stimuli directly opposite the preferred response directions. However, significant but weak dependencies of response direction and distance on stimulus location were found for all three dimensions of stimulus application, supporting a continuous strategy. Together, our results demonstrate, based on movement analysis, that the NWR employs a hybrid categorical-continuous strategy that may minimize the harmful consequences of noxious stimuli.
Collapse
|
7
|
Palmer CR, Barnett MN, Copado S, Gardezy F, Kristan WB. Multiplexed modulation of behavioral choice. J Exp Biol 2014; 217:2963-73. [PMID: 24902753 PMCID: PMC4132565 DOI: 10.1242/jeb.098749] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 06/01/2014] [Indexed: 11/20/2022]
Abstract
Stimuli in the environment, as well as internal states, influence behavioral choice. Of course, animals are often exposed to multiple external and internal factors simultaneously, which makes the ultimate determinants of behavior quite complex. We observed the behavioral responses of European leeches, Hirudo verbana, as we varied one external factor (surrounding water depth) with either another external factor (location of tactile stimulation along the body) or an internal factor (body distention following feeding). Stimulus location proved to be the primary indicator of behavioral response. In general, anterior stimulation produced shortening behavior, midbody stimulation produced local bending, and posterior stimulation usually produced either swimming or crawling but sometimes a hybrid of the two. By producing a systematically measured map of behavioral responses to body stimulation, we found wide areas of overlap between behaviors. When we varied the surrounding water depth, this map changed significantly, and a new feature - rotation of the body along its long axis prior to swimming - appeared. We found additional interactions between water depth and time since last feeding. A large blood meal initially made the animals crawl more and swim less, an effect that was attenuated as water depth increased. The behavioral map returned to its pre-feeding form after approximately 3 weeks as the leeches digested their blood meal. In summary, we found multiplexed impacts on behavioral choice, with the map of responses to tactile stimulation modified by water depth, which itself modulated the impact that feeding had on the decision to swim or crawl.
Collapse
Affiliation(s)
- Chris R Palmer
- Department of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Megan N Barnett
- Department of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Saul Copado
- Department of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fred Gardezy
- Department of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - William B Kristan
- Department of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Harley CM, Rossi M, Cienfuegos J, Wagenaar D. Discontinuous locomotion and prey sensing in the leech. ACTA ACUST UNITED AC 2014; 216:1890-7. [PMID: 23785108 DOI: 10.1242/jeb.075911] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The medicinal leech, Hirudo verbana, is an aquatic predator that utilizes water waves to locate its prey. However, to reach their prey, the leeches must move within the same water that they are using to sense prey. This requires that they either move ballistically towards a pre-determined prey location or that they account for their self-movement and continually track prey. We found that leeches do not localize prey ballistically. Instead, they require continual sensory information to track their prey. Indeed, in the event that the prey moves, leeches will approach the prey's new location. While leeches need to continually sense water disturbances to update their percept of prey location, their own behavior is discontinuous--prey involves switching between swimming, crawling and non-locomoting. Each of these behaviors may allow for different sensory capabilities and may require different sensory filters. Here, we examined the sensory capabilities of leeches during each of these behaviors. We found that while one could expect the non-locomoting phases to direct subsequent behaviors, crawling phases were more effective than non-locomotor phases for providing direction. During crawling bouts, leeches adjusted their heading so as to become more directed towards the stimulus. This was not observed during swimming. Furthermore, in the presence of prey-like stimuli, leeches crawled more often and for longer periods of time.
Collapse
Affiliation(s)
- Cynthia M Harley
- California Institute of Technology, Division of Biology, Pasadena, CA 91125, USA.
| | | | | | | |
Collapse
|
9
|
Yuan S, Burrell BD. Nonnociceptive afferent activity depresses nocifensive behavior and nociceptive synapses via an endocannabinoid-dependent mechanism. J Neurophysiol 2013; 110:2607-16. [PMID: 24027102 DOI: 10.1152/jn.00170.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Previously, low-frequency stimulation (LFS) of a nonnociceptive touch-sensitive neuron has been found to elicit endocannabinoid-dependent long-term depression (eCB-LTD) in nociceptive synapses in the leech central nervous system (CNS) that requires activation of a presynaptic transient receptor potential vanilloid (TRPV)-like receptor by postsynaptically synthesized 2-arachidonoyl glycerol (2-AG). This capacity of nonnociceptive afferent activity to reduce nociceptive signaling resembles gate control of pain, albeit longer lasting in these synaptic experiments. Since eCB-LTD has been observed at a single sensory-motor synapse, this study examines the functional relevance of this mechanism, specifically whether this form of synaptic plasticity has similar effects at the behavioral level in which additional, intersegmental neural circuits are engaged. Experiments were carried out using a semi-intact preparation that permitted both synaptic recordings and monitoring of the leech whole body shortening, a defensive withdrawal reflex that was elicited via intracellular stimulation of a single nociceptive neuron (the N cell). The same LFS of a nonnociceptive afferent that induced eCB-LTD in single synapses also produced an attenuation of the shortening reflex. Similar attenuation of behavior was also observed when 2-AG was applied. LFS-induced behavioral and synaptic depression was blocked by tetrahydrolipstatin (THL), a diacylglycerol lipase inhibitor, and by SB366791, a TRPV1 antagonist. The effects of both THL and SB366791 were observed following either bath application of the drug or intracellular injection into the presynaptic (SB366791) or postsynaptic (THL) neuron. These findings demonstrate a novel, endocannabinoid-based mechanism by which nonnociceptive afferent activity may modulate nocifensive behaviors via action on primary afferent synapses.
Collapse
Affiliation(s)
- Sharleen Yuan
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | | |
Collapse
|
10
|
Latorre R, Levi R, Varona P. Transformation of context-dependent sensory dynamics into motor behavior. PLoS Comput Biol 2013; 9:e1002908. [PMID: 23459114 PMCID: PMC3572992 DOI: 10.1371/journal.pcbi.1002908] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 12/19/2012] [Indexed: 11/24/2022] Open
Abstract
The intrinsic dynamics of sensory networks play an important role in the sensory-motor transformation. In this paper we use conductance based models and electrophysiological recordings to address the study of the dual role of a sensory network to organize two behavioral context-dependent motor programs in the mollusk Clione limacina. We show that: (i) a winner take-all dynamics in the gravimetric sensory network model drives the typical repetitive rhythm in the wing central pattern generator (CPG) during routine swimming; (ii) the winnerless competition dynamics of the same sensory network organizes the irregular pattern observed in the wing CPG during hunting behavior. Our model also shows that although the timing of the activity is irregular, the sequence of the switching among the sensory cells is preserved whenever the same set of neurons are activated in a given time window. These activation phase locks in the sensory signals are transformed into specific events in the motor activity. The activation phase locks can play an important role in motor coordination driven by the intrinsic dynamics of a multifunctional sensory organ. How sensory information is transformed into effective motor action is one of the most fundamental questions in neuroscience. As this question is difficult to assess experimentally, biophysical models of sensory, central and motor systems contribute to understand the information processing mechanisms involved in this transformation. Biophysical models can be informed by electrophysiological data in those situations where it is possible to record neural activity at all stages of sensory-motor processing. In this paper we use this approach to describe the dual dynamics of a multifunctional sensory organ in the mollusk Clione limacina and its transformation into two different motor programs. Our experimental and modeling results indicate that the sensory signals are modified to fit the changing behavioral context, and they are readily interpreted by the rest of the nervous system to produce the correct motor output.
Collapse
Affiliation(s)
- Roberto Latorre
- Grupo de Neurocomputación Biológica, Dpto. de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain.
| | | | | |
Collapse
|
11
|
van Griethuijsen LI, Trimmer BA. Caterpillar crawling over irregular terrain: anticipation and local sensing. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:397-406. [DOI: 10.1007/s00359-010-0525-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/10/2010] [Accepted: 03/31/2010] [Indexed: 10/19/2022]
|
12
|
Baltzley MJ, Gaudry Q, Kristan WB. Species-specific behavioral patterns correlate with differences in synaptic connections between homologous mechanosensory neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:181-97. [PMID: 20135128 PMCID: PMC2825318 DOI: 10.1007/s00359-010-0503-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 01/02/2010] [Accepted: 01/04/2010] [Indexed: 11/29/2022]
Abstract
We characterized the behavioral responses of two leech species, Hirudo verbana and Erpobdella obscura, to mechanical skin stimulation and examined the interactions between the pressure mechanosensory neurons (P cells) that innervate the skin. To quantify behavioral responses, we stimulated both intact leeches and isolated body wall preparations from the two species. In response to mechanical stimulation, Hirudo showed local bending behavior, in which the body wall shortened only on the side of the stimulation. Erpobdella, in contrast, contracted both sides of the body in response to touch. To investigate the neuronal basis for this behavioral difference, we studied the interactions between P cells. Each midbody ganglion has four P cells; each cell innervates a different quadrant of the body wall. Consistent with local bending, activating any one P cell in Hirudo elicited polysynaptic inhibitory potentials in the other P cells. In contrast, the P cells in Erpobdella had excitatory polysynaptic connections, consistent with the segment-wide contraction observed in this species. In addition, activating individual P cells caused asymmetrical body wall contractions in Hirudo and symmetrical body wall contractions in Erpobdella. These results suggest that the different behavioral responses in Erpobdella and Hirudo are partly mediated by interactions among mechanosensory cells.
Collapse
Affiliation(s)
- Michael J Baltzley
- Division of Biological Sciences, University of California, San Diego, 3119 Pacific Hall, 9500 Gilman Drive, #0357, La Jolla, CA 92093-0357, USA.
| | | | | |
Collapse
|
13
|
Widespread inhibition proportional to excitation controls the gain of a leech behavioral circuit. Neuron 2008; 57:276-289. [PMID: 18215624 DOI: 10.1016/j.neuron.2007.11.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 08/22/2007] [Accepted: 11/28/2007] [Indexed: 11/21/2022]
Abstract
Changing gain in a neuronal system has important functional consequences, but the underlying mechanisms have been elusive. Models have suggested a variety of neuronal and systems properties to accomplish gain control. Here, we show that the gain of the neuronal network underlying local bending behavior in leeches depends on widespread inhibition. Using behavioral analysis, intracellular recordings, and voltage-sensitive dye imaging, we compared the effects of blocking just the known lateral inhibition with blocking all GABAergic inhibition. This revealed an additional source of inhibition, which was widespread and increased in proportion to increasing stimulus intensity. In a model of the input/output functions of the three-layered local bending network, we showed that inhibiting all interneurons in proportion to the stimulus strength produces the experimentally observed change in gain. This relatively simple mechanism for controlling behavioral gain could be prevalent in vertebrate as well as invertebrate nervous systems.
Collapse
|
14
|
Kristan WB, Calabrese RL, Friesen WO. Neuronal control of leech behavior. Prog Neurobiol 2005; 76:279-327. [PMID: 16260077 DOI: 10.1016/j.pneurobio.2005.09.004] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 08/23/2005] [Accepted: 09/26/2005] [Indexed: 11/27/2022]
Abstract
The medicinal leech has served as an important experimental preparation for neuroscience research since the late 19th century. Initial anatomical and developmental studies dating back more than 100 years ago were followed by behavioral and electrophysiological investigations in the first half of the 20th century. More recently, intense studies of the neuronal mechanisms underlying leech movements have resulted in detailed descriptions of six behaviors described in this review; namely, heartbeat, local bending, shortening, swimming, crawling, and feeding. Neuroethological studies in leeches are particularly tractable because the CNS is distributed and metameric, with only 400 identifiable, mostly paired neurons in segmental ganglia. An interesting, yet limited, set of discrete movements allows students of leech behavior not only to describe the underlying neuronal circuits, but also interactions among circuits and behaviors. This review provides descriptions of six behaviors including their origins within neuronal circuits, their modification by feedback loops and neuromodulators, and interactions between circuits underlying with these behaviors.
Collapse
Affiliation(s)
- William B Kristan
- Section of Neurobiology, Division of Biological Sciences, 9500 Gilman Dr., University of California, San Diego, La Jolla, CA 92093-0357, USA
| | | | | |
Collapse
|
15
|
Baca SM, Thomson EE, Kristan WB. Location and intensity discrimination in the leech local bend response quantified using optic flow and principal components analysis. J Neurophysiol 2005; 93:3560-72. [PMID: 15689387 DOI: 10.1152/jn.01263.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In response to touches to their skin, medicinal leeches shorten their body on the side of the touch. We elicited local bends by delivering precisely controlled pressure stimuli at different locations, intensities, and durations to body-wall preparations. We video-taped the individual responses, quantifying the body-wall displacements over time using a motion-tracking algorithm based on making optic flow estimates between video frames. Using principal components analysis (PCA), we found that one to three principal components fit the behavioral data much better than did previous (cosine) measures. The amplitudes of the principal components (i.e., the principal component scores) nicely discriminated the responses to stimuli both at different locations and of different intensities. Leeches discriminated (i.e., produced distinguishable responses) between touch locations that are approximately a millimeter apart. Their ability to discriminate stimulus intensity depended on stimulus magnitude: discrimination was very acute for weak stimuli and less sensitive for stronger stimuli. In addition, increasing the stimulus duration improved the leech's ability to discriminate between stimulus intensities. Overall, the use of optic flow fields and PCA provide a powerful framework for characterizing the discrimination abilities of the leech local bend response.
Collapse
Affiliation(s)
- Serapio M Baca
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093-0357, USA
| | | | | |
Collapse
|
16
|
Mazzoni A, Garcia-Perez E, Zoccolan D, Graziosi S, Torre V. Quantitative Characterization and Classification of Leech Behavior. J Neurophysiol 2005; 93:580-93. [PMID: 15317841 DOI: 10.1152/jn.00608.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This paper describes an automatic system for the analysis and classification of leech behavior. Three colored beads were attached to the dorsal side of a free moving or pinned leech, and color CCD camera images were taken of the animal. The leech was restrained to moving in a small tank or petri dish, where the water level can be varied. An automatic system based on color processing tracked the colored beads over time, allowing real-time monitoring of the leech motion for several hours. At the end of each experimental session, six time series (2 for each bead) describing the leech body motion were obtained. A statistical analysis based on the speed and frequency content of bead motion indicated the existence of several stereotypical patterns of motion, corresponding to different leech behaviors. The identified patterns corresponded to swimming, pseudo-swimming, crawling, exploratory behavior, stationary states, abrupt movements, and combinations of these behaviors. The automatic characterization of leech behavior demonstrated here represents an important step toward understanding leech behavior and its properties. This method can be used to characterize the behavior of other invertebrates and also for some small vertebrates.
Collapse
|
17
|
Mudra R, Douglas RJ. Self-correction mechanism for path integration in a modular navigation system on the basis of an egocentric spatial map. Neural Netw 2003; 16:1373-88. [PMID: 14622890 DOI: 10.1016/j.neunet.2003.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Classical Computer Science approaches to navigation by autonomous robots continue to make good progress. However, we have only a limited understanding of how navigation is implemented in the neural networks of animals, which still perform very much better in navigational tasks than robots. In this paper we explore the implementation of neural network based navigation in a simple robot. We use a modular navigation system that contains separate representations of visual input and the path integration process. These representations are combined to influence the behavior of a robot. Both representations are encoded within recurrent neuronal networks. The outputs of the representations are vectors of polar values that encode the location of the nearest object, or of a specific place in the environment. The robot manoeuvres in relation to these attended locations, in the context of its egocentric spatial map. During ego-motion towards a goal, the network representation of the goal moves in a counter-movement due to applied motor feedback. The robot's position is continuously compared against its visual input, and mismatches between the visually perceived goal position and its spatial representation are corrected.
Collapse
Affiliation(s)
- Regina Mudra
- Institute of Neuroinformatics, University/ETH Zürich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | |
Collapse
|
18
|
Jing J, Gillette R. Directional avoidance turns encoded by single interneurons and sustained by multifunctional serotonergic cells. J Neurosci 2003; 23:3039-51. [PMID: 12684491 PMCID: PMC6742103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Avoidance turns in the sea slug Pleurobranchaea are responses to noxious stimuli and replace orienting turns to food stimuli after avoidance conditioning or satiation. Avoidance turns proved to be centrally patterned behaviors, the fictive expression of which could be elicited in reduced preparations and the isolated CNS. Activity in one of a bilateral interneuron pair, the A4 cells, was necessary and sufficient to drive the avoidance turn toward the contralateral side. Single A4 cells appeared to encode both turn direction and angle, in contrast to directional behaviors of other animals in which displacement angle is usually encoded by multiple units. The As1-4 cells, bilateral serotonergic cell clusters, excited the prolonged A4 burst during the turn through electrical and chemical coupling. However, during the escape swim, As1-4 became integral elements of the swim motor network, and A4 activity was entrained to the swim rhythm by alternating excitatory-inhibitory inputs, with only weak spiking. This provides a likely mechanism for the previously observed suppression of the avoidance turn by escape swimming. These observations add significant new aspects to the multiplying known functions of As1-4 and their homologs in other molluscs and point to a pivotal role of these neurons in the organization of gastropod behavior. Simple functional models predict (1) the essential actions of inhibitor neurons in the directionality of the turning network motor output and (2) an integrating role for As1-4 in the behavioral switch between turning avoidance and swimming escape, on the basis of their response to increasing stimulus intensity.
Collapse
Affiliation(s)
- Jian Jing
- Department of Molecular and Integrative Physiology and the Neuroscience Program, University of Illinois, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
19
|
Velázquez-Ulloa N, Blackshaw SE, Szczupak L, Trueta C, García E, De-Miguel FF. Convergence of mechanosensory inputs onto neuromodulatory serotonergic neurons in the leech. JOURNAL OF NEUROBIOLOGY 2003; 54:604-17. [PMID: 12555272 DOI: 10.1002/neu.10184] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
By the frequency-dependent release of serotonin, Retzius neurons in the leech modulate diverse behavioral responses of the animal. However, little is known about how their firing pattern is produced. Here we have analyzed the effects of mechanical stimulation of the skin and intracellular stimulation of mechanosensory neurons on the electrical activity of Retzius neurons. We recorded the electrical activity of neurons in ganglia attached to their corresponding skin segment by segmental nerve roots, or in isolated ganglia. Mechanosensory stimulation of the skin induced excitatory synaptic potentials (EPSPs) and action potentials in both Retzius neurons in a ganglion. The frequency and duration of responses depended on the strength and duration of the skin stimulation. Retzius cells responded after T and P cells, but before N cells, and their sustained responses correlated with the activity of P cells. Trains of five impulses at 10 Hz in every individual T, P, or N cell in isolated ganglia produced EPSPs and action potentials in Retzius neurons. Responses to T cell stimulation appeared after the first impulse. In contrast, the responses to P or N cell stimulation appeared after two or more presynaptic impulses and facilitated afterward. The polysynaptic nature of all the synaptic inputs was shown by blocking them with a high calcium/magnesium external solution. The rise time distribution of EPSPs produced by the different mechanosensory neurons suggested that several interneurons participate in this pathway. Our results suggest that sensory stimulation provides a mechanism for regulating serotonin-mediated modulation in the leech.
Collapse
Affiliation(s)
- N Velázquez-Ulloa
- Departamento de Biofísica, Instituto de Fisiología Celular, UNAM, Apartado Postal 70-253, C.P. 04510, D.F., México
| | | | | | | | | | | |
Collapse
|
20
|
Zoccolan D, Torre V. Using optical flow to characterize sensory-motor interactions in a segment of the medicinal leech. J Neurosci 2002; 22:2283-98. [PMID: 11896168 PMCID: PMC6758248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Activation of motoneurons innervating leech muscles causes the appearance of a two-dimensional vector field of deformations on the skin surface that can be fully characterized using a new technique (Zoccolan et al., 2001) based on the computation of the optical flow, the two-dimensional vector field describing the point displacements on the skin. These vector fields are characterized by their origin (i.e., the singular point) and by four elementary components that combine linearly: expansion (or compression), rotation, longitudinal shear, and oblique shear. All motoneurons can be classified and recognized according to the components of the deformations they elicit: longitudinal motoneurons give rise almost exclusively to longitudinal negative shear, whereas circular motoneurons give rise to both positive longitudinal shear and significant negative expansion. Oblique motoneurons induce strong oblique shear, in addition to longitudinal shear and negative expansion. Vector fields induced by the contraction of longitudinal, circular, and oblique fibers superimpose linearly. Skin deformations can therefore be attributed rather reliably to the contraction of distinct longitudinal, circular, and oblique muscle fibers. We compared the deformation patterns produced by touching the skin with those produced by intracellular stimulation of P, T, and N cells: vector fields resulting from the activation of P cells were almost identical to those produced by mechanical stimulation. Therefore, motor responses triggered by light or moderate touch are almost entirely mediated by excitation of P cells, with minor contributions from T and N cells.
Collapse
Affiliation(s)
- Davide Zoccolan
- Scuola Internazionale Superiore di Studi Avanzati and Istituto Nazionale di Fisica della Materia, Unita' di Trieste, c/o Scuola Internazionale Superiore di Studi Avanzati, 34014 Trieste, Italy
| | | |
Collapse
|
21
|
Shan D, Zhang RJ. Frequency coding of positional information by an identified neuron, the AP cell, in the leech, Whitmania pigra. Brain Res Bull 2001; 56:511-5. [PMID: 11786234 DOI: 10.1016/s0361-9230(01)00609-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The synaptic connections from pressure-sensitive receptors (P cells) to identified neurons of unknown function (known as anterior pagoda or AP cells) were used to study the way in which leeches process information about the position of a mechanical stimulus on its skin. We elicited spikes in P cells by injecting current intracellularly while recording from AP neurons. The postsynaptic responses consisted of an increase in impulse frequency. We show here that the AP neuron can encode positional information in terms of the frequency of its action potentials. Thus, the AP neuron can serve as an indicator of integrative mechanisms used in the processing of sensory information that is important for the behavior of the animal.
Collapse
Affiliation(s)
- D Shan
- Department of Physiology and Biophysics, College of Life Sciences, Peking University, The People's Republic of, Beijing, China
| | | |
Collapse
|
22
|
Pinato G, Torre V. Coding and adaptation during mechanical stimulation in the leech nervous system. J Physiol 2000; 529 Pt 3:747-62. [PMID: 11118503 PMCID: PMC2270221 DOI: 10.1111/j.1469-7793.2000.00747.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The experiments described here were designed to characterise sensory coding and adaptation during mechanical stimulation in the leech (Hirudo medicinalis). A chain of three ganglia and a segment of the body wall connected to the central ganglion were used. Eight extracellular suction pipettes and one or two intracellular electrodes were used to record action potentials from all mechanosensory neurones of the three ganglia. When the skin of the body wall was briefly touched with a filament exerting a force of about 2 mN, touch (T) cells in the central ganglion, but also those in adjacent ganglia (i.e. anterior and posterior), fired one or two action potentials. However, the threshold for action potential initiation was lower for T cells in the central ganglion than for those in adjacent ganglia. The timing of the first evoked action potential in a T cell was very reproducible with a jitter often lower than 100 us. Action potentials in T cells were not significantly correlated. When the force exerted by the filament was increased above 20 mN, pressure (P) cells in the central and neighbouring ganglia fired action potentials. Action potentials in P cells usually followed those evoked in T cells with a delay of about 20 ms and had a larger jitter of 0.5-10 ms. With stronger stimulations exceeding 50 mN, noxious (N) cells also fired action potentials. With such stimulations the majority of mechanosensory neurones in the three ganglia fired action potentials. The spatial properties of the whole receptive field of the mechanosensory neurones were explored by touching different parts of the skin. When the mechanical stimulation was applied for a longer time, i.e. 1 s, only P cells in the central ganglion continued to fire action potentials. P cells in neighbouring ganglia fully adapted after firing two or three action potentials.P cells in adjacent ganglia, having fully adapted to a steady mechanical stimulation of one part of the skin, fired action potentials following stimulation of a different region of the skin. These results indicate that a brief and localised stimulation of the skin can activate more than a dozen different mechanosensory neurones in the three ganglia and after 100 ms of steady stimulation many of these mechanosensory neurones stop firing action potentials and fully adapt. Adaptation occurs primarily at the nerve endings and mechanosensory neurones can quickly respond to mechanical stimulation at a different location on the skin.
Collapse
Affiliation(s)
- G Pinato
- Scuola Internazionale Superiore di Studi Avanzati, Via Beirut 2, Trieste and INFM, Unita' di Trieste, Via Beirut 2, Trieste, Italy
| | | |
Collapse
|
23
|
Kristan WB, Eisenhart FJ, Johnson LA, French KA. Development of neuronal circuits and behaviors in the medicinal leech. Brain Res Bull 2000; 53:561-70. [PMID: 11165792 DOI: 10.1016/s0361-9230(00)00390-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We are studying the neuronal mechanisms responsible for establishing circuitry underlying the local bending response in the medicinal leech. Local bending replaces an embryonic behavior, circumferential indentation, during the time of initial chemical synaptogenesis in leech embryos. We found that the electrical connections among the motor neurons are established first, about 5% of embryonic time (almost 2 full days) before chemical connections form. The inhibitory connections from muscle inhibitors to muscle excitors are, we hypothesize, responsible for the emergence of local bending. We have also found that the central processes of the excitors--but not the inhibitors--have much longer central processes when their peripheral processes are kept from contacting their target muscles. This system should allow us to test ideas about how individual neurons find their appropriate targets to form functional neuronal circuits.
Collapse
Affiliation(s)
- W B Kristan
- Department of Biology, University of California, San Diego, La Jolla, CA 93093-0357, USA.
| | | | | | | |
Collapse
|
24
|
Levi R, Camhi JM. Wind direction coding in the cockroach escape response: winner does not take all. J Neurosci 2000; 20:3814-21. [PMID: 10804221 PMCID: PMC6772673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Cockroaches respond to the approach of a predator by turning away and then running. Three bilateral pairs of giant interneurons are involved in determining the direction of the sensory stimulus and setting the turn direction. Each of these six interneurons has a different directional response to wind stimuli. We have tested whether these six cells use a winner-take-all mechanism to perform this directional determination: that is, each of these cells suppressing the motor response that each of the other cells promotes. Such a mechanism is found in similar behaviors of some other animals. By adding spikes to identified giant interneurons through intracellular stimulation during the sensory-induced behavior and analyzing the resulting directional leg movements, we find that a winner-take-all is not used in this system. Rather, directional determination appears to be based on collaborative calculation of direction by the giant interneurons as a group.
Collapse
Affiliation(s)
- R Levi
- Department of Cell and Animal Biology, Life Sciences Institute, Hebrew University, Jerusalem, Israel
| | | |
Collapse
|
25
|
Edwards DH, Heitler WJ, Krasne FB. Fifty years of a command neuron: the neurobiology of escape behavior in the crayfish. Trends Neurosci 1999; 22:153-61. [PMID: 10203852 DOI: 10.1016/s0166-2236(98)01340-x] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fifty years ago C.A.G. Wiersma established that the giant axons of the crayfish nerve cord drive tail-flip escape responses. The circuitry that includes these giant neurons has now become one of the best-understood neural circuits in the animal kingdom. Although it controls a specialized behavior of a relatively simple animal, this circuitry has provided insights that are of general neurobiological interest concerning matters as diverse as the identity of the neural substrates involved in making behavioral decisions, the cellular bases of learning, subcellular neuronal computation, voltage-gated electrical synaptic transmission and modification of neuromodulator actions that result from social experience. This work illustrates the value of studying a circuit of moderate, but tractable, complexity and known behavioral function.
Collapse
Affiliation(s)
- D H Edwards
- Dept of Biology, Georgia State University, Atlanta, GA, USA
| | | | | |
Collapse
|
26
|
Lewis JE, Kristan WB. Representation of touch location by a population of leech sensory neurons. J Neurophysiol 1998; 80:2584-92. [PMID: 9819265 DOI: 10.1152/jn.1998.80.5.2584] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To form accurate representations of the world, sensory systems must accurately encode stimuli in the spike trains of populations of neurons. The nature of such neuronal population codes is beginning to be understood. We characterize the entire sensory system underlying a simple withdrawal reflex in the leech, a bend directed away from the site of a light touch. Our studies show that two different populations of mechanosensory neurons each encode touch information with an accuracy that can more than account for the behavioral output. However, we found that only one of the populations, the P cells, is important for the behavior. The sensory representation of touch location is based on the spike counts in all of the four P cells. Further, fewer than three action potentials in the P cell population, occurring during the first 100 ms of a touch stimulus, may be required to process touch location information to produce the appropriately directed bend.
Collapse
Affiliation(s)
- J E Lewis
- Department of Biology, University of California, San Diego, La Jolla, California 92093-0357, USA
| | | |
Collapse
|