1
|
Hijal N, Fouani M, Awada B. Unveiling the fate and potential neuroprotective role of neural stem/progenitor cells in multiple sclerosis. Front Neurol 2024; 15:1438404. [PMID: 39634777 PMCID: PMC11614735 DOI: 10.3389/fneur.2024.1438404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Chronic pathological conditions often induce persistent systemic inflammation, contributing to neuroinflammatory diseases like Multiple Sclerosis (MS). MS is known for its autoimmune-mediated damage to myelin, axonal injury, and neuronal loss which drive disability accumulation and disease progression, often manifesting as cognitive impairments. Understanding the involvement of neural stem cells (NSCs) and neural progenitor cells (NPCs) in the remediation of MS through adult neurogenesis (ANG) and gliogenesis-the generation of new neurons and glial cells, respectively is of great importance. Hence, these phenomena, respectively, termed ANG and gliogenesis, involve significant structural and functional changes in neural networks. Thus, the proper integration of these newly generated cells into existing circuits is not only key to understanding the CNS's development but also its remodeling in adulthood and recovery from diseases such as MS. Understanding how MS influences the fate of NSCs/NPCs and their possible neuroprotective role, provides insights into potential therapeutic interventions to alleviate the impact of MS on cognitive function and disease progression. This review explores MS, its pathogenesis, clinical manifestations, and its association with ANG and gliogenesis. It highlights the impact of altered NSCs and NPCs' fate during MS and delves into the potential benefits of its modifications. It also evaluates treatment regimens that influence the fate of NSCS/NPCs to counteract the pathology subsequently.
Collapse
Affiliation(s)
- Nora Hijal
- Department of Nursing, American University of Beirut Medical Center, Beirut, Lebanon
| | - Malak Fouani
- Department of Neurology, Duke University Medical Center, Durham, NC, United States
| | - Bassel Awada
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
2
|
Aharoni R, Milo R, Arnon R. Glatiramer Acetate for the Treatment of Multiple Sclerosis: From First-Generation Therapy to Elucidation of Immunomodulation and Repair. Pharmacol Rev 2024; 76:1133-1158. [PMID: 39406508 DOI: 10.1124/pharmrev.124.000927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 10/18/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS), with a putative autoimmune origin and complex pathogenesis. Modification of the natural history of MS by reducing relapses and slowing disability accumulation was first attained in the 1990 s with the development of the first-generation disease-modifying therapies. Glatiramer acetate (GA), a copolymer of L-alanine, L-lysine, L-glutamic acid, and L-tyrosine, was discovered due to its ability to suppress the animal model of MS, experimental autoimmune encephalomyelitis. Extensive clinical trials and long-term assessments established the efficacy and the safety of GA. Furthermore, studies of the therapeutic processes induced by GA in animal models and in MS patients indicate that GA affects various levels of the innate and the adaptive immune response, generating deviation from proinflammatory to anti-inflammatory pathways. This includes competition for binding to antigen presenting cells; driving dendritic cells, monocytes, and B-cells toward anti-inflammatory responses; and stimulating T-helper 2 and T-regulatory cells. The immune cells stimulated by GA reach the CNS and secrete in situ anti-inflammatory cytokines alleviating the pathological processes. Furthermore, cumulative findings reveal that in addition to its immunomodulatory effect, GA promotes neuroprotective repair processes such as neurotrophic factors secretion, remyelination, and neurogenesis. This review aims to provide an overview of MS pathology diagnosis and treatment as well as the diverse mechanism of action of GA. SIGNIFICANCE STATEMENT: Understanding the complex MS immune pathogenesis provided multiple targets for therapeutic intervention, resulting in a plethora of agents, with various mechanisms of action, efficacy, and safety profiles. However, promoting repair beyond the body's limited spontaneous extent is still a major challenge. GA, one of the first approved disease-modifying therapies, induces diverse immunomodulatory effects. Furthermore, GA treatment results in elevated neurotrophic factors secretion, remyelination and neurogenesis, supporting the notion that immunomodulatory treatment can support in situ a growth-promoting and repair environment.
Collapse
Affiliation(s)
- Rina Aharoni
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| | - Ron Milo
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| | - Ruth Arnon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| |
Collapse
|
3
|
Göksu MR, Gümrükçü Z, Balaban E, Mercantepe T, Gökçe FM. Electrophysiological and histopathological evaluation of the effectiveness of melatonin and glatiramer acetate for traumatic facial nerve injuries. Injury 2024; 55:111719. [PMID: 39003883 DOI: 10.1016/j.injury.2024.111719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/20/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
AIM This study aimed to evaluate the effect of systemic/local use of melatonin and glatiramer acetate on regeneration in traumatic nerve injury models. MATERIALS AND METHODS A total of 42 male Wistar albino rats were randomly divided into 6 groups: healthy control (Group 1), injured control (Group 2), local melatonin (Group 3), systemic melatonin (Group 4), local glatiramer acetate (Group 5), and systemic glatiramer acetate (Group 6). In all groups, electromyography recordings of the facial nerve were obtained after surgery and before sacrifice, and the damaged nerve region was histopathologically examined after sacrifice. RESULTS In the electrophysiological evaluation, the control group had the greatest decrease in amplitude and extension in latency time following surgery than the treatment groups. Furthermore, a significant decrease in the degenerative axon count, edematous areas, and fibrotic areas as well as a significant increase in axonal surface areas was observed in all the treatment groups compared with the damage control group. CONCLUSIONS Although both glatiramer acetate and melatonin are beneficial in regeneration in traumatic facial nerve injuries, it can be concluded that systemic use of melatonin can yield more positive results than glatiramer acetate and local use of both two drugs.
Collapse
Affiliation(s)
| | - Zeynep Gümrükçü
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry Recep Tayyip Erdoğan University, Rize, Turkey.
| | - Emre Balaban
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry Recep Tayyip Erdoğan University, Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology Embryology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Fatih Mehmet Gökçe
- Department of Physiology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| |
Collapse
|
4
|
Imitola J, Hollingsworth EW, Watanabe F, Olah M, Elyaman W, Starossom S, Kivisäkk P, Khoury SJ. Stat1 is an inducible transcriptional repressor of neural stem cells self-renewal program during neuroinflammation. Front Cell Neurosci 2023; 17:1156802. [PMID: 37663126 PMCID: PMC10469489 DOI: 10.3389/fncel.2023.1156802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023] Open
Abstract
A central issue in regenerative medicine is understanding the mechanisms that regulate the self-renewal of endogenous stem cells in response to injury and disease. Interferons increase hematopoietic stem cells during infection by activating STAT1, but the mechanisms by which STAT1 regulates intrinsic programs in neural stem cells (NSCs) during neuroinflammation is less known. Here we explored the role of STAT1 on NSC self-renewal. We show that overexpressing Stat1 in NSCs derived from the subventricular zone (SVZ) decreases NSC self-renewal capacity while Stat1 deletion increases NSC self-renewal, neurogenesis, and oligodendrogenesis in isolated NSCs. Importantly, we find upregulation of STAT1 in NSCs in a mouse model of multiple sclerosis (MS) and an increase in pathological T cells expressing IFN-γ rather than interleukin 17 (IL-17) in the cerebrospinal fluid of affected mice. We find IFN-γ is superior to IL-17 in reducing proliferation and precipitating an abnormal NSC phenotype featuring increased STAT1 phosphorylation and Stat1 and p16ink4a gene expression. Notably, Stat1-/- NSCs were resistant to the effect of IFN-γ. Lastly, we identified a Stat1-dependent gene expression profile associated with an increase in the Sox9 transcription factor, a regulator of self-renewal. Stat1 binds and transcriptionally represses Sox9 in a transcriptional luciferase assay. We conclude that Stat1 serves as an inducible checkpoint for NSC self-renewal that is upregulated during chronic brain inflammation leading to decreased self-renewal. As such, Stat1 may be a potential target to modulate for next generation therapies to prevent progression and loss of repair function in NSCs/neural progenitors in MS.
Collapse
Affiliation(s)
- Jaime Imitola
- Laboratory for Neural Stem Cells and Functional Neurogenetics, Division of Multiple Sclerosis and Neuroimmunology, University of Connecticut Health Center, Farmington, CT, United States
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Ethan W. Hollingsworth
- Medical Scientist Training Program, University of California, Irvine, Irvine, CA, United States
| | - Fumihiro Watanabe
- Laboratory for Neural Stem Cells and Functional Neurogenetics, Division of Multiple Sclerosis and Neuroimmunology, University of Connecticut Health Center, Farmington, CT, United States
| | - Marta Olah
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Neurology, Columbia University Medical Center, New York City, NY, United States
| | - Wassim Elyaman
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Neurology, Columbia University Medical Center, New York City, NY, United States
| | - Sarah Starossom
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Institute for Medical Immunology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Pia Kivisäkk
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Alzheimer’s Clinical and Translational Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Samia J. Khoury
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Abu Haidar Neuroscience Institute, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
5
|
Voskuhl RR, MacKenzie-Graham A. Chronic experimental autoimmune encephalomyelitis is an excellent model to study neuroaxonal degeneration in multiple sclerosis. Front Mol Neurosci 2022; 15:1024058. [PMID: 36340686 PMCID: PMC9629273 DOI: 10.3389/fnmol.2022.1024058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/30/2022] [Indexed: 08/19/2023] Open
Abstract
Animal models of multiple sclerosis (MS), specifically experimental autoimmune encephalomyelitis (EAE), have been used extensively to develop anti-inflammatory treatments. However, the similarity between MS and one particular EAE model does not end at inflammation. MS and chronic EAE induced in C57BL/6 mice using myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 share many neuropathologies. Beyond both having white matter lesions in spinal cord, both also have widespread neuropathology in the cerebral cortex, hippocampus, thalamus, striatum, cerebellum, and retina/optic nerve. In this review, we compare neuropathologies in each of these structures in MS with chronic EAE in C57BL/6 mice, and find evidence that this EAE model is well suited to study neuroaxonal degeneration in MS.
Collapse
Affiliation(s)
- Rhonda R. Voskuhl
- UCLA MS Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | | |
Collapse
|
6
|
Achenbach J, Saft C, Faissner S, Ellrichmann G. Positive effect of immunomodulatory therapies on disease progression in Huntington's disease? Data from a real-world cohort. Ther Adv Neurol Disord 2022; 15:17562864221109750. [PMID: 35899100 PMCID: PMC9310279 DOI: 10.1177/17562864221109750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The role of neuroinflammation and autoimmune processes in neurodegenerative diseases is not fully understood. Activation of microglia with expression of proinflammatory cytokines supports the hypothesis that immune processes may play an important role in the pathophysiology of Huntington’s disease (HD) and thus, immunomodulating therapies might have potential neuroprotective properties. Until now, no disease-modifying therapy (DMT) is available for HD. Objective: The aim of this research was to characterize a cohort of patients suffering from both HD and autoimmune demyelinating diseases of the central nervous system (classified as G35-37 in ICD-10; ADD-CNS) in comparison to HD cases without ADD-CNS. In particular, we were interested to investigate potential modulating effects on disease manifestation and progression of HD over time of prescribed immunomodulating medications (DMT). Methods: We analyzed the course of HD regarding motoric, functional, and cognitive aspects, using longitudinal data of up to 2 years from the worldwide registry study ENROLL-HD. Additional cross-sectional data in the largest cohort worldwide of HD patients was analyzed using demographic and molecular genetic parameters. Data were analyzed using analysis of variance (ANOVA) for cross-sectional and repeated-measures ANOVA for longitudinal parameters in IBM SPSS Statistics V.27. Results: Within the ENROLL-HD database, we investigated N = 21,116 participants and identified n = 60 participants suffering from ADD-CNS. Molecular, genetic, and demographic data did not differ between groups. The subgroup of n = 32 participants with motor-manifest HD revealed better cognitive performance in five out of eight cognitive tests at baseline with less progression over time in two tests (all p < 0.05). Differentiation between DMT-treated and untreated patients revealed better cognitive and motor performance in the DMT group; those patients, however, tended to be younger. Pre-manifest HD patients simultaneously diagnosed with ADD-CNS (n = 12) showed lower functional scores and more decline over time when compared with other pre-manifest HD (p < 0.05). Conclusion: Patients suffering from motor-manifest HD and simultaneously from ADD-CNS have better cognitive capacities compared with other motor-manifest HD patients. Moreover, DMTs might have beneficial effects on progression of neurodegeneration including the motor phenotype. However, this effect might have been biased by younger age in DMT-treated patients. Pre-manifest HD patients showed more functional impairment as expected due to their additional ADD-CNS disease.
Collapse
Affiliation(s)
- Jannis Achenbach
- Department of Neurology, Huntington Center North Rhine-Westphalia, Ruhr-University Bochum, St. Josef-Hospital Bochum, Gudrunstraße 56, Bochum 44791, Germany
| | - Carsten Saft
- Department of Neurology, Huntington Center North Rhine-Westphalia, Ruhr-University Bochum, St. Josef-Hospital Bochum, Bochum, Germany
| | - Simon Faissner
- Department of Neurology, Huntington Center North Rhine-Westphalia, Ruhr-University Bochum, St. Josef-Hospital Bochum, Bochum, Germany
| | | |
Collapse
|
7
|
Chronic IL-10 overproduction disrupts microglia-neuron dialogue similar to aging, resulting in impaired hippocampal neurogenesis and spatial memory. Brain Behav Immun 2022; 101:231-245. [PMID: 34990747 DOI: 10.1016/j.bbi.2021.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 11/21/2022] Open
Abstract
The subgranular zone of the dentate gyrus is an adult neurogenic niche where new neurons are continuously generated. A dramatic hippocampal neurogenesis decline occurs with increasing age, contributing to cognitive deficits. The process of neurogenesis is intimately regulated by the microenvironment, with inflammation being considered a strong negative factor for this process. Thus, we hypothesize that the reduction of new neurons in the aged brain could be attributed to the age-related microenvironmental changes towards a pro-inflammatory status. In this work, we evaluated whether an anti-inflammatory microenvironment could counteract the negative effect of age on promoting new hippocampal neurons. Surprisingly, our results show that transgenic animals chronically overexpressing IL-10 by astrocytes present a decreased hippocampal neurogenesis in adulthood. This results from an impairment in the survival of neural newborn cells without differences in cell proliferation. In parallel, hippocampal-dependent spatial learning and memory processes were affected by IL-10 overproduction as assessed by the Morris water maze test. Microglial cells, which are key players in the neurogenesis process, presented a different phenotype in transgenic animals characterized by high activation together with alterations in receptors involved in neuronal communication, such as CD200R and CX3CR1. Interestingly, the changes described in adult transgenic animals were similar to those observed by the effect of normal aging. Thus, our data suggest that chronic IL-10 overproduction mimics the physiological age-related disruption of the microglia-neuron dialogue, resulting in hippocampal neurogenesis decrease and spatial memory impairment.
Collapse
|
8
|
Liu B, Liu Q, Zhou Z, Yin H, Xie Y. Overexpression of geranyl diphosphate synthase (PmGPPS1) boosts monoterpene and diterpene production involved in the response to pine wood nematode invasion. TREE PHYSIOLOGY 2022; 42:411-424. [PMID: 34378055 DOI: 10.1093/treephys/tpab103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Outbreaks of pine wood nematode (PWN; Bursaphelenchus xylophilus) represent a severe biotic epidemic for the Pinus massoniana in China. When invaded by the PWN, the resistant P. massoniana might secret abundant oleoresin terpenoid to form certain defensive fronts for survival. However, the regulatory mechanisms of this process remain unclear. Here, the geranyl diphosphate synthase (PmGPPS1) gene was identified from resistant P. massoniana. Tissue-specific expression patterns of PmGPPS1 at transcript and protein level in resistant P. massoniana were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry. Functional characteristics analysis of PmGPPS1 was performed on transgenic Nicotiana benthamiana by overexpression, as genetic transformation of P. massoniana is, so far, not possible. In summary, we identified and functionally characterized PmGPPS1 from the resistant P. massoniana following PWN inoculation. Tissue-specific expression patterns and localization of PmGPPS1 indicated that it may play a positive role involved in the metabolic and defensive processes of oleoresin terpenes production in response to PWN attack. Furthermore, overexpression of PmGPPS1 may enhance the production of monoterpene, among which limonene reduced the survival of PWN in vitro. In addition, PmGPPS1 upregulated the expression level of key genes involved in mevalonic acid (MVA) pathway, the methylerythritol phosphate (MEP) pathway and gibberellins (GAs) biosynthesis to boost the growth and development of tobacco through a feedback regulation mechanism. Our results offered new insights into the pivotal role of the PmGPPS1 involved in terpene-based defense mechanisms responding to the PWN invasion in resistant P. massoniana and provided a new metabolic engineering scenario to improve monoterpene production in tobacco.
Collapse
Affiliation(s)
- Bin Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang 311400, China
| | - Qinghua Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang 311400, China
| | - Zhichun Zhou
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang 311400, China
| | - Hengfu Yin
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Yini Xie
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang 311400, China
| |
Collapse
|
9
|
Neuroprotective Effect of Glatiramer Acetate on Neurofilament Light Chain Leakage and Glutamate Excess in an Animal Model of Multiple Sclerosis. Int J Mol Sci 2021; 22:ijms222413419. [PMID: 34948217 PMCID: PMC8707261 DOI: 10.3390/ijms222413419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022] Open
Abstract
Axonal and neuronal pathologies are a central constituent of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), induced by the myelin oligodendrocyte glycoprotein (MOG) 35–55 peptide. In this study, we investigated neurodegenerative manifestations in chronic MOG 35–55 induced EAE and the effect of glatiramer acetate (GA) treatment on these manifestations. We report that the neuronal loss seen in this model is not attributed to apoptotic neuronal cell death. In EAE-affected mice, axonal damage prevails from the early disease phase, as revealed by analysis of neurofilament light (NFL) leakage into the sera along the disease duration, as well as by immunohistological examination. Elevation of interstitial glutamate concentrations measured in the cerebrospinal fluid (CSF) implies that glutamate excess plays a role in the damage processes inflicted by this disease. GA applied as a therapeutic regimen to mice with apparent clinical symptoms significantly reduces the pathological manifestations, namely apoptotic cell death, NFL leakage, histological tissue damage, and glutamate excess, thus corroborating the neuroprotective consequences of this treatment.
Collapse
|
10
|
Brown C, McKee C, Halassy S, Kojan S, Feinstein DL, Chaudhry GR. Neural stem cells derived from primitive mesenchymal stem cells reversed disease symptoms and promoted neurogenesis in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Stem Cell Res Ther 2021; 12:499. [PMID: 34503569 PMCID: PMC8427882 DOI: 10.1186/s13287-021-02563-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Background Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system (CNS). MS affects millions of people and causes a great economic and societal burden. There is no cure for MS. We used a novel approach to investigate the therapeutic potential of neural stem cells (NSCs) derived from human primitive mesenchymal stem cells (MSCs) in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Methods MSCs were differentiated into NSCs, labeled with PKH26, and injected into the tail vein of EAE mice. Neurobehavioral changes in the mice assessed the effect of transplanted cells on the disease process. The animals were sacrificed two weeks following cell transplantation to collect blood, lymphatic, and CNS tissues for analysis. Transplanted cells were tracked in various tissues by flow cytometry. Immune infiltrates were determined and characterized by H&E and immunohistochemical staining, respectively. Levels of immune regulatory cells, Treg and Th17, were analyzed by flow cytometry. Myelination was determined by Luxol fast blue staining and immunostaining. In vivo fate of transplanted cells and expression of inflammation, astrogliosis, myelination, neural, neuroprotection, and neurogenesis markers were investigated by using immunohistochemical and qRT-PCR analysis.
Results MSC-derived NSCs expressed specific neural markers, NESTIN, TUJ1, VIMENTIN, and PAX6. NSCs improved EAE symptoms more than MSCs when transplanted in EAE mice. Post-transplantation analyses also showed homing of MSCs and NSCs into the CNS with concomitant induction of an anti-inflammatory response, resulting in reducing immune infiltrates. NSCs also modulated Treg and Th17 cell levels in EAE mice comparable to healthy controls. Luxol fast blue staining showed significant improvement in myelination in treated mice. Further analysis showed that NSCs upregulated genes involved in myelination and neuroprotection but downregulated inflammatory and astrogliosis genes more significantly than MSCs. Importantly, NSCs differentiated into neural derivatives and promoted neurogenesis, possibly by modulating BDNF and FGF signaling pathways. Conclusions NSC transplantation reversed the disease process by inducing an anti-inflammatory response and promoting myelination, neuroprotection, and neurogenesis in EAE disease animals. These promising results provide a basis for clinical studies to treat MS using NSCs derived from primitive MSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02563-8.
Collapse
Affiliation(s)
- Christina Brown
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA
| | - Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA
| | - Sophia Halassy
- Ascension Providence Hospital, Southfield, MI, 48075, USA
| | - Suleiman Kojan
- Department of Neuroscience, OUWB School of Medicine, Oakland University, Rochester, MI, 48309, USA
| | - Doug L Feinstein
- Department of Anesthesiology, The University of Illinois at Chicago, Chicago, IL, 60607, USA.,Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
| | - G Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA. .,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA.
| |
Collapse
|
11
|
Salihu SA, Ghafari H, Ahmadimanesh M, Gortany NK, Shafaroodi H, Ghazi-Khansari M. Glatiramer acetate attenuates depressive/anxiety-like behaviors and cognitive deficits induced by post-weaning social isolation in male mice. Psychopharmacology (Berl) 2021; 238:2121-2132. [PMID: 33797571 DOI: 10.1007/s00213-021-05836-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
RATIONALE Major depressive disorder (MDD) is a debilitating disorder with adverse effects on mood, memory, and quality of life. OBJECTIVES In this study, the antidepressant potential of glatiramer acetate (GA), a drug used in the management of multiple sclerosis, was investigated in acute and chronic models of depression in male mice. The acute antidepressant screening was performed with the forced swim (FST) and tail suspension (TST) tests. In the chronic phase, post-weaning social isolation (SI) was used to induce depressive-/anxiety-like behaviors. METHODS Mice were reared in two different groups of social (SG) and isolated (IG) for 4 weeks. IG mice were treated with 0.5, 1.0, and 2.0 mg/kg of GA for the last 2 weeks of the SI period. Animals were assessed by the behavioral tests of depression, anxiety, learning, and memory, and hippocampal brain-derived neurotrophic factor (BDNF) level was measured. RESULTS The acute tests confirmed the antidepressant potential of GA. In the chronic phase, GA could reduce immobility time in FST (P < 0.05), increase exploration activity in open field test (P < 0.05), increase open arms duration (P < 0.05) and entries in elevated plus maze (P<0.001), and improve memory and learning in passive avoidance test (P < 0.05). The BDNF level was increased in IG mice and decreased in IG mice treated with GA. CONCLUSIONS Our results showed that GA improved depressive-/anxiety-like behaviors and cognitive dysfunction of SI reared mice without increasing the BDNF level which may be associated with other mechanisms of actions of GA.
Collapse
Affiliation(s)
- Sanusi Andah Salihu
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Homanaz Ghafari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Mahnaz Ahmadimanesh
- Department of Pharmacodynamics and Toxicology, Mashhad University of Medical Sciences, Mashhad, Iran
- Food and Drug Control Laboratory, Food and Drug Vice Presidency, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges K Gortany
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Hamed Shafaroodi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| |
Collapse
|
12
|
Astrocytes in Multiple Sclerosis-Essential Constituents with Diverse Multifaceted Functions. Int J Mol Sci 2021; 22:ijms22115904. [PMID: 34072790 PMCID: PMC8198285 DOI: 10.3390/ijms22115904] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/19/2022] Open
Abstract
In multiple sclerosis (MS), astrocytes respond to the inflammatory stimulation with an early robust process of morphological, transcriptional, biochemical, and functional remodeling. Recent studies utilizing novel technologies in samples from MS patients, and in an animal model of MS, experimental autoimmune encephalomyelitis (EAE), exposed the detrimental and the beneficial, in part contradictory, functions of this heterogeneous cell population. In this review, we summarize the various roles of astrocytes in recruiting immune cells to lesion sites, engendering the inflammatory loop, and inflicting tissue damage. The roles of astrocytes in suppressing excessive inflammation and promoting neuroprotection and repair processes is also discussed. The pivotal roles played by astrocytes make them an attractive therapeutic target. Improved understanding of astrocyte function and diversity, and the mechanisms by which they are regulated may lead to the development of novel approaches to selectively block astrocytic detrimental responses and/or enhance their protective properties.
Collapse
|
13
|
Shi M, Chu F, Tian X, Aerqin Q, Zhu F, Zhu J. Role of Adaptive Immune and Impacts of Risk Factors on Adaptive Immune in Alzheimer's Disease: Are Immunotherapies Effective or Off-Target? Neuroscientist 2021; 28:254-270. [PMID: 33530843 DOI: 10.1177/1073858420987224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pathogenesis of Alzheimer's disease (AD) is complex. Still it remains unclear, which resulted in all efforts for AD treatments with targeting the pathogenic factors unsuccessful over past decades. It has been evidenced that the innate immune is strongly implicated in the pathogenesis of AD. However, the role of adaptive immune in AD remains mostly unknown and the results obtained were controversial. In the review, we summarized recent studies and showed that the molecular and cellular alterations in AD patients and its animal models involving T cells and B cells as well as immune mediators of adaptive immune occur not only in the peripheral blood but also in the brain and the cerebrospinal fluid. The risk factors that cause AD contribute to AD progress by affecting the adaptive immune, indicating that adaptive immunity proposes a pivotal role in this disease. It may provide a possible basis for applying immunotherapy in AD and further investigates whether the immunotherapies are effective or off-target?
Collapse
Affiliation(s)
- Mingchao Shi
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Fengna Chu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Xiaoping Tian
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Qiaolifan Aerqin
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
14
|
Molecular Effects of FDA-Approved Multiple Sclerosis Drugs on Glial Cells and Neurons of the Central Nervous System. Int J Mol Sci 2020; 21:ijms21124229. [PMID: 32545828 PMCID: PMC7352301 DOI: 10.3390/ijms21124229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is characterized by peripheral and central inflammatory features, as well as demyelination and neurodegeneration. The available Food and Drug Administration (FDA)-approved drugs for MS have been designed to suppress the peripheral immune system. In addition, however, the effects of these drugs may be partially attributed to their influence on glial cells and neurons of the central nervous system (CNS). We here describe the molecular effects of the traditional and more recent FDA-approved MS drugs Fingolimod, Dimethyl Fumarate, Glatiramer Acetate, Interferon-β, Teriflunomide, Laquinimod, Natalizumab, Alemtuzumab and Ocrelizumab on microglia, astrocytes, neurons and oligodendrocytes. Furthermore, we point to a possible common molecular effect of these drugs, namely a key role for NFκB signaling, causing a switch from pro-inflammatory microglia and astrocytes to anti-inflammatory phenotypes of these CNS cell types that recently emerged as central players in MS pathogenesis. This notion argues for the need to further explore the molecular mechanisms underlying MS drug action.
Collapse
|
15
|
Zilkha-Falb R, Kaushansky N, Ben-Nun A. The Median Eminence, A New Oligodendrogenic Niche in the Adult Mouse Brain. Stem Cell Reports 2020; 14:1076-1092. [PMID: 32413277 PMCID: PMC7355143 DOI: 10.1016/j.stemcr.2020.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/17/2022] Open
Abstract
The subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus are known as neurogenic niches. We show that the median eminence (ME) of the hypothalamus comprises BrdU+ newly proliferating cells co-expressing NG2 (oligodendrocyte progenitors) and RIP (pre-myelinating oligodendrocytes), suggesting their differentiation toward mature oligodendrocytes (OLs). ME cells can generate neurospheres (NS) in vitro, which differentiate mostly to OLs compared with SVZ-NS that typically generate neurons. Interestingly, this population of oligodendrocyte progenitors is increased in the ME from experimental autoimmune encephalomyelitis (EAE)-affected mice. Notably, the thrombospondin 1 (TSP1) expressed by astrocytes, acts as negative regulator of oligodendrogenesis in vitro and is downregulated in the ME of EAE mice. Importantly, transplanted ME-NS preferentially differentiate to MBP+ OLs compared with SVZ-NS in Shiverer mice. Hence, discovering the ME as a new site for myelin-producing cells has a great importance for advising future therapy for demyelinating diseases and spinal cord injury.
Collapse
Affiliation(s)
- Rina Zilkha-Falb
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| | - Nathali Kaushansky
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Avraham Ben-Nun
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
16
|
Rommer PS, Milo R, Han MH, Satyanarayan S, Sellner J, Hauer L, Illes Z, Warnke C, Laurent S, Weber MS, Zhang Y, Stuve O. Immunological Aspects of Approved MS Therapeutics. Front Immunol 2019; 10:1564. [PMID: 31354720 PMCID: PMC6637731 DOI: 10.3389/fimmu.2019.01564] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
Multiple sclerosis (MS) is the most common neurological immune-mediated disease leading to disability in young adults. The outcome of the disease is unpredictable, and over time, neurological disabilities accumulate. Interferon beta-1b was the first drug to be approved in the 1990s for relapsing-remitting MS to modulate the course of the disease. Over the past two decades, the treatment landscape has changed tremendously. Currently, more than a dozen drugs representing 1 substances with different mechanisms of action have been approved (interferon beta preparations, glatiramer acetate, fingolimod, siponimod, mitoxantrone, teriflunomide, dimethyl fumarate, cladribine, alemtuzumab, ocrelizumab, and natalizumab). Ocrelizumab was the first medication to be approved for primary progressive MS. The objective of this review is to present the modes of action of these drugs and their effects on the immunopathogenesis of MS. Each agent's clinical development and potential side effects are discussed.
Collapse
Affiliation(s)
- Paulus S. Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Ron Milo
- Department of Neurology, Barzilai University Medical Center, Ashkelon, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - May H. Han
- Neuroimmunology Division, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Sammita Satyanarayan
- Neuroimmunology Division, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Johann Sellner
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
- Department of Neurology, Klinikum Rechts der Isar, Technische Universität, Munich, Germany
| | - Larissa Hauer
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Clemens Warnke
- Department of Neurology, Medical Faculty, University of Köln, Cologne, Germany
| | - Sarah Laurent
- Department of Neurology, Medical Faculty, University of Köln, Cologne, Germany
| | - Martin S. Weber
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Yinan Zhang
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Olaf Stuve
- Department of Neurology, Klinikum Rechts der Isar, Technische Universität, Munich, Germany
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurology Section, VA North Texas Health Care System, Medical Service Dallas, VA Medical Center, Dallas, TX, United States
| |
Collapse
|
17
|
A differential sex-specific pattern of IgG2 and IgG4 subclasses of anti-drug antibodies (ADAs) induced by glatiramer acetate in relapsing-remitting multiple sclerosis patients. Mult Scler Relat Disord 2019; 34:92-99. [PMID: 31272071 DOI: 10.1016/j.msard.2019.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Glatiramer acetate (GA) is a drug for Multiple Sclerosis (MS) treatment. However, its administration induces anti-drug antibodies (ADA). This research evaluated the sex differences in humoral response against GA in RR-MS patients METHODS: We analyzed 69 RR-MS patients, 43 treated with GA and 26 treated with IFN-β. In all cases, the serum concentration of IgG antibodies was determined by UPLC, whereas the levels of IgG subclasses (1-4) of anti-GA antibodies and the concentration of IL-6 were detected by Multiplex and IL-10, and IFN-γ were detected by ELISA. RESULTS The total concentration of IgG antibodies in patients did not differ between treatments, whereas the IgG levels of ADA were higher in male and female patients treated with GA (P ≤ 0.0001). The subclasses of IgG anti-GA antibodies were as follows: IgG4>>IgG3>IgG1>IgG2. Statistical analysis showed differences in the IgG2 (P ≤ 0.01) and IgG4 (P ≤ 0.0001) subclasses by sex in RR-MS patients. Levels of IgG1 subclass in male patients correlated positively with the circulatory levels of IL-6 (rs = 0.587, P ≤ 0.04) and IFN-γ (rs = 0.721, P ≤ 0.001), while IgG2 subclass levels in female patients correlated with serum levels of IFN-γ (rs = 0.628, P ≤ 0.0006). Statistical analysis did not detect correlations between the levels of IgG (1-4) subclasses of anti-GA antibodies and the evaluated clinical parameters. CONCLUSION This study showed differences in the levels of IgG2 and IgG4 subclasses of ADA between male and female RR-MS patients. Further studies are necessary to take advantage of the clinical potential of this finding.
Collapse
|
18
|
Central nervous system targeted autoimmunity causes regional atrophy: a 9.4T MRI study of the EAE mouse model of Multiple Sclerosis. Sci Rep 2019; 9:8488. [PMID: 31186441 PMCID: PMC6560061 DOI: 10.1038/s41598-019-44682-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/02/2019] [Indexed: 12/28/2022] Open
Abstract
Atrophy has become a clinically relevant marker of progressive neurodegeneration in multiple sclerosis (MS). To better understand atrophy, mouse models that feature atrophy along with other aspects of MS are needed. The experimental autoimmune encephalomyelitis (EAE) mouse model of MS was used to determine the extent of atrophy in a model of inflammation-associated central nervous system pathology. High-resolution magnetic resonance imaging (MRI) and atlas-based volumetric analysis were performed to measure brain regional volumes in EAE mice. EAE brains were larger at peak clinical disease (days 14–16) compared to controls, with affected regions including the cerebellum, hippocampus, and corpus callosum. Following peak clinical disease, EAE mice exhibited significant loss of volume at chronic long-term disease duration (day 66+). Atrophy was identified in both white and grey matter regions including the cerebral cortex, cerebellum, hippocampus, corpus callosum, basal forebrain, midbrain, optic tract, and colliculus. Histological analysis of the atrophied cortex, cerebellum, and hippocampus showed demyelination, and axonal/neuronal loss. We hypothesize this atrophy could be a result of inflammatory associated neurodegenerative processes, which may also be involved in MS. Using MRI and atlas-based volumetrics, EAE has the potential to be a test bed for treatments aimed at reducing progressive neurological deterioration in MS.
Collapse
|
19
|
Aharoni R, Schottlender N, Bar-Lev DD, Eilam R, Sela M, Tsoory M, Arnon R. Cognitive impairment in an animal model of multiple sclerosis and its amelioration by glatiramer acetate. Sci Rep 2019; 9:4140. [PMID: 30858445 PMCID: PMC6412002 DOI: 10.1038/s41598-019-40713-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/21/2019] [Indexed: 01/28/2023] Open
Abstract
The severe motor impairment in the MS animal model experimental autoimmune encephalomyelitis (EAE) obstructs the assessment of cognitive functions. We developed an experimental system that evaluates memory faculties in EAE-affected mice, irrespective of their motor performance, enabling the assessment of cognitive impairments along the disease duration, the associated brain damage, and the consequences of glatiramer acetate (GA) treatment on these manifestations. The delayed-non-matching to sample (DNMS) T-maze task, testing working and long term memory was adapted and utilized. Following the appearance of clinical manifestations task performances of the EAE-untreated mice drastically declined. Cognitive impairments were associated with disease severity, as indicated by a significant correlation between the T-maze performance and the clinical symptoms in EAE-untreated mice. GA-treatment conserved cognitive functions, so that despite their exhibited mild motor impairments, the treated mice performed similarly to naïve controls. The cognitive deficit of EAE-mice coincided with inflammatory and neurodegenerative damage to the frontal cortex and the hippocampus; these damages were alleviated by GA-treatment. These combined findings indicate that in addition to motor impairment, EAE leads to substantial impairment of cognitive functions, starting at the early stages and increasing with disease aggravation. GA-treatment, conserves cognitive capacities and prevents its disease related deterioration.
Collapse
Affiliation(s)
- Rina Aharoni
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 761001, Israel.
| | - Nofar Schottlender
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Dekel D Bar-Lev
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Raya Eilam
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Michael Sela
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Ruth Arnon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 761001, Israel.
| |
Collapse
|
20
|
Sun L, Li Y, Jia X, Wang Q, Li Y, Hu M, Tian L, Yang J, Xing W, Zhang W, Wang J, Xu H, Wang L, Zhang D, Ren H. Neuroprotection by IFN-γ via astrocyte-secreted IL-6 in acute neuroinflammation. Oncotarget 2018; 8:40065-40078. [PMID: 28454116 PMCID: PMC5522245 DOI: 10.18632/oncotarget.16990] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/22/2017] [Indexed: 11/25/2022] Open
Abstract
Inflammation eliminates pathogenic infections while also threatening the integrity of the central nervous system. In this study, using in vivo and in vitro models of acute neuroinflammation, we investigated the mechanisms by which inflammation and astrocytes affect neuronal apoptosis. The in vitro model mimicked acute neuroinflammation by incubation in IFN-γ-containing media with primary cultured cerebellar granule neurons, with or without cultured astrocytes. This quickly induced neuronal apoptosis characterized by cleaved caspase-3 expression, Hoechst 33342 staining, and intercellular Ca2+ influx, whereas the presence of astrocytes significantly protected neurons from these effects. IFN-γ in the inflammation media also promoted astrocyte secretion of IL-6, essential for protection. The supernatants of rat peripheral blood mononuclear cells stimulated by lymphocyte mitogen lipopolysaccharide or concanavalin A were used as inflammation media to verify the results. The in vivo model involved a peripheral challenge with lipopolysaccharide, with or without recombinant IFN-γ, in C57BL/6 mice. This confirmed the in vitro results: anti-IFN-γ antibodies exacerbated the acute course of neuroinflammation and led to neurocyte apoptosis in vivo. The pro-inflammatory cytokine IFN-γ provided neuroprotection during acute neuroinflammation via induction of astrocyte-secreted IL-6. The findings provide novel insights into the mechanisms of neuroprotection by IFN-γ during acute neuroinflammation, and may impact therapies for inflammation-related central nervous system injury and disease.
Collapse
Affiliation(s)
- Lijie Sun
- Department of Immunology, Harbin Medical University, Harbin, China.,Key Laboratory of Infection & Immunity, Heilongjiang Province, Harbin, China
| | - Yan Li
- Department of Immunology, Harbin Medical University, Harbin, China.,Key Laboratory of Infection & Immunity, Heilongjiang Province, Harbin, China
| | - Xiuzhi Jia
- Department of Immunology, Harbin Medical University, Harbin, China.,Key Laboratory of Infection & Immunity, Heilongjiang Province, Harbin, China
| | - Qi Wang
- Department of Immunology, Harbin Medical University, Harbin, China.,Key Laboratory of Infection & Immunity, Heilongjiang Province, Harbin, China
| | - Yue Li
- Center for Infectious and Inflammatory Disease, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX, USA
| | - Minghui Hu
- Department of Clinical Laboratory, The Affiliated Hospital to Qingdao University, Qingdao, China
| | - Linlu Tian
- Department of Immunology, Harbin Medical University, Harbin, China.,Key Laboratory of Infection & Immunity, Heilongjiang Province, Harbin, China
| | - Jinfeng Yang
- Department of Immunology, Harbin Medical University, Harbin, China.,Key Laboratory of Infection & Immunity, Heilongjiang Province, Harbin, China
| | - Wenjing Xing
- Department of Immunology, Harbin Medical University, Harbin, China.,Key Laboratory of Infection & Immunity, Heilongjiang Province, Harbin, China
| | - Weihua Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Jingtao Wang
- Department of Epidemiology and Biostatistics, The Public Health Institute, Harbin Medical University, Harbin, China
| | - Hongwei Xu
- Department of Immunology, Harbin Medical University, Harbin, China.,Key Laboratory of Infection & Immunity, Heilongjiang Province, Harbin, China
| | - Lihua Wang
- Department of Neuroscience, The Second Hospital Affiliated to Harbin Medical University, Harbin, China
| | - Dekai Zhang
- Center for Infectious and Inflammatory Disease, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX, USA
| | - Huan Ren
- Department of Immunology, Harbin Medical University, Harbin, China.,Key Laboratory of Infection & Immunity, Heilongjiang Province, Harbin, China
| |
Collapse
|
21
|
Eilam R, Segal M, Malach R, Sela M, Arnon R, Aharoni R. Astrocyte disruption of neurovascular communication is linked to cortical damage in an animal model of multiple sclerosis. Glia 2018; 66:1098-1117. [PMID: 29424049 DOI: 10.1002/glia.23304] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 01/04/2018] [Accepted: 01/29/2018] [Indexed: 12/19/2022]
Abstract
To elucidate mechanisms contributing to cortical pathology in multiple sclerosis (MS), we investigated neurovascular aberrations, in particular the association of astrocytes with cortical neurons and blood vessels, in mice induced with experimental autoimmune encephalomyelitis (EAE). Blood-brain barrier (BBB) dysfunction was evident by leakage of the tracer sodium fluorescein, along with reduced expression of claudin-5 by endothelial cells and desmin by pericytes. Immunohistological and ultrastructural analyses revealed detachment of the astroglial cell bodies from the blood vessels and loss of their connections with both the blood vessels and the neuronal synapses. Furthermore, examination of individual astrocytic processes at cortical layer IV, where well-defined neuronal columns (barrels) are linked to functional properties, revealed loss of astrocytic confinement to the functional neuronal boundaries. Thus, in contrast to the highly modulated patches of astrocyte processes in naïve mice overlapping the barrel cores, in EAE-mice process distribution was uniform ignoring the barrel boundaries. These aberrations are attributed to the surrounding inflammation, indicated by T-cells presence in the cortex as well as in the subcortical white matter and the meninges. Immunomodulatory treatment with glatiramer acetate partially abrogated the neurovascular damage. These combined findings indicate that under inflammatory conditions, activated perivascular astrocytes fail in neuro-hemodynamic coupling, resulting in obstructed cross-talk between the blood vessels and the neurons. We propose that loss of cortical astrocytic regulation and fine-tuning between the blood supply and the neuronal needs contributes to the neurological impairment and cognitive decline occurring in EAE/MS as well as to the disease progression.
Collapse
Affiliation(s)
- Raya Eilam
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Menahem Segal
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Rafael Malach
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Michael Sela
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Ruth Arnon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Rina Aharoni
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 761001, Israel
| |
Collapse
|
22
|
Cruz Y, García EE, Gálvez JV, Arias-Santiago SV, Carvajal HG, Silva-García R, Bonilla-Jaime H, Rojas-Castañeda J, Ibarra A. Release of interleukin-10 and neurotrophic factors in the choroid plexus: possible inductors of neurogenesis following copolymer-1 immunization after cerebral ischemia. Neural Regen Res 2018; 13:1743-1752. [PMID: 30136689 PMCID: PMC6128049 DOI: 10.4103/1673-5374.238615] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Copolymer-1 (Cop-1) is a peptide with immunomodulatory properties, approved by the Food and Drug Administration of United States in the treatment of multiple sclerosis. Cop-1 has been shown to exert neuroprotective effects and induce neurogenesis in cerebral ischemia models. Nevertheless, the mechanism involved in the neurogenic action of this compound remains unknown. The choroid plexus (CP) is a network of cells that constitute the interphase between the immune and central nervous systems, with the ability to mediate neurogenesis through the release of cytokines and growth factors. Therefore, the CP could play a role in Cop-1-induced neurogenesis. In order to determine the participation of the CP in the induction of neurogenesis after Cop-1 immunization, we evaluated the gene expression of various growth factors (brain-derived neurotrophic factor, insulin-like growth factor 1, neurotrophin-3) and cytokines (tumor necrosis factor alpha, interferon-gamma, interleukin-4 (IL-4), IL-10 and IL-17), in the CP at 14 days after ischemia. Furthermore, we analyzed the correlation between the expression of these genes and neurogenesis. Our results showed that Cop-1 was capable of stimulating an upregulation in the expression of the genes encoding for brain-derived neurotrophic factor, insulin-like growth factor 1, neurotrophin-3 and IL-10 in the CP, which correlated with an increase in neurogenesis in the subventricular and subgranular zone. As well, we observed a downregulation of IL-17 gene expression. This study demonstrates the effect of Cop-1 on the expression of growth factors and IL-10 in the CP, in the same way, presents a possible mechanism involved in the neurogenic effect of Cop-1.
Collapse
Affiliation(s)
- Yolanda Cruz
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan, Estado de México; Lab. De Biología de la reproducción, UAMI. Ciudad de México; Doctorado en Ciencias Biológicas, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa. Ciudad de México, México
| | - Edna E García
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan, Estado de México, México
| | - Jessica V Gálvez
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan, Estado de México, México
| | - Stella V Arias-Santiago
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan, Estado de México, México
| | - Horacio G Carvajal
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan, Estado de México, México
| | | | | | - Julio Rojas-Castañeda
- Subdirección de Medicina Experimental, Instituto Nacional de Pediatría. Ciudad de México, México
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan, Estado de México, México
| |
Collapse
|
23
|
Inhibition of neurogenesis in a case of Marburg variant multiple sclerosis. Mult Scler Relat Disord 2017; 18:71-76. [PMID: 29141824 DOI: 10.1016/j.msard.2017.09.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/30/2017] [Accepted: 09/20/2017] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Neural stem cells (NSC) are located essentially in the subventricular zone (SVZ), subgranular zone (SGZ), and along the central canal of the spinal cord. These cells can proliferate in vitro and differentiate into neurons, oligodendrocytes, and astroglia, thus contributing to repair in multiple sclerosis (MS). We conducted a pathological study to analyse neurogenic response in a patient with Marburg variant MS. METHODS We present the case of a 27-year-old immunocompetent patient with Marburg variant MS, a fulminant form of the disease. The condition lasted 20 days. Diagnosis was based on clinical symptoms and MRI showed demyelinating lesions located in subependymal areas and histopathological findings. Neurogenic niches (SVZ and dentate gyrus) were analysed by confocal microscopy using markers of proliferation (Ki-67, PCNA), neuroblasts (PSA-NCAM, DCX, Tuj1), stem cells (Nestin, GFAPδ, SOX2, PAX6, Musashi), astrocytes (GFAP, AQ4), oligodendrocytes (NG2, Olig), microglia and cell infiltrates (IBA-1, CD68, MHCII), and cell death (TUNEL). RESULTS Expression of the markers GFAPδ, SOX2, and PAX6 in NSC was found to be very low. Likewise, markers of proliferation (Ki-67) and intermediate precursors (NG2) were also reduced. This lack of markers of the first stages of cell differentiation means that neurogenesis is inhibited even in very early stages of the disease. CONCLUSION Inhibition of neurogenesis in our patient, which cannot be explained by the fulminant nature of his symptoms, may be related to inflammation and immune response. This finding may further our knowledge of repair mechanisms in MS.
Collapse
|
24
|
Abstract
Glatiramer acetate is a mixture of synthetic peptides that are cross-reactive with MBP. The antigen-based therapy induces a shift to an anti-inflammatory Th2 bias and is used in the treatment of relapsing-remitting multiple sclerosis. Like other peptide antigens, GA induces an antibody response in all patients. In contrast to biologically active agents, such as the recombinant interferon beta drugs, GA is a peptide antigen that lacks intrinsic biological activity. In vitro and in vivo data have shown that GA-reactive antibodies are not neutralizing. Antibodies do not alter the principal immunological effects of GA, including binding to MHC Class II molecules, activation and proliferation of GA-reactive T cells, and the release of anti-inflammatory Th2 cytokines. Higher antibody titres do not appear to be associated with a deterioration in clinical endpoints, such as relapse rate, EDSS progression or the occurrence of side effects in MS patients treated with GA. The presence of GA-reactive antibodies may promote remyelination and enhance the immunological and clinical effects of GA, indicating that they may be part of GA's mechanism of action. Multiple Sclerosis 2007; 13: S28—S35. http://msj.sagepub.com
Collapse
|
25
|
Kim YK, Na KS. Neuroprotection in Schizophrenia and Its Therapeutic Implications. Psychiatry Investig 2017; 14:383-391. [PMID: 28845163 PMCID: PMC5561394 DOI: 10.4306/pi.2017.14.4.383] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 12/21/2022] Open
Abstract
Schizophrenia is a chronic and debilitating mental disorder. The persisting negative and cognitive symptoms that are unresponsive to pharmacotherapy reveal the impairment of neuroprotective aspects of schizophrenia. In this review, of the several neuroprotective factors, we mainly focused on neuroinflammation, neurogenesis, and oxidative stress. We conducted a narrative and selective review. Neuroinflammation is mainly mediated by pro-inflammatory cytokines and microglia. Unlike peripheral inflammatory responses, neuroinflammation has a role in various neuronal activities such as neurotransmission neurogenesis. The cross-talk between neuroinflammation and neurogenesis usually has beneficial effects in the CNS under physiological conditions. However, uncontrolled and chronic neuroinflammation exert detrimental effects such as neuronal loss, inhibited neurogenesis, and excessive oxidative stress. Neurogenesis is also a major component of neuroprotection. Adult neurogenesis mainly occurs in the hippocampal region, which has an important role in memory formation and processing. Impaired neurogenesis and an ineffective response to antipsychotics may be thought to indicate a deteriorating course of schizophrenia. Oxidative stress and excessive dopaminergic neurotransmission may create a vicious cycle and consequently disturb NMDA receptor-mediated glutamatergic neurotransmission. Based on the current evidences, several neuroprotective therapeutic approaches have been reported to be efficacious for improving psychopathology, but further longitudinal and large-sample based studies are needed.
Collapse
Affiliation(s)
- Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyoung-Sae Na
- Department of Psychiatry, Gachon University Gil Medical Center, Incheon, Republic of Korea
| |
Collapse
|
26
|
T Lymphocytes and Inflammatory Mediators in the Interplay between Brain and Blood in Alzheimer's Disease: Potential Pools of New Biomarkers. J Immunol Res 2017; 2017:4626540. [PMID: 28293644 PMCID: PMC5331319 DOI: 10.1155/2017/4626540] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/22/2016] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the main cause of dementia. The disease is among the leading medical concerns of the modern world, because only symptomatic therapies are available, and no reliable, easily accessible biomarkers exist for AD detection and monitoring. Therefore extensive research is conducted to elucidate the mechanisms of AD pathogenesis, which seems to be heterogeneous and multifactorial. Recently much attention has been given to the neuroinflammation and activation of glial cells in the AD brain. Reports also highlighted the proinflammatory role of T lymphocytes infiltrating the AD brain. However, in AD molecular and cellular alterations involving T cells and immune mediators occur not only in the brain, but also in the blood and the cerebrospinal fluid (CSF). Here we review alterations concerning T lymphocytes and related immune mediators in the AD brain, CSF, and blood and the mechanisms by which peripheral T cells cross the blood brain barrier and the blood-CSF barrier. This knowledge is relevant for better AD therapies and for identification of novel biomarkers for improved AD diagnostics in the blood and the CSF. The data will be reviewed with the special emphasis on possibilities for development of AD biomarkers.
Collapse
|
27
|
Kim TW, Sung YH. Regular exercise promotes memory function and enhances hippocampal neuroplasticity in experimental autoimmune encephalomyelitis mice. Neuroscience 2017; 346:173-181. [PMID: 28108255 DOI: 10.1016/j.neuroscience.2017.01.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/25/2016] [Accepted: 01/09/2017] [Indexed: 11/15/2022]
Abstract
Multiple sclerosis (MS) is a progressive condition affecting the central nervous system (CNS), and is characterized by the development of demyelinated lesions and plaques in the brain and spinal cord. Exercise is beneficial against dementia in elderly patients, so we investigated the effects of exercise on memory in relation to hippocampal demyelination and neuroplasticity in a mouse model of MS (experimental autoimmune encephalomyelitis [EAE]). Mice were randomly divided into three groups: Sham, EAE, and EAE and exercise (EAE+EX). EAE+EX mice exercised five times a week for 4weeks, and all mice performed step-down avoidance tasks in order to verify memory ability. We analyzed changes in myelin basic protein (MBP), 2',3'-Cyclic nucleotide 3'-phosphodiesterase (CNPase), 5-bromo-2'-deoxyuridine (brdU), doublecortin (DCX), bcl-2, bax, TUNEL, caspase-3, and brain derived neurotrophic factor (BDNF) via immunoassay or histological staining. We found decreased memory ability in EAE mice, accompanied by impaired myelination, increased apoptosis and cell proliferation, and decreased BDNF in the hippocampus. The memory decline and changes in demyelination, apoptosis, BDNF, and cell proliferation were partially reversed in EAE+EX mice. Our findings suggest that in patients with MS, regular exercise may benefit cognitive function by rescuing some hippocampal cellular and molecular impairments.
Collapse
Affiliation(s)
- Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - Yun-Hee Sung
- Department of Physical Therapy, College of Health Sciences, Kyungnam University, Changwon, Gyeongsangnam-do, South Korea.
| |
Collapse
|
28
|
Giannakopoulou A, Lyras GA, Grigoriadis N. Long-term effects of autoimmune CNS inflammation on adult hippocampal neurogenesis. J Neurosci Res 2016; 95:1446-1458. [PMID: 27781303 DOI: 10.1002/jnr.23982] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/09/2016] [Accepted: 10/10/2016] [Indexed: 01/03/2023]
Abstract
Neurogenesis is a well-characterized phenomenon within the dentate gyrus (DG) of the adult hippocampus. Aging and chronic degenerative disorders have been shown to impair hippocampal neurogenesis, but the consequence of chronic inflammation remains controversial. In this study the chronic experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis was used to investigate the long-term effects of T cell-mediated central nervous system inflammation on hippocampal neurogenesis. 5-Bromodeoxyuridine (BrdU)-labeled subpopulations of hippocampal cells in EAE and control mice (coexpressing GFAP, doublecortin, NeuN, calretinin, and S100) were quantified at the recovery phase, 21 days after BrdU administration, to estimate alterations on the rate and differentiation pattern of the neurogenesis process. The core features of EAE mice DG are (i) elevated number of newborn (BrdU+) cells indicating vigorous proliferation, which in the long term subsided; (ii) enhanced migration of newborn cells into the granule cell layer; (iii) increased level of immature neuronal markers (including calretinin and doublecortin); (iv) trending decrease in the percentage of newborn mature neurons; and (v) augmented gliogenesis and differentiation of newborn neural precursor cells (NPCs) to mature astrocytes (BrdU+/S100+). Although the inflammatory environment in the brain of EAE mice enhances the proliferation of hippocampal NPCs, in the long term neurogenesis is progressively depleted, giving prominence to gliogenesis. The discrepancy between the high number of immature cells and the low number of mature newborn cells could be the result of a caused defect in the maturation pathway. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Aggeliki Giannakopoulou
- Laboratory of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George A Lyras
- Department of Historical Geology and Palaeontology, Faculty of Geology and Geoenvironment, University of Athens, Athens, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|
29
|
Expression of brain-derived neurotrophic factor in astrocytes - Beneficial effects of glatiramer acetate in the R6/2 and YAC128 mouse models of Huntington's disease. Exp Neurol 2016; 285:12-23. [PMID: 27587303 DOI: 10.1016/j.expneurol.2016.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 07/31/2016] [Accepted: 08/21/2016] [Indexed: 12/18/2022]
Abstract
Glatiramer acetate (GA) is a FDA-approved drug which is licensed for the treatment of relapsing-remitting multiple sclerosis and which may exert neuroprotective effects via brain-derived neurotrophic factor (BDNF). In this study, we investigate effects of GA on BDNF expression especially in astrocytes in vitro and in vivo in brains of R6/2 and YAC128 transgenic mouse models of Huntington's disease (HD) where a pathogenic role of astroglial cells has recently been shown. We show that GA increases the expression of functionally active BDNF in astrocyte culture and in astrocytes of GA treated HD mice. In the brains of these mice, GA decreases neurodegeneration and restores BDNF levels. The beneficial effect of GA in R6/2 mice also comprises reduced weight loss and prolonged life span and, for both models, also improved motor performance. Further studies with this safe and effective drug in HD are warranted.
Collapse
|
30
|
Schneider R, Koop B, Schröter F, Cline J, Ingwersen J, Berndt C, Hartung HP, Aktas O, Prozorovski T. Activation of Wnt signaling promotes hippocampal neurogenesis in experimental autoimmune encephalomyelitis. Mol Neurodegener 2016; 11:53. [PMID: 27480121 PMCID: PMC4969720 DOI: 10.1186/s13024-016-0117-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 07/02/2016] [Indexed: 01/25/2023] Open
Abstract
Background Disease progression in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), as one of its animal models, is characterized by demyelination and neuronal damage in white and gray matter structures, including the hippocampus. It is thought that dysfunction of the hippocampus, a primary locus of learning and memory consolidation, may contribute to cognitive impairment in MS patients. Previously, we reported an increased generation of hippocampal neuronal progenitors in the acute stage of EAE, whereas the microenvironmental signals triggering this process remained uninvestigated. Results In the present study, we used the Wnt signaling reporter mouse Axin2LacZ, to elucidate the molecular mechanisms underlying the activation of the hippocampal neurogenic niche upon autoimmune neuroinflammation. Histological and enzymatic examinations of β-gal during the disease course of EAE, allowed us to survey hippocampal Wnt/β-catenin activity, one of the key signaling pathways of adult neurogenesis. We found that Wnt signaling is transiently upregulated in the acute stage of disease, consistent with a timely induction of canonical Wnt ligands. The enhancement of signaling coincided with hippocampal neuronal damage and local expression of immune cytokines such as TNFα and IFNγ, implicating the role of the inflammatory milieu in activation of the Wnt/β-catenin pathway. Supporting this finding, we show that transient exposure to pro-inflammatory cytokine TNFα triggers Wnt signaling in hippocampal organotypic slice cultures. Importantly, inflammation-mediated activation of the Wnt/β-catenin pathway was associated with enhanced neurogenesis in vitro and in vivo, indicating its potential role in hippocampal tissue regeneration and repair. Conclusions This study raises the possibility that enhancement of Wnt signaling may support neurogenic processes to cope with neuronal deficits upon immune-mediated neuroinflammation. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0117-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Reiner Schneider
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Merowingerplatz 1a, Moorenstr.5, 40225, Düsseldorf, Germany
| | - Barbara Koop
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Merowingerplatz 1a, Moorenstr.5, 40225, Düsseldorf, Germany
| | - Friederike Schröter
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Merowingerplatz 1a, Moorenstr.5, 40225, Düsseldorf, Germany.,Present address: Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Jason Cline
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Merowingerplatz 1a, Moorenstr.5, 40225, Düsseldorf, Germany
| | - Jens Ingwersen
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Merowingerplatz 1a, Moorenstr.5, 40225, Düsseldorf, Germany
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Merowingerplatz 1a, Moorenstr.5, 40225, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Merowingerplatz 1a, Moorenstr.5, 40225, Düsseldorf, Germany
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Merowingerplatz 1a, Moorenstr.5, 40225, Düsseldorf, Germany.
| | - Tim Prozorovski
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Merowingerplatz 1a, Moorenstr.5, 40225, Düsseldorf, Germany.
| |
Collapse
|
31
|
Busse S, Steiner J, Glorius S, Dobrowolny H, Greiner-Bohl S, Mawrin C, Bommhardt U, Hartig R, Bogerts B, Busse M. VGF expression by T lymphocytes in patients with Alzheimer's disease. Oncotarget 2016; 6:14843-51. [PMID: 26142708 PMCID: PMC4558119 DOI: 10.18632/oncotarget.3569] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/22/2015] [Indexed: 12/21/2022] Open
Abstract
Secretion of VGF is increased in cerebrospinal fluid and blood in neurodegenerative disorders like Alzheimer's disease (AD) and VGF is a potential biomarker for these disorders. We have shown that VGF is expressed in peripheral T cells and is correlated with T cell survival and cytokine secretion. The frequency of VGF+CD3+ T cells increases with normal aging. We found an increased number of VGF-expressing T cells in patients with AD compared to aged healthy controls, which was associated with enhanced HbA1c levels in blood. Upon treatment with rivastigmine, T cell proliferation and VGF expression in AD patients decreased to the level found in controls. Moreover, rapamycin treatment in vitro reduced the number of VGF+CD3+ cells in AD patients to control levels.
Collapse
Affiliation(s)
- Stefan Busse
- Department of Psychiatry, University of Magdeburg, Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry, University of Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - Sarah Glorius
- Department of Psychiatry, University of Magdeburg, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry, University of Magdeburg, Magdeburg, Germany
| | | | - Christian Mawrin
- Department of Neuropathology, University of Magdeburg, Magdeburg, Germany
| | - Ursula Bommhardt
- Institute of Molecular and Clinical Immunology, University of Magdeburg, Magdeburg, Germany
| | - Roland Hartig
- Institute of Molecular and Clinical Immunology, University of Magdeburg, Magdeburg, Germany
| | - Bernhard Bogerts
- Department of Psychiatry, University of Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - Mandy Busse
- Department of Pediatric Pulmonology, Allergology & Neonatology, Medical University of Hannover, Hannover, Germany
| |
Collapse
|
32
|
Liu Q, Sanai N, Jin WN, La Cava A, Van Kaer L, Shi FD. Neural stem cells sustain natural killer cells that dictate recovery from brain inflammation. Nat Neurosci 2016; 19:243-52. [PMID: 26752157 PMCID: PMC5336309 DOI: 10.1038/nn.4211] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 11/27/2015] [Indexed: 12/30/2022]
Abstract
Recovery from organ-specific autoimmune diseases largely relies on the mobilization of endogenous repair mechanisms and local factors that control them. Natural killer (NK) cells are swiftly mobilized to organs targeted by autoimmunity and typically undergo numerical contraction when inflammation wanes. We report the unexpected finding that NK cells are retained in the brain subventricular zone (SVZ) during the chronic phase of multiple sclerosis in humans and its animal model in mice. These NK cells were found preferentially in close proximity to SVZ neural stem cells (NSCs) that produce interleukin-15 and sustain functionally competent NK cells. Moreover, NK cells limited the reparative capacity of NSCs following brain inflammation. These findings reveal that reciprocal interactions between NSCs and NK cells regulate neurorepair.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Nader Sanai
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Wei-Na Jin
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Antonio La Cava
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
33
|
Lee JY, Biemond M, Petratos S. Axonal degeneration in multiple sclerosis: defining therapeutic targets by identifying the causes of pathology. Neurodegener Dis Manag 2015; 5:527-48. [DOI: 10.2217/nmt.15.50] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Current therapeutics in multiple sclerosis (MS) target the putative inflammation and immune attack on CNS myelin. Despite their effectiveness in blunting the relapse rate in MS patients, such therapeutics do not prevent MS disease progression. Importantly, specific clinical dilemma arises through inability to predict MS progression and thereby therapeutically target axonal injury during MS, limiting permanent disability. The current review identifies immune and neurobiological principles that govern the sequelae of axonal degeneration during MS disease progression. Defining the specific disease arbiters, inflammatory and autoimmune, oligodendrocyte dystrophy and degenerative myelin, we discuss a basis for a molecular mechanism in axons that may be targeted therapeutically, in spatial and temporal manner to limit axonal degeneration and thereby halt progression of MS.
Collapse
Affiliation(s)
- Jae Young Lee
- Department of Medicine, Central Clinical School, Monash University, Prahran VIC 3004, Australia
| | - Melissa Biemond
- Department of Medicine, Central Clinical School, Monash University, Prahran VIC 3004, Australia
| | - Steven Petratos
- Department of Medicine, Central Clinical School, Monash University, Prahran VIC 3004, Australia
| |
Collapse
|
34
|
Ehling R, Di Pauli F, Lackner P, Rainer C, Kraus V, Hegen H, Lutterotti A, Kuenz B, De Zordo T, Schocke M, Glatzl S, Löscher WN, Deisenhammer F, Reindl M, Berger T. Impact of glatiramer acetate on paraclinical markers of neuroprotection in multiple sclerosis: A prospective observational clinical trial. J Neuroimmunol 2015; 287:98-105. [DOI: 10.1016/j.jneuroim.2015.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/20/2015] [Accepted: 08/04/2015] [Indexed: 01/12/2023]
|
35
|
18β-glycyrrhetinic acid suppresses experimental autoimmune encephalomyelitis through inhibition of microglia activation and promotion of remyelination. Sci Rep 2015; 5:13713. [PMID: 26329786 PMCID: PMC4557075 DOI: 10.1038/srep13713] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/06/2015] [Indexed: 01/09/2023] Open
Abstract
Microglia are intrinsic immune cells in the central nervous system (CNS). The under controlled microglia activation plays important roles in inflammatory demyelination diseases, such as multiple sclerosis (MS). However, the means to modulate microglia activation as a therapeutic modality and the underlying mechanisms remain elusive. Here we show that administration of 18β-glycyrrhetinic acid (GRA), by using both preventive and therapeutic treatment protocols, significantly suppresses disease severity of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. The treatment effect of GRA on EAE is attributed to its regulatory effect on microglia. GRA-modulated microglia significantly decreased pro-inflammatory profile in the CNS through suppression of MAPK signal pathway. The ameliorated CNS pro-inflammatory profile prevented the recruitment of encephalitogenic T cells into the CNS, which alleviated inflammation-induced demyelination. In addition, GRA treatment promoted remyelination in the CNS of EAE mice. The induced remyelination can be mediated by the overcome of inflammation-induced blockade of brain-derived neurotrophic factor expression in microglia, as well as enhancing oligodendrocyte precursor cell proliferation. Collectively, our results demonstrate that GRA-modulated microglia suppresses EAE through inhibiting microglia activation-mediated CNS inflammation, and promoting neuroprotective effect of microglia, which represents a potential therapeutic strategy for MS and maybe other neuroinflammatory diseases associated with microglia activation.
Collapse
|
36
|
Song J, Lee JE. miR-155 is involved in Alzheimer's disease by regulating T lymphocyte function. Front Aging Neurosci 2015; 7:61. [PMID: 25983691 PMCID: PMC4415416 DOI: 10.3389/fnagi.2015.00061] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 04/09/2015] [Indexed: 12/28/2022] Open
Abstract
Alzheimer’s disease (AD) is considered the most common cause of sporadic dementia. In AD, adaptive and innate immune responses play a crucial role in clearance of amyloid beta and maintenance of cognitive functions. In addition to other changes in the immune system, AD alters the T-cell responses that affect activation of glial cells, neuronal cells, macrophages, and secretion of pro-inflammatory cytokines. These changes in the immune system influence AD pathogenesis. Micro-RNA (miRNA)-155 is a multifunctional miRNA with a distinct expression profile. It is involved in diverse physiological and pathological mechanisms, such as immunity and inflammation. Recent studies indicate that miR-155 regulates T-cell functions during inflammation. In this article, we summarize recent studies describing the therapeutic potential of miR-155 via regulation of T cells in AD. Further, we propose that regulation of miR-155 might be a new protective approach against AD pathogenesis.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Yonsei University College of Medicine Seoul, South Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine Seoul, South Korea ; Brain Korea 21 Plus Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine Seoul, South Korea
| |
Collapse
|
37
|
Ayzenberg I, Schlevogt S, Metzdorf J, Stahlke S, Pedreitturia X, Hunfeld A, Couillard-Despres S, Kleiter I. Analysis of neurogenesis during experimental autoimmune encephalomyelitis reveals pitfalls of bioluminescence imaging. PLoS One 2015; 10:e0118550. [PMID: 25780928 PMCID: PMC4363373 DOI: 10.1371/journal.pone.0118550] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 01/20/2015] [Indexed: 12/11/2022] Open
Abstract
Bioluminescence imaging is a sensitive approach for longitudinal neuroimaging. Transgenic mice expressing luciferase under the promoter of doublecortin (DCX-luc), a specific marker of neuronal progenitor cells (NPC), allow monitoring of neurogenesis in living mice. Since the extent and time course of neurogenesis during autoimmune brain inflammation are controversial, we investigated neurogenesis in MOG-peptide induced experimental allergic encephalomyelitis (EAE) using DCX-luc reporter mice. We observed a marked, 2- to 4-fold increase of the bioluminescence signal intensity 10 days after EAE induction and a gradual decline 1–2 weeks thereafter. In contrast, immunostaining for DCX revealed no differences between EAE and control mice 2 and 4 weeks after immunization in zones of adult murine neurogenesis such as the dentate gyrus. Ex vivo bioluminescence imaging showed similar luciferase expression in brain homogenates of EAE and control animals. Apart from complete immunization including MOG-peptide also incomplete immunization with complete Freund´s adjuvant and pertussis toxin resulted in a rapid increase of the in vivo bioluminescence signal. Blood-brain barrier (BBB) leakage was demonstrated 10 days after both complete and incomplete immunization and might explain the increased bioluminescence signal in vivo. We conclude, that acute autoimmune inflammation in EAE does not alter neurogenesis, at least at the stage of DCX-expressing NPC. Effects of immunization on the BBB integrity must be considered when luciferase is used as a reporter within the CNS during the active stage of EAE. Models with stable CNS-restricted luciferase expression could serve as technically convenient way to evaluate BBB integrity in a longitudinal manner.
Collapse
Affiliation(s)
- Ilya Ayzenberg
- Department of Neurology, St. Josef-Hospital, Ruhr-University, Bochum, Germany
| | - Sibylle Schlevogt
- Department of Neurology, St. Josef-Hospital, Ruhr-University, Bochum, Germany
| | - Judith Metzdorf
- Department of Neurology, St. Josef-Hospital, Ruhr-University, Bochum, Germany
| | - Sarah Stahlke
- Department of Neurology, St. Josef-Hospital, Ruhr-University, Bochum, Germany
| | | | - Anika Hunfeld
- Department of Animal Physiology, Ruhr-University, Bochum, Germany
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Ingo Kleiter
- Department of Neurology, St. Josef-Hospital, Ruhr-University, Bochum, Germany
- * E-mail:
| |
Collapse
|
38
|
LoPresti P. Glatiramer acetate guards against rapid memory decline during relapsing-remitting experimental autoimmune encephalomyelitis. Neurochem Res 2015; 40:473-9. [PMID: 25481047 DOI: 10.1007/s11064-014-1491-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/18/2014] [Accepted: 11/26/2014] [Indexed: 01/09/2023]
Abstract
Cognitive decline presents a therapeutic challenge for patients with multiple sclerosis (MS), a disease characterized by recurrent autoimmune demyelination and by progressive CNS degeneration. Glatiramer acetate (GA, also known as Copolymer 1, Cop-1, or Copaxone), commonly used to treat MS, reduces the frequency of relapses; it has both anti-inflammatory and neuroprotective properties. However, clinical trials have not definitively shown that GA improves cognitive impairment during MS. Using an in vivo animal model of autoimmune demyelination, i.e., relapsing-remitting experimental autoimmune encephalomyelitis (EAE), we tested short-term memory in EAE mice (EAE), in EAE mice treated with GA for 10 days starting at the time of immunization (EAE + GA), and in age-matched healthy, naïve mice (Naïve). Short-term memory was assessed using the cross-maze test at 10, 20, and 30 days post-immunization (d.p.i.); data were analyzed at each time point and over time. At 10 d.p.i., EAE and EAE + GA mice had better memory function than Naïve mice. However, at the later time points, EAE mice had a steep negative slope of memory function (indicating decline), whereas EAE + GA mice had a flatter, less-negative slope of memory function. Notably, the memory function of EAE mice significantly decreased over time compared with that of Naïve mice, indicating that EAE had a negative impact on cognitive ability. In contrast, there was no statistically significant difference between the slopes of memory function in mice with EAE treated with GA versus Naïve mice, which revealed effective, albeit partial, protection by GA treatment against progressive memory decline during EAE disease. Of particular interest, although EAE mice had memory decline over 30 d.p.i., their clinical disease scores improved during that time. Thus, our results suggest that EAE mice had a significant progressive memory decline and that GA, administered at the time of immunization, partially guards against rapid memory decline.
Collapse
Affiliation(s)
- Patrizia LoPresti
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA,
| |
Collapse
|
39
|
|
40
|
Stelzhammer V, Ozcan S, Gottschalk MG, Steeb H, Hodes GE, Guest PC, Rahmoune H, Wong EH, Russo SJ, Bahn S. Central and peripheral changes underlying susceptibility and resistance to social defeat stress – A proteomic profiling study. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.dineu.2015.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Moore S, Khalaj AJ, Patel R, Yoon J, Ichwan D, Hayardeny L, Tiwari-Woodruff SK. Restoration of axon conduction and motor deficits by therapeutic treatment with glatiramer acetate. J Neurosci Res 2014; 92:1621-36. [PMID: 24989965 PMCID: PMC4305217 DOI: 10.1002/jnr.23440] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/25/2014] [Accepted: 05/27/2014] [Indexed: 12/20/2022]
Abstract
Glatiramer acetate (GA; Copaxone) is an approved drug for the treatment of multiple sclerosis (MS). The underlying multifactorial anti-inflammatory, neuroprotective effect of GA is in the induction of reactive T cells that release immunomodulatory cytokines and neurotrophic factors at the injury site. These GA-induced cytokines and growth factors may have a direct effect on axon function. Building on previous findings that suggest a neuroprotective effect of GA, we assessed the therapeutic effects of GA on brain and spinal cord pathology and functional correlates using the chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Therapeutic regimens were utilized based on promising prophylactic efficacy. More specifically, C57BL/6 mice were treated with 2 mg/mouse/day GA for 8 days beginning at various time points after EAE post-induction day 15, yielding a thorough, clinically relevant assessment of GA efficacy within the context of severe progressive disease. Therapeutic treatment with GA significantly decreased clinical scores and improved rotorod motor performance in EAE mice. These functional improvements were supported by an increase in myelinated axons and fewer amyloid precursor protein-positive axons in the spinal cords of GA-treated EAE mice. Furthermore, therapeutic GA decreased microglia/macrophage and T cell infiltrates and increased oligodendrocyte numbers in both the spinal cord and corpus callosum of EAE mice. Finally, GA improved callosal axon conduction and nodal protein organization in EAE. Our results demonstrate that therapeutic GA treatment has significant beneficial effects in a chronic mouse model of MS, in which its positive effects on both myelinated and non-myelinated axons results in improved axon function.
Collapse
Affiliation(s)
- Spencer Moore
- Department of Neurology, UCLA School of MedicineLos Angeles, California
| | - Anna J Khalaj
- Department of Neurology, UCLA School of MedicineLos Angeles, California
| | - Rhusheet Patel
- Department of Neurology, UCLA School of MedicineLos Angeles, California
| | - JaeHee Yoon
- Department of Neurology, UCLA School of MedicineLos Angeles, California
| | - Daniel Ichwan
- Department of Neurology, UCLA School of MedicineLos Angeles, California
| | - Liat Hayardeny
- Pharmacology Unit, Global Innovative Research and Development, Teva Pharmaceutical IndustriesNetanya, Israel
| | - Seema K Tiwari-Woodruff
- Department of Neurology, UCLA School of MedicineLos Angeles, California
- Brain Research Institute, UCLA School of MedicineLos Angeles, California
| |
Collapse
|
42
|
Yin L, Chen Y, Qu Z, Zhang L, Wang Q, Zhang Q, Li L. Involvement of JAK/STAT signaling in the effect of cornel iridoid glycoside on experimental autoimmune encephalomyelitis amelioration in rats. J Neuroimmunol 2014; 274:28-37. [DOI: 10.1016/j.jneuroim.2014.06.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/06/2014] [Accepted: 06/17/2014] [Indexed: 12/11/2022]
|
43
|
Ben-Nun A, Kaushansky N, Kawakami N, Krishnamoorthy G, Berer K, Liblau R, Hohlfeld R, Wekerle H. From classic to spontaneous and humanized models of multiple sclerosis: impact on understanding pathogenesis and drug development. J Autoimmun 2014; 54:33-50. [PMID: 25175979 DOI: 10.1016/j.jaut.2014.06.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS), a demyelinating disease of the central nervous system (CNS), presents as a complex disease with variable clinical and pathological manifestations, involving different pathogenic pathways. Animal models, particularly experimental autoimmune encephalomyelitis (EAE), have been key to deciphering the pathophysiology of MS, although no single model can recapitulate the complexity and diversity of MS, or can, to date, integrate the diverse pathogenic pathways. Since the first EAE model was introduced decades ago, multiple classic (induced), spontaneous, and humanized EAE models have been developed, each recapitulating particular aspects of MS pathogenesis. The advances in technologies of genetic ablation and transgenesis in mice of C57BL/6J background and the development of myelin-oligodendrocyte glycoprotein (MOG)-induced EAE in C57BL/6J mice yielded several spontaneous and humanized EAE models, and resulted in a plethora of EAE models in which the role of specific genes or cell populations could be precisely interrogated, towards modeling specific pathways of MS pathogenesis/regulation in MS. Collectively, the numerous studies on the different EAE models contributed immensely to our basic understanding of cellular and molecular pathways in MS pathogenesis as well as to the development of therapeutic agents: several drugs available today as disease modifying treatments were developed from direct studies on EAE models, and many others were tested or validated in EAE. In this review, we discuss the contribution of major classic, spontaneous, and humanized EAE models to our understanding of MS pathophysiology and to insights leading to devising current and future therapies for this disease.
Collapse
Affiliation(s)
- Avraham Ben-Nun
- Department of Immunology, The Weizmann Institute of Science, 234 Herzl St. Rehovot, 7610001, Israel.
| | - Nathali Kaushansky
- Department of Immunology, The Weizmann Institute of Science, 234 Herzl St. Rehovot, 7610001, Israel.
| | - Naoto Kawakami
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried 82152, Germany; Institute of Clinical Neuroimmunology, Ludwig-Maximilians-University, 81377 Munich, Germany.
| | | | - Kerstin Berer
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried 82152, Germany.
| | | | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians-University, 81377 Munich, Germany.
| | - Hartmut Wekerle
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried 82152, Germany.
| |
Collapse
|
44
|
Aharoni R. Immunomodulation neuroprotection and remyelination - the fundamental therapeutic effects of glatiramer acetate: a critical review. J Autoimmun 2014; 54:81-92. [PMID: 24934599 DOI: 10.1016/j.jaut.2014.05.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 05/23/2014] [Indexed: 01/04/2023]
Abstract
Multiple sclerosis (MS) is a multifaceted heterogeneous disease with various patterns of tissue damage. In addition to inflammation and demyelination, widespread axonal and neuronal pathologies are central components of this disease. MS therapies aim to restrain the pathological processes, enhance protective mechanisms, and prevent disease progression. The amino acid copolymer, glatiramer acetate (GA, Copaxone), an approved treatment for MS, has a unique mode of action. Evidence from the animal model experimental autoimmune encephalomyelitis (EAE) and from MS patients indicates that GA affects various levels of the innate and the adaptive immune response, inducing deviation from the pro-inflammatory to the anti-inflammatory pathways. This includes competition for the binding of antigen presenting cells, driving dendritic cells, monocytes, and B-cells towards anti-inflammatory responses, induction of Th2/3 and T-regulatory cells, and downregulating of both Th1 and Th-17 cells. The immune cells induced by GA reach the inflamed disease organ and secrete in situ anti-inflammatory cytokines alleviating the pathological processes. Furthermore, cumulative findings have revealed that in addition to its immunomodulatory activities GA promotes neuroprotective repair processes such as neurotrophic factors secretion and remyelination. This review aims to provide a comprehensive overview on the diverse mechanism of action of GA in EAE/MS, in particular on the in situ effect of GA and its ability to generate neuroprotection and repair in the CNS. In view of its immunomodulatory activity, the beneficial effects of GA in various models of additional autoimmune related pathologies, such as immune rejection and inflammatory bowel disease (IBD), are also presented.
Collapse
Affiliation(s)
- Rina Aharoni
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
45
|
Evangelidou M, Karamita M, Vamvakas SS, Szymkowski DE, Probert L. Altered expression of oligodendrocyte and neuronal marker genes predicts the clinical onset of autoimmune encephalomyelitis and indicates the effectiveness of multiple sclerosis-directed therapeutics. THE JOURNAL OF IMMUNOLOGY 2014; 192:4122-33. [PMID: 24683189 DOI: 10.4049/jimmunol.1300633] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a valuable model for studying immunopathology in multiple sclerosis (MS) and for exploring the interface between autoimmune responses and CNS tissue that ultimately leads to lesion development. In this study, we measured gene expression in mouse spinal cord during myelin oligodendrocyte gp35-55 peptide-induced EAE, using quantitative RT-PCR, to identify gene markers that monitor individual hallmark pathological processes. We defined a small panel of genes whose longitudinal expression patterns provided insight into the timing, interrelationships, and mechanisms of individual disease processes and the efficacy of therapeutics for the treatment of MS. Earliest transcriptional changes were upregulation of Il17a and sharp downregulation of neuronal and oligodendrocyte marker genes preceding clinical disease onset, whereas neuroinflammatory markers progressively increased as symptoms and tissue lesions developed. EAE-induced gene-expression changes were not altered in mice deficient in IKKβ in cells of the myeloid lineage compared with controls, but the administration of a selective inhibitor of soluble TNF to mice from the day of immunization delayed changes in the expression of innate inflammation, myelin, and neuron markers from the presymptomatic phase. Proof of principle that the gene panel shows drug screening potential was obtained using a well-established MS therapeutic, glatiramer acetate. Prophylactic treatment of mice with glatiramer acetate normalized gene marker expression, and this correlated with the level of therapeutic success. These results show that neurons and oligodendrocytes are highly sensitive to CNS-directed autoimmunity before the development of clinical symptoms and immunopathology and reveal a role for soluble TNF in mediating the earliest changes in gene expression.
Collapse
Affiliation(s)
- Maria Evangelidou
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 11521 Athens, Greece
| | | | | | | | | |
Collapse
|
46
|
Enhanced adult neurogenesis increases brain stiffness: in vivo magnetic resonance elastography in a mouse model of dopamine depletion. PLoS One 2014; 9:e92582. [PMID: 24667730 PMCID: PMC3965445 DOI: 10.1371/journal.pone.0092582] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 02/24/2014] [Indexed: 12/16/2022] Open
Abstract
The mechanical network of the brain is a major contributor to neural health and has been recognized by in vivo magnetic resonance elastography (MRE) to be highly responsive to diseases. However, until now only brain softening was observed and no mechanism was known that reverses the common decrement of neural elasticity during aging or disease. We used MRE in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) mouse model for dopaminergic neurodegeneration as observed in Parkinson's disease (PD) to study the mechanical response of the brain on adult hippocampal neurogenesis as a robust correlate of neuronal plasticity in healthy and injured brain. We observed a steep transient rise in elasticity within the hippocampal region of up to over 50% six days after MPTP treatment correlating with increased neuronal density in the dentate gyrus, which could not be detected in healthy controls. Our results provide the first indication that new neurons reactively generated following neurodegeneration substantially contribute to the mechanical scaffold of the brain. Diagnostic neuroimaging may thus target on regions of the brain displaying symptomatically elevated elasticity values for the detection of neuronal plasticity following neurodegeneration.
Collapse
|
47
|
Mesenchymal stem cells expressing brain-derived neurotrophic factor enhance endogenous neurogenesis in an ischemic stroke model. BIOMED RESEARCH INTERNATIONAL 2014; 2014:129145. [PMID: 24672780 PMCID: PMC3933216 DOI: 10.1155/2014/129145] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/29/2013] [Indexed: 01/01/2023]
Abstract
Numerous studies have reported that mesenchymal stem cells (MSCs) can ameliorate neurological deficits in ischemic stroke models. Among the various hypotheses that have been suggested to explain the therapeutic mechanism underlying these observations, neurogenesis is thought to be critical. To enhance the therapeutic benefits of human bone marrow-derived MSCs (hBM-MSCs), we efficiently modified hBM-MSCs by introduction of the brain-derived neurotrophic factor (BDNF) gene via adenoviral transduction mediated by cell-permeable peptides and investigated whether BDNF-modified hBM-MSCs (MSCs-BDNF) contributed to functional recovery and endogenous neurogenesis in a rat model of middle cerebral artery occlusion (MCAO). Transplantation of MSCs induced the proliferation of 5-bromo-2′-deoxyuridine (BrdU-) positive cells in the subventricular zone. Transplantation of MSCs-BDNF enhanced the proliferation of endogenous neural stem cells more significantly, while suppressing cell death. Newborn cells differentiated into doublecortin (DCX-) positive neuroblasts and Neuronal Nuclei (NeuN-) positive mature neurons in the subventricular zone and ischemic boundary at higher rates in animals with MSCs-BDNF compared with treatment using solely phosphate buffered saline (PBS) or MSCs. Triphenyltetrazolium chloride staining and behavioral analysis revealed greater functional recovery in animals with MSCs-BDNF compared with the other groups. MSCs-BDNF exhibited effective therapeutic potential by protecting cell from apoptotic death and enhancing endogenous neurogenesis.
Collapse
|
48
|
Abstract
Alzheimer's disease (AD) is a common and devastating neurodegenerative disease. The incidence of AD is increasing in Western societies. The current treatment of AD is mostly symptomatic and ineffective in stopping or reversing the cognitive impairment. One of the exciting and effective new treatments developed in experimental AD is immunization against amyloid-beta peptide. This article provides an overview of immunization therapy in AD and examines the future prospects of this therapeutic modality.
Collapse
Affiliation(s)
- Felix Mor
- Tel-Aviv University, Weizmann Institute of Science Department of Immunology, Rehovot, Israel.
| | | |
Collapse
|
49
|
Aharoni R. New findings and old controversies in the research of multiple sclerosis and its model experimental autoimmune encephalomyelitis. Expert Rev Clin Immunol 2014; 9:423-40. [DOI: 10.1586/eci.13.21] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
50
|
Fisher Y, Strominger I, Biton S, Nemirovsky A, Baron R, Monsonego A. Th1 polarization of T cells injected into the cerebrospinal fluid induces brain immunosurveillance. THE JOURNAL OF IMMUNOLOGY 2013; 192:92-102. [PMID: 24307730 DOI: 10.4049/jimmunol.1301707] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although CD4 T cells reside within the cerebrospinal fluid, it is yet unclear whether and how they enter the brain parenchyma and migrate to target specific Ags. We examined the ability of Th1, Th2, and Th17 CD4 T cells injected intracerebroventricularly to migrate from the lateral ventricles into the brain parenchyma in mice. We show that primarily Th1 cells cross the ependymal layer of the ventricle and migrate within the brain parenchyma by stimulating an IFN-γ-dependent dialogue with neural cells, which maintains the effector function of the T cells. When injected into a mouse model of Alzheimer's disease, amyloid-β (Aβ)-specific Th1 cells target Aβ plaques, increase Aβ uptake, and promote neurogenesis with no evidence of pathogenic autoimmunity or neuronal loss. Overall, we provide a mechanistic insight to the migration of cerebrospinal fluid CD4 T cells into the brain parenchyma and highlight implications on brain immunity and repair.
Collapse
Affiliation(s)
- Yair Fisher
- Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | | | | | |
Collapse
|