1
|
Slater CR. Neuromuscular Transmission in a Biological Context. Compr Physiol 2024; 14:5641-5702. [PMID: 39382166 DOI: 10.1002/cphy.c240001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Neuromuscular transmission is the process by which motor neurons activate muscle contraction and thus plays an essential role in generating the purposeful body movements that aid survival. While many features of this process are common throughout the Animal Kingdom, such as the release of transmitter in multimolecular "quanta," and the response to it by opening ligand-gated postsynaptic ion channels, there is also much diversity between and within species. Much of this diversity is associated with specialization for either slow, sustained movements such as maintain posture or fast but brief movements used during escape or prey capture. In invertebrates, with hydrostatic and exoskeletons, most motor neurons evoke graded depolarizations of the muscle which cause graded muscle contractions. By contrast, vertebrate motor neurons trigger action potentials in the muscle fibers which give rise to all-or-none contractions. The properties of neuromuscular transmission, in particular the intensity and persistence of transmitter release, reflect these differences. Neuromuscular transmission varies both between and within individual animals, which often have distinct tonic and phasic subsystems. Adaptive plasticity of neuromuscular transmission, on a range of time scales, occurs in many species. This article describes the main steps in neuromuscular transmission and how they vary in a number of "model" species, including C. elegans , Drosophila , zebrafish, mice, and humans. © 2024 American Physiological Society. Compr Physiol 14:5641-5702, 2024.
Collapse
|
2
|
Winther JB, Morgen JJ, Skov M, Broch-Lips MG, Nielsen OB, Overgaard K, Pedersen TH. Role of recovery of acetylcholine release in compromised neuromuscular junction function. Neuromuscul Disord 2024; 36:48-59. [PMID: 38359767 DOI: 10.1016/j.nmd.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Abstract
Everyday physical activities, such as walking, are enabled by repeated skeletal muscle contractions and require a well-functioning neuromuscular transmission. In myasthenic disorders, activities of daily living are debilitated by a compromised neuromuscular transmission leading to muscle weakness and fatiguability in patients. To enable physical activity, acetylcholine (ACh) is released repeatedly from the motor nerve, however, the role of the nerve terminals' capacity to sustain ACh release to support repetitive contractions under compromised neuromuscular transmission remains unclear. To explore this, we studied synaptic and contractile function during repeated contractions in healthy rat skeletal muscles under conditions of pharmacological induced compromised neuromuscular transmission. Using recordings of endplate potentials, compound muscle action potential (CMAP) and force production in isolated skeletal muscles and living, anesthetized animals, we found that force and CMAP were markedly reduced by even very light activity performed up to 5 s prior to contraction showing that recovery of ACh release was insufficient to maintain synaptic transmission strength. Our results suggest that the timing of depletion and restoration of ACh release may impact clinical signs of weakness and fatigability in patients with impaired neuromuscular transmission and affect the sensitivity of electromyographic recordings in the clinic.
Collapse
Affiliation(s)
| | | | - Martin Skov
- NMD Pharma A/S, Palle Juul-Jensens Blvd. 82, 8200 Aarhus N, Denmark
| | | | - Ole Bækgaard Nielsen
- Department of Public Health, Aarhus University, Bartholins Allé 2, 8000 Aarhus C, Denmark
| | - Kristian Overgaard
- Department of Public Health, Aarhus University, Bartholins Allé 2, 8000 Aarhus C, Denmark
| | - Thomas Holm Pedersen
- NMD Pharma A/S, Palle Juul-Jensens Blvd. 82, 8200 Aarhus N, Denmark; Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus C, Denmark.
| |
Collapse
|
3
|
Lloyd EM, Pinniger GJ, Murphy RM, Grounds MD. Slow or fast: Implications of myofibre type and associated differences for manifestation of neuromuscular disorders. Acta Physiol (Oxf) 2023; 238:e14012. [PMID: 37306196 DOI: 10.1111/apha.14012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Many neuromuscular disorders can have a differential impact on a specific myofibre type, forming the central premise of this review. The many different skeletal muscles in mammals contain a spectrum of slow- to fast-twitch myofibres with varying levels of protein isoforms that determine their distinctive contractile, metabolic, and other properties. The variations in functional properties across the range of classic 'slow' to 'fast' myofibres are outlined, combined with exemplars of the predominantly slow-twitch soleus and fast-twitch extensor digitorum longus muscles, species comparisons, and techniques used to study these properties. Other intrinsic and extrinsic differences are discussed in the context of slow and fast myofibres. These include inherent susceptibility to damage, myonecrosis, and regeneration, plus extrinsic nerves, extracellular matrix, and vasculature, examined in the context of growth, ageing, metabolic syndrome, and sexual dimorphism. These many differences emphasise the importance of carefully considering the influence of myofibre-type composition on manifestation of various neuromuscular disorders across the lifespan for both sexes. Equally, understanding the different responses of slow and fast myofibres due to intrinsic and extrinsic factors can provide deep insight into the precise molecular mechanisms that initiate and exacerbate various neuromuscular disorders. This focus on the influence of different myofibre types is of fundamental importance to enhance translation for clinical management and therapies for many skeletal muscle disorders.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Gavin J Pinniger
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
4
|
Mantilla CB, Ermilov LG, Greising SM, Gransee HM, Zhan WZ, Sieck GC. Electrophysiological effects of BDNF and TrkB signaling at type-identified diaphragm neuromuscular junctions. J Neurophysiol 2023; 129:781-792. [PMID: 36883761 PMCID: PMC10069962 DOI: 10.1152/jn.00015.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Previous studies show that synaptic quantal release decreases during repetitive stimulation, i.e., synaptic depression. Neurotrophin brain-derived neurotrophic factor (BDNF) enhances neuromuscular transmission via activation of tropomyosin-related kinase receptor B (TrkB). We hypothesized that BDNF mitigates synaptic depression at the neuromuscular junction and that the effect is more pronounced at type IIx and/or IIb fibers compared to type I or IIa fibers given the more rapid reduction in docked synaptic vesicles with repetitive stimulation. Rat phrenic nerve-diaphragm muscle preparations were used to determine the effect of BDNF on synaptic quantal release during repetitive stimulation at 50 Hz. An ∼40% decline in quantal release was observed during each 330-ms duration train of nerve stimulation (intratrain synaptic depression), and this intratrain decline was observed across repetitive trains (20 trains at 1/s repeated every 5 min for 30 min for 6 sets). BDNF treatment significantly enhanced quantal release at all fiber types (P < 0.001). BDNF treatment did not change release probability within a stimulation set but enhanced synaptic vesicle replenishment between sets. In agreement, synaptic vesicle cycling (measured using FM4-64 fluorescence uptake) was increased following BDNF [or neurotrophin-4 (NT-4)] treatment (∼40%; P < 0.05). Conversely, inhibiting BDNF/TrkB signaling with the tyrosine kinase inhibitor K252a and TrkB-IgG (which quenches endogenous BDNF or NT-4) decreased FM4-64 uptake (∼34% across fiber types; P < 0.05). The effects of BDNF were generally similar across all fiber types. We conclude that BDNF/TrkB signaling acutely enhances presynaptic quantal release and thereby may serve to mitigate synaptic depression and maintain neuromuscular transmission during repetitive activation.NEW & NOTEWORTHY Neurotrophin brain-derived neurotrophic factor (BDNF) enhances neuromuscular transmission via activation of tropomyosin-related kinase receptor B (TrkB). Rat phrenic nerve-diaphragm muscle preparations were used to determine the rapid effect of BDNF on synaptic quantal release during repetitive stimulation. BDNF treatment significantly enhanced quantal release at all fiber types. BDNF increased synaptic vesicle cycling (measured using FM4-64 fluorescence uptake); conversely, inhibiting BDNF/TrkB signaling decreased FM4-64 uptake.
Collapse
Affiliation(s)
- Carlos B Mantilla
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Leonid G Ermilov
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Sarah M Greising
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Heather M Gransee
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Wen-Zhi Zhan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Gary C Sieck
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
5
|
Dmitrieva SA, Vologin SG, Tsentsevitsky AN, Arkhipov AY, Khuzakhmetova VF, Sibgatullina GV, Bukharaeva EA. Sympathetic Innervation and Endogenous Catecholamines in Neuromuscular Preparations of Muscles with Different Functional Profiles. BIOCHEMISTRY (MOSCOW) 2023; 88:364-373. [PMID: 37076283 DOI: 10.1134/s0006297923030069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Influence of the sympathetic nervous system on the work of skeletal muscles contractile apparatus is now beyond doubt. However, until recently there was no evidence that the endings of sympathetic nerves can be located in close proximity to the neuromuscular synapses, and there is also no reliable data on how much endogenous adrenaline and noradrenaline can be contained near the synaptic contact in skeletal muscles. In this research, using fluorescent analysis, immunohistochemical and enzyme immunoassays the isolated neuromuscular preparations of three skeletal muscles of different functional profiles and containing different types of muscle fibers were examined. Close contact between the sympathetic and motor cholinergic nerve endings and the presence of tyrosine hydroxylase in this area were demonstrated. Concentrations of endogenous adrenaline and noradrenaline in the solution perfusing the neuromuscular preparation were determined under different modes of its functioning. The effects of α and β adrenoreceptor blockers on the processes of acetylcholine quantal secretion from the motor nerve endings were compared. The data obtained provide evidence for the presence of endogenous catecholamines in the neuromuscular junction region and their role in modulation of the synaptic function.
Collapse
Affiliation(s)
- Svetlana A Dmitrieva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420111, Russia
| | - Semyon G Vologin
- Tatar Research Institute of Agriculture, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420059, Russia
| | - Andrei N Tsentsevitsky
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420111, Russia
| | - Arsenii Yu Arkhipov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420111, Russia
| | - Venera F Khuzakhmetova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420111, Russia
| | - Guzel V Sibgatullina
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420111, Russia
| | - Ellya A Bukharaeva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Kazan, 420111, Russia.
| |
Collapse
|
6
|
Just-Borràs L, Cilleros-Mañé V, Polishchuk A, Balanyà-Segura M, Tomàs M, Garcia N, Tomàs J, Lanuza MA. TrkB signaling is correlated with muscular fatigue resistance and less vulnerability to neurodegeneration. Front Mol Neurosci 2022; 15:1069940. [PMID: 36618825 PMCID: PMC9813967 DOI: 10.3389/fnmol.2022.1069940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
At the neuromuscular junction (NMJ), motor neurons and myocytes maintain a bidirectional communication that guarantees adequate functionality. Thus, motor neurons' firing pattern, which is influenced by retrograde muscle-derived neurotrophic factors, modulates myocyte contractibility. Myocytes can be fast-twitch fibers and become easily fatigued or slow-twitch fibers and resistant to fatigue. Extraocular muscles (EOM) show mixed properties that guarantee fast contraction speed and resistance to fatigue and the degeneration caused by Amyotrophic lateral sclerosis (ALS) disease. The TrkB signaling is an activity-dependent pathway implicated in the NMJ well-functioning. Therefore, it could mediate the differences between fast and slow myocytes' resistance to fatigue. The present study elucidates a specific protein expression profile concerning the TrkB signaling that correlates with higher resistance to fatigue and better neuroprotective capacity through time. The results unveil that Extra-ocular muscles (EOM) express lower levels of NT-4 that extend TrkB signaling, differential PKC expression, and a higher abundance of phosphorylated synaptic proteins that correlate with continuous neurotransmission requirements. Furthermore, common molecular features between EOM and slow soleus muscles including higher neurotrophic consumption and classic and novel PKC isoforms balance correlate with better preservation of these two muscles in ALS. Altogether, higher resistance of Soleus and EOM to fatigue and ALS seems to be associated with specific protein levels concerning the TrkB neurotrophic signaling.
Collapse
|
7
|
Davis LA, Fogarty MJ, Brown A, Sieck GC. Structure and Function of the Mammalian Neuromuscular Junction. Compr Physiol 2022; 12:3731-3766. [PMID: 35950651 PMCID: PMC10461538 DOI: 10.1002/cphy.c210022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mammalian neuromuscular junction (NMJ) comprises a presynaptic terminal, a postsynaptic receptor region on the muscle fiber (endplate), and the perisynaptic (terminal) Schwann cell. As with any synapse, the purpose of the NMJ is to transmit signals from the nervous system to muscle fibers. This neural control of muscle fibers is organized as motor units, which display distinct structural and functional phenotypes including differences in pre- and postsynaptic elements of NMJs. Motor units vary considerably in the frequency of their activation (both motor neuron discharge rate and duration/duty cycle), force generation, and susceptibility to fatigue. For earlier and more frequently recruited motor units, the structure and function of the activated NMJs must have high fidelity to ensure consistent activation and continued contractile response to sustain vital motor behaviors (e.g., breathing and postural balance). Similarly, for higher force less frequent behaviors (e.g., coughing and jumping), the structure and function of recruited NMJs must ensure short-term reliable activation but not activation sustained for a prolonged period in which fatigue may occur. The NMJ is highly plastic, changing structurally and functionally throughout the life span from embryonic development to old age. The NMJ also changes under pathological conditions including acute and chronic disease. Such neuroplasticity often varies across motor unit types. © 2022 American Physiological Society. Compr Physiol 12:1-36, 2022.
Collapse
Affiliation(s)
- Leah A. Davis
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew J. Fogarty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Alyssa Brown
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Gary C. Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Petrov AM, Zakirjanova GF, Kovyazina IV, Tsentsevitsky AN, Bukharaeva EA. Adrenergic receptors control frequency-dependent switching of the exocytosis mode between "full-collapse" and "kiss-and-run" in murine motor nerve terminal. Life Sci 2022; 296:120433. [PMID: 35219696 DOI: 10.1016/j.lfs.2022.120433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022]
Abstract
AIMS Neurotransmitter release from the synaptic vesicles can occur through two modes of exocytosis: "full-collapse" or "kiss-and-run". Here we investigated how increasing the nerve activity and pharmacological stimulation of adrenoceptors can influence the mode of exocytosis in the motor nerve terminal. METHODS Recording of endplate potentials with intracellular microelectrodes was used to estimate acetylcholine release. A fluorescent dye FM1-43 and its quenching with sulforhodamine 101 were utilized to visualize synaptic vesicle recycling. KEY FINDINGS An increase in the frequency of stimulation led to a decrease in the rate of FM1-43 unloading despite the higher number of quanta released. High frequency activity promoted neurotransmitter release via the kiss-and-run mechanism. This was confirmed by experiments utilizing (I) FM1-43 dye quencher, that is able to pass into the synaptic vesicle via fusion pore, and (II) loading of FM1-43 by compensatory endocytosis. Noradrenaline and specific α2-adrenoreceptors agonist, dexmedetomidine, controlled the mode of synaptic vesicle recycling at high frequency activity. Their applications favored neurotransmitter release via full-collapse exocytosis rather than the kiss-and-run pathway. SIGNIFICANCE At the diaphragm neuromuscular junctions, neuronal commands are translated into contractions necessary for respiration. During stress, an increase in discharge rate of the phrenic nerve shifts the exocytosis from the full-collapse to the kiss-and-run mode. The stress-related molecule, noradrenaline, restricts neurotransmitter release in response to a high frequency activity, and prevents the shift in the mode of exocytosis through α2-adrenoceptor activation. This may be a component of the mechanism that limits overstimulation of the respiratory system during stress.
Collapse
Affiliation(s)
- Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", Kazan, Russia; Kazan State Medical University, Kazan, Russia.
| | - Guzalia F Zakirjanova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", Kazan, Russia
| | - Irina V Kovyazina
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", Kazan, Russia; Kazan State Medical University, Kazan, Russia
| | - Andrei N Tsentsevitsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", Kazan, Russia
| | - Ellya A Bukharaeva
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", Kazan, Russia
| |
Collapse
|
9
|
Bączyk M, Manuel M, Roselli F, Zytnicki D. Diversity of Mammalian Motoneurons and Motor Units. ADVANCES IN NEUROBIOLOGY 2022; 28:131-150. [PMID: 36066824 DOI: 10.1007/978-3-031-07167-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although they share the common function of controlling muscle fiber contraction, spinal motoneurons display a remarkable diversity. Alpha-motoneurons are the "final common pathway", which relay all the information from spinal and supraspinal centers and allow the organism to interact with the outside world by controlling the contraction of muscle fibers in the muscles. On the other hand, gamma-motoneurons are specialized motoneurons that do not generate force and instead specifically innervate muscle fibers inside muscle spindles, which are proprioceptive organs embedded in the muscles. Beta-motoneurons are hybrid motoneurons that innervate both extrafusal and intrafusal muscle fibers. Even among alpha-motoneurons, there exists an exquisite diversity in terms of motoneuron electrical and molecular properties, physiological and structural properties of their neuromuscular junctions, and molecular and contractile properties of the innervated muscle fibers. This diversity, across species, across muscles, and across muscle fibers in a given muscle, underlie the vast repertoire of movements that one individual can perform.
Collapse
Affiliation(s)
- Marcin Bączyk
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
| | - Marin Manuel
- SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Université de Paris, Paris, France.
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
- Neurozentrum Ulm, Ulm, Germany
| | - Daniel Zytnicki
- SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Université de Paris, Paris, France
| |
Collapse
|
10
|
Colón-Cruz L, Rodriguez-Morales R, Santana-Cruz A, Cantres-Velez J, Torrado-Tapias A, Lin SJ, Yudowski G, Kensler R, Marie B, Burgess SM, Renaud O, Varshney GK, Behra M. Cnr2 Is Important for Ribbon Synapse Maturation and Function in Hair Cells and Photoreceptors. Front Mol Neurosci 2021; 14:624265. [PMID: 33958989 PMCID: PMC8093779 DOI: 10.3389/fnmol.2021.624265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/24/2021] [Indexed: 02/04/2023] Open
Abstract
The role of the cannabinoid receptor 2 (CNR2) is still poorly described in sensory epithelia. We found strong cnr2 expression in hair cells (HCs) of the inner ear and the lateral line (LL), a superficial sensory structure in fish. Next, we demonstrated that sensory synapses in HCs were severely perturbed in larvae lacking cnr2. Appearance and distribution of presynaptic ribbons and calcium channels (Cav1.3) were profoundly altered in mutant animals. Clustering of membrane-associated guanylate kinase (MAGUK) in post-synaptic densities (PSDs) was also heavily affected, suggesting a role for cnr2 for maintaining the sensory synapse. Furthermore, vesicular trafficking in HCs was strongly perturbed suggesting a retrograde action of the endocannabinoid system (ECs) via cnr2 that was modulating HC mechanotransduction. We found similar perturbations in retinal ribbon synapses. Finally, we showed that larval swimming behaviors after sound and light stimulations were significantly different in mutant animals. Thus, we propose that cnr2 is critical for the processing of sensory information in the developing larva.
Collapse
Affiliation(s)
- Luis Colón-Cruz
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Roberto Rodriguez-Morales
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Alexis Santana-Cruz
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Juan Cantres-Velez
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Aranza Torrado-Tapias
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Sheng-Jia Lin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Guillermo Yudowski
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico.,School of Medicine, Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico
| | - Robert Kensler
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Bruno Marie
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico.,School of Medicine, Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico
| | - Shawn M Burgess
- Developmental Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Olivier Renaud
- Cell and Tissue Imaging Facility (PICT-IBiSA, FranceBioImaging), Institut Curie, PSL Research University, U934/UMR3215, Paris, France
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Martine Behra
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
11
|
Aydin O, Zhang X, Nuethong S, Pagan-Diaz GJ, Bashir R, Gazzola M, Saif MTA. Neuromuscular actuation of biohybrid motile bots. Proc Natl Acad Sci U S A 2019; 116:19841-19847. [PMID: 31527266 PMCID: PMC6778261 DOI: 10.1073/pnas.1907051116] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The integration of muscle cells with soft robotics in recent years has led to the development of biohybrid machines capable of untethered locomotion. A major frontier that currently remains unexplored is neuronal actuation and control of such muscle-powered biohybrid machines. As a step toward this goal, we present here a biohybrid swimmer driven by on-board neuromuscular units. The body of the swimmer consists of a free-standing soft scaffold, skeletal muscle tissue, and optogenetic stem cell-derived neural cluster containing motor neurons. Myoblasts embedded in extracellular matrix self-organize into a muscle tissue guided by the geometry of the scaffold, and the resulting muscle tissue is cocultured in situ with a neural cluster. Motor neurons then extend neurites selectively toward the muscle and innervate it, developing functional neuromuscular units. Based on this initial construct, we computationally designed, optimized, and implemented light-sensitive flagellar swimmers actuated by these neuromuscular units. Cyclic muscle contractions, induced by neural stimulation, drive time-irreversible flagellar dynamics, thereby providing thrust for untethered forward locomotion of the swimmer. Overall, this work demonstrates an example of a biohybrid robot implementing neuromuscular actuation and illustrates a path toward the forward design and control of neuron-enabled biohybrid machines.
Collapse
Affiliation(s)
- Onur Aydin
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Xiaotian Zhang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Sittinon Nuethong
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Gelson J Pagan-Diaz
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Rashid Bashir
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Mattia Gazzola
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - M Taher A Saif
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
12
|
Ziganshin AU, Khairullin AE, Teplov AY, Gabdrakhmanov AI, Ziganshina LE, Hoyle CHV, Ziganshin BA, Grishin SN. The effects of ATP on the contractions of rat and mouse fast skeletal muscle. Muscle Nerve 2019; 59:509-516. [PMID: 30677146 DOI: 10.1002/mus.26423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The aim of this study was to compare the effects of adenosine-5'-triphosphate (ATP) and adenosine on the contractility of rodent extensor digitorum longus (EDL) muscle at normal and low temperatures. METHODS Contractions of rat and mouse isolated EDL were induced by either electrical stimulation (ES) or exogenous carbachol and recorded in the presence of ATP or adenosine (both at 100 μM). RESULTS ATP at all temperatures caused a decrease of the contractions induced by carbachol in rat and mouse EDL and ES-induced contractions in rat EDL, while it potentiated the ES-induced contractions of mouse EDL. Adenosine reduced the contractility of rat and mouse EDL evoked by ES and did not affect the carbachol-induced contractions of rat and mouse EDL at any temperature. DISCUSSION Under various temperature conditions, ATP inhibits pre- but potentiates postsynaptic processes in the mouse EDL; in the rat EDL ATP causes only inhibition of neuromuscular conduction. Muscle Nerve 59:509-516, 2019.
Collapse
Affiliation(s)
- Ayrat U Ziganshin
- Department of Pharmacology, Kazan State Medical University, Kazan, Russia
| | - Adel E Khairullin
- Department of Biochemistry, Kazan State Medical University, Kazan, Russia
| | | | - Azat I Gabdrakhmanov
- Research & Education Centre for Evidence-Based Medicine Cochrane Russia, Kazan Federal University, Kazan, Russia
| | - Liliya E Ziganshina
- Research & Education Centre for Evidence-Based Medicine Cochrane Russia, Kazan Federal University, Kazan, Russia
| | - Charles H V Hoyle
- Research & Education Centre for Evidence-Based Medicine Cochrane Russia, Kazan Federal University, Kazan, Russia
| | - Bulat A Ziganshin
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA.,Department of Cardiovascular and Endovascular Surgery, Kazan State Medical University, Kazan, Russia
| | - Sergey N Grishin
- Department of Medical and Biological Physics, Kazan State Medical University, Kazan, Russia
| |
Collapse
|
13
|
Giniatullin A, Petrov A, Giniatullin R. Action of Hydrogen Peroxide on Synaptic Transmission at the Mouse Neuromuscular Junction. Neuroscience 2018; 399:135-145. [PMID: 30593920 DOI: 10.1016/j.neuroscience.2018.12.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/30/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022]
Abstract
Hydrogen peroxide (H2O2) is one of the reactive oxygen species (ROS), endogenously produced during metabolism, which acts as a second messenger. In skeletal muscles, hypoxia- or hyperthermia-induced increase in H2O2 might affect synaptic transmission by targeting the most redox-sensitive presynaptic compartment (Giniatullin et al., 2006). However, the effects of H2O2 as a signal molecule have not previously been studied in different patterns of the synaptic activity. Here, using optical and microelectrode recording of synaptic vesicle exocytosis, we studied the use-dependent action of low concentrations of H2O2 and other oxidants in the mouse neuromuscular junction. We found that: (i) H2O2 at low micromole concentrations inhibited both spontaneous and evoked transmitter releases from the motor nerve terminals in a use-dependent manner, (ii) the antioxidant N-acetylcysteine (NAC) eliminated these depressant effects, (iii) the influence of H2O2 was not associated with lipid oxidation suggesting a pure signaling action, (iv) the intracellular oxidant Chloramine-T or (v) the glutathione depletion produced similar to H2O2 depressant effects. Taken together, our data revealed the effective inhibition of neurotransmitter release by ROS, which was proportional to the intensity of synaptic activity at the neuromuscular junction. The combination of various oxidants suggested an intracellular location for redox-sensitive sites responsible for modulation of the synaptic transmission in the skeletal muscle.
Collapse
Affiliation(s)
| | - Alexey Petrov
- Institute of Neuroscience, Kazan State Medial University, Kazan, Russia; Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Centre "Kazan Scientific Centre of RAS", Kazan, Russia
| | - Rashid Giniatullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
14
|
|
15
|
Rudling JE, Drever BD, Reid B, Bewick GS. Importance of Full-Collapse Vesicle Exocytosis for Synaptic Fatigue-Resistance at Rat Fast and Slow Muscle Neuromuscular Junctions. Int J Mol Sci 2018; 19:ijms19071936. [PMID: 30004407 PMCID: PMC6073735 DOI: 10.3390/ijms19071936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/12/2018] [Accepted: 06/24/2018] [Indexed: 11/16/2022] Open
Abstract
Neurotransmitter release during trains of activity usually involves two vesicle pools (readily releasable pool, or RRP, and reserve pool, or RP) and two exocytosis mechanisms (“full-collapse” and “kiss-and-run”). However, synaptic terminals are adapted to differing patterns of use and the relationship of these factors to enabling terminals to adapt to differing transmitter release demands is not clear. We have therefore tested their contribution to a terminal’s ability to maintain release, or synaptic fatiguability in motor terminals innervating fast-twitch (fatiguable), and postural slow-twitch (fatigue-resistant) muscles. We used electrophysiological recording of neurotransmission and fluorescent dye markers of vesicle recycling to compare the effects of kinase inhibitors of varying myosin light chain kinase (MLCK) selectivity (staurosporine, wortmannin, LY294002 & ML-9) on vesicle pools, exocytosis mechanisms, and sustained neurotransmitter release, using postural-type activity train (20 Hz for 10 min) in these muscles. In both muscles, a small, rapidly depleted vesicle pool (the RRP) was inhibitor insensitive, continuing to release FM1-43, which is a marker of full-collapse exocytosis. MLCK-inhibiting kinases blocked all remaining FM1-43 loss from labelled vesicles. However, FM2-10 release only slowed, indicating continuing kiss-and-run exocytosis. Despite this, kinase inhibitors did not affect transmitter release fatiguability under normal conditions. However, augmenting release in high Ca2+ entirely blocked the synaptic fatigue-resistance of terminals in slow-twitch muscles. Thus, full-collapse exocytosis from most vesicles (the RP) is not essential for maintaining release during a single prolonged train. However, it becomes critical in fatigue-resistant terminals during high vesicle demand.
Collapse
Affiliation(s)
- Jane E Rudling
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| | - Benjamin D Drever
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| | - Brian Reid
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| | - Guy S Bewick
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
16
|
24S-hydroxycholesterol suppresses neuromuscular transmission in SOD1(G93A) mice: A possible role of NO and lipid rafts. Mol Cell Neurosci 2018; 88:308-318. [PMID: 29550246 DOI: 10.1016/j.mcn.2018.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/08/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the initial denervation of skeletal muscle and subsequent death of motor neurons. A dying-back pattern of ALS suggests a crucial role for neuromuscular junction dysfunction. In the present study, microelectrode recording of postsynaptic currents and optical detection of synaptic vesicle traffic (FM1-43 dye) and intracellular NO levels (DAF-FM DA) were used to examine the effect of the major brain-derived cholesterol metabolite 24S-hydroxycholesterol (24S-HC, 0.4 μM) on neuromuscular transmission in the diaphragm of transgenic mice carrying a mutant superoxide dismutase 1 (SODG93A). We found that 24S-HC suppressed spontaneous neurotransmitter release and neurotransmitter exocytosis during high-frequency stimulation. The latter was accompanied by a decrease in both the rate of synaptic vesicle recycling and activity-dependent enhancement of NO production. Inhibition of NO synthase with L-NAME also attenuated synaptic vesicle exocytosis during high-frequency stimulation and completely abolished the effect of 24S-HC itself. Of note, 24S-HC enhanced the labeling of synaptic membranes with B-subunit of cholera toxin, suggesting an increase in lipid ordering. Lipid raft-disrupting agents (methyl-β-cyclodextrin, sphingomyelinase) prevented the action of 24S-HC on both lipid raft marker labeling and NO synthesis. Together, these experiments indicate that 24S-HC is able to suppress the exocytotic release of neurotransmitter in response to intense activity via a NO/lipid raft-dependent pathway in the neuromuscular junctions of SODG93A mice.
Collapse
|
17
|
Jackman SL, Regehr WG. The Mechanisms and Functions of Synaptic Facilitation. Neuron 2017; 94:447-464. [PMID: 28472650 DOI: 10.1016/j.neuron.2017.02.047] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/23/2017] [Accepted: 02/28/2017] [Indexed: 12/22/2022]
Abstract
The ability of the brain to store and process information relies on changing the strength of connections between neurons. Synaptic facilitation is a form of short-term plasticity that enhances synaptic transmission for less than a second. Facilitation is a ubiquitous phenomenon thought to play critical roles in information transfer and neural processing. Yet our understanding of the function of facilitation remains largely theoretical. Here we review proposed roles for facilitation and discuss how recent progress in uncovering the underlying molecular mechanisms could enable experiments that elucidate how facilitation, and short-term plasticity in general, contributes to circuit function and animal behavior.
Collapse
Affiliation(s)
- Skyler L Jackman
- Department of Neurobiology, Harvard Medical School, Boston, MA 02118, USA
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA 02118, USA.
| |
Collapse
|
18
|
Kasimov M, Fatkhrakhmanova M, Mukhutdinova K, Petrov A. 24S-Hydroxycholesterol enhances synaptic vesicle cycling in the mouse neuromuscular junction: Implication of glutamate NMDA receptors and nitric oxide. Neuropharmacology 2017; 117:61-73. [DOI: 10.1016/j.neuropharm.2017.01.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 12/29/2022]
|
19
|
Chand KK, Lee KM, Lavidis NA, Noakes PG. Loss of laminin‐a4 results in pre‐ and postsynaptic modifications at the neuromuscular junction. FASEB J 2016; 31:1323-1336. [DOI: 10.1096/fj.201600899r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/06/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Kirat K. Chand
- School of Biomedical Sciences St. Lucia Queensland Australia
| | - Kah Meng Lee
- School of Biomedical Sciences St. Lucia Queensland Australia
| | | | - Peter G. Noakes
- School of Biomedical Sciences St. Lucia Queensland Australia
- Queensland Brain InstituteThe University of Queensland St. Lucia Queensland Australia
| |
Collapse
|
20
|
Casas C, Manzano R, Vaz R, Osta R, Brites D. Synaptic Failure: Focus in an Integrative View of ALS. Brain Plast 2016; 1:159-175. [PMID: 29765840 PMCID: PMC5928542 DOI: 10.3233/bpl-140001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
From early description by Charcot, the classification of the Amyotrophic Lateral Sclerosis (ALS) is evolving from a subtype of Motor Neuron (MN) Disease to be considered rather a multi-systemic, non-cell autonomous and complex neurodegenerative disease. In the last decade, the huge amount of knowledge acquired has shed new insights on the pathological mechanisms underlying ALS from different perspectives. However, a whole vision on the multiple dysfunctional pathways is needed with the inclusion of information often excluded in other published revisions. We propose an integrative view of ALS pathology, although centered on the synaptic failure as a converging and crucial player to the etiology of the disease. Homeostasis of input and output synaptic activity of MNs has been proved to be severely and early disrupted and to definitively contribute to microcircuitry alterations at the spinal cord. Several cells play roles in synaptic communication across the MNs network system such as interneurons, astrocytes, microglia, Schwann and skeletal muscle cells. Microglia are described as highly dynamic surveying cells of the nervous system but also as determinant contributors to the synaptic plasticity linked to neuronal activity. Several signaling axis such as TNFα/TNFR1 and CX3CR1/CX3CL1 that characterize MN-microglia cross talk contribute to synaptic scaling and maintenance, have been found altered in ALS. The presence of dystrophic and atypical microglia in late stages of ALS, with a decline in their dynamic motility and phagocytic ability, together with less synaptic and neuronal contacts disrupts the MN-microglia dialogue, decreases homeostatic regulation of neuronal activity, perturbs “on/off” signals and accelerates disease progression associated to impaired synaptic function and regeneration. Other hotspot in the ALS affected network system is the unstable neuromuscular junction (NMJ) leading to distal axonal degeneration. Reduced neuromuscular spontaneous synaptic activity in ALS mice models was also suggested to account for the selective vulnerability of MNs and decreased regenerative capability. Synaptic destabilization may as well derive from increased release of molecules by muscle cells (e.g. NogoA) and by terminal Schwann cells (e.g. semaphorin 3A) conceivably causing nerve terminal retraction and denervation, as well as inhibition of re-connection to muscle fibers. Indeed, we have overviewed the alterations on the metabolic pathways and self-regenerative capacity presented in skeletal muscle cells that contribute to muscle wasting in ALS. Finally, a detailed footpath of pathologic changes on MNs and associated dysfunctional and synaptic alterations is provided. The oriented motivation in future ALS studies as outlined in the present article will help in fruitful novel achievements on the mechanisms involved and in developing more target-driven therapies that will bring new hope in halting or delaying disease progression in ALS patients.
Collapse
Affiliation(s)
- Caty Casas
- Group of Neuroplasticity and Regeneration, Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Barcelona, Spain
| | - Raquel Manzano
- Laboratory of Genetic Biochemistry (LAGENBIO-I3A), Aragón Institute of Health Sciences, Universidad de Zaragoza, Zaragoza, Spain
| | - Rita Vaz
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| | - Rosario Osta
- Laboratory of Genetic Biochemistry (LAGENBIO-I3A), Aragón Institute of Health Sciences, Universidad de Zaragoza, Zaragoza, Spain
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| |
Collapse
|
21
|
Kasimov MR, Zakyrjanova GF, Giniatullin AR, Zefirov AL, Petrov AM. Similar oxysterols may lead to opposite effects on synaptic transmission: Olesoxime versus 5α-cholestan-3-one at the frog neuromuscular junction. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:606-16. [PMID: 27102612 DOI: 10.1016/j.bbalip.2016.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/17/2016] [Accepted: 04/15/2016] [Indexed: 02/03/2023]
Abstract
Cholesterol oxidation products frequently have a high biological activity. In the present study, we have used microelectrode recording of end plate currents and FM-based optical detection of synaptic vesicle exo-endocytosis to investigate the effects of two structurally similar oxysterols, olesoxime (cholest-4-en-3-one, oxime) and 5ɑ-cholestan-3-one (5ɑCh3), on neurotransmission at the frog neuromuscular junction. Olesoxime is an exogenous, potentially neuroprotective, substance and 5ɑCh3 is an intermediate product in cholesterol metabolism, which is elevated in the case of cerebrotendinous xanthomatosis. We found that olesoxime slightly increased evoked neurotransmitter release in response to a single stimulus and significantly reduced synaptic depression during high frequency activity. The last effect was due to an increase in both the number of synaptic vesicles involved in exo-endocytosis and the rate of synaptic vesicle recycling. In contrast, 5ɑCh3 reduced evoked neurotransmitter release during the low- and high frequency synaptic activities. The depressant action of 5ɑCh3 was associated with a reduction in the number of synaptic vesicles participating in exo- and endocytosis during high frequency stimulation, without a change in rate of the synaptic vesicle recycling. Of note, olesoxime increased the staining of synaptic membranes with the B-subunit of cholera toxin and the formation of fluorescent ganglioside GM1 clusters, and decreased the fluorescence of 22-NBD-cholesterol, while 5ɑCh3 had the opposite effects, suggesting that the two oxysterols have different effects on lipid raft stability. Taken together, these data show that these two structurally similar oxysterols induce marked different changes in neuromuscular transmission which are related with the alteration in synaptic vesicle cycle.
Collapse
Affiliation(s)
- M R Kasimov
- Department of Normal Physiology, Kazan State Medical University, Kazan 420012, Russia
| | - G F Zakyrjanova
- Department of Normal Physiology, Kazan State Medical University, Kazan 420012, Russia
| | - A R Giniatullin
- Department of Normal Physiology, Kazan State Medical University, Kazan 420012, Russia
| | - A L Zefirov
- Department of Normal Physiology, Kazan State Medical University, Kazan 420012, Russia
| | - A M Petrov
- Department of Normal Physiology, Kazan State Medical University, Kazan 420012, Russia.
| |
Collapse
|
22
|
Slater CR. The functional organization of motor nerve terminals. Prog Neurobiol 2015; 134:55-103. [DOI: 10.1016/j.pneurobio.2015.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/28/2015] [Accepted: 09/05/2015] [Indexed: 12/19/2022]
|
23
|
Carrasco DI, Seburn KL, Pinter MJ. Altered terminal Schwann cell morphology precedes denervation in SOD1 mice. Exp Neurol 2015; 275 Pt 1:172-81. [PMID: 26416261 DOI: 10.1016/j.expneurol.2015.09.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/02/2015] [Accepted: 09/23/2015] [Indexed: 01/15/2023]
Abstract
In mice that express SOD1 mutations found in human motor neuron disease, degeneration begins in the periphery for reasons that remain unknown. At the neuromuscular junction (NMJ), terminal Schwann cells (TSCs) have an intimate relationship with motor terminals and are believed to help maintain the integrity of the motor terminal. Recent evidence indicates that TSCs in some SOD1 mice exhibit abnormal functional properties, but other aspects of possible TSC involvement remain unknown. In this study, an analysis of TSC morphology and number was performed in relation to NMJ innervation status in mice which express the G93A SOD1 mutation. At P30, all NMJs of the fast medial gastrocnemius (MG) muscle were fully innervated by a single motor axon but 50% of NMJs lacked TSC cell bodies and were instead covered by the processes of Schwann cells with cell bodies located on the preterminal axons. NMJs in P30 slow soleus muscles were also fully innervated by single motor axons and only 5% of NMJs lacked a TSC cell body. At P60, about 25% of MG NMJs were denervated and lacked labeling for TSCs while about 60% of innervated NMJs lacked TSC cell bodies. In contrast, 96% of P60 soleus NMJs were innervated while 9% of innervated NMJs lacked TSC cell bodies. The pattern of TSC abnormalities found at P30 thus correlates with the pattern of denervation found at P60. Evidence from mice that express the G85R SOD1 mutation indicate that TSC abnormalities are not unique for mice that express G93A SOD1 mutations. These results add to an emerging understanding that TSCs may play a role in motor terminal degeneration and denervation in animal models of motor neuron disease.
Collapse
Affiliation(s)
| | | | - Martin J Pinter
- Department of Physiology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
24
|
Kasimov MR, Giniatullin AR, Zefirov AL, Petrov AM. Effects of 5α-cholestan-3-one on the synaptic vesicle cycle at the mouse neuromuscular junction. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:674-85. [PMID: 25725358 DOI: 10.1016/j.bbalip.2015.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/29/2015] [Accepted: 02/18/2015] [Indexed: 01/05/2023]
Abstract
We have investigated the effects of 5α-cholesten-3-one (5Ch3, 200 nM) on synaptic transmission in mouse diaphragm. 5Ch3 had no impact on the amplitude or frequency of miniature endplate currents (MEPCs, spontaneous secretion), but decreased the amplitude of EPCs (evoked secretion) triggered by single action potentials. Treatment with 5Ch3 increased the depression of EPC amplitude and slowed the unloading of the dye FM1-43 from synaptic vesicles (exocytosis rate) during high-frequency stimulation. The estimated recycling time of vesicles did not change, suggesting that the decline of synaptic efficiency was due to the reduction in the size of the population of vesicles involved in release. The effects of 5Ch3 on synaptic transmission may be related to changes in the phase properties of the membrane. We have found that 5Ch3 reduces the staining of synaptic regions with the B-subunit of cholera toxin (a marker of lipid rafts) and increases the fluorescence of 22-NBD-cholesterol, indicating a phase change within the membrane. Manipulations of membrane cholesterol (saturation or depletion) strongly reduced the influence of 5Ch3 on both FM1-43 dye unloading and staining with the B-subunit of cholera toxin. Thus, 5Ch3 reduces the number of vesicles which are actively recruited during synaptic transmission and alters membrane properties. These effects of 5Ch3 depend on membrane cholesterol.
Collapse
Affiliation(s)
- M R Kasimov
- Department of Normal Physiology, Kazan State Medical University, Kazan, 420012, Russia
| | - A R Giniatullin
- Department of Normal Physiology, Kazan State Medical University, Kazan, 420012, Russia
| | - A L Zefirov
- Department of Normal Physiology, Kazan State Medical University, Kazan, 420012, Russia
| | - A M Petrov
- Department of Normal Physiology, Kazan State Medical University, Kazan, 420012, Russia.
| |
Collapse
|
25
|
Whyte E, Burke A, White E, Moran K. A high-intensity, intermittent exercise protocol and dynamic postural control in men and women. J Athl Train 2015; 50:392-9. [PMID: 25689420 DOI: 10.4085/1062-6050-49.6.08] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
CONTEXT Deficits in dynamic postural control predict lower limb injury. Differing fatiguing protocols negatively affect dynamic postural control. The effect of high-intensity, intermittent exercise on dynamic postural control has not been investigated. OBJECTIVE To investigate the effect of a high-intensity, intermittent exercise protocol (HIIP) on the dynamic postural control of men and women as measured by the Star Excursion Balance Test (SEBT). DESIGN Descriptive laboratory study. SETTING University gymnasium. PATIENTS OR OTHER PARTICIPANTS Twenty male (age = 20.83 ± 1.50 years, height = 179.24 ± 7.94 cm, mass = 77.67 ± 10.82 kg) and 20 female (age = 20.45 ± 1.34 years, height = 166.08 ± 5.83 cm, mass = 63.02 ± 6.67 kg) athletes. INTERVENTION(S) We recorded SEBT measurements at baseline, pre-HIIP, and post-HIIP. The HIIP consisted of 4 repetitions of 10-m forward sprinting with a 90° change of direction and then backward sprinting for 5 m, 2 repetitions of 2-legged jumping over 5 hurdles, 2 repetitions of high-knee side stepping over 5 hurdles, and 4 repetitions of lateral 5-m shuffles. Participants rested for 30 seconds before repeating the circuit until they reported a score of 18 on the Borg rating of perceived exertion scale. MAIN OUTCOME MEASURE(S) A mixed between- and within-subjects analysis of variance was conducted to assess time (pre-HIIP, post-HIIP) × sex interaction effects. Subsequent investigations assessed the main effect of time and sex on normalized maximal SEBT scores. We used intraclass correlation coefficients to determine the test-retest reliability of the SEBT and paired-samples t tests to assess the HIIP effect on circuit times. RESULTS We found a time × sex effect (F(8,69) = 3.5; P range, <.001-.04; η(2) range, 0.057-0.219), with women less negatively affected. We also noted a main effect for time, with worse normalized maximal SEBT scores postfatigue (F(8,69) = 22.39; P < .001; η(2) range, 0.324-0.695), and for sex, as women scored better in 7 SEBT directions (F(8,69) = 0.84; P range, <.001-008; η(2) range, 0.088-0.381). The intraclass correlation coefficients demonstrated high (0.77-0.99) test-retest repeatability. Paired-samples t tests demonstrated increases in circuit time post-HIIP (P < .001). CONCLUSIONS The HIIP-induced fatigue negatively affected normalized maximal SEBT scores. Women had better scores than men and were affected less negatively by HIIP-induced fatigue.
Collapse
Affiliation(s)
- Enda Whyte
- School of Health and Human Performance, Dublin City University, Ireland
| | | | | | | |
Collapse
|
26
|
Ca2+-dependent regulations and signaling in skeletal muscle: from electro-mechanical coupling to adaptation. Int J Mol Sci 2015; 16:1066-95. [PMID: 25569087 PMCID: PMC4307291 DOI: 10.3390/ijms16011066] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/22/2014] [Indexed: 01/07/2023] Open
Abstract
Calcium (Ca2+) plays a pivotal role in almost all cellular processes and ensures the functionality of an organism. In skeletal muscle fibers, Ca(2+) is critically involved in the innervation of skeletal muscle fibers that results in the exertion of an action potential along the muscle fiber membrane, the prerequisite for skeletal muscle contraction. Furthermore and among others, Ca(2+) regulates also intracellular processes, such as myosin-actin cross bridging, protein synthesis, protein degradation and fiber type shifting by the control of Ca(2+)-sensitive proteases and transcription factors, as well as mitochondrial adaptations, plasticity and respiration. These data highlight the overwhelming significance of Ca(2+) ions for the integrity of skeletal muscle tissue. In this review, we address the major functions of Ca(2+) ions in adult muscle but also highlight recent findings of critical Ca(2+)-dependent mechanisms essential for skeletal muscle-regulation and maintenance.
Collapse
|
27
|
Huang L, Yang M, Chen L, Li S. Resistance to rocuronium of rat diaphragm as compared with limb muscles. J Surg Res 2014; 192:471-9. [DOI: 10.1016/j.jss.2014.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/03/2014] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
|
28
|
Blaauw B, Schiaffino S, Reggiani C. Mechanisms modulating skeletal muscle phenotype. Compr Physiol 2014; 3:1645-87. [PMID: 24265241 DOI: 10.1002/cphy.c130009] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian skeletal muscles are composed of a variety of highly specialized fibers whose selective recruitment allows muscles to fulfill their diverse functional tasks. In addition, skeletal muscle fibers can change their structural and functional properties to perform new tasks or respond to new conditions. The adaptive changes of muscle fibers can occur in response to variations in the pattern of neural stimulation, loading conditions, availability of substrates, and hormonal signals. The new conditions can be detected by multiple sensors, from membrane receptors for hormones and cytokines, to metabolic sensors, which detect high-energy phosphate concentration, oxygen and oxygen free radicals, to calcium binding proteins, which sense variations in intracellular calcium induced by nerve activity, to load sensors located in the sarcomeric and sarcolemmal cytoskeleton. These sensors trigger cascades of signaling pathways which may ultimately lead to changes in fiber size and fiber type. Changes in fiber size reflect an imbalance in protein turnover with either protein accumulation, leading to muscle hypertrophy, or protein loss, with consequent muscle atrophy. Changes in fiber type reflect a reprogramming of gene transcription leading to a remodeling of fiber contractile properties (slow-fast transitions) or metabolic profile (glycolytic-oxidative transitions). While myonuclei are in postmitotic state, satellite cells represent a reserve of new nuclei and can be involved in the adaptive response.
Collapse
Affiliation(s)
- Bert Blaauw
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | |
Collapse
|
29
|
Oliveira L, Costa AC, Noronha-Matos JB, Silva I, Cavalcante WLG, Timóteo MA, Corrado AP, Dal Belo CA, Ambiel CR, Alves-do-Prado W, Correia-de-Sá P. Amplification of neuromuscular transmission by methylprednisolone involves activation of presynaptic facilitatory adenosine A2A receptors and redistribution of synaptic vesicles. Neuropharmacology 2014; 89:64-76. [PMID: 25220030 DOI: 10.1016/j.neuropharm.2014.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/19/2014] [Accepted: 09/02/2014] [Indexed: 12/19/2022]
Abstract
The mechanisms underlying improvement of neuromuscular transmission deficits by glucocorticoids are still a matter of debate despite these compounds have been used for decades in the treatment of autoimmune myasthenic syndromes. Besides their immunosuppressive action, corticosteroids may directly facilitate transmitter release during high-frequency motor nerve activity. This effect coincides with the predominant adenosine A2A receptor tonus, which coordinates the interplay with other receptors (e.g. muscarinic) on motor nerve endings to sustain acetylcholine (ACh) release that is required to overcome tetanic neuromuscular depression in myasthenics. Using myographic recordings, measurements of evoked [(3)H]ACh release and real-time video microscopy with the FM4-64 fluorescent dye, results show that tonic activation of facilitatory A2A receptors by endogenous adenosine accumulated during 50 Hz bursts delivered to the rat phrenic nerve is essential for methylprednisolone (0.3 mM)-induced transmitter release facilitation, because its effect was prevented by the A2A receptor antagonist, ZM 241385 (10 nM). Concurrent activation of the positive feedback loop operated by pirenzepine-sensitive muscarinic M1 autoreceptors may also play a role, whereas the corticosteroid action is restrained by the activation of co-expressed inhibitory M2 and A1 receptors blocked by methoctramine (0.1 μM) and DPCPX (2.5 nM), respectively. Inhibition of FM4-64 loading (endocytosis) by methylprednisolone following a brief tetanic stimulus (50 Hz for 5 s) suggests that it may negatively modulate synaptic vesicle turnover, thus increasing the release probability of newly recycled vesicles. Interestingly, bulk endocytosis was rehabilitated when methylprednisolone was co-applied with ZM241385. Data suggest that amplification of neuromuscular transmission by methylprednisolone may involve activation of presynaptic facilitatory adenosine A2A receptors by endogenous adenosine leading to synaptic vesicle redistribution.
Collapse
Affiliation(s)
- L Oliveira
- Laboratório de Farmacologia e Neurobiologia/UMIB, Universidade do Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Universidade do Porto, Portugal
| | - A C Costa
- Laboratório de Farmacologia e Neurobiologia/UMIB, Universidade do Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Universidade do Porto, Portugal
| | - J B Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia/UMIB, Universidade do Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Universidade do Porto, Portugal
| | - I Silva
- Laboratório de Farmacologia e Neurobiologia/UMIB, Universidade do Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Universidade do Porto, Portugal
| | - W L G Cavalcante
- Instituto de Biociências, Universidade Estadual de São Paulo (UNESP), Botucatu, São Paulo, Brazil
| | - M A Timóteo
- Laboratório de Farmacologia e Neurobiologia/UMIB, Universidade do Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Universidade do Porto, Portugal
| | - A P Corrado
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Gabriel, Rio Grande do Sul, Brazil
| | - C A Dal Belo
- Universidade Federal do Pampa, São Gabriel, Rio Grande do Sul, Brazil
| | - C R Ambiel
- Departamento de Ciências Fisiológicas, Universidade Estadual de Maringá, Paraná, Brazil
| | - W Alves-do-Prado
- Departamento de Farmacologia e Terapêutica, Universidade Estadual de Maringá, Paraná, Brazil
| | - P Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia/UMIB, Universidade do Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Universidade do Porto, Portugal.
| |
Collapse
|
30
|
Arnold AS, Gill J, Christe M, Ruiz R, McGuirk S, St-Pierre J, Tabares L, Handschin C. Morphological and functional remodelling of the neuromuscular junction by skeletal muscle PGC-1α. Nat Commun 2014; 5:3569. [PMID: 24686533 PMCID: PMC4846352 DOI: 10.1038/ncomms4569] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/06/2014] [Indexed: 11/09/2022] Open
Abstract
The neuromuscular junction (NMJ) exhibits high morphological and functional plasticity. In the mature muscle, the relative levels of physical activity are the major determinants of NMJ function. Classically, motor neuron-mediated activation patterns of skeletal muscle have been thought of as the major drivers of NMJ plasticity and the ensuing fibre-type determination in muscle. Here we use muscle-specific transgenic animals for the peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) as a genetic model for trained mice to elucidate the contribution of skeletal muscle to activity-induced adaptation of the NMJ. We find that muscle-specific expression of PGC-1α promotes a remodelling of the NMJ, even in the absence of increased physical activity. Importantly, these plastic changes are not restricted to post-synaptic structures, but extended to modulation of presynaptic cell morphology and function. Therefore, our data indicate that skeletal muscle significantly contributes to the adaptation of the NMJ subsequent to physical activity.
Collapse
Affiliation(s)
- Anne-Sophie Arnold
- Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Jonathan Gill
- Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Martine Christe
- 1] Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland [2]
| | - Rocío Ruiz
- Department of Medical Physiology and Biophysics, School of Medicine University of Seville, Avda. Sánchez Pizjuan 4, 41009 Sevilla, Spain
| | - Shawn McGuirk
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, 3655 promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Julie St-Pierre
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, 3655 promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Lucía Tabares
- Department of Medical Physiology and Biophysics, School of Medicine University of Seville, Avda. Sánchez Pizjuan 4, 41009 Sevilla, Spain
| | - Christoph Handschin
- Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| |
Collapse
|
31
|
Kamin D, Revelo NH, Rizzoli SO. FM dye photo-oxidation as a tool for monitoring membrane recycling in inner hair cells. PLoS One 2014; 9:e88353. [PMID: 24505482 PMCID: PMC3914975 DOI: 10.1371/journal.pone.0088353] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/12/2014] [Indexed: 01/16/2023] Open
Abstract
Styryl (FM) dyes have been used for more than two decades to investigate exo- and endocytosis in conventional synapses. However, they are difficult to use in the inner hair cells of the auditory pathway (IHCs), as FM dyes appear to penetrate through mechanotransducer channels into the cytosol of IHCs, masking endocytotic uptake. To solve this problem we applied to IHCs the FM dye photo-oxidation technique, which renders the dyes into electron microscopy markers. Photo-oxidation allowed the unambiguous identification of labeled organelles, despite the presence of FM dye in the cytosol. This enabled us to describe the morphologies of several organelles that take up membrane in IHCs, both at rest and during stimulation. At rest, endosome-like organelles were detected in the region of the cuticular plate. Larger tubulo-cisternal organelles dominated the top and nuclear regions. Finally, the basal region, where the IHC active zones are located, contained few labeled organelles. Stimulation increased significantly membrane trafficking in the basal region, inducing the appearance of labeled vesicles and cistern-like organelles. The latter were replaced by small, synaptic-like vesicles during recovery after stimulation. In contrast, no changes in membrane trafficking were induced by stimulation in the cuticular plate region or in the top and nuclear regions. We conclude that synaptic vesicle recycling takes place mostly in the basal region of the IHCs. Other organelles participate in abundant constitutive membrane trafficking throughout the rest of the IHC volume.
Collapse
Affiliation(s)
- Dirk Kamin
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- STED Microscopy of Synaptic Function, European Neuroscience Institute, Göttingen, Germany
- * E-mail: (SOR); (DK)
| | - Natalia H. Revelo
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- STED Microscopy of Synaptic Function, European Neuroscience Institute, Göttingen, Germany
- International Max Planck Research School Neurosciences, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Silvio O. Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany
- * E-mail: (SOR); (DK)
| |
Collapse
|
32
|
Abstract
Striated respiratory muscles are necessary for lung ventilation and to maintain the patency of the upper airway. The basic structural and functional properties of respiratory muscles are similar to those of other striated muscles (both skeletal and cardiac). The sarcomere is the fundamental organizational unit of striated muscles and sarcomeric proteins underlie the passive and active mechanical properties of muscle fibers. In this respect, the functional categorization of different fiber types provides a conceptual framework to understand the physiological properties of respiratory muscles. Within the sarcomere, the interaction between the thick and thin filaments at the level of cross-bridges provides the elementary unit of force generation and contraction. Key to an understanding of the unique functional differences across muscle fiber types are differences in cross-bridge recruitment and cycling that relate to the expression of different myosin heavy chain isoforms in the thick filament. The active mechanical properties of muscle fibers are characterized by the relationship between myoplasmic Ca2+ and cross-bridge recruitment, force generation and sarcomere length (also cross-bridge recruitment), external load and shortening velocity (cross-bridge cycling rate), and cross-bridge cycling rate and ATP consumption. Passive mechanical properties are also important reflecting viscoelastic elements within sarcomeres as well as the extracellular matrix. Conditions that affect respiratory muscle performance may have a range of underlying pathophysiological causes, but their manifestations will depend on their impact on these basic elemental structures.
Collapse
Affiliation(s)
- Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | | | | | | |
Collapse
|
33
|
Casas C, Herrando-Grabulosa M, Manzano R, Mancuso R, Osta R, Navarro X. Early presymptomatic cholinergic dysfunction in a murine model of amyotrophic lateral sclerosis. Brain Behav 2013; 3:145-58. [PMID: 23531559 PMCID: PMC3607155 DOI: 10.1002/brb3.104] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/22/2012] [Accepted: 10/09/2012] [Indexed: 11/20/2022] Open
Abstract
Sporadic and familiar amyotrophic lateral sclerosis (ALS) cases presented lower cholinergic activity than in healthy individuals in their still preserved spinal motoneurons (MNs) suggesting that cholinergic reduction might occur before MN death. To unravel how and when cholinergic function is compromised, we have analyzed the spatiotemporal expression of choline acetyltransferase (ChAT) from early presymptomatic stages of the SOD1(G93A) ALS mouse model by confocal immunohistochemistry. The analysis showed an early reduction in ChAT content in soma and presynaptic boutons apposed onto MNs (to 76%) as well as in cholinergic interneurons in the lumbar spinal cord of the 30-day-old SOD1(G93A) mice. Cholinergic synaptic stripping occurred simultaneously to the presence of abundant surrounding major histocompatibility complex II (MHC-II)-positive microglia and the accumulation of nuclear Tdp-43 and the appearance of mild oxidative stress within MNs. Besides, there was a loss of neuronal MHC-I expression, which is necessary for balanced synaptic stripping after axotomy. These events occurred before the selective raise of markers of denervation such as ATF3. By the same time, alterations in postsynaptic cholinergic-related structures were also revealed with a loss of the presence of sigma-1 receptor, a Ca2+ buffering chaperone in the postsynaptic cisternae. By 2 months of age, ChAT seemed to accumulate in the soma of MNs, and thus efferences toward Renshaw interneurons were drastically diminished. In conclusion, cholinergic dysfunction in the local circuitry of the spinal cord may be one of the earliest events in ALS etiopathogenesis.
Collapse
Affiliation(s)
- Caty Casas
- Group of Neuroplasticity and Regeneration Department of Cell Biology, Physiology and Immunology Institute of Neurosciences, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) Bellaterra, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Nguyen KT, Zhang Z, Barrett EF, David G. Morphological and functional changes in innervation of a fast forelimb muscle in SOD1-G85R mice. Neurobiol Dis 2012; 48:399-408. [PMID: 22813866 DOI: 10.1016/j.nbd.2012.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/15/2012] [Accepted: 07/09/2012] [Indexed: 01/05/2023] Open
Abstract
Muscle endplates become denervated in mice that express mutations of human superoxide dismutase 1 (hSOD1), models of familial amyotrophic lateral sclerosis. This denervation is especially marked in fast limb muscles, and precedes death of motor neuron somata. This study used mice that expressed yellow fluorescent protein (YFP) in neurons to investigate changes in the morphology and function of axons and motor terminals innervating a fast forelimb muscle (epitrochleoanconeus, ETA) in presymptomatic and symptomatic hSOD1-G85R mice, compared to those in mice that express wild-type (wt) hSOD1. The percentage of endplates (identified using fluorescently-labeled α-bungarotoxin) innervated by motor terminals remained high in presymptomatic SOD1-G85R mice, but fell to ~50% in symptomatic mice. The number of large diameter (≥4 μm) axons in the ETA nerve also decreased as mice became symptomatic, and endplate innervation correlated best with the number of large diameter axons. Motor terminal function was assessed using changes in terminal YFP fluorescence evoked by trains of action potentials; different components of the pH-dependent YFP signals reflect stimulation-induced Ca2+ entry and vesicular exo/endocytosis. Most visible motor terminals (>90%) remained capable of responding to nerve stimulation in both pre- and symptomatic hSOD1-G85R mice, but with functional alterations. Responses in presymptomatic terminals suggested reduced acidification and increased vesicular release, whereas symptomatic terminals exhibited increased acidification and reduced vesicular release. The fact that most remaining terminals were able to respond to nerve stimulation suggests that motor terminal-protective therapies might contribute to preserving neuromuscular function in fALS mice.
Collapse
Affiliation(s)
- Khanh T Nguyen
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, P.O. Box 016430, Miami, FL 33101, USA
| | | | | | | |
Collapse
|
35
|
Ruff RL. Endplate contributions to the safety factor for neuromuscular transmission. Muscle Nerve 2011; 44:854-61. [DOI: 10.1002/mus.22177] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Bhattacharyya BJ, Wilson SM, Jung H, Miller RJ. Altered neurotransmitter release machinery in mice deficient for the deubiquitinating enzyme Usp14. Am J Physiol Cell Physiol 2011; 302:C698-708. [PMID: 22075695 DOI: 10.1152/ajpcell.00326.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Homozygous ataxic mice (ax(J)) express reduced levels of the deubiquitinating enzyme Usp14. They develop severe tremors by 2-3 wk of age, followed by hindlimb paralysis, and death by 6-8 wk. While changes in the ubiquitin proteasome system often result in the accumulation of ubiquitin protein aggregates and neuronal loss, these pathological markers are not observed in the ax(J) mice. Instead, defects in neurotransmission were observed in both the central and peripheral nervous systems of ax(J) mice. We have now identified several new alterations in peripheral neurotransmission in the ax(J) mice. Using the two-microelectrode voltage clamp technique on diaphragm muscles of ax(J) mice, we observed that under normal neurotransmitter release conditions ax(J) mice lacked paired-pulse facilitation and exhibited a frequency-dependent increase in rundown of the end plate current at high-frequency stimulation (HFS). Combined electrophysiology and styryl dye staining revealed a significant reduction in quantal content during the initial and plateau portions of the HFS train. In addition, uptake of styryl dyes (FM dye) during HFS demonstrated that the size of the readily releasable vesicle pool was significantly reduced. Destaining rates for styryl dyes suggested that ax(J) neuromuscular junctions are unable to mobilize a sufficient number of vesicles during times of intense activity. These results imply that ax(J) nerve terminals are unable to recruit a sufficient number of vesicles to keep pace with physiological rates of transmitter release. Therefore, ubiquitination of synaptic proteins appears to play an important role in the normal operation of the neurotransmitter release machinery and in regulating the size of pools of synaptic vesicles.
Collapse
Affiliation(s)
- Bula J Bhattacharyya
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
37
|
Sieck DC, Zhan WZ, Fang YH, Ermilov LG, Sieck GC, Mantilla CB. Structure-activity relationships in rodent diaphragm muscle fibers vs. neuromuscular junctions. Respir Physiol Neurobiol 2011; 180:88-96. [PMID: 22063925 DOI: 10.1016/j.resp.2011.10.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/20/2011] [Accepted: 10/21/2011] [Indexed: 12/01/2022]
Abstract
The diaphragm muscle (DIAm) is a highly active muscle of mixed fiber type composition. We hypothesized that consistent with greater activation history and proportion of fatigue-resistant fibers, neuromuscular transmission failure is lower in the mouse compared to the rat DIAm, and that neuromuscular junction (NMJ) morphology will match their different functional demands. Minute ventilation and duty cycle were higher in the mouse than in the rat. The proportion of fatigue-resistant fibers was similar in the rat and mouse; however the contribution of fatigue-resistant fibers to total DIAm mass was higher in the mouse. Neuromuscular transmission failure was less in mice than in rats. Motor end-plate area differed across fibers in rat but not in mouse DIAm, where NMJs displayed greater complexity overall. Thus, differences across species in activation history and susceptibility to neuromuscular transmission failure are reflected in the relative contribution of fatigue resistant muscle fibers to total DIAm mass, but not in type-dependent morphological differences at the NMJ.
Collapse
Affiliation(s)
- Dylan C Sieck
- Department of Anesthesiology, College of Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Mammalian skeletal muscle comprises different fiber types, whose identity is first established during embryonic development by intrinsic myogenic control mechanisms and is later modulated by neural and hormonal factors. The relative proportion of the different fiber types varies strikingly between species, and in humans shows significant variability between individuals. Myosin heavy chain isoforms, whose complete inventory and expression pattern are now available, provide a useful marker for fiber types, both for the four major forms present in trunk and limb muscles and the minor forms present in head and neck muscles. However, muscle fiber diversity involves all functional muscle cell compartments, including membrane excitation, excitation-contraction coupling, contractile machinery, cytoskeleton scaffold, and energy supply systems. Variations within each compartment are limited by the need of matching fiber type properties between different compartments. Nerve activity is a major control mechanism of the fiber type profile, and multiple signaling pathways are implicated in activity-dependent changes of muscle fibers. The characterization of these pathways is raising increasing interest in clinical medicine, given the potentially beneficial effects of muscle fiber type switching in the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Stefano Schiaffino
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Consiglio Nazionale delle Ricerche Institute of Neurosciences, and Department of Human Anatomy and Physiology, University of Padova, Padova, Italy
| | - Carlo Reggiani
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Consiglio Nazionale delle Ricerche Institute of Neurosciences, and Department of Human Anatomy and Physiology, University of Padova, Padova, Italy
| |
Collapse
|
39
|
Behrens M, Mau-Möller A, Zschorlich V, Bruhn S. Repetitive Peripheral Magnetic Stimulation (15 Hz RPMS) of the Human Soleus Muscle did not Affect Spinal Excitability. J Sports Sci Med 2011; 10:39-44. [PMID: 24149293 PMCID: PMC3737913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 10/26/2010] [Indexed: 06/02/2023]
Abstract
The electric field induced by repetitive peripheral magnetic stimulation (RPMS) is able to activate muscles artificially due to the stimulation of deep intramuscular motor axons. RPMS applied to the muscle induces proprioceptive input to the central nervous system in different ways. Firstly, the indirect activation of mechanoreceptors and secondly, direct activation of afferent nerve fibers. The purpose of the study was to examine the effects of RPMS applied to the soleus. Thirteen male subjects received RPMS once and were investigated before and after the treatment regarding the parameters maximal M wave (Mmax), maximal H-reflex (Hmax), Hmax/Mmax-ratio, Hmax and Mmax onset latencies and plantar flexor peak twitch torque associated with Hmax (PTH). Eleven male subjects served as controls. No significant changes were observed for Hmax and PTH of the treatment group but the Hmax/Mmax-ratio increased significantly (p = 0.015) on account of a significantly decreased Mmax (p = 0.027). Hmax onset latencies were increased for the treatment group (p = 0.003) as well as for the control group (p = 0.011) while Mmax onset latencies did not change. It is concluded that the RPMS protocol did not affect spinal excitability but acted on the muscle fibres which are part of fast twitch units and mainly responsible for the generation of the maximal M wave. RPMS probably modified the integrity of neuromuscular propagation. Key pointsRPMS probably did not affect spinal excitability.Data suggested that RPMS likely acted on the muscle fibres which are part of fast twitch units and mainly responsible for the generation of the maximal M wave.RPMS probably modified the integrity of neuromuscular propagation.
Collapse
|
40
|
Boyas S, Guével A. Neuromuscular fatigue in healthy muscle: underlying factors and adaptation mechanisms. Ann Phys Rehabil Med 2011; 54:88-108. [PMID: 21376692 DOI: 10.1016/j.rehab.2011.01.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 01/15/2011] [Accepted: 01/18/2011] [Indexed: 01/04/2023]
Abstract
OBJECTIVES This review aims to define the concept of neuromuscular fatigue and to present the current knowledge of the central and peripheral factors at the origin of this phenomenon. This review also addresses the literature that focuses on the mechanisms responsible for the adaption to neuromuscular fatigue. METHOD One hundred and eighty-two articles indexed in PubMed (1954-2010) have been considered. RESULTS Neuromuscular fatigue has central and peripheral origins. Central fatigue, preponderant during long-duration, low-intensity exercises, may involve a drop in the central command (motor, cortex, motoneurons) elicited by the activity of cerebral neurotransmitters and muscular afferent fibers. Peripheral fatigue, associated with an impairment of the mechanisms from excitation to muscle contraction, may be induced by a perturbation of the calcium ion movements, an accumulation of phosphate, and/or a decrease of the adenosine triphosphate stores. To compensate for the consequent drop in force production, the organism develops several adaptation mechanisms notably implicating motor units. CONCLUSION Fatigue onset is associated with an alteration of the mechanisms involved in force production. Then, the interaction between central and peripheral mechanisms leads to a series of events that ultimately contribute to the observed decrease in force production.
Collapse
Affiliation(s)
- S Boyas
- EA 4334, UFR STAPS de Nantes, laboratoire « Motricité, Interactions, Performance », université de Nantes, 25 bis, boulevard Guy-Mollet, 44322 Nantes cedex 3, France.
| | | |
Collapse
|
41
|
McCullough MJ, Peplinski NG, Kinnell KR, Spitsbergen JM. Glial cell line-derived neurotrophic factor protein content in rat skeletal muscle is altered by increased physical activity in vivo and in vitro. Neuroscience 2010; 174:234-44. [PMID: 21081155 DOI: 10.1016/j.neuroscience.2010.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 10/27/2010] [Accepted: 11/10/2010] [Indexed: 01/14/2023]
Abstract
Current evidence suggests that exercise and glial cell line-derived neurotrophic factor (GDNF) independently cause significant morphological changes in the neuromuscular system. The aim of the current study was to determine if increased physical activity regulates GDNF protein content in rat skeletal muscle. Extensor Digitorum Longus (EDL) and Soleus (SOL) hind limb skeletal muscles were analyzed following 2 weeks of involuntary exercise and 4 h of field stimulation or stretch in muscle bath preparations. GDNF protein content was measured via enzyme-linked immunosorbent assay (ELISA). Two weeks of exercise increased GDNF protein content in SOL as compared to sedentary controls (4.4±0.3 pg GDNF/mg tissue and 3.1±0.6 pg GDNF/mg tissue, respectively) and decreased GDNF protein content in EDL as compared to controls (1.0±0.1 pg GDNF/mg tissue and 2.3±0.7 pg GDNF/mg tissue, respectively). GDNF protein content in the EDL decreased following both field stimulation (56%±18% decrease from controls) and stretch (66%±10% decrease from controls). SOL responded to field stimulation with a 38%±7% increase from controls in GDNF protein content, but showed no change following stretch. Pre-treatment with α-bungarotoxin abolished the effects of field stimulation in both muscles and blocked the effect of stretch in EDL. α-bungarotoxin pre-treatment and stretch increased GDNF protein content to 240%±10% of controls in the SOL. Exposure to carbamylcholine decreased GDNF protein content to 51%±28% of controls in the EDL but not SOL. These results suggest that GDNF protein content in skeletal muscle may be controlled by stretch, where it may increase GDNF protein content, and membrane depolarization/acetylcholine (ACh) which acts to decrease GDNF protein content.
Collapse
Affiliation(s)
- M J McCullough
- Western Michigan University, Department of Biological Sciences, 1903 W. Michigan Avenue, Kalamazoo, MI 49008-5410, USA
| | | | | | | |
Collapse
|
42
|
Chakkalakal JV, Nishimune H, Ruas JL, Spiegelman BM, Sanes JR. Retrograde influence of muscle fibers on their innervation revealed by a novel marker for slow motoneurons. Development 2010; 137:3489-99. [PMID: 20843861 DOI: 10.1242/dev.053348] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mammalian limb and trunk skeletal muscles are composed of muscle fibers that differ in contractile and molecular properties. They are commonly divided into four categories according to the myosin heavy chain that they express: I, IIA, IIX and IIB, ranging from slowest to fastest. Individual motor axons innervate tens of muscle fibers, nearly all of which are of the same type. The mechanisms accounting for this striking specificity, termed motor unit homogeneity, remain incompletely understood, in part because there have been no markers for motoneuron types. Here we show in mice that the synaptic vesicle protein SV2A is selectively localized in motor nerve terminals on slow (type I and small type IIA) muscle fibers; its close relatives, SV2B and SV2C, are present in all motor nerve terminals. SV2A is broadly expressed at birth; fast motoneurons downregulate its expression during the first postnatal week. An inducible transgene incorporating regulatory elements from the Sv2a gene permits selective labeling of slow motor units and reveals their composition. Overexpression of the transcriptional co-regulator PGC1α in muscle fibers, which converts them to a slow phenotype, leads to an increased frequency of SV2A-positive motor nerve terminals, indicating a fiber type-specific retrograde influence of muscle fibers on their innervation. This retrograde influence must be integrated with known anterograde influences in order to understand how motor units become homogeneous.
Collapse
Affiliation(s)
- Joe V Chakkalakal
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
43
|
TGF-beta2 alters the characteristics of the neuromuscular junction by regulating presynaptic quantal size. Proc Natl Acad Sci U S A 2010; 107:13515-9. [PMID: 20624974 DOI: 10.1073/pnas.1001695107] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The amount of neurotransmitter released from a presynaptic terminal is the product of the quantal content (number of vesicles) and the presynaptic quantal size (QSpre, amount of transmitter per vesicle). QSpre varies with synaptic use, but its regulation is poorly understood. The motor nerve terminals at the neuromuscular junction (NMJ) contain TGF-beta receptors. We present evidence that TGF-beta2 regulates QSpre at the NMJ. Application of TGF-beta2 to the rat diaphragm NMJ increased the postsynaptic response to both spontaneous and evoked release of acetylcholine, whereas antibodies to TGF-beta2 or its receptor had the converse effect. L-vesamicol and bafilomycin blocked the actions of TGF-beta2, indicating that TGF-beta2 acts by altering the extent of vesicular filling. Recordings of the postsynaptic currents from the diaphragm were consistent with TGF-beta2 having this presynaptic action and a lesser postsynaptic effect on input resistance. TGF-beta2 also decreased quantal content by an atropine-sensitive pathway, indicating that this change is secondary to cholinergic feedback on vesicular release. Consequently, the net actions of TGF-beta2 at the NMJ were to amplify the postsynaptic effects of spontaneous transmission and to diminish the number of vesicles used per evoked stimulus, without diminishing the amount of acetylcholine released.
Collapse
|
44
|
Synapse-glia interactions are governed by synaptic and intrinsic glial properties. Neuroscience 2010; 167:621-32. [PMID: 20188148 DOI: 10.1016/j.neuroscience.2010.02.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 01/30/2010] [Accepted: 02/16/2010] [Indexed: 11/24/2022]
Abstract
It is believed that glial cell activation and their interactions with synapses are predominantly dependent upon the characteristics of synaptic activity and the level of transmitter release. Because synaptic properties vary from one type of synapse to another, synapse-glia interactions should differ accordingly. The goal of this work was to examine how glial cell activation is dependent upon the properties of their respective synapses as well as the level of synaptic activity. We contrasted Ca(2+) responses of perisynaptic Schwann cells (PSCs) at neuromuscular junctions (NMJs) with different synaptic properties; the slow-twitch soleus (SOL) and the fast-twitch levator auris longus (LAL) muscles. Amplitude of PSC Ca(2+) responses elicited by repeated motor nerve stimulation at 40, 50 and 100 Hz were larger and their kinetics faster at LAL NMJs and this, at all frequencies examined. In addition, a greater number of PSCs per NMJ was activated by sustained synaptic transmission at NMJs of LAL in comparison to SOL. Differences in PSC activation could not be explained solely by differences in levels of transmitter release but also by intrinsic PSC properties since increasing transmitter release with tetraethylammonium chloride (TEA) did not increase their responsiveness. As a whole, these results indicate that PSC responsiveness at NMJs of slow- and fast-twitch muscles differ not only according to the level of activity of their synaptic partner but also in accordance with inherent glial properties.
Collapse
|
45
|
Sheard PW, Bewick GS, Woolley AG, Shaw J, Fisher L, Fong SW, Duxson MJ. Investigation of neuromuscular abnormalities in neurotrophin-3-deficient mice. Eur J Neurosci 2009; 31:29-41. [PMID: 20092553 DOI: 10.1111/j.1460-9568.2009.07032.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neurotrophin-3 (NT-3) is a trophic factor that is essential for the normal development and maintenance of proprioceptive sensory neurons and is widely implicated as an important modulator of synaptic function and development. We have previously found that animals lacking NT-3 have a number of structural abnormalities in peripheral nerves and skeletal muscles. Here we investigated whether haploinsufficiency-induced reduction in NT-3 resulted in impaired neuromuscular performance and synaptic function. Motor nerve terminal function was tested by monitoring the uptake/release of the fluorescent membrane dye FM1-43 by the electrophysiological examination of synaptic transmission and electron microscopic determination of synaptic vesicle density at the presynaptic active zone. We investigated skeletal muscle form and function by measuring force in response to both nerve-mediated and direct muscle stimulation and by quantification of fiber number and area from transverse sections. Synaptic transmission was not markedly different between the two groups, although the uptake and release of FM1-43 were impaired in mature NT-3-deficient mice but not in immature mice. The electron microscopic examination of mature nerve terminals showed no genotype-dependent variation in the number of synaptic vesicles near the active zone. NT-3(+/-) mice had normal soleus muscle fiber numbers but their fibers had smaller cross-sectional areas and were more densely-packed than wild-type littermates. Moreover, the muscles of adult NT-3-deficient animals were weaker than those of wild-type animals to both nerve and direct muscle stimulation. The results indicate that a reduction in NT-3 availability during development impairs motor nerve terminal maturation and synaptic vesicle recycling and leads to a reduction in muscle fiber diameter.
Collapse
Affiliation(s)
- Philip W Sheard
- Department of Physiology, Otago School of Medical Sciences, University of Otago, PO Box 913, Dunedin, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
46
|
Brittain JM, Piekarz AD, Wang Y, Kondo T, Cummins TR, Khanna R. An atypical role for collapsin response mediator protein 2 (CRMP-2) in neurotransmitter release via interaction with presynaptic voltage-gated calcium channels. J Biol Chem 2009; 284:31375-90. [PMID: 19755421 PMCID: PMC2781534 DOI: 10.1074/jbc.m109.009951] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/11/2009] [Indexed: 11/06/2022] Open
Abstract
Collapsin response mediator proteins (CRMPs) specify axon/dendrite fate and axonal growth of neurons through protein-protein interactions. Their functions in presynaptic biology remain unknown. Here, we identify the presynaptic N-type Ca(2+) channel (CaV2.2) as a CRMP-2-interacting protein. CRMP-2 binds directly to CaV2.2 in two regions: the channel domain I-II intracellular loop and the distal C terminus. Both proteins co-localize within presynaptic sites in hippocampal neurons. Overexpression in hippocampal neurons of a CRMP-2 protein fused to enhanced green fluorescent protein caused a significant increase in Ca(2+) channel current density, whereas lentivirus-mediated CRMP-2 knockdown abolished this effect. Interestingly, the increase in Ca(2+) current density was not due to a change in channel gating. Rather, cell surface biotinylation studies showed an increased number of CaV2.2 at the cell surface in CRMP-2-overexpressing neurons. These neurons also exhibited a significant increase in vesicular release in response to a depolarizing stimulus. Depolarization of CRMP-2-enhanced green fluorescent protein-overexpressing neurons elicited a significant increase in release of glutamate compared with control neurons. Toxin block of Ca(2+) entry via CaV2.2 abolished this stimulated release. Thus, the CRMP-2-Ca(2+) channel interaction represents a novel mechanism for modulation of Ca(2+) influx into nerve terminals and, hence, of synaptic strength.
Collapse
Affiliation(s)
- Joel M. Brittain
- From the Paul and Carole Stark Neurosciences Research Institute and
| | - Andrew D. Piekarz
- From the Paul and Carole Stark Neurosciences Research Institute and
- Departments of Pharmacology and Toxicologyand
| | - Yuying Wang
- From the Paul and Carole Stark Neurosciences Research Institute and
| | - Takako Kondo
- Otolaryngology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Theodore R. Cummins
- From the Paul and Carole Stark Neurosciences Research Institute and
- Departments of Pharmacology and Toxicologyand
| | - Rajesh Khanna
- From the Paul and Carole Stark Neurosciences Research Institute and
- Departments of Pharmacology and Toxicologyand
| |
Collapse
|
47
|
Zefirov AL, Zakharov AV, Mukhamedyanov RD, Petrov AM. Peculiarities of synaptic vesicle recycling in frog and mouse motor nerve terminals. J EVOL BIOCHEM PHYS+ 2009. [DOI: 10.1134/s0022093008060082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Zefirov AL, Zakharov AV, Mukhametzyanov RD, Petrov AM, Sitdikova GF. The vesicle cycle in motor nerve endings of the mouse diaphragm. ACTA ACUST UNITED AC 2009; 39:245-52. [PMID: 19234803 DOI: 10.1007/s11055-009-9122-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Indexed: 10/21/2022]
Abstract
Experiments on the mouse diaphragm muscle using intracellular microelectrode recordings and fluorescence microscopy were performed to study the dynamics of transmitter secretion and synaptic vesicle recycling processes (the exocytosis-endocytosis cycle) in motor nerve endings (NE) during prolonged rhythmic stimulation (20 impulses/sec). During stimulation, there were triphasic changes in the amplitude of endplate potentials (EPP): an initial rapid reduction, followed by prolonged (1-2 min) stabilization of amplitude, i.e., a plateau, and then a further slow decrease. Restoration of EPP amplitude after stimulation for 3 min occurred over a period of several seconds. Loading of synaptic vesicles with the fluorescent endocytic stain FM1-43 showed that rhythmic stimulation led to a gradual (over 5-6 min) decrease in NE fluorescence, demonstrating exocytosis of synaptic vesicles. Quantum analysis of the electrophysiological data and comparison of these data with results from fluorescence studies suggested that mouse NE have a high rate of endocytosis and reutilization of synaptic vesicles (the mean recycling time was about 50 sec), which may support the maintenance of reliable synaptic transmission during prolonged high-frequency activity. The sizes of the release-ready and recycling pools of synaptic vesicles were determined quantitatively. It is suggested that vesicle recycling in mouse NE occurs via a short, rapid pathway with incorporation into the recycling pool. Vesicles of the reserve pool are not used for transmitter secretion in the stimulation conditions used here.
Collapse
Affiliation(s)
- A L Zefirov
- Kazan State Medical University, 49 Butlerov Street, 420012, Kazan, Russia.
| | | | | | | | | |
Collapse
|
49
|
Petrov AM, Giniatullin AR, Zefirov AL. Role of the cAMP cascade in the turnover of synaptic vesicles of the frog motor nerve terminal. NEUROCHEM J+ 2008. [DOI: 10.1134/s1819712408030069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Slater CR. Structural Factors Influencing the Efficacy of Neuromuscular Transmission. Ann N Y Acad Sci 2008; 1132:1-12. [DOI: 10.1196/annals.1405.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|