1
|
Chunharas C, Wolff MJ, Hettwer MD, Rademaker RL. A gradual transition toward categorical representations along the visual hierarchy during working memory, but not perception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.18.541327. [PMID: 37292916 PMCID: PMC10245673 DOI: 10.1101/2023.05.18.541327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ability to stably maintain visual information over brief delays is central to healthy cognitive functioning, as is the ability to differentiate such internal representations from external inputs. One possible way to achieve both is via multiple concurrent mnemonic representations along the visual hierarchy that differ systematically from the representations of perceptual inputs. To test this possibility, we examine orientation representations along the visual hierarchy during perception and working memory. Human participants directly viewed, or held in mind, oriented grating patterns, and the similarity between fMRI activation patterns for different orientations was calculated throughout retinotopic cortex. During direct viewing of grating stimuli, similarity was relatively evenly distributed amongst all orientations, while during working memory the similarity was higher around oblique orientations. We modeled these differences in representational geometry based on the known distribution of orientation information in the natural world: The "veridical" model uses an efficient coding framework to capture hypothesized representations during visual perception. The "categorical" model assumes that different "psychological distances" between orientations result in orientation categorization relative to cardinal axes. During direct perception, the veridical model explained the data well. During working memory, the categorical model gradually gained explanatory power over the veridical model for increasingly anterior retinotopic regions. Thus, directly viewed images are represented veridically, but once visual information is no longer tethered to the sensory world there is a gradual progression to more categorical mnemonic formats along the visual hierarchy.
Collapse
Affiliation(s)
- Chaipat Chunharas
- Department of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Michael J Wolff
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with the Max Planck Society, Frankfurt, Germany
| | - Meike D Hettwer
- Max Planck School of Cognition, Max Planck Institute of Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Rosanne L Rademaker
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with the Max Planck Society, Frankfurt, Germany
| |
Collapse
|
2
|
Martin RC, Yue Q, Zahn R, Lu Y. The role of variation in phonological and semantic working memory capacities in sentence comprehension: neural evidence from healthy and brain-damaged individuals. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024:10.3758/s13415-024-01217-5. [PMID: 39271594 DOI: 10.3758/s13415-024-01217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 09/15/2024]
Abstract
Research on the role of working memory (WM) in language processing has typically focused on WM for phonological information. However, considerable behavioral evidence supports the existence of a separate semantic WM system that plays a greater role in language processing. We review the neural evidence that supports the distinction between phonological and semantic WM capacities and discuss how individual differences in these capacities relate to sentence processing. In terms of neural substrates, findings from multivariate functional MRI for healthy participants and voxel-based lesion-symptom mapping for brain-damaged participants imply that the left supramarginal gyrus supports phonological WM, whereas the left inferior frontal gyrus (LIFG) and angular gyrus support semantic WM. In sentence comprehension, individual variation in semantic but not phonological WM related to performance in resolving semantic information and the LIFG region implicated in semantic WM showed fMRI activation during the resolution of semantic interference. Moreover, variation for brain-damaged participants in the integrity of a fiber tract supporting semantic WM had a greater relation to the processing of complex sentences than did the integrity of fiber tracts supporting phonological WM. Overall, the neural findings provide converging evidence regarding the distinction of these two capacities and the greater contribution of individual differences in semantic than phonological WM capacity to sentence processing.
Collapse
Affiliation(s)
| | - Qiuhai Yue
- School of Psychology, Shenzhen University, Shenzhen, China.
| | | | - Yu Lu
- Rice University, Houston, TX, USA
| |
Collapse
|
3
|
Roshanaei M, Bahmani Z, Clark K, Daliri MR, Noudoost B. Working memory expedites the processing of visual signals within the extrastriate cortex. iScience 2024; 27:110489. [PMID: 39100691 PMCID: PMC11295472 DOI: 10.1016/j.isci.2024.110489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/03/2024] [Accepted: 07/09/2024] [Indexed: 08/06/2024] Open
Abstract
Working memory is the ability to maintain information in the absence of sensory input. In this study, we investigated how working memory benefits processing in visual areas. Using a measure of phase consistency to detect the arrival time of visual signals to the middle temporal (MT) area, we assessed the impact of working memory on the speed of sensory processing. We recorded from MT neurons in two monkeys during a spatial working memory task with visual probes. When the memorized location closely matches the receptive field center of the recording site, visual input arrives sooner, but if the memorized location does not match the receptive field center then the arrival of visual information is delayed. Thus, working memory expedites the arrival of visual input in MT. These results reveal that even in the absence of firing rate changes, working memory can still benefit the processing of information within sensory areas.
Collapse
Affiliation(s)
- Majid Roshanaei
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, P.O. Box 16846-13114, Tehran, Iran
| | - Zahra Bahmani
- Department of Electrical & Computer Engineering, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Kelsey Clark
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Mohammad Reza Daliri
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, P.O. Box 16846-13114, Tehran, Iran
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
4
|
Purg Suljič N, Kraljič A, Rahmati M, Cho YT, Slana Ozimič A, Murray JD, Anticevic A, Repovš G. Individual differences in spatial working memory strategies differentially reflected in the engagement of control and default brain networks. Cereb Cortex 2024; 34:bhae350. [PMID: 39214852 PMCID: PMC11364466 DOI: 10.1093/cercor/bhae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 07/31/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Spatial locations can be encoded and maintained in working memory using different representations and strategies. Fine-grained representations provide detailed stimulus information, but are cognitively demanding and prone to inexactness. The uncertainty in fine-grained representations can be compensated by the use of coarse, but robust categorical representations. In this study, we employed an individual differences approach to identify brain activity correlates of the use of fine-grained and categorical representations in spatial working memory. We combined data from six functional magnetic resonance imaging studies, resulting in a sample of $155$ ($77$ women, $25 \pm 5$ years) healthy participants performing a spatial working memory task. Our results showed that individual differences in the use of spatial representations in working memory were associated with distinct patterns of brain activity. Higher precision of fine-grained representations was related to greater engagement of attentional and control brain systems throughout the task trial, and the stronger deactivation of the default network at the time of stimulus encoding. In contrast, the use of categorical representations was associated with lower default network activity during encoding and higher frontoparietal network activation during maintenance. These results may indicate a greater need for attentional resources and protection against interference for fine-grained compared with categorical representations.
Collapse
Affiliation(s)
- Nina Purg Suljič
- Department of Psychology, Faculty of Arts, University of Ljubljana, Aškerčeva 2, 1000 Ljubljana, Slovenia
| | - Aleksij Kraljič
- Department of Psychology, Faculty of Arts, University of Ljubljana, Aškerčeva 2, 1000 Ljubljana, Slovenia
| | - Masih Rahmati
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA
| | - Youngsun T Cho
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA
| | - Anka Slana Ozimič
- Department of Psychology, Faculty of Arts, University of Ljubljana, Aškerčeva 2, 1000 Ljubljana, Slovenia
| | - John D Murray
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA
- Department of Psychology, Yale University, 100 College Street, New Haven, CT 06510, USA
- Department of Physics, Yale University, 217 Prospect Street, New Haven, CT 06511, USA
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA
- Department of Psychology, Yale University, 100 College Street, New Haven, CT 06510, USA
| | - Grega Repovš
- Department of Psychology, Faculty of Arts, University of Ljubljana, Aškerčeva 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Purg Suljic N, Kraljic A, Rahmati M, Cho YT, Slana Ozimic A, Murray JD, Anticevic A, Repovs G. Individual differences in spatial working memory strategies differentially reflected in the engagement of control and default brain networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.07.548112. [PMID: 37662268 PMCID: PMC10473605 DOI: 10.1101/2023.07.07.548112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Spatial locations can be encoded and maintained in working memory using different representations and strategies. Fine-grained representations provide detailed stimulus information, but are cognitively demanding and prone to inexactness. The uncertainty in fine-grained representations can be compensated by the use of coarse, but robust categorical representations. In this study, we employed an individual differences approach to identify brain activity correlates of the use of fine-grained and categorical representations in spatial working memory. We combined data from six fMRI studies, resulting in a sample of 155 (77 women, 25 ± 5 years) healthy participants performing a spatial working memory task. Our results showed that individual differences in the use of spatial representations in working memory were associated with distinct patterns of brain activity. Higher precision of fine-grained representations was related to greater engagement of attentional and control brain systems throughout the task trial, and the stronger deactivation of the default network at the time of stimulus encoding. In contrast, the use of categorical representations was associated with lower default network activity during encoding and higher frontoparietal network activation during maintenance. These results may indicate a greater need for attentional resources and protection against interference for fine-grained compared to categorical representations.
Collapse
|
6
|
Gunduz H, Ozkan Ceylan A. Load effect of visual working memory on distractor interference: An investigation with two replication experiments. Mem Cognit 2024:10.3758/s13421-024-01610-y. [PMID: 39039396 DOI: 10.3758/s13421-024-01610-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 07/24/2024]
Abstract
Konstantinou et al. (Experiment 1B; Attention, Perception, & Psychophysics, 76, 1985-1997, 2014) reported that an increase in visual short-term memory (VSTM) load reduced distractor interference in the flanker task. Yao et al. (Experiment 3; Attention, Perception, & Psychophysics, 82, 3291-3313, 2020) replicated the design of Konstantinou et al.'s experiment and showed that the VSTM load did not modulate the distractor interference effect, contradicting the original findings. However, it is unknown whether differences in task-design between the two experiments contributed to the inconsistent results. Therefore, we first replicated the original two studies with Experiment 1 (N = 54) and Experiment 2 (N = 54) and performed a statistical comparison between the data from these two experiments. In a third experiment (N = 28), we incorporated articulatory suppression into the design to exclude possible effects of verbalization. According to the ANOVA analyses, the VSTM load did not change the level of distractor interference in all three experiments, indicating that differences in task design alone do not explain the inconsistency.
Collapse
Affiliation(s)
- Hasan Gunduz
- Department of Psychology, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye.
- Department of Psychology, Hacettepe University, Ankara, Türkiye.
| | | |
Collapse
|
7
|
Master SL, Li S, Curtis CE. Trying Harder: How Cognitive Effort Sculpts Neural Representations during Working Memory. J Neurosci 2024; 44:e0060242024. [PMID: 38769009 PMCID: PMC11236589 DOI: 10.1523/jneurosci.0060-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 05/22/2024] Open
Abstract
While the exertion of mental effort improves performance on cognitive tasks, the neural mechanisms by which motivational factors impact cognition remain unknown. Here, we used fMRI to test how changes in cognitive effort, induced by changes in task difficulty, impact neural representations of working memory (WM). Participants (both sexes) were precued whether WM difficulty would be hard or easy. We hypothesized that hard trials demanded more effort as a later decision required finer mnemonic precision. Behaviorally, pupil size was larger and response times were slower on hard compared with easy trials suggesting our manipulation of effort succeeded. Neurally, we observed robust persistent activity during delay periods in the prefrontal cortex (PFC), especially during hard trials. Yet, details of the memoranda could not be decoded from patterns in prefrontal activity. In the patterns of activity in the visual cortex, however, we found strong decoding of memorized targets, where accuracy was higher on hard trials. To potentially link these across-region effects, we hypothesized that effort, carried by persistent activity in the PFC, impacts the quality of WM representations encoded in the visual cortex. Indeed, we found that the amplitude of delay period activity in the frontal cortex predicted decoded accuracy in the visual cortex on a trial-wise basis. These results indicate that effort-related feedback signals sculpt population activity in the visual cortex, improving mnemonic fidelity.
Collapse
Affiliation(s)
- Sarah L Master
- Department of Psychology, New York University, New York, New York 10003
| | - Shanshan Li
- Department of Psychology, New York University, New York, New York 10003
- Program in Psychology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Clayton E Curtis
- Department of Psychology, New York University, New York, New York 10003
- Center for Neural Science, New York University, New York, New York 10003
| |
Collapse
|
8
|
Christophel T, Weber S, Yan C, Stopak L, Hetzer S, Haynes JD. Nonfrontal Control of Working Memory. J Cogn Neurosci 2024; 36:1037-1047. [PMID: 38319895 DOI: 10.1162/jocn_a_02127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Items held in visual working memory can be quickly updated, replaced, removed, and even manipulated in accordance with current behavioral goals. Here, we use multivariate pattern analyses to identify the patterns of neuronal activity that realize the executive control processes supervising these flexible stores. We find that portions of the middle temporal gyrus and the intraparietal sulcus represent what item is cued for continued memorization independently of representations of the item itself. Importantly, this selection-specific activity could not be explained by sensory representations of the cue and is only present when control is exerted. Our results suggest that the selection of memorized items might be controlled in a distributed and decentralized fashion. This evidence provides an alternative perspective to the notion of "domain general" central executive control over memory function.
Collapse
Affiliation(s)
- Thomas Christophel
- Bernstein Center for Computational Neuroscience and Berlin Center for Advanced Neuroimaging and Clinic for Neurology, Charité Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Humboldt Universität zu Berlin, Department of Psychology, Berlin, Germany
- Humboldt Universität, Berlin School of Mind and Brain, Berlin, Germany
| | - Simon Weber
- Bernstein Center for Computational Neuroscience and Berlin Center for Advanced Neuroimaging and Clinic for Neurology, Charité Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Humboldt Universität zu Berlin, Department of Psychology, Berlin, Germany
| | - Chang Yan
- Bernstein Center for Computational Neuroscience and Berlin Center for Advanced Neuroimaging and Clinic for Neurology, Charité Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lee Stopak
- Bernstein Center for Computational Neuroscience and Berlin Center for Advanced Neuroimaging and Clinic for Neurology, Charité Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Hetzer
- Bernstein Center for Computational Neuroscience and Berlin Center for Advanced Neuroimaging and Clinic for Neurology, Charité Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - John-Dylan Haynes
- Bernstein Center for Computational Neuroscience and Berlin Center for Advanced Neuroimaging and Clinic for Neurology, Charité Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Humboldt Universität zu Berlin, Department of Psychology, Berlin, Germany
- Humboldt Universität, Berlin School of Mind and Brain, Berlin, Germany
- Cluster of Excellence NeuroCure, Charité Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- SFB 940 Volition and Cognitive Control, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
9
|
Toba MN, Malkinson TS, Howells H, Mackie MA, Spagna A. Same, Same but Different? A Multi-Method Review of the Processes Underlying Executive Control. Neuropsychol Rev 2024; 34:418-454. [PMID: 36967445 DOI: 10.1007/s11065-023-09577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/26/2022] [Indexed: 03/29/2023]
Abstract
Attention, working memory, and executive control are commonly considered distinct cognitive functions with important reciprocal interactions. Yet, longstanding evidence from lesion studies has demonstrated both overlap and dissociation in their behavioural expression and anatomical underpinnings, suggesting that a lower dimensional framework could be employed to further identify processes supporting goal-directed behaviour. Here, we describe the anatomical and functional correspondence between attention, working memory, and executive control by providing an overview of cognitive models, as well as recent data from lesion studies, invasive and non-invasive multimodal neuroimaging and brain stimulation. We emphasize the benefits of considering converging evidence from multiple methodologies centred on the identification of brain mechanisms supporting goal-driven behaviour. We propose that expanding on this approach should enable the construction of a comprehensive anatomo-functional framework with testable new hypotheses, and aid clinical neuroscience to intervene on impairments of executive functions.
Collapse
Affiliation(s)
- Monica N Toba
- Laboratory of Functional Neurosciences (UR UPJV 4559), University Hospital of Amiens and University of Picardie Jules Verne, Amiens, France.
- CHU Amiens Picardie - Site Sud, Centre Universitaire de Recherche en Santé, Avenue René Laënnec, 80054, Amiens Cedex 1, France.
| | - Tal Seidel Malkinson
- Paris Brain Institute, ICM, Hôpital de La Pitié-Salpêtrière, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013, Paris, France
- Université de Lorraine, CRAN, F-54000, Nancy, France
| | - Henrietta Howells
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Humanitas Research Hospital, IRCCS, Università Degli Studi Di Milano, Milan, Italy
| | - Melissa-Ann Mackie
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alfredo Spagna
- Department of Psychology, Columbia University, New York, NY, 10025, USA.
| |
Collapse
|
10
|
Duan Z, Curtis CE. Visual working memories are abstractions of percepts. eLife 2024; 13:RP94191. [PMID: 38819426 PMCID: PMC11147505 DOI: 10.7554/elife.94191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
During perception, decoding the orientation of gratings depends on complex interactions between the orientation of the grating, aperture edges, and topographic structure of the visual map. Here, we aimed to test how aperture biases described during perception affect working memory (WM) decoding. For memoranda, we used gratings multiplied by radial and angular modulators to generate orthogonal aperture biases for identical orientations. Therefore, if WM representations are simply maintained sensory representations, they would have similar aperture biases. If they are abstractions of sensory features, they would be unbiased and the modulator would have no effect on orientation decoding. Neural patterns of delay period activity while maintaining the orientation of gratings with one modulator (e.g. radial) were interchangeable with patterns while maintaining gratings with the other modulator (e.g. angular) in visual and parietal cortex, suggesting that WM representations are insensitive to aperture biases during perception. Then, we visualized memory abstractions of stimuli using models of visual field map properties. Regardless of aperture biases, WM representations of both modulated gratings were recoded into a single oriented line. These results provide strong evidence that visual WM representations are abstractions of percepts, immune to perceptual aperture biases, and compel revisions of WM theory.
Collapse
Affiliation(s)
- Ziyi Duan
- Department of Psychology, New York UniversityNew YorkUnited States
| | - Clayton E Curtis
- Department of Psychology, New York UniversityNew YorkUnited States
- Center for Neural Science, New York UniversityNew YorkUnited States
| |
Collapse
|
11
|
Li HH, Sprague TC, Yoo AH, Ma WJ, Curtis CE. Neural mechanisms of resource allocation in working memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593695. [PMID: 38766258 PMCID: PMC11100829 DOI: 10.1101/2024.05.11.593695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
To mitigate capacity limits of working memory, people allocate resources according to an item's relevance. However, the neural mechanisms supporting such a critical operation remain unknown. Here, we developed computational neuroimaging methods to decode and demix neural responses associated with multiple items in working memory with different priorities. In striate and extrastriate cortex, the gain of neural responses tracked the priority of memoranda. Higher-priority memoranda were decoded with smaller error and lower uncertainty. Moreover, these neural differences predicted behavioral differences in memory prioritization. Remarkably, trialwise variability in the magnitude of delay activity in frontal cortex predicted differences in decoded precision between low and high-priority items in visual cortex. These results suggest a model in which feedback signals broadcast from frontal cortex sculpt the gain of memory representations in visual cortex according to behavioral relevance, thus, identifying a neural mechanism for resource allocation.
Collapse
Affiliation(s)
- Hsin-Hung Li
- Department of Psychology, New York University, New York, NY 10003, USA
- Department of Psychology, The Ohio State University, Columbus, OH 43201, USA
- These authors contributed equally
| | - Thomas C Sprague
- Department of Psychology, New York University, New York, NY 10003, USA
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
- These authors contributed equally
| | - Aspen H Yoo
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Wei Ji Ma
- Department of Psychology, New York University, New York, NY 10003, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Clayton E Curtis
- Department of Psychology, New York University, New York, NY 10003, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
| |
Collapse
|
12
|
Liu YF, Wilson C, Bedny M. Contribution of the language network to the comprehension of Python programming code. BRAIN AND LANGUAGE 2024; 251:105392. [PMID: 38387220 DOI: 10.1016/j.bandl.2024.105392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Does the perisylvian language network contribute to comprehension of programming languages, like Python? Univariate neuroimaging studies find high responses to code in fronto-parietal executive areas but not in fronto-temporal language areas, suggesting the language network does little. We used multivariate-pattern-analysis to test whether the language network encodes Python functions. Python programmers read functions while undergoing fMRI. A linear SVM decoded for-loops from if-conditionals based on activity in lateral temporal (LT) language cortex. In searchlight analysis, decoding accuracy was higher in LT language cortex than anywhere else. Follow up analysis showed that decoding was not driven by presence of different words across functions, "for" vs "if," but by compositional program properties. Finally, univariate responses to code peaked earlier in LT language-cortex than in the fronto-parietal network. We propose that the language system forms initial "surface meaning" representations of programs, which input to the reasoning network for processing of algorithms.
Collapse
Affiliation(s)
- Yun-Fei Liu
- Department of Psychological and Brain Sciences, Johns Hopkins Universtiy, 232 Ames Hall, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| | - Colin Wilson
- Department of Cognitive Science, Johns Hopkins University, 237 Krieger Hall, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Marina Bedny
- Department of Psychological and Brain Sciences, Johns Hopkins Universtiy, 232 Ames Hall, 3400 N. Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
13
|
Duan Z, Curtis CE. Visual working memories are abstractions of percepts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.01.569634. [PMID: 38076859 PMCID: PMC10705465 DOI: 10.1101/2023.12.01.569634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Pioneering studies demonstrating that the contents of visual working memory (WM) can be decoded from the patterns of multivoxel activity in early visual cortex transformed not only how we study WM, but theories of how memories are stored. For instance, the ability to decode the orientation of memorized gratings is hypothesized to depend on the recruitment of the same neural encoding machinery used for perceiving orientations. However, decoding evidence cannot be used to test the so-called sensory recruitment hypothesis without understanding the underlying nature of what is being decoded. Although unknown during WM, during perception decoding the orientation of gratings does not simply depend on activities of orientation tuned neurons. Rather, it depends on complex interactions between the orientation of the grating, the aperture edges, and the topographic structure of the visual map. Here, our goals are to 1) test how these aperture biases described during perception may affect WM decoding, and 2) leverage carefully manipulated visual stimulus properties of gratings to test how sensory-like are WM codes. For memoranda, we used gratings multiplied by radial and angular modulators to generate orthogonal aperture biases despite having identical orientations. Therefore, if WM representations are simply maintained sensory representations, they would have similar aperture biases. If they are abstractions of sensory features, they would be unbiased and the modulator would have no effect on orientation decoding. Results indicated that fMRI patterns of delay period activity while maintaining the orientation of a grating with one modulator (eg, radial) were interchangeable with patterns while maintaining a grating with the other modulator (eg, angular). We found significant cross-classification in visual and parietal cortex, suggesting that WM representations are insensitive to aperture biases during perception. Then, we visualized memory abstractions of stimuli using a population receptive field model of the visual field maps. Regardless of aperture biases, WM representations of both modulated gratings were recoded into a single oriented line. These results provide strong evidence that visual WM representations are abstractions of percepts, immune to perceptual aperture biases, and compel revisions of WM theory.
Collapse
Affiliation(s)
- Ziyi Duan
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Clayton E Curtis
- Department of Psychology, New York University, New York, NY 10003, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
| |
Collapse
|
14
|
Hallquist MN, Hwang K, Luna B, Dombrovski AY. Reward-based option competition in human dorsal stream and transition from stochastic exploration to exploitation in continuous space. SCIENCE ADVANCES 2024; 10:eadj2219. [PMID: 38394198 PMCID: PMC10889364 DOI: 10.1126/sciadv.adj2219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Primates exploring and exploiting a continuous sensorimotor space rely on dynamic maps in the dorsal stream. Two complementary perspectives exist on how these maps encode rewards. Reinforcement learning models integrate rewards incrementally over time, efficiently resolving the exploration/exploitation dilemma. Working memory buffer models explain rapid plasticity of parietal maps but lack a plausible exploration/exploitation policy. The reinforcement learning model presented here unifies both accounts, enabling rapid, information-compressing map updates and efficient transition from exploration to exploitation. As predicted by our model, activity in human frontoparietal dorsal stream regions, but not in MT+, tracks the number of competing options, as preferred options are selectively maintained on the map, while spatiotemporally distant alternatives are compressed out. When valuable new options are uncovered, posterior β1/α oscillations desynchronize within 0.4 to 0.7 s, consistent with option encoding by competing β1-stabilized subpopulations. Together, outcomes matching locally cached reward representations rapidly update parietal maps, biasing choices toward often-sampled, rewarded options.
Collapse
Affiliation(s)
| | - Kai Hwang
- Department of Psychological and Brain Sciences, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
15
|
Teng C, Postle BR. Investigating the Roles of the Visual and Parietal Cortex in Representing Content versus Context in Visual Working Memory. eNeuro 2024; 11:ENEURO.0270-20.2024. [PMID: 38336475 PMCID: PMC10860598 DOI: 10.1523/eneuro.0270-20.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/05/2023] [Accepted: 01/04/2024] [Indexed: 02/12/2024] Open
Abstract
Content-to-context binding is crucial for working memory performance. Using a dual-serial retrocueing (DSR) task on oriented gratings, Yu et al. (2020) found that content (orientation) of both prioritized and unprioritized memory items (PMI; UMI) was represented simultaneously in visual cortex, while their context (location) was represented in intraparietal sulcus (IPS), with a priority-based remapping of the representation of content and context of the UMI in each region, respectively. This registered report acquired fMRI of 24 healthy adults while they performed a DSR task with location as the to-be-reported content and orientation as the task-relevant context. We contrasted three accounts: domain-dependent, the engagement of visual and parietal regions depends on the feature domain (orientation vs location); functional, the engagement of these regions depends on their function (content vs context); and hybrid-a combination of the domain-dependent account and the additional stipulation that IPS encodes context regardless of domain. Delay-period activity in early visual cortex conformed most closely with functional predictions: robust priority-sensitive representation of stimulus location (content), but no evidence for the active representation of stimulus orientation (context). Delay-period activity in IPS, in contrast, conformed most closely to predictions of the hybrid account: active representation of content (location) and of prioritized context (orientation). Exploratory analyses further supported the hybrid account of IPS, revealing univariate sensitivity to variation in both content and context load, the latter in a manner that predicted individual differences in behavior. The representation of visual information in working memory is highly dependent on behavioral context.
Collapse
Affiliation(s)
- Chunyue Teng
- University of Wisconsin-Madison, Madison 53719, Wisconsin
- Lawrence University, Appleton 54911, Wisconsin
| | | |
Collapse
|
16
|
Linde-Domingo J, Spitzer B. Geometry of visuospatial working memory information in miniature gaze patterns. Nat Hum Behav 2024; 8:336-348. [PMID: 38110511 PMCID: PMC10896725 DOI: 10.1038/s41562-023-01737-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/25/2023] [Indexed: 12/20/2023]
Abstract
Stimulus-dependent eye movements have been recognized as a potential confound in decoding visual working memory information from neural signals. Here we combined eye-tracking with representational geometry analyses to uncover the information in miniature gaze patterns while participants (n = 41) were cued to maintain visual object orientations. Although participants were discouraged from breaking fixation by means of real-time feedback, small gaze shifts (<1°) robustly encoded the to-be-maintained stimulus orientation, with evidence for encoding two sequentially presented orientations at the same time. The orientation encoding on stimulus presentation was object-specific, but it changed to a more object-independent format during cued maintenance, particularly when attention had been temporarily withdrawn from the memorandum. Finally, categorical reporting biases increased after unattended storage, with indications of biased gaze geometries already emerging during the maintenance periods before behavioural reporting. These findings disclose a wealth of information in gaze patterns during visuospatial working memory and indicate systematic changes in representational format when memory contents have been unattended.
Collapse
Affiliation(s)
- Juan Linde-Domingo
- Research Group Adaptive Memory and Decision Making, Max Planck Institute for Human Development, Berlin, Germany.
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany.
- Mind, Brain and Behavior Research Center, University of Granada, Granada, Spain.
- Department of Experimental Psychology, University of Granada, Granada, Spain.
| | - Bernhard Spitzer
- Research Group Adaptive Memory and Decision Making, Max Planck Institute for Human Development, Berlin, Germany.
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany.
| |
Collapse
|
17
|
Rizza A, Pedale T, Mastroberardino S, Olivetti Belardinelli M, Van der Lubbe RHJ, Spence C, Santangelo V. Working Memory Maintenance of Visual and Auditory Spatial Information Relies on Supramodal Neural Codes in the Dorsal Frontoparietal Cortex. Brain Sci 2024; 14:123. [PMID: 38391698 PMCID: PMC10886761 DOI: 10.3390/brainsci14020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/24/2024] Open
Abstract
The frontoparietal attention network plays a pivotal role during working memory (WM) maintenance, especially under high-load conditions. Nevertheless, there is ongoing debate regarding whether this network relies on supramodal or modality-specific neural signatures. In this study, we used multi-voxel pattern analysis (MVPA) to evaluate the neural representation of visual versus auditory information during WM maintenance. During fMRI scanning, participants maintained small or large spatial configurations (low- or high-load trials) of either colour shades or sound pitches in WM for later retrieval. Participants were less accurate in retrieving high- vs. low-load trials, demonstrating an effective manipulation of WM load, irrespective of the sensory modality. The frontoparietal regions involved in maintaining high- vs. low-load spatial maps in either sensory modality were highlighted using a conjunction analysis. Widespread activity was found across the dorsal frontoparietal network, peaking on the frontal eye fields and the superior parietal lobule, bilaterally. Within these regions, MVPAs were performed to quantify the pattern of distinctness of visual vs. auditory neural codes during WM maintenance. These analyses failed to reveal distinguishable patterns in the dorsal frontoparietal regions, thus providing support for a common, supramodal neural code associated with the retention of either visual or auditory spatial configurations.
Collapse
Affiliation(s)
- Aurora Rizza
- Department of Psychology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Tiziana Pedale
- Functional Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy
| | - Serena Mastroberardino
- Department of Philosophy, Social Sciences & Education, University of Perugia, Piazza G. Ermini 1, 06123 Perugia, Italy
| | - Marta Olivetti Belardinelli
- Department of Psychology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
- ECONA, Interuniversity Centre for Research on Cognitive Processing in Natural and Artificial Systems, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Rob H J Van der Lubbe
- Cognition, Data and Education, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
- Laboratory of Vision Science and Optometry, Adam Mickiewicz University, Wieniawskiego 1, 61-712 Poznan, Poland
| | - Charles Spence
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Oxford OX2 6BW, UK
| | - Valerio Santangelo
- Functional Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy
- Department of Philosophy, Social Sciences & Education, University of Perugia, Piazza G. Ermini 1, 06123 Perugia, Italy
| |
Collapse
|
18
|
Master SL, Li S, Curtis CE. Trying harder: how cognitive effort sculpts neural representations during working memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570686. [PMID: 38106094 PMCID: PMC10723420 DOI: 10.1101/2023.12.07.570686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The neural mechanisms by which motivational factors influence cognition remain unknown. Using fMRI, we tested how cognitive effort impacts working memory (WM). Participants were precued whether WM difficulty would be hard or easy. Hard trials demanded more effort as a later decision required finer mnemonic precision. Behaviorally, pupil size was larger and response times were slower on hard trials suggesting our manipulation of effort succeeded. Neurally, we observed robust persistent activity in prefrontal cortex, especially during hard trials. We found strong decoding of location in visual cortex, where accuracy was higher on hard trials. Connecting these across-region effects, we found that the amplitude of delay period activity in frontal cortex predicted decoded accuracy in visual cortex on a trial-wise basis. We conclude that the gain of persistent activity in frontal cortex may be the source of effort-related feedback signals that improve the quality of WM representations stored in visual cortex.
Collapse
Affiliation(s)
| | - Shanshan Li
- Department of Psychology, New York University
- Program in Psychology, New York University Abu Dhabi
| | - Clayton E. Curtis
- Department of Psychology, New York University
- Center for Neural Science, New York University
| |
Collapse
|
19
|
Barbieri R, Töpfer FM, Soch J, Bogler C, Sprekeler H, Haynes JD. Encoding of continuous perceptual choices in human early visual cortex. Front Hum Neurosci 2023; 17:1277539. [PMID: 38021249 PMCID: PMC10679739 DOI: 10.3389/fnhum.2023.1277539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Research on the neural mechanisms of perceptual decision-making has typically focused on simple categorical choices, say between two alternative motion directions. Studies on such discrete alternatives have often suggested that choices are encoded either in a motor-based or in an abstract, categorical format in regions beyond sensory cortex. Methods In this study, we used motion stimuli that could vary anywhere between 0° and 360° to assess how the brain encodes choices for features that span the full sensory continuum. We employed a combination of neuroimaging and encoding models based on Gaussian process regression to assess how either stimuli or choices were encoded in brain responses. Results We found that single-voxel tuning patterns could be used to reconstruct the trial-by-trial physical direction of motion as well as the participants' continuous choices. Importantly, these continuous choice signals were primarily observed in early visual areas. The tuning properties in this region generalized between choice encoding and stimulus encoding, even for reports that reflected pure guessing. Discussion We found only little information related to the decision outcome in regions beyond visual cortex, such as parietal cortex, possibly because our task did not involve differential motor preparation. This could suggest that decisions for continuous stimuli take can place already in sensory brain regions, potentially using similar mechanisms to the sensory recruitment in visual working memory.
Collapse
Affiliation(s)
- Riccardo Barbieri
- Bernstein Center for Computational Neuroscience and Berlin Center for Advanced Neuroimaging, Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Felix M. Töpfer
- Bernstein Center for Computational Neuroscience and Berlin Center for Advanced Neuroimaging, Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Joram Soch
- Bernstein Center for Computational Neuroscience and Berlin Center for Advanced Neuroimaging, Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
- German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Carsten Bogler
- Bernstein Center for Computational Neuroscience and Berlin Center for Advanced Neuroimaging, Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Henning Sprekeler
- Department for Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany
| | - John-Dylan Haynes
- Bernstein Center for Computational Neuroscience and Berlin Center for Advanced Neuroimaging, Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
- Berlin School of Mind and Brain and Institute of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
20
|
Hou M, de Chastelaine M, Rugg MD. Age differences in the neural correlates of recollection: transient versus sustained fMRI effects. Neurobiol Aging 2023; 131:132-143. [PMID: 37633119 PMCID: PMC10528128 DOI: 10.1016/j.neurobiolaging.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 08/28/2023]
Abstract
Prior functional magnetic resonance imaging findings in young adults indicate that recollection-sensitive neural regions dissociate according to the time courses of their respective recollection effects. Here, we examined whether such dissociations are also evident in older adults. Young and older participants encoded a series of word-image pairs, judging which of the denoted objects was the smaller. At the test, participants judged whether each of a series of test words was old or new. If a word was old, the requirement was to recall the associated image and maintain it over a variable delay period. Older adults demonstrated significantly lower associative memory performance than young adults. Transient recollection effects were identified in the left hippocampus, medial prefrontal cortex, and posterior cingulate, while sustained effects were widespread across left lateral cortex and were also evident in the bilateral striatum. Except for those in the left insula, all effects were age-invariant. These findings suggest that both transient and sustained recollection effects are largely stable across much of the healthy adult life span.
Collapse
Affiliation(s)
- Mingzhu Hou
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA.
| | - Marianne de Chastelaine
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Michael D Rugg
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
21
|
Teng C, Kaplan SM, Shomstein S, Kravitz DJ. Assessing the interaction between working memory and perception through time. Atten Percept Psychophys 2023; 85:2196-2209. [PMID: 37740152 DOI: 10.3758/s13414-023-02785-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/24/2023]
Abstract
Content maintained in visual working memory changes concurrent visual processing, suggesting that visual working memory may recruit an overlapping neural representation with visual perception. However, it remains unclear whether visual working memory representations persist as a sensory code through time, or are recoded later into an abstract code. Here, we directly contrasted a temporal decay + visual code account and a temporal decay + abstract code account within the temporal dynamics of the interaction between working memory and perception. By manipulating the ISI (inter-stimulus interval) between working memory encoding and a perceptual discrimination task, we found that task-relevant and therefore actively maintained perceptual information parametrically altered participants' ability to discriminate perceptual stimuli even 4 s after encoding, whereas task-irrelevant information caused only an acutely transient effect. While continuously present, the size of this shift in discrimination thresholds gradually decreased over time. Concomitantly, the size of the bias in working memory reports increased over time. The opposing directions of threshold and bias effects are consistent with the local maintenance of information in perceptual areas, explained by a temporal decay + visual code account. As the maintained representation decays over time, its ability to alter incoming perceptual signals decreases (reduced threshold effects) while its likelihood of being impacted by those same signals increases (increased bias effects). Altogether, these results suggest that the readout of working memory relies on a sensory representation at a cost of increased interference by ongoing perception.
Collapse
Affiliation(s)
- Chunyue Teng
- Department of Neuroscience, Lawrence University, Appleton, WI, USA.
| | - Simon M Kaplan
- Department of Psychological and Brain Sciences, George Washington University, Washington, DC, USA
| | - Sarah Shomstein
- Department of Psychological and Brain Sciences, George Washington University, Washington, DC, USA
| | - Dwight J Kravitz
- Department of Psychological and Brain Sciences, George Washington University, Washington, DC, USA
- Directorate for Social, Behavioral, and Economic Sciences, National Science Foundation, Arlington, VA, USA
| |
Collapse
|
22
|
Yoo AH, Keglovits H, Collins AGE. Lowered inter-stimulus discriminability hurts incremental contributions to learning. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:1346-1364. [PMID: 37656373 PMCID: PMC10545593 DOI: 10.3758/s13415-023-01104-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 09/02/2023]
Abstract
How does the similarity between stimuli affect our ability to learn appropriate response associations for them? In typical laboratory experiments learning is investigated under somewhat ideal circumstances, where stimuli are easily discriminable. This is not representative of most real-life learning, where overlapping "stimuli" can result in different "rewards" and may be learned simultaneously (e.g., you may learn over repeated interactions that a specific dog is friendly, but that a very similar looking one isn't). With two experiments, we test how humans learn in three stimulus conditions: one "best case" condition in which stimuli have idealized and highly discriminable visual and semantic representations, and two in which stimuli have overlapping representations, making them less discriminable. We find that, unsurprisingly, decreasing stimuli discriminability decreases performance. We develop computational models to test different hypotheses about how reinforcement learning (RL) and working memory (WM) processes are affected by different stimulus conditions. Our results replicate earlier studies demonstrating the importance of both processes to capture behavior. However, our results extend previous studies by demonstrating that RL, and not WM, is affected by stimulus distinctness: people learn slower and have higher across-stimulus value confusion at decision when stimuli are more similar to each other. These results illustrate strong effects of stimulus type on learning and demonstrate the importance of considering parallel contributions of different cognitive processes when studying behavior.
Collapse
Affiliation(s)
- Aspen H Yoo
- Department of Psychology, University of California, Berkeley, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Haley Keglovits
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, USA
| | - Anne G E Collins
- Department of Psychology, University of California, Berkeley, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA.
| |
Collapse
|
23
|
Huang L, Wang J, He Q, Li C, Sun Y, Seger CA, Zhang X. A source for category-induced global effects of feature-based attention in human prefrontal cortex. Cell Rep 2023; 42:113080. [PMID: 37659080 DOI: 10.1016/j.celrep.2023.113080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/14/2023] [Accepted: 08/16/2023] [Indexed: 09/04/2023] Open
Abstract
Global effects of feature-based attention (FBA) are generally limited to stimuli sharing the same or similar features, as hypothesized in the "feature-similarity gain model." Visual perception, however, often reflects categories acquired via experience/learning; whether the global-FBA effect can be induced by the categorized features remains unclear. Here, human subjects were trained to classify motion directions into two discrete categories and perform a classical motion-based attention task. We found a category-induced global-FBA effect in both the middle temporal area (MT+) and frontoparietal areas, where attention to a motion direction globally spread to unattended motion directions within the same category, but not to those in a different category. Effective connectivity analysis showed that the category-induced global-FBA effect in MT+ was derived by feedback from the inferior frontal junction (IFJ). Altogether, our study reveals a category-induced global-FBA effect and identifies a source for this effect in human prefrontal cortex, implying that FBA is of greater ecological significance than previously thought.
Collapse
Affiliation(s)
- Ling Huang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, Guangdong 510631, China; School of Psychology, Center for Studies of Psychological Application, Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Jingyi Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, Guangdong 510631, China; School of Psychology, Center for Studies of Psychological Application, Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Qionghua He
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, Guangdong 510631, China; School of Psychology, Center for Studies of Psychological Application, Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Chu Li
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, Guangdong 510631, China; School of Psychology, Center for Studies of Psychological Application, Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Yueling Sun
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, Guangdong 510631, China; School of Psychology, Center for Studies of Psychological Application, Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Carol A Seger
- School of Psychology, Center for Studies of Psychological Application, Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China; Department of Psychology, Colorado State University, Fort Collins, CO 80523, USA
| | - Xilin Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, Guangdong 510631, China; School of Psychology, Center for Studies of Psychological Application, Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China.
| |
Collapse
|
24
|
Jia K, Goebel R, Kourtzi Z. Ultra-High Field Imaging of Human Visual Cognition. Annu Rev Vis Sci 2023; 9:479-500. [PMID: 37137282 DOI: 10.1146/annurev-vision-111022-123830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Functional magnetic resonance imaging (fMRI), the key methodology for mapping the functions of the human brain in a noninvasive manner, is limited by low temporal and spatial resolution. Recent advances in ultra-high field (UHF) fMRI provide a mesoscopic (i.e., submillimeter resolution) tool that allows us to probe laminar and columnar circuits, distinguish bottom-up versus top-down pathways, and map small subcortical areas. We review recent work demonstrating that UHF fMRI provides a robust methodology for imaging the brain across cortical depths and columns that provides insights into the brain's organization and functions at unprecedented spatial resolution, advancing our understanding of the fine-scale computations and interareal communication that support visual cognition.
Collapse
Affiliation(s)
- Ke Jia
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom;
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Zoe Kourtzi
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
25
|
Li HH, Curtis CE. Neural population dynamics of human working memory. Curr Biol 2023; 33:3775-3784.e4. [PMID: 37595590 PMCID: PMC10528783 DOI: 10.1016/j.cub.2023.07.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/20/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023]
Abstract
The activity of neurons in macaque prefrontal cortex (PFC) persists during working memory (WM) delays, providing a mechanism for memory.1,2,3,4,5,6,7,8,9,10,11 Although theory,11,12 including formal network models,13,14 assumes that WM codes are stable over time, PFC neurons exhibit dynamics inconsistent with these assumptions.15,16,17,18,19 Recently, multivariate reanalyses revealed the coexistence of both stable and dynamic WM codes in macaque PFC.20,21,22,23 Human EEG studies also suggest that WM might contain dynamics.24,25 Nonetheless, how WM dynamics vary across the cortical hierarchy and which factors drive dynamics remain unknown. To elucidate WM dynamics in humans, we decoded WM content from fMRI responses across multiple cortical visual field maps.26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48 We found coexisting stable and dynamic neural representations of WM during a memory-guided saccade task. Geometric analyses of neural subspaces revealed that early visual cortex exhibited stronger dynamics than high-level visual and frontoparietal cortex. Leveraging models of population receptive fields, we visualized and made the neural dynamics interpretable. We found that during WM delays, V1 population initially encoded a narrowly tuned bump of activation centered on the peripheral memory target. Remarkably, this bump then spread inward toward foveal locations, forming a vector along the trajectory of the forthcoming memory-guided saccade. In other words, the neural code transformed into an abstraction of the stimulus more proximal to memory-guided behavior. Therefore, theories of WM must consider both sensory features and their task-relevant abstractions because changes in the format of memoranda naturally drive neural dynamics.
Collapse
Affiliation(s)
- Hsin-Hung Li
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Clayton E Curtis
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
26
|
Sanders DMW, Cowell RA. The locus of recognition memory signals in human cortex depends on the complexity of the memory representations. Cereb Cortex 2023; 33:9835-9849. [PMID: 37401000 DOI: 10.1093/cercor/bhad248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
According to a "Swiss Army Knife" model of the brain, cognitive functions such as episodic memory and face perception map onto distinct neural substrates. In contrast, representational accounts propose that each brain region is best explained not by which specialized function it performs, but by the type of information it represents with its neural firing. In a functional magnetic resonance imaging study, we asked whether the neural signals supporting recognition memory fall mandatorily within the medial temporal lobes (MTL), traditionally thought the seat of declarative memory, or whether these signals shift within cortex according to the content of the memory. Participants studied objects and scenes that were unique conjunctions of pre-defined visual features. Next, we tested recognition memory in a task that required mnemonic discrimination of both simple features and complex conjunctions. Feature memory signals were strongest in posterior visual regions, declining with anterior progression toward the MTL, while conjunction memory signals followed the opposite pattern. Moreover, feature memory signals correlated with feature memory discrimination performance most strongly in posterior visual regions, whereas conjunction memory signals correlated with conjunction memory discrimination most strongly in anterior sites. Thus, recognition memory signals shifted with changes in memory content, in line with representational accounts.
Collapse
Affiliation(s)
- D Merika W Sanders
- Department of Psychology, Harvard University, Cambridge, MA 02138, United States
| | - Rosemary A Cowell
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO 80309, United States
- Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO 80309, United States
| |
Collapse
|
27
|
Poker G, Oren N, Bezalel V, Abecasis D, Hendler T, Fried I, Wagner AD, Shapira-Lichter I. Neural evidence for advantaged representation of first items in memory. Neuroimage 2023; 277:120239. [PMID: 37348626 DOI: 10.1016/j.neuroimage.2023.120239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023] Open
Abstract
Visual areas activated during perception can retain specific information held in memory without the presence of physical stimuli via distributed activity patterns. Neuroimaging studies have shown that the delay-period representation of information in visual areas is modulated by factors such as memory load and task demands, raising the possibility of serial position as another potential modulator. Specifically, enhanced representation of first items during the post-encoding delay period may serve as a mechanism underlying the well-established but not well-understood primacy effect - the mnemonic advantage of first items. To test this hypothesis, 13 males and 16 females performed a human fMRI task, wherein each trial consisted of the sequential encoding of two stimuli (a famous face and landscape, order counterbalanced), followed by a distracting task, a delay period, and then a cued recall of one of the items. Participants exhibited the expected behavioral primacy effect, manifested as faster recall of the first items. In order to elucidate the still debated neural underpinnings of this effect, using multivariate decoding, a classifier was trained on data collected during encoding to differentiate stimulus categories (i.e., faces vs. landscapes) and tested on data collected during the post-encoding period. Greater reactivation of first versus second items was observed in the ventral occipito-temporal cortex during the entire post-encoding period but not during encoding. Moreover, trial-level analyses revealed that the degree of first-item neural advantage during the post-encoding delay predicted the behavioral primacy effect. These findings highlight the role of item reinstatement in ventral occipito-temporal cortex in the primacy effect and are discussed in the context of the uniqueness of the very first item and event boundaries, illuminating putative neural mechanisms underlying the effect.
Collapse
Affiliation(s)
- Gilad Poker
- Functional MRI Center, Beilinson Hospital, Rabin Medical Center, Petach Tikva, Israel
| | - Noga Oren
- Functional MRI Center, Beilinson Hospital, Rabin Medical Center, Petach Tikva, Israel
| | - Vered Bezalel
- Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Donna Abecasis
- Functional MRI Center, Beilinson Hospital, Rabin Medical Center, Petach Tikva, Israel
| | - Talma Hendler
- Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Itzhak Fried
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Neurosurgery, University of California, Los Angeles, CA, USA
| | - Anthony D Wagner
- Department of Psychology and Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Irit Shapira-Lichter
- Functional MRI Center, Beilinson Hospital, Rabin Medical Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
28
|
Jiang H, Huang C, Li Z, Wang Q, Liang W, Zhou A. Conflict Experience Regulates the Neural Encoding of Cognitive Conflict. Brain Sci 2023; 13:880. [PMID: 37371360 DOI: 10.3390/brainsci13060880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Cognitive control is adaptive in that it rapidly adjusts attention in response to changing contexts and shifting goals. Research provides evidence that cognitive control can rapidly adjust attention to focus on task-relevant information based on prior conflict experience. Neural encoding of goal-related information is critical for goal-directed behaviour; however, the empirical evidence on how conflict experience affects the encoding of cognitive conflict in the brain is rather weak. In the present fMRI study, a Stroop task with different proportions of incongruent trial was used to investigate the neural encoding of cognitive conflict in the environment with changing conflict experience. The results showed that the anterior cingulate cortex, dorsolateral prefrontal cortex, and intraparietal sulcus played a pivotal role in the neural encoding of cognitive conflict. The classification in anterior cingulate cortex was significantly above chance in the high-proportion, moderate-proportion, and low-proportion conflict conditions conducted separately, suggesting that neural encoding of cognitive conflict in this region was not altered based on proportion of conflict. The dorsolateral prefrontal cortex and intraparietal sulcus showed significant above-chance classification in the moderate-proportion and low-proportion conflict conditions, but not in the high-proportion conflict condition. These findings provide direct evidence that conflict experience modulates the neural encoding of cognitive conflict.
Collapse
Affiliation(s)
- Hui Jiang
- School of Psychology, Northwest Normal University, Lanzhou 730070, China
| | - Chaozheng Huang
- School of Judicial Police, Gansu University of Political Science and Law, Lanzhou 730070, China
| | - Zekai Li
- School of Psychology, Northwest Normal University, Lanzhou 730070, China
| | - Qiuyun Wang
- School of Psychology, Northwest Normal University, Lanzhou 730070, China
| | - Weisong Liang
- School of Psychology, Northwest Normal University, Lanzhou 730070, China
| | - Aibao Zhou
- School of Psychology, Northwest Normal University, Lanzhou 730070, China
- School of Judicial Police, Gansu University of Political Science and Law, Lanzhou 730070, China
| |
Collapse
|
29
|
Hou M, de Chastelaine M, Rugg MD. The effects of age on neural correlates of recollection: transient versus sustained fMRI effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536508. [PMID: 37090506 PMCID: PMC10120722 DOI: 10.1101/2023.04.12.536508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Prior fMRI findings in young adults indicate that recollection-sensitive neural regions dissociate according to the time courses of their respective recollection effects. Here, we examined whether such dissociations are also evident in older adults. Young and older participants encoded a series of word-object image pairs, judging which of the denoted objects was the smaller. At test, participants first judged whether a test word was old or new. For items judged old, they were required to recall the associated image and hold it in mind across a variable delay period. A post-delay cue denoted which of three judgments should be made on the retrieved image. Older adults demonstrated significantly lower associative memory performance than young adults. Replicating prior findings, transient recollection effects were identified in the left hippocampus, medial prefrontal cortex and posterior cingulate, while sustained effects were widespread across left lateral cortex and were also evident in the bilateral striatum. With the exception of those in the left insula, all effects were age-invariant. These findings add to the evidence that recollection-related BOLD effects in different neural regions can be temporally dissociated. Additionally, the findings suggest that both transient and sustained recollection effects are largely stable across much of the healthy adult lifespan.
Collapse
|
30
|
Domanski APF, Kucewicz MT, Russo E, Tricklebank MD, Robinson ESJ, Durstewitz D, Jones MW. Distinct hippocampal-prefrontal neural assemblies coordinate memory encoding, maintenance, and recall. Curr Biol 2023; 33:1220-1236.e4. [PMID: 36898372 PMCID: PMC10728550 DOI: 10.1016/j.cub.2023.02.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/05/2023] [Accepted: 02/08/2023] [Indexed: 03/11/2023]
Abstract
Short-term memory enables incorporation of recent experience into subsequent decision-making. This processing recruits both the prefrontal cortex and hippocampus, where neurons encode task cues, rules, and outcomes. However, precisely which information is carried when, and by which neurons, remains unclear. Using population decoding of activity in rat medial prefrontal cortex (mPFC) and dorsal hippocampal CA1, we confirm that mPFC populations lead in maintaining sample information across delays of an operant non-match to sample task, despite individual neurons firing only transiently. During sample encoding, distinct mPFC subpopulations joined distributed CA1-mPFC cell assemblies hallmarked by 4-5 Hz rhythmic modulation; CA1-mPFC assemblies re-emerged during choice episodes but were not 4-5 Hz modulated. Delay-dependent errors arose when attenuated rhythmic assembly activity heralded collapse of sustained mPFC encoding. Our results map component processes of memory-guided decisions onto heterogeneous CA1-mPFC subpopulations and the dynamics of physiologically distinct, distributed cell assemblies.
Collapse
Affiliation(s)
- Aleksander P F Domanski
- School of Physiology, Pharmacology & Neuroscience, Faculty of Life Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK; The Alan Turing Institute, British Library, 96 Euston Rd, London, UK; The Francis Crick Institute, 1 Midland Road, London, UK
| | - Michal T Kucewicz
- School of Physiology, Pharmacology & Neuroscience, Faculty of Life Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK; BioTechMed Center, Brain & Mind Electrophysiology Laboratory, Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 80-233 Gdansk, Poland.
| | - Eleonora Russo
- Department of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany; Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Mark D Tricklebank
- Centre for Neuroimaging Science, King's College London, Denmark Hill, London SE5 8AF, UK
| | - Emma S J Robinson
- School of Physiology, Pharmacology & Neuroscience, Faculty of Life Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Daniel Durstewitz
- Department of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Matt W Jones
- School of Physiology, Pharmacology & Neuroscience, Faculty of Life Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
31
|
Bernhard RM, Frankland SM, Plunkett D, Sievers B, Greene JD. Evidence for Spinozan "Unbelieving" in the Right Inferior Prefrontal Cortex. J Cogn Neurosci 2023; 35:659-680. [PMID: 36638227 DOI: 10.1162/jocn_a_01964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Humans can think about possible states of the world without believing in them, an important capacity for high-level cognition. Here, we use fMRI and a novel "shell game" task to test two competing theories about the nature of belief and its neural basis. According to the Cartesian theory, information is first understood, then assessed for veracity, and ultimately encoded as either believed or not believed. According to the Spinozan theory, comprehension entails belief by default, such that understanding without believing requires an additional process of "unbelieving." Participants (n = 70) were experimentally induced to have beliefs, desires, or mere thoughts about hidden states of the shell game (e.g., believing that the dog is hidden in the upper right corner). That is, participants were induced to have specific "propositional attitudes" toward specific "propositions" in a controlled way. Consistent with the Spinozan theory, we found that thinking about a proposition without believing it is associated with increased activation of the right inferior frontal gyrus. This was true whether the hidden state was desired by the participant (because of reward) or merely thought about. These findings are consistent with a version of the Spinozan theory whereby unbelieving is an inhibitory control process. We consider potential implications of these results for the phenomena of delusional belief and wishful thinking.
Collapse
|
32
|
Tan J, Wang Z, Tang Y, Tian Y. Alterations in Human Hippocampus Subregions across the Lifespan: Reflections on White Matter Structure and Functional Connectivity. Neural Plast 2023; 2023:7948140. [PMID: 37025422 PMCID: PMC10072963 DOI: 10.1155/2023/7948140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
During growth and aging, the role of the hippocampus in memory depends on its interactions with related brain regions. Particularly, two subregions, anterior hippocampus (aHipp) and posterior hippocampus (pHipp), play different and critical roles in memory processing. However, age-related changes of hippocampus subregions on structure and function are still unclear. Here, we investigated age-related structural and functional characteristics of 106 participants (7-85 years old) in resting state based on fractional anisotropy (FA) and functional connectivity (FC) in aHipp and pHipp in the lifespan. The correlation between FA and FC was also explored to identify the coupling. Furthermore, the Wechsler Abbreviated Scale of Intelligence (WASI) was used to explore the relationship between cognitive ability and hippocampal changes. Results showed that there was functional separation and integration in aHipp and pHipp, and the number of functional connections in pHipp was more than that in aHipp across the lifespan. The age-related FC changes showed four different trends (U-shaped/inverted U-shaped/linear upward/linear downward). And around the age of 40 was a critical period for transformation. Then, FA analyses indicated that all effects of age on the hippocampal structures were nonlinear, and the white matter integrity of pHipp was higher than that of aHipp. In the functional-structural coupling, we found that the age-related FA of the right aHipp (aHipp.R) was negatively related to the FC. Finally, through the WASI, we found that the age-related FA of the left aHipp (aHipp.L) was positively correlated with verbal IQ (VERB) and vocabulary comprehension (VOCAB.T), the FA of aHipp.R was only positively correlated with VERB, and the FA of the left pHipp (pHipp.L) was only positively correlated with VOCAB.T. These FC and FA results supported that age-related normal memory changes were closely related to the hippocampus subregions. We also provided empirical evidence that memory ability was altered with the hippocampus, and its efficiency tended to decline after age 40.
Collapse
|
33
|
Zhou H, Su C, Wu J, Li J, Lu X, Gong L, Geng F, Gao Z, Hu Y. A domain-general frontoparietal network interacts with domain-preferential intermediate pathways to support working memory task. Cereb Cortex 2023; 33:2774-2787. [PMID: 35671498 DOI: 10.1093/cercor/bhac241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/14/2022] Open
Abstract
Working memory (WM) is essential for cognition, but the underlying neural mechanisms remain elusive. From a hierarchical processing perspective, this paper proposed and tested a hypothesis that a domain-general network at the top of the WM hierarchy can interact with distinct domain-preferential intermediate circuits to support WM. Employing a novel N-back task, we first identified the posterior superior temporal gyrus (pSTG), middle temporal area (MT), and postcentral gyrus (PoCG) as intermediate regions for biological motion and shape motion processing, respectively. Using further psychophysiological interaction analyses, we delineated a frontal-parietal network (FPN) as the domain-general network. These results were further verified and extended by a delayed match to sample (DMS) task. Although the WM load-dependent and stimulus-free activations during the DMS delay phase confirm the role of FPN as a domain-general network to maintain information, the stimulus-dependent activations within this network during the DMS encoding phase suggest its involvement in the final stage of the hierarchical processing chains. In contrast, the load-dependent activations of intermediate regions in the N-back task highlight their further roles beyond perception in WM tasks. These results provide empirical evidence for a hierarchical processing model of WM and may have significant implications for WM training.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Psychology and Behavioral Science, Zhejiang University, 148 Tianmushan Road, Xihu District, Hangzhou, 310007, China
| | - Conghui Su
- Department of Psychology and Behavioral Science, Zhejiang University, 148 Tianmushan Road, Xihu District, Hangzhou, 310007, China
| | - Jinglan Wu
- Department of Psychology and Behavioral Science, Zhejiang University, 148 Tianmushan Road, Xihu District, Hangzhou, 310007, China
| | - Jiaofeng Li
- Department of Psychology and Behavioral Science, Zhejiang University, 148 Tianmushan Road, Xihu District, Hangzhou, 310007, China
| | - Xiqian Lu
- Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100000, China
| | - Liangyu Gong
- Department of Psychology and Behavioral Science, Zhejiang University, 148 Tianmushan Road, Xihu District, Hangzhou, 310007, China
| | - Fengji Geng
- Department of Curriculum and Learning Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou 310027, China
| | - Zaifeng Gao
- Department of Psychology and Behavioral Science, Zhejiang University, 148 Tianmushan Road, Xihu District, Hangzhou, 310007, China
| | - Yuzheng Hu
- Department of Psychology and Behavioral Science, Zhejiang University, 148 Tianmushan Road, Xihu District, Hangzhou, 310007, China
| |
Collapse
|
34
|
Foundations of human spatial problem solving. Sci Rep 2023; 13:1485. [PMID: 36707649 PMCID: PMC9883268 DOI: 10.1038/s41598-023-28834-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
Despite great strides in both machine learning and neuroscience, we do not know how the human brain solves problems in the general sense. We approach this question by drawing on the framework of engineering control theory. We demonstrate a computational neural model with only localist learning laws that is able to find solutions to arbitrary problems. The model and humans perform a multi-step task with arbitrary and changing starting and desired ending states. Using a combination of computational neural modeling, human fMRI, and representational similarity analysis, we show here that the roles of a number of brain regions can be reinterpreted as interacting mechanisms of a control theoretic system. The results suggest a new set of functional perspectives on the orbitofrontal cortex, hippocampus, basal ganglia, anterior temporal lobe, lateral prefrontal cortex, and visual cortex, as well as a new path toward artificial general intelligence.
Collapse
|
35
|
Miller JA, Tambini A, Kiyonaga A, D'Esposito M. Long-term learning transforms prefrontal cortex representations during working memory. Neuron 2022; 110:3805-3819.e6. [PMID: 36240768 PMCID: PMC9768795 DOI: 10.1016/j.neuron.2022.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/28/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
The role of the lateral prefrontal cortex (lPFC) in working memory (WM) is debated. Non-human primate (NHP) electrophysiology shows that the lPFC stores WM representations, but human neuroimaging suggests that the lPFC controls WM content in sensory cortices. These accounts are confounded by differences in task training and stimulus exposure. We tested whether long-term training alters lPFC function by densely sampling WM activity using functional MRI. Over 3 months, participants trained on both a WM and serial reaction time (SRT) task, wherein fractal stimuli were embedded within sequences. WM performance improved for trained (but not novel) fractals and, neurally, delay activity increased in distributed lPFC voxels across learning. Item-level WM representations became detectable within lPFC patterns, and lPFC activity reflected sequence relationships from the SRT task. These findings demonstrate that human lPFC develops stimulus-selective responses with learning, and WM representations are shaped by long-term experience, which could reconcile competing accounts of WM functioning.
Collapse
Affiliation(s)
- Jacob A Miller
- Wu Tsai Institute, Department of Psychiatry, Yale University, New Haven, CT, USA.
| | - Arielle Tambini
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Anastasia Kiyonaga
- Department of Cognitive Science, University of California, San Diego, CA, USA
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA; Department of Psychology, University of California, Berkeley, CA, USA
| |
Collapse
|
36
|
Teng C, Fulvio JM, Jiang J, Postle BR. Flexible top-down control in the interaction between working memory and perception. J Vis 2022; 22:3. [PMID: 36205937 PMCID: PMC9578544 DOI: 10.1167/jov.22.11.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Successful goal-directed behavior often requires continuous sensory processing while simultaneously maintaining task-related information in working memory (WM). Although WM and perception are known to interact, little is known about how their interactions are controlled. Here, we tested the hypothesis that WM perception interactions engage two distinct modes of control – proactive and reactive – in a manner similar to classic conflict-adaptation tasks (e.g. Stroop, flanker, and Simon). Participants performed a delayed recall-of-orientation WM task, plus a standalone visual discrimination-of-orientation task the occurred during the delay period, and with the congruity in orientation between the tasks manipulated. Proactive control was seen in the sensitivity of task performance to the previous trial's congruity (i.e. a Gratton effect). Reactive control was observed in a repulsive serial-dependence produced by incongruent discriminanda. Quantitatively, these effects were explained by parameters from a reinforcement learning-based model that tracks trial-to-trial fluctuations in control demand: reactive control by a phasic control prediction error (control PE), and proactive control by a tonic level of predicted conflict updated each trial by the control PE. Thus, WM-perception interactions may be controlled by the same mechanisms that govern conflict in other domains of cognition, such as response selection.
Collapse
Affiliation(s)
- Chunyue Teng
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.,
| | - Jacqueline M Fulvio
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA.,
| | - Jiefeng Jiang
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA.,
| | - Bradley R Postle
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.,Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA.,
| |
Collapse
|
37
|
Dynamic and stable population coding of attentional instructions coexist in the prefrontal cortex. Proc Natl Acad Sci U S A 2022; 119:e2202564119. [PMID: 36161937 DOI: 10.1073/pnas.2202564119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A large body of recent work suggests that neural representations in prefrontal cortex (PFC) are changing over time to adapt to task demands. However, it remains unclear whether and how such dynamic coding schemes depend on the encoded variable and are influenced by anatomical constraints. Using a cued attention task and multivariate classification methods, we show that neuronal ensembles in PFC encode and retain in working memory spatial and color attentional instructions in an anatomically specific manner. Spatial instructions could be decoded both from the frontal eye field (FEF) and the ventrolateral PFC (vlPFC) population, albeit more robustly from FEF, whereas color instructions were decoded more robustly from vlPFC. Decoding spatial and color information from vlPFC activity in the high-dimensional state space indicated stronger dynamics for color, across the cue presentation and memory periods. The change in the color code was largely due to rapid changes in the network state during the transition to the delay period. However, we found that dynamic vlPFC activity contained time-invariant color information within a low-dimensional subspace of neural activity that allowed for stable decoding of color across time. Furthermore, spatial attention influenced decoding of stimuli features profoundly in vlPFC, but less so in visual area V4. Overall, our results suggest that dynamic population coding of attentional instructions within PFC is shaped by anatomical constraints and can coexist with stable subspace coding that allows time-invariant decoding of information about the future target.
Collapse
|
38
|
Henderson MM, Rademaker RL, Serences JT. Flexible utilization of spatial- and motor-based codes for the storage of visuo-spatial information. eLife 2022; 11:e75688. [PMID: 35522567 PMCID: PMC9075954 DOI: 10.7554/elife.75688] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/24/2022] [Indexed: 01/26/2023] Open
Abstract
Working memory provides flexible storage of information in service of upcoming behavioral goals. Some models propose specific fixed loci and mechanisms for the storage of visual information in working memory, such as sustained spiking in parietal and prefrontal cortex during working memory maintenance. An alternative view is that information can be remembered in a flexible format that best suits current behavioral goals. For example, remembered visual information might be stored in sensory areas for easier comparison to future sensory inputs, or might be re-coded into a more abstract action-oriented format and stored in motor areas. Here, we tested this hypothesis using a visuo-spatial working memory task where the required behavioral response was either known or unknown during the memory delay period. Using functional magnetic resonance imaging (fMRI) and multivariate decoding, we found that there was less information about remembered spatial position in early visual and parietal regions when the required response was known versus unknown. Furthermore, a representation of the planned motor action emerged in primary somatosensory, primary motor, and premotor cortex during the same task condition where spatial information was reduced in early visual cortex. These results suggest that the neural networks supporting working memory can be strategically reconfigured depending on specific behavioral requirements during a canonical visual working memory paradigm.
Collapse
Affiliation(s)
- Margaret M Henderson
- Neurosciences Graduate Program, University of California, San DiegoSan DiegoUnited States
- Department of Machine Learning, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburghUnited States
| | - Rosanne L Rademaker
- Department of Psychology, University of California, San DiegoSan DiegoUnited States
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
| | - John T Serences
- Neurosciences Graduate Program, University of California, San DiegoSan DiegoUnited States
- Department of Psychology, University of California, San DiegoSan DiegoUnited States
- Kavli Foundation for the Brain and Mind, University of California, San DiegoSan DiegoUnited States
| |
Collapse
|
39
|
Woźniak M, Schmidt TT, Wu Y, Blankenburg F, Hohwy J. Differences in working memory coding of biological motion attributed to oneself and others. Hum Brain Mapp 2022; 43:3721-3734. [PMID: 35466500 PMCID: PMC9294297 DOI: 10.1002/hbm.25879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/05/2022] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
The question how the brain distinguishes between information about self and others is of fundamental interest to both philosophy and neuroscience. In this functional magnetic resonance imaging (fMRI) study, we sought to distinguish the neural substrates of representing a full‐body movement as one's movement and as someone else's movement. Participants performed a delayed match‐to‐sample working memory task where a retained full‐body movement (displayed using point‐light walkers) was arbitrarily labeled as one's own movement or as performed by someone else. By using arbitrary associations we aimed to address a limitation of previous studies, namely that our own movements are more familiar to us than movements of other people. A searchlight multivariate decoding analysis was used to test where information about types of movement and about self‐association was coded. Movement specific activation patterns were found in a network of regions also involved in perceptual processing of movement stimuli, however not in early sensory regions. Information about whether a memorized movement was associated with the self or with another person was found to be coded by activity in the left middle frontal gyrus (MFG), left inferior frontal gyrus (IFG), bilateral supplementary motor area, and (at reduced threshold) in the left temporoparietal junction (TPJ). These areas are frequently reported as involved in action understanding (IFG, MFG) and domain‐general self/other distinction (TPJ). Finally, in univariate analysis we found that selecting a self‐associated movement for retention was related to increased activity in the ventral medial prefrontal cortex.
Collapse
Affiliation(s)
- Mateusz Woźniak
- Cognition and Philosophy Lab, Department of Philosophy Monash University Melbourne Australia
- Social Mind and Body Research Group, Department of Cognitive Science Central European University Vienna Austria
- Neurocomputation and Neuroimaging Unit (NNU), Department of Education and Psychology Freie Universität Berlin Berlin Germany
| | - Timo Torsten Schmidt
- Neurocomputation and Neuroimaging Unit (NNU), Department of Education and Psychology Freie Universität Berlin Berlin Germany
| | - Yuan‐hao Wu
- Neurocomputation and Neuroimaging Unit (NNU), Department of Education and Psychology Freie Universität Berlin Berlin Germany
| | - Felix Blankenburg
- Neurocomputation and Neuroimaging Unit (NNU), Department of Education and Psychology Freie Universität Berlin Berlin Germany
| | - Jakob Hohwy
- Cognition and Philosophy Lab, Department of Philosophy Monash University Melbourne Australia
- Monash Centre for Consciousness & Contemplative Studies Monash University Melbourne Australia
| |
Collapse
|
40
|
Abstract
The prefrontal cortex is a well-studied but, in terms of understanding what it is for, deeply divisive part of the brain located at the front of the head. Perhaps the least controversial feature of the prefrontal cortex is its complexity. The prefrontal cortex is anatomically, functionally, and computationally complex. It is anatomically complex, containing a number of subregions each sending and receiving projections to a unique set of other cortical and subcortical areas. This interconnectivity presents a serious challenge to efforts to localize function to prefrontal cortex, because it can seem as though information flows everywhere all at once in prefrontal networks. Perhaps as a result, prefrontal cortex is also computationally complex: working memory, abstraction, sensory attention, value-based decision making, planning, and motor control are all functions that have been attributed to the prefrontal cortex. This diversity of functions is likely to reflect the diversity of brain regions that prefrontal cortex communicates with while carrying out the computations it performs to influence behavior.
Collapse
|
41
|
Lim SJ, Thiel C, Sehm B, Deserno L, Lepsien J, Obleser J. Distributed networks for auditory memory differentially contribute to recall precision. Neuroimage 2022; 256:119227. [PMID: 35452804 DOI: 10.1016/j.neuroimage.2022.119227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/13/2022] [Accepted: 04/17/2022] [Indexed: 11/25/2022] Open
Abstract
Re-directing attention to objects in working memory can enhance their representational fidelity. However, how this attentional enhancement of memory representations is implemented across distinct, sensory and cognitive-control brain network is unspecified. The present fMRI experiment leverages psychophysical modelling and multivariate auditory-pattern decoding as behavioral and neural proxies of mnemonic fidelity. Listeners performed an auditory syllable pitch-discrimination task and received retro-active cues to selectively attend to a to-be-probed syllable in memory. Accompanied by increased neural activation in fronto-parietal and cingulo-opercular networks, valid retro-cues yielded faster and more perceptually sensitive responses in recalling acoustic detail of memorized syllables. Information about the cued auditory object was decodable from hemodynamic response patterns in superior temporal sulcus (STS), fronto-parietal, and sensorimotor regions. However, among these regions retaining auditory memory objects, neural fidelity in the left STS and its enhancement through attention-to-memory best predicted individuals' gain in auditory memory recall precision. Our results demonstrate how functionally discrete brain regions differentially contribute to the attentional enhancement of memory representations.
Collapse
Affiliation(s)
- Sung-Joo Lim
- Department of Psychology, University of Lübeck, Maria-Goeppert-Str. 9a, Lübeck 23562, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany; Department of Psychology, Binghamton University, State University of New York, 4400 Vestal Parkway E, Vestal, Binghamton, NY 13902, USA; Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, USA.
| | - Christiane Thiel
- Department of Psychology, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
| | - Bernhard Sehm
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Lorenz Deserno
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Jöran Lepsien
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Maria-Goeppert-Str. 9a, Lübeck 23562, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany; Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck 23562, Germany.
| |
Collapse
|
42
|
Delay activity during visual working memory: A meta-analysis of 30 fMRI experiments. Neuroimage 2022; 255:119204. [PMID: 35427771 DOI: 10.1016/j.neuroimage.2022.119204] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 01/22/2023] Open
Abstract
Visual working memory refers to the temporary maintenance and manipulation of task-related visual information. Recent debate on the underlying neural substrates of visual working memory has focused on the delay period of relevant tasks. Persistent neural activity throughout the delay period has been recognized as a correlate of working memory, yet regions demonstrating sustained hemodynamic responses show inconsistency across individual studies. To develop a more precise understanding of delay-period activations during visual working memory, we conducted a coordinate-based meta-analysis on 30 fMRI experiments involving 515 healthy adults with a mean age of 25.65 years. The main analysis revealed a widespread frontoparietal network associated with delay-period activity, as well as activation in the right inferior temporal cortex. These findings were replicated using different meta-analytical algorithms and were shown to be robust against between-study heterogeneity and publication bias. Further meta-analyses on different subgroups of experiments with specific task demands and stimulus types revealed similar delay-period networks, with activations distributed across the frontal and parietal cortices. The roles of prefrontal regions, posterior parietal regions, and inferior temporal areas are reviewed and discussed in the context of content-specific storage. We conclude that cognitive operations that occur during the unfilled delay period in visual working memory tasks can be flexibly expressed across a frontoparietal-temporal network depending on experimental parameters.
Collapse
|
43
|
Derbie AY, Dejenie MA. Intra Parietal Sulcus Area 1–2 and Angular Gyrus Differentiates Visual Short-Term Memory and Sustained Attention Activities. Ann Neurosci 2022; 29:166-169. [PMID: 36419519 PMCID: PMC9676340 DOI: 10.1177/09727531211072301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 11/28/2022] Open
Abstract
Background: Visual short-term memory (VSTM) and attention were found to modulate neural activity predominantly in a superior parietal lobule. This is thought to be the selective attention importance for encoding and manipulation in VSTM. The major area of investigation mainly rested with the differences in the neural substrates and networks mediating these cognitive processes in near and far cortical structures. Summary: Based on previous investigations, the dynamic temporal window route of attention and time locked associated cognitive processes and sub-processes are sketched and its implication in VSTM study is discussed. Imaging cortical structures to isolate closely linked cognitive tasks require circumscribing to certain time-windows in which the paradigm should support to tap time-locked associated processes and sub-processes. Key Messages: The neural activities in intraparietal sulcus area 1–2 and angular gyrus during VSTM encoding are beyond the modulatory effects of selective and sustained attention.
Collapse
Affiliation(s)
- Abiot Y. Derbie
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
- Department of Psychology, Bahir Dar University, Bahir Dar, Ethiopia
| | | |
Collapse
|
44
|
Kwak Y, Curtis CE. Unveiling the abstract format of mnemonic representations. Neuron 2022; 110:1822-1828.e5. [PMID: 35395195 DOI: 10.1016/j.neuron.2022.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/03/2022] [Accepted: 03/11/2022] [Indexed: 01/12/2023]
Abstract
Working memory (WM) enables information storage for future use, bridging the gap between perception and behavior. We hypothesize that WM representations are abstractions of low-level perceptual features. However, the neural nature of these putative abstract representations has thus far remained impenetrable. Here, we demonstrate that distinct visual stimuli (oriented gratings and moving dots) are flexibly recoded into the same WM format in visual and parietal cortices when that representation is useful for memory-guided behavior. Specifically, the behaviorally relevant features of the stimuli (orientation and direction) were extracted and recoded into a shared mnemonic format that takes the form of an abstract line-like pattern. We conclude that mnemonic representations are abstractions of percepts that are more efficient than and proximal to the behaviors they guide.
Collapse
Affiliation(s)
- Yuna Kwak
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Clayton E Curtis
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
45
|
Yoo AH, Bolaños A, Hallenbeck GE, Rahmati M, Sprague TC, Curtis CE. Behavioral Prioritization Enhances Working Memory Precision and Neural Population Gain. J Cogn Neurosci 2022; 34:365-379. [PMID: 34942647 PMCID: PMC9017245 DOI: 10.1162/jocn_a_01804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Humans allocate visual working memory (WM) resource according to behavioral relevance, resulting in more precise memories for more important items. Theoretically, items may be maintained by feature-tuned neural populations, where the relative gain of the populations encoding each item determines precision. To test this hypothesis, we compared the amplitudes of delay period activity in the different parts of retinotopic maps representing each of several WM items, predicting the amplitudes would track behavioral priority. Using fMRI, we scanned participants while they remembered the location of multiple items over a WM delay and then reported the location of one probed item using a memory-guided saccade. Importantly, items were not equally probable to be probed (0.6, 0.3, 0.1, 0.0), which was indicated with a precue. We analyzed fMRI activity in 10 visual field maps in occipital, parietal, and frontal cortex known to be important for visual WM. In early visual cortex, but not association cortex, the amplitude of BOLD activation within voxels corresponding to the retinotopic location of visual WM items increased with the priority of the item. Interestingly, these results were contrasted with a common finding that higher-level brain regions had greater delay period activity, demonstrating a dissociation between the absolute amount of activity in a brain area and the activity of different spatially selective populations within it. These results suggest that the distribution of WM resources according to priority sculpts the relative gains of neural populations that encode items, offering a neural mechanism for how prioritization impacts memory precision.
Collapse
|
46
|
Yue Q, Martin RC. Components of language processing and their long-term and working memory storage in the brain. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:109-126. [PMID: 35964966 DOI: 10.1016/b978-0-12-823493-8.00002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There is a consensus that the temporal lobes are involved in representing various types of information critical for language processing, including phonological (i.e., speech sound), semantic (meaning), and orthographic (spelling) representations. An important question is whether the same regions that represent our long-term knowledge of phonology, semantics, and orthography are used to support the maintenance of these types of information in working memory (WM) (for instance, maintaining semantic information during sentence comprehension), or whether regions outside the temporal lobes provide the neural basis for WM maintenance in these domains. This review focuses on the issue of whether temporal lobe regions support WM for phonological information, with a brief discussion of related findings in the semantic and orthographic domains. Across all three domains, evidence from lesion-symptom mapping and functional neuroimaging indicates that parietal or frontal regions are critical for supporting WM, with different regions supporting WM in the three domains. The distinct regions in different domains argue against these regions as playing a general attentional role. The findings imply an interaction between the temporal lobe regions housing the long-term memory representations in these domains and the frontal and parietal regions needed to maintain these representations over time.
Collapse
Affiliation(s)
- Qiuhai Yue
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| | - Randi C Martin
- Department of Psychological Sciences, Rice University, Houston, TX, United States.
| |
Collapse
|
47
|
Yoo AH, Collins AGE. How Working Memory and Reinforcement Learning Are Intertwined: A Cognitive, Neural, and Computational Perspective. J Cogn Neurosci 2021; 34:551-568. [PMID: 34942642 DOI: 10.1162/jocn_a_01808] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Reinforcement learning and working memory are two core processes of human cognition and are often considered cognitively, neuroscientifically, and algorithmically distinct. Here, we show that the brain networks that support them actually overlap significantly and that they are less distinct cognitive processes than often assumed. We review literature demonstrating the benefits of considering each process to explain properties of the other and highlight recent work investigating their more complex interactions. We discuss how future research in both computational and cognitive sciences can benefit from one another, suggesting that a key missing piece for artificial agents to learn to behave with more human-like efficiency is taking working memory's role in learning seriously. This review highlights the risks of neglecting the interplay between different processes when studying human behavior (in particular when considering individual differences). We emphasize the importance of investigating these dynamics to build a comprehensive understanding of human cognition.
Collapse
|
48
|
Li HH, Sprague TC, Yoo AH, Ma WJ, Curtis CE. Joint representation of working memory and uncertainty in human cortex. Neuron 2021; 109:3699-3712.e6. [PMID: 34525327 PMCID: PMC8602749 DOI: 10.1016/j.neuron.2021.08.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/09/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Neural representations of visual working memory (VWM) are noisy, and thus, decisions based on VWM are inevitably subject to uncertainty. However, the mechanisms by which the brain simultaneously represents the content and uncertainty of memory remain largely unknown. Here, inspired by the theory of probabilistic population codes, we test the hypothesis that the human brain represents an item maintained in VWM as a probability distribution over stimulus feature space, thereby capturing both its content and uncertainty. We used a neural generative model to decode probability distributions over memorized locations from fMRI activation patterns. We found that the mean of the probability distribution decoded from retinotopic cortical areas predicted memory reports on a trial-by-trial basis. Moreover, in several of the same mid-dorsal stream areas, the spread of the distribution predicted subjective trial-by-trial uncertainty judgments. These results provide evidence that VWM content and uncertainty are jointly represented by probabilistic neural codes.
Collapse
Affiliation(s)
- Hsin-Hung Li
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Thomas C Sprague
- Department of Psychology, New York University, New York, NY 10003, USA; Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
| | - Aspen H Yoo
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Wei Ji Ma
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Clayton E Curtis
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
49
|
Disrupting Short-Term Memory Maintenance in Premotor Cortex Affects Serial Dependence in Visuomotor Integration. J Neurosci 2021; 41:9392-9402. [PMID: 34607968 DOI: 10.1523/jneurosci.0380-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 11/21/2022] Open
Abstract
Human behavior is biased by past experience. For example, when intercepting a moving target, the speed of previous targets will bias responses in future trials. Neural mechanisms underlying this so-called serial dependence are still under debate. Here, we tested the hypothesis that the previous trial leaves a neural trace in brain regions associated with encoding task-relevant information in visual and/or motor regions. We reasoned that injecting noise by means of transcranial magnetic stimulation (TMS) over premotor and visual areas would degrade such memory traces and hence reduce serial dependence. To test this hypothesis, we applied bursts of TMS pulses to right visual motion processing region hV5/MT+ and to left dorsal premotor cortex (PMd) during intertrial intervals of a coincident timing task performed by twenty healthy human participants (15 female). Without TMS, participants presented a bias toward the speed of the previous trial when intercepting moving targets. TMS over PMd decreased serial dependence in comparison to the control Vertex stimulation, whereas TMS applied over hV5/MT+ did not. In addition, TMS seems to have specifically affected the memory trace that leads to serial dependence, as we found no evidence that participants' behavior worsened after applying TMS. These results provide causal evidence that an implicit short-term memory mechanism in premotor cortex keeps information from one trial to the next, and that this information is blended with current trial information so that it biases behavior in a visuomotor integration task with moving objects.SIGNIFICANCE STATEMENT Human perception and action are biased by the recent past. The origin of such serial bias is still not fully understood, but a few components seem to be fundamental for its emergence: the brain needs to keep previous trial information in short-term memory and blend it with incoming information. Here, we present evidence that a premotor area has a potential role in storing previous trial information in short-term memory in a visuomotor task and that this information is responsible for biasing ongoing behavior. These results corroborate the perspective that areas associated with processing information of a stimulus or task also participate in maintaining that information in short-term memory even when this information is no longer relevant for current behavior.
Collapse
|
50
|
Keogh R, Wicken M, Pearson J. Visual working memory in aphantasia: Retained accuracy and capacity with a different strategy. Cortex 2021; 143:237-253. [PMID: 34482017 DOI: 10.1016/j.cortex.2021.07.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/17/2021] [Accepted: 07/16/2021] [Indexed: 11/28/2022]
Abstract
Visual working memory paradigms involve retaining and manipulating visual information in mind over a period of seconds. Evidence suggests that visual imagery (sensory recruitment) is a strategy used by many to retain visual information during such tasks, leading some researchers to propose that visual imagery and visual working memory may be one and the same. If visual imagery is essential to visual working memory task performance there should be large ramifications for a special population of individuals who do not experience visual imagery, aphantasia. Here we assessed visual working memory task performance in this population using a number of different lab and clinical working memory tasks. We found no differences in capacity limits for visual, general number or spatial working memory for aphantasic individuals compared to controls. Further, aphantasic individuals showed no significant differences in performance on visual components of clinical working memory tests as compared to verbal components. However, there were significant differences in the reported strategies used by aphantasic individuals across all memory tasks. Additionally, aphantasic individual's visual memory accuracy did not demonstrate a significant oblique orientation effect, which is proposed to occur due to sensory recruitment, further supporting their non-visual imagery strategy reports. Taken together these data demonstrate that aphantasic individuals are not impaired on visual working memory tasks, suggesting visual imagery and working memory are not one and the same, with imagery (and sensory recruitment) being just one of the tools that can be used to solve visual working memory tasks.
Collapse
Affiliation(s)
- Rebecca Keogh
- University of New South Wales, School of Psychology, Australia; Macquarie University, Department of Cognitive Sciences, Australia.
| | - Marcus Wicken
- University of New South Wales, School of Psychology, Australia
| | - Joel Pearson
- University of New South Wales, School of Psychology, Australia
| |
Collapse
|