1
|
Takada M, Fukushima T, Ozawa S, Matsubara S, Suzuki T, Fukumoto I, Hanazawa T, Nagashima T, Uruma R, Otsuka M, Tanaka G. Infection control for COVID-19 in hospital examination room. Sci Rep 2022; 12:18230. [PMID: 36309548 PMCID: PMC9617229 DOI: 10.1038/s41598-022-22643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/18/2022] [Indexed: 01/25/2023] Open
Abstract
Healthcare providers are vulnerable to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) because of their close proximity to patients with coronavirus disease 2019. SARS-CoV-2 is mainly transmitted via direct and indirect contact with respiratory droplets, and its airborne transmission has also been identified. However, evidence for environmental factors is scarce, and evidence-based measures to minimize the risk of infection in clinical settings are insufficient. Using computational fluid dynamics, we simulated exhalation of large and small aerosol particles by patients in an otolaryngology examination room, where medical procedures require the removal of a face mask. The effects of coughing were analyzed, as well as those of humidity as a controllable environmental factor and of a suction device as an effective control method. Our results show that a suction device can minimize aerosol exposure of healthcare workers by efficiently removing both large (11.6-98.2%) and small (39.3-99.9%) aerosol particles. However, for coughing patients, the removal efficiency varies inversely with the particle size, and the humidity notably affects the aerosol behavior, indicating the need for countermeasures against smaller aerosols. Overall, these results highlight the potential and limitation of using a suction device to protect against SARS-CoV-2 and future respiratory infections.
Collapse
Affiliation(s)
- Mamoru Takada
- grid.136304.30000 0004 0370 1101Safety and Health Organization, Chiba University, 1-33, Yayoi-Cho, Inage-ku, Chiba, Chiba Japan ,grid.136304.30000 0004 0370 1101Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Taichi Fukushima
- grid.136304.30000 0004 0370 1101Department of Mechanical Engineering, Graduate School of Engineering, Chiba University, Chiba, Japan
| | - Sho Ozawa
- grid.136304.30000 0004 0370 1101Department of Mechanical Engineering, Graduate School of Engineering, Chiba University, Chiba, Japan
| | - Syuma Matsubara
- grid.136304.30000 0004 0370 1101Department of Mechanical Engineering, Graduate School of Engineering, Chiba University, Chiba, Japan
| | - Takeshi Suzuki
- grid.136304.30000 0004 0370 1101Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Ichiro Fukumoto
- grid.136304.30000 0004 0370 1101Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Toyoyuki Hanazawa
- grid.136304.30000 0004 0370 1101Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Takeshi Nagashima
- grid.136304.30000 0004 0370 1101Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Reiko Uruma
- grid.136304.30000 0004 0370 1101Safety and Health Organization, Chiba University, 1-33, Yayoi-Cho, Inage-ku, Chiba, Chiba Japan
| | - Masayuki Otsuka
- grid.136304.30000 0004 0370 1101Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Gaku Tanaka
- grid.136304.30000 0004 0370 1101Department of Mechanical Engineering, Graduate School of Engineering, Chiba University, Chiba, Japan
| |
Collapse
|
2
|
Suzuki T, Seki Y, Matsumura T, Arai M, Hanazawa T, Okamoto Y, Suzuki H, Kasama K, Umezawa A, Kurokawa Y, Hoppo T. Reflux-related Extraesophageal Symptoms Until Proven Otherwise: A Direct Measurement of Abnormal Proximal Exposure Based on Hypopharyngeal Multichannel Intraluminal Impedance as a Reliable Indicator for Successful Treatment Outcomes. J Neurogastroenterol Motil 2022; 28:69-77. [PMID: 34980689 PMCID: PMC8748846 DOI: 10.5056/jnm20228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/09/2021] [Accepted: 03/08/2021] [Indexed: 01/01/2023] Open
Abstract
Background/Aims The Lyon Consensus defined parameters based on upper endoscopy and 24-hour combined multichannel intraluminal impedance-pH (MII-pH), that conclusively establish the presence of gastroesophageal reflux disease (GERD). However, the true role of upper endoscopy and MII-pH to evaluate patients with extraesophageal symptoms (EES) has not been well established. Hypopharyngeal MII (HMII), which directly measures laryngopharyngeal reflux (LPR) events, has been utilized to evaluate patients with EES suggestive of LPR. Methods This was a retrospective study involving patients with EES for > 12 weeks despite proton pump inhibitor therapy, and had no endoscopic confirmatory evidence for GERD and negative MII-pH. All patients were subsequently referred for further evaluation of EES with "unknown" etiology and underwent laryngoscopy and HMII. Based on HMII, abnormal proximal exposure (APE) was defined as LPR ≥ 1/day and/or full column reflux (reflux 2 cm distal to the upper esophageal sphincter) > 4/day. Patients with APE were offered antireflux surgery (ARS) and the outcome of ARS was objectively assessed using Reflux Symptom Index. Results Of 21 patients with EES which was thought to be GERD-unrelated based on endoscopy and MII-pH, 17 patients (81%) had APE. Eight patients with APE who had undergone ARS had significant symptomatic improvement in the Reflux Symptom Index score (19.6 ± 4.9 pre-ARS to 5.8 ± 1.4 post-ARS, P = 0.008). Conclusions A conventional diagnostic approach using endoscopy and MII-pH may not be sufficient to evaluate patients with EES suggestive of LPR. HMII is essential to evaluate patients with EES, and APE could be a reliable indicator for successful treatment outcomes.
Collapse
Affiliation(s)
- Takeshi Suzuki
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Yosuke Seki
- Minimally Invasive Surgery Center, Yotsuya Medical Cube, Tokyo, Japan
| | - Tomoaki Matsumura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Makoto Arai
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | - Toyoyuki Hanazawa
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan
| | | | | | - Kazunori Kasama
- Minimally Invasive Surgery Center, Yotsuya Medical Cube, Tokyo, Japan
| | - Akiko Umezawa
- Minimally Invasive Surgery Center, Yotsuya Medical Cube, Tokyo, Japan
| | | | - Toshitaka Hoppo
- Esophageal Institute, Allegheny Health Network, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Hao N, Sasa A, Kulvanich S, Nakajima Y, Nagoya K, Magara J, Tsujimura T, Inoue M. Coordination of Respiration, Swallowing, and Chewing in Healthy Young Adults. Front Physiol 2021; 12:696071. [PMID: 34326780 PMCID: PMC8313873 DOI: 10.3389/fphys.2021.696071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022] Open
Abstract
Examining the coordination of respiration and swallowing is important for elucidating the mechanisms underlying these functions and assessing how respiration is linked to swallowing impairment in dysphagic patients. In this study, we assessed the coordination of respiration and swallowing to clarify how voluntary swallowing is coordinated with respiration and how mastication modulates the coordination of respiration and swallowing in healthy humans. Twenty-one healthy volunteers participated in three experiments. The participants were asked to swallow 3 ml of water with or without a cue, to drink 100 ml of water using a cup without breathing between swallows, and to eat a 4-g portion of corned beef. The major coordination pattern of respiration and swallowing was expiration–swallow–expiration (EE type) while swallowing 3 ml of water either with or without a cue, swallowing 100 ml of water, and chewing. Although cueing did not affect swallowing movements, the expiratory time was lengthened with the cue. During 100-ml water swallowing, the respiratory cycle time and expiratory time immediately before swallowing were significantly shorter compared with during and after swallowing, whereas the inspiratory time did not differ throughout the recording period. During chewing, the respiratory cycle time was decreased in a time-dependent manner, probably because of metabolic demand. The coordination of the two functions is maintained not only in voluntary swallowing but also in involuntary swallowing during chewing. Understanding the mechanisms underlying respiration and swallowing is important for evaluating how coordination affects physiological swallowing in dysphagic patients.
Collapse
Affiliation(s)
- Naohito Hao
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Anna Sasa
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Sirima Kulvanich
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuta Nakajima
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kouta Nagoya
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jin Magara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takanori Tsujimura
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Makoto Inoue
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
4
|
da Silva MP, Magalhães KS, de Souza DP, Moraes DJA. Chronic intermittent hypoxia increases excitability and synaptic excitation of protrudor and retractor hypoglossal motoneurones. J Physiol 2021; 599:1917-1932. [PMID: 33507557 DOI: 10.1113/jp280788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Dysfunctions in the hypoglossal control of tongue extrinsic muscles are implicated in obstructive sleep apnoea (OSA) syndrome. Chronic intermittent hypoxia (CIH), an important feature of OSA syndrome, produces deleterious effects on the motor control of oropharyngeal resistance, but whether the hypoglossal motoneurones innervating the tongue extrinsic muscles are affected by CIH is unknown. We show that CIH enhanced the respiratory-related activity of rat hypoglossal nerve innervating the protrudor and retractor tongue extrinsic muscles. Intracellular recordings revealed increases in respiratory-related firing frequency and synaptic excitation of inspiratory protrudor and retractor hypoglossal motoneurones after CIH. CIH also increased their intrinsic excitability, depolarised resting membrane potential and reduced K+ -dominated leak conductance. CIH affected the breathing-related synaptic control and intrinsic electrophysiological properties of protrudor and retractor hypoglossal motoneurones to optimise the neural control of oropharyngeal function. ABSTRACT Inspiratory-related tongue movements and oropharyngeal motor actions are controlled mainly by the protrudor and retractor extrinsic tongue muscles, which are innervated by the hypoglossal motoneurones. Chronic intermittent hypoxia (CIH), an important feature of obstructive sleep apnoea syndrome, produces detrimental effects on the contractile function of the tongue extrinsic muscles and the medullary inspiratory network of rodents. However, the impact of the CIH on the electrophysiological properties of protrudor and retractor hypoglossal motoneurones has not been described before. Using nerves and intracellular recordings in in situ preparation of rats (5 weeks old), we tested the hypothesis that CIH (FiO2 of 0.06, SaO2 74%, during 30-40 s, every 9 min, 8 h/day for 10 days) increases the intrinsic excitability of protrudor and retractor motoneurones from the hypoglossal motor nucleus of rats. Recordings of hypoglossal nerve, before its bifurcation to innervate the tongue protrudor and retractor muscles, revealed that CIH enhances its pre-inspiratory, simultaneously with the presence of active expiration, and inspiratory activities. These changes were mediated by increases in the respiratory-related firing frequency and synaptic excitation of inspiratory protrudor and retractor hypoglossal motoneurones. Besides, CIH increases their intrinsic excitability and depolarises resting membrane potential by reducing a K+ -dominated leak conductance. In conclusion, CIH enhances the respiratory-related neural control of oropharyngeal function of rats by increasing the synaptic excitation, intrinsic excitability, and reducing leak conductance in both protrudor and retractor hypoglossal motoneurones. We propose that these network and cellular changes are important to optimise the oropharyngeal resistance in conditions related to intermittent hypoxia.
Collapse
Affiliation(s)
- Melina P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karolyne S Magalhães
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Daniel P de Souza
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
5
|
Rodrigues KL, Souza JR, Bazilio DS, de Oliveira M, Moraes MPS, Moraes DJA, Machado BH. Changes in the autonomic and respiratory patterns in mice submitted to short-term sustained hypoxia. Exp Physiol 2021; 106:759-770. [PMID: 33501717 DOI: 10.1113/ep089323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/20/2021] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do mice submitted to sustained hypoxia present autonomic and respiratory changes similarly to rats? What is the main finding and its importance? Arterial pressure in the normal range, reduced baseline heart rate and tachypnoea were observed in behaving sustained hypoxia mice. Recordings in the in situ preparation of mice submitted to sustained hypoxia show an increase in cervical vagus nerve activity and a simultaneous reduction in thoracic sympathetic nerve activity correlated with changes in the respiratory cycle. Therefore, mice are an important model for studies on the modulation of sympathetic activity to the cardiovascular system and the vagus innervation of the upper airways due to changes in the respiratory network induced by sustained hypoxia. ABSTRACT Short-term sustained hypoxia (SH) in rats induces sympathetic overactivity and hypertension due to changes in sympathetic-respiratory coupling. However, there are no consistent data about the effect of SH on mice due to the different protocols of hypoxia and difficulties associated with the handling of these rodents under different experimental conditions. In situ recordings of autonomic and respiratory nerves in SH mice have not been performed yet. Herein, we evaluated the effects of SH ( F i O 2 = 0.1 for 24 h) on baseline mean arterial pressure (MAP), heart rate (HR), respiratory frequency (fR ) and responses to chemoreflex activation in behaving SH mice. A characterization of changes in cervical vagus (cVN), thoracic sympathetic (tSN), phrenic (PN) and abdominal (AbN) nerves in SH mice using the in situ working heart-brainstem preparation was also performed. SH mice presented normal MAP, significant reduction in baseline HR, increase in baseline fR , as well as increase in the magnitude of bradycardic response to chemoreflex activation. In in situ preparations, SH mice presented a reduction in PN discharge frequency, and increases in the time of expiration and incidence of late-expiratory bursts in AbN activity. Nerve recordings also indicated a significant increase in cVN activity and a significant reduction in tSN activity during expiration in SH mice. These findings make SH mice an important experimental model for better understanding how changes in the respiratory network may impact on the modulation of vagal control to the upper airways, as well as in the sympathetic activity to the cardiovascular system.
Collapse
Affiliation(s)
- Karla L Rodrigues
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Juliana R Souza
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Darlan S Bazilio
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Mauro de Oliveira
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Melina P S Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| |
Collapse
|
6
|
Kinoshita S, Sugiyama Y, Hashimoto K, Fuse S, Mukudai S, Umezaki T, Dutschmann M, Hirano S. Influences of GABAergic Inhibition in the Dorsal Medulla on Contralateral Swallowing Neurons in Rats. Laryngoscope 2020; 131:2187-2198. [PMID: 33146426 DOI: 10.1002/lary.29242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/24/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES We aimed to examine the effect of unilateral inhibition of the medullary dorsal swallowing networks on the activities of swallowing-related cranial motor nerves and swallowing interneurons. METHODS In 25 juvenile rats, we recorded bilateral vagal nerve activity (VNA) as well as unilateral phrenic and hypoglossal activity (HNA) during fictive swallowing elicited by electrical stimulation of the superior laryngeal nerve during control and following microinjection of the GABA agonist muscimol into the caudal dorsal medulla oblongata in a perfused brainstem preparation. In 20 animals, swallowing interneurons contralateral to the muscimol injection side were simultaneously recorded extracellularly and their firing rates were analyzed during swallowing. RESULTS Integrated VNA and HNA to the injection side decreased to 49.0 ± 16.6% and 32.3 ± 17.9%, respectively. However, the VNA on the uninjected side showed little change after muscimol injection. Following local inhibition, 11 out of 20 contralateral swallowing interneurons showed either increased or decreased of their respective firing discharge during evoked-swallowing, while no significant changes in activity were observed in the remaining nine neurons. CONCLUSION The neuronal networks underlying the swallowing pattern generation in the dorsal medulla mediate the ipsilateral motor outputs and modulate the contralateral activity of swallowing interneurons, suggesting that the bilateral coordination of the swallowing central pattern generator regulates the spatiotemporal organization of pharyngeal swallowing movements. LEVEL OF EVIDENCE NA Laryngoscope, 131:2187-2198, 2021.
Collapse
Affiliation(s)
- Shota Kinoshita
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiko Hashimoto
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinya Fuse
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeyuki Mukudai
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiro Umezaki
- Department of Speech and Hearing Sciences, International University of Health and Welfare, and the Voice and Swallowing Center, Fukuoka Sanno Hospital, Fukuoka, Japan
| | - Mathias Dutschmann
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
7
|
Kelm-Nelson CA, Gammie S. Gene expression within the periaqueductal gray is linked to vocal behavior and early-onset parkinsonism in Pink1 knockout rats. BMC Genomics 2020; 21:625. [PMID: 32942992 PMCID: PMC7495669 DOI: 10.1186/s12864-020-07037-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/30/2020] [Indexed: 12/30/2022] Open
Abstract
Background Parkinson’s disease (PD) is a degenerative disease with early-stage pathology hypothesized to manifest in brainstem regions. Vocal deficits, including soft, monotone speech, result in significant clinical and quality of life issues and are present in 90% of PD patients; yet the underlying pathology mediating these significant voice deficits is unknown. The Pink1−/− rat is a valid model of early-onset PD that presents with analogous vocal communication deficits. Previous work shows abnormal α-synuclein protein aggregation in the periaqueductal gray (PAG), a brain region critical and necessary to the modulation of mammalian vocal behavior. In this study, we used high-throughput RNA sequencing to examine gene expression within the PAG of both male and female Pink1−/− rats as compared to age-matched wildtype controls. We used a bioinformatic approach to (1) test the hypothesis that loss of Pink1 in the PAG will influence the differential expression of genes that interact with Pink1, (2) highlight other key genes that relate to this type of Mendelian PD, and (3) catalog molecular targets that may be important for the production of rat vocalizations. Results Knockout of the Pink1 gene resulted in differentially expressed genes for both male and female rats that also mapped to human PD datasets. Pathway analysis highlighted several significant metabolic pathways. Weighted gene co-expression network analysis (WGCNA) was used to identify gene nodes and their interactions in (A) males, (B) females, and (C) combined-sexes datasets. For each analysis, within the module containing the Pink1 gene, Pink1 itself was the central node with the highest number of interactions with other genes including solute carriers, glutamate metabotropic receptors, and genes associated with protein localization. Strong connections between Pink1 and Krt2 and Hfe were found in both males and female datasets. In females a number of modules were significantly correlated with vocalization traits. Conclusions Overall, this work supports the premise that gene expression changes in the PAG may contribute to the vocal deficits observed in this PD rat model. Additionally, this dataset identifies genes that represent new therapeutic targets for PD voice disorders.
Collapse
Affiliation(s)
- Cynthia A Kelm-Nelson
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison, 1300 University Avenue, 483 Medical Sciences Center, Madison, WI, 53706, USA.
| | - Stephen Gammie
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
8
|
Umezaki T, Shiba K, Sugiyama Y. Intracellular activity of pharyngeal motoneurons during breathing, swallowing, and coughing. J Neurophysiol 2020; 124:750-762. [PMID: 32727254 DOI: 10.1152/jn.00093.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recorded membrane potentialp changes in 45 pharyngeal motoneurons (PMs) including 33 expiratory modulated and 12 nonrespiratory neurons during breathing, swallowing, and coughing in decerebrate paralyzed cats. Four types of membrane potential changes were observed during swallowing: 1) depolarization during swallowing (n = 27), 2) depolarization preceded by a brief (≤ 0.1 s) hyperpolarization (n = 4), 3) longer term (> 0.3 s) hyperpolarization followed by depolarization (n = 11), and 4) hyperpolarization during the latter period of swallowing (n = 3). During coughing, PMs showed two types of membrane potential changes (n = 10). Nine neurons exhibited a ramp-like depolarization during the expiratory phase of coughing with the potential peak at the end of expiratory phase. This depolarization was interrupted by a transient repolarization just before the potential peak. The membrane potential of the remaining neuron abruptly depolarized at the onset of the expiratory phase and then gradually decreased even after the end of the expiratory phase. Single-shock stimulation of the superior laryngeal nerve (SLN) induced inhibitory postsynaptic potentials in 19 of 21 PMs. Two motoneurons exhibited an SLN-induced excitatory postsynaptic potential. The present study revealed that PMs receive the central drive, consisting of a combination of excitation and inhibition, from the pattern generator circuitry of breathing, swallowing, and coughing, which changes the properties of their membrane potential to generate these motor behaviors of the pharynx. Our data will provide the basis of studies of pharyngeal activity and its control from the medullary neuronal circuitry responsible for the upper airway motor activity.NEW & NOTEWORTHY We have provided the first demonstration of the multifunctional activity of the pharyngeal motoneurons at the level of membrane potential during respiration, swallowing, and coughing.
Collapse
Affiliation(s)
- Toshiro Umezaki
- Department of Speech and Hearing Sciences, International University of Health and Welfare, and the Voice and Swallowing Center, Fukuoka Sanno Hospital, Fukuoka, Japan
| | - Keisuke Shiba
- Department of Otolaryngology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
9
|
Suzuki T, Seki Y, Matsumura T, Ikari J, Arai M, Hanazawa T, Okamoto Y, Suzuki H, Kurokawa Y, Umezawa A, Kasama K, Hoppo T. “Gas” laryngopharyngeal reflux cause unexplained chronic cough. Auris Nasus Larynx 2020; 48:1026-1030. [DOI: 10.1016/j.anl.2020.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/28/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
|
10
|
Fuse S, Sugiyama Y, Hashimoto K, Umezaki T, Oku Y, Dutschmann M, Hirano S. Laryngeal afferent modulation of swallowing interneurons in the dorsal medulla in perfused rats. Laryngoscope 2019; 130:1885-1893. [PMID: 31498463 DOI: 10.1002/lary.28284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/02/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The purpose of this study was to investigate the influence of laryngeal afferent inputs on brainstem circuits that mediate and transmit swallowing activity to the orofacial musculature. METHODS Experiments were performed on 19 arterially perfused juvenile rats. The activities of swallowing interneurons in relation to their respective motor outputs in the hypoglossal and vagus nerves were assessed during fictive swallowing with or without concurrent laryngeal sensory stimulation at intensities of 20, 40, and 60 μA. RESULTS The hypoglossal nerve activity was gradually enhanced with increasing intensity of the sensory stimulation, while the vagus nerve activity was not altered. The activities of various interneurons were modulated by the laryngeal stimulation, but more than 50% of the recorded neurons were inhibited by the stimulation. Some interneurons demonstrated no obvious change in their discharge rates with laryngeal sensory stimulation during fictive swallowing. CONCLUSION Laryngeal afferent inputs partially modulated the swallowing motor activity via enhanced or suppressed activities of the swallowing interneurons, while the essential motor pattern underlying the pharyngeal stage of swallowing remained basically unchanged. Thus, the output patterns of the complex sequential movements of swallowing could be basically predetermined and further adjusted according to sensory information related to the properties of the ingested food by a swallowing central pattern generator. LEVEL OF EVIDENCE NA Laryngoscope, 130: 1885-1893, 2020.
Collapse
Affiliation(s)
- Shinya Fuse
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiko Hashimoto
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiro Umezaki
- Department of Speech and Hearing Sciences, International University of Health and Welfare, Voice and Swallowing Center, Fukuoka Sanno Hospital, Fukuoka, Japan
| | - Yoshitaka Oku
- Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Mathias Dutschmann
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
11
|
Hashimoto K, Sugiyama Y, Fuse S, Umezaki T, Oku Y, Dutschmann M, Hirano S. Activity of swallowing-related neurons in the medulla in the perfused brainstem preparation in rats. Laryngoscope 2018; 129:E72-E79. [PMID: 30408193 DOI: 10.1002/lary.27401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2018] [Indexed: 11/09/2022]
Abstract
OBJECTIVES/HYPOTHESIS We aimed to investigate and validate the cellular activity patterns and the potential topographical organization of neurons of the medullary swallowing pattern generator (Sw-CPG). We used the perfused brainstem preparation as an innovative experimental model that allows for stable neuronal recording in the brainstem. STUDY DESIGN Animal model. METHODS Experiments were conducted in 14 juvenile Wistar rats. The activities of the phrenic, vagus, and hypoglossal nerves were recorded at baseline, and fictive swallowing was elicited by stimulation of the superior laryngeal nerve. Extracellular action potentials of 72 swallowing-related neurons were recorded in the Sw-CPG of the dorsal medulla oblongata. RESULTS Neurons could be classified into three types: sensory relay, and neurons that were excited or inhibited during fictive swallowing. Approximately one-third of the neurons likely received monosynaptic input from the laryngeal afferents. One-third of neurons recorded showed respiratory-related activity, most of which exhibited inspiratory modulation. The neurons were widely distributed in the nucleus tractus solitarius and reticular formation. CONCLUSIONS The perfused brainstem preparation of rat fully preserves the Sw-CPG. The recorded cellular activities and general topographical organization of swallowing neurons are in accordance with previous in vivo studies. Thus, the perfused brainstem preparation is an ideal experimental model to advance the understanding of neuronal mechanisms underlying swallowing. LEVEL OF EVIDENCE NA Laryngoscope, 129:E72-E79, 2019.
Collapse
Affiliation(s)
- Keiko Hashimoto
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinya Fuse
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiro Umezaki
- Department of Speech and Hearing Sciences, International University of Health and Welfare, and the Voice and Swallowing Center, Fukuoka Sanno Hospital, Fukuoka, Japan
| | - Yoshitaka Oku
- Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Mathias Dutschmann
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
12
|
Hypopharyngeal multichannel intraluminal impedance leads to the promising outcome of antireflux surgery in Japanese population with laryngopharyngeal reflux symptoms. Surg Endosc 2017; 32:2409-2419. [DOI: 10.1007/s00464-017-5940-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/17/2017] [Indexed: 12/16/2022]
|
13
|
Lalley PM, Mifflin SW. Oscillation patterns are enhanced and firing threshold is lowered in medullary respiratory neuron discharges by threshold doses of a μ-opioid receptor agonist. Am J Physiol Regul Integr Comp Physiol 2017; 312:R727-R738. [PMID: 28202437 DOI: 10.1152/ajpregu.00120.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 01/17/2017] [Accepted: 02/06/2017] [Indexed: 11/22/2022]
Abstract
μ-Opioid receptors are distributed widely in the brain stem respiratory network, and opioids with selectivity for μ-type receptors slow in vivo respiratory rhythm in lowest effective doses. Several studies have reported μ-opioid receptor effects on the three-phase rhythm of respiratory neurons, but there are until now no reports of opioid effects on oscillatory activity within respiratory discharges. In this study, effects of the μ-opioid receptor agonist fentanyl on spike train discharge properties of several different types of rhythm-modulating medullary respiratory neuron discharges were analyzed. Doses of fentanyl that were just sufficient for prolongation of discharges and slowing of the three-phase respiratory rhythm also produced pronounced enhancement of spike train properties. Oscillation and burst patterns detected by autocorrelation measurements were greatly enhanced, and interspike intervals were prolonged. Spike train properties under control conditions and after fentanyl were uniform within each experiment, but varied considerably between experiments, which might be related to variability in acid-base balance in the brain stem extracellular fluid. Discharge threshold was shifted to more negative levels of membrane potential. The effects on threshold are postulated to result from opioid-mediated disinhibition and postsynaptic enhancement of N-methyl-d- aspartate receptor current. Lowering of firing threshold, enhancement of spike train oscillations and bursts and prolongation of discharges by lowest effective doses of fentanyl could represent compensatory adjustments in the brain stem respiratory network to override opioid blunting of CO2/pH chemosensitivity.
Collapse
Affiliation(s)
- Peter M Lalley
- Department of Neuroscience, University of Wisconsin Medical Sciences Center, Madison, Wisconsin; and
| | - Steve W Mifflin
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
14
|
Sugiyama Y, Shiba K, Mukudai S, Umezaki T, Sakaguchi H, Hisa Y. Role of the retrotrapezoid nucleus/parafacial respiratory group in coughing and swallowing in guinea pigs. J Neurophysiol 2015. [PMID: 26203106 DOI: 10.1152/jn.00332.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The retrotrapezoid/parafacial respiratory group (RTN/pFRG) located ventral to the facial nucleus plays a key role in regulating breathing, especially enhanced expiratory activity during hypercapnic conditions. To clarify the roles of the RTN/pFRG region in evoking coughing, during which reflexive enhanced expiration is produced, and in swallowing, during which the expiratory activity is consistently halted, we recorded extracellular activity from RTN/pFRG neurons during these fictive behaviors in decerebrate, paralyzed, and artificially ventilated guinea pigs. The activity of the majority of recorded respiratory neurons was changed in synchrony with coughing and swallowing. To further evaluate the contribution of RTN/pFRG neurons to these nonrespiratory behaviors, the motor output patterns during breathing, coughing, and swallowing were compared before and after brain stem transection at the caudal margin of RTN/pFRG region. In addition, the effects of transection at its rostral margin were also investigated to evaluate pontine contribution to these behaviors. During respiration, transection at the rostral margin attenuated the postinspiratory activity of the recurrent laryngeal nerve. Meanwhile, the late expiratory activity of the abdominal nerve was abolished after caudal transection. The caudal transection also decreased the amplitude of the coughing-related abdominal nerve discharge but did not abolish the activity. Swallowing could be elicited even after the caudal end transection. These findings raise the prospect that the RTN/pFRG contributes to expiratory regulation during normal respiration, although this region is not an essential element of the neuronal networks involved in coughing and swallowing.
Collapse
Affiliation(s)
- Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan;
| | - Keisuke Shiba
- Hikifune Otolaryngology Clinic, Sumida, Tokyo, Japan
| | - Shigeyuki Mukudai
- Department of Otolaryngology, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan; and
| | - Toshiro Umezaki
- Department of Otolaryngology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Hirofumi Sakaguchi
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuo Hisa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
15
|
Bautista TG, Dutschmann M. Ponto-medullary nuclei involved in the generation of sequential pharyngeal swallowing and concomitant protective laryngeal adduction in situ. J Physiol 2014; 592:2605-23. [PMID: 24639482 DOI: 10.1113/jphysiol.2014.272468] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Both swallowing and respiration involve postinspiratory laryngeal adduction. Swallowing-related postinspiratory neurons are likely to be located in the nucleus of the solitary tract (NTS) and those involved in respiration are found in the Kölliker-Fuse nucleus (KF). The function of KF and NTS in the generation of swallowing and its coordination with respiration was investigated in perfused brainstem preparations of juvenile rats (n = 41). Orally injected water evoked sequential pharyngeal swallowing (s-PSW) seen as phasic, spindle-shaped bursting of vagal nerve activity (VNA) against tonic postinspiratory discharge. KF inhibition by microinjecting isoguvacine (GABAA receptor agonist) selectively attenuated tonic postinspiratory VNA (n = 10, P < 0.001) but had no effect on frequency or timing of s-PSW. KF disinhibition after bicuculline (GABAA receptor antagonist) microinjections caused an increase of the tonic VNA (n = 8, P < 0.01) resulting in obscured and delayed phasic s-PSW. Occurrence of spontaneous PSW significantly increased after KF inhibition (P < 0.0001) but not after KF disinhibition (P = 0.14). NTS isoguvacine microinjections attenuated the occurrence of all PSW (n = 5, P < 0.01). NTS bicuculline microinjections (n = 6) resulted in spontaneous activation of a disordered PSW pattern and long-lasting suppression of respiratory activity. Pharmacological manipulation of either KF or NTS also triggered profound changes in respiratory postinspiratory VNA. Our results indicate that the s-PSW comprises two functionally distinct components. While the primary s-PSW is generated within the NTS, a KF-mediated laryngeal adductor reflex safeguards the lower airways from aspiration. Synaptic interaction between KF and NTS is required for s-PSW coordination with respiration as well as for proper gating and timing of s-PSW.
Collapse
Affiliation(s)
- Tara G Bautista
- Florey Institute of Neuroscience and Mental Health, Gate 11, Royal Parade, University of Melbourne, Victoria, 3052, Australia
| | - Mathias Dutschmann
- Florey Institute of Neuroscience and Mental Health, Gate 11, Royal Parade, University of Melbourne, Victoria, 3052, Australia
| |
Collapse
|
16
|
The physiological significance of postinspiration in respiratory control. PROGRESS IN BRAIN RESEARCH 2014; 212:113-30. [DOI: 10.1016/b978-0-444-63488-7.00007-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Sugiyama Y, Shiba K, Mukudai S, Umezaki T, Hisa Y. Activity of respiratory neurons in the rostral medulla during vocalization, swallowing, and coughing in guinea pigs. Neurosci Res 2013; 80:17-31. [PMID: 24380791 DOI: 10.1016/j.neures.2013.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/04/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
Abstract
To examine the relationship between the neuronal networks underlying respiration and non-respiratory behaviors such as vocalization and airway defensive reflexes, we compared the activity of respiratory neurons in the ventrolateral medulla during breathing with that during non-respiratory behaviors including vocalization, swallowing, and coughing in guinea pigs. During fictive vocalization the activity of augmenting expiratory neurons ceased, whereas the other types of expiratory neurons did not show a consistent tendency of increasing or decreasing activity. All inspiratory neurons discharged in synchrony with the phrenic nerve activity. Most of the phase-spanning neurons were activated throughout the vocal phase. During fictive swallowing, many expiratory and inspiratory neurons were silent, whereas many phase-spanning neurons were activated. During fictive coughing, many expiratory neurons were activated during the expiratory phase of coughing. Most inspiratory neurons discharged in parallel with the phrenic nerve activity during coughing. Many phase-spanning neurons were activated during the expiratory phase of coughing. These findings indicate that the medullary respiratory neurons help shape respiratory muscle nerve activity not only during breathing but also during these non-respiratory behaviors, and thus suggest that at least some of the respiratory neurons are shared among the neuronal circuits underlying the generation of breathing and non-respiratory behaviors.
Collapse
Affiliation(s)
- Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Keisuke Shiba
- Hikifune Otolaryngology Clinic, Sumida, Tokyo 131-0046, Japan
| | - Shigeyuki Mukudai
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Toshiro Umezaki
- Department of Otolaryngology, Graduate School of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasuo Hisa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
18
|
Abstract
Pontine respiratory nuclei provide synaptic input to medullary rhythmogenic circuits to shape and adapt the breathing pattern. An understanding of this statement depends on appreciating breathing as a behavior, rather than a stereotypic rhythm. In this review, we focus on the pontine-mediated inspiratory off-switch (IOS) associated with postinspiratory glottal constriction. Further, IOS is examined in the context of pontine regulation of glottal resistance in response to multimodal sensory inputs and higher commands, which in turn rules timing, duration, and patterning of respiratory airflow. In addition, network plasticity in respiratory control emerges during the development of the pons. Synaptic plasticity is required for dynamic and efficient modulation of the expiratory breathing pattern to cope with rapid changes from eupneic to adaptive breathing linked to exploratory (foraging and sniffing) and expulsive (vocalizing, coughing, sneezing, and retching) behaviors, as well as conveyance of basic emotions. The speed and complexity of changes in the breathing pattern of behaving animals implies that "learning to breathe" is necessary to adjust to changing internal and external states to maintain homeostasis and survival.
Collapse
Affiliation(s)
- Mathias Dutschmann
- Florey Neurosciences Institutes, University of Melbourne, Victoria, Australia.
| | | |
Collapse
|
19
|
Abstract
Many articles in this section of Comprehensive Physiology are concerned with the development and function of a central pattern generator (CPG) for the control of breathing in vertebrate animals. The action of the respiratory CPG is extensively modified by cortical and other descending influences as well as by feedback from peripheral sensory systems. The central nervous system also incorporates other CPGs, which orchestrate a wide variety of discrete and repetitive, voluntary and involuntary movements. The coordination of breathing with these other activities requires interaction and coordination between the respiratory CPG and those governing the nonrespiratory activities. Most of these interactions are complex and poorly understood. They seem to involve both conventional synaptic crosstalk between groups of neurons and fluid identity of neurons as belonging to one CPG or another: neurons that normally participate in breathing may be temporarily borrowed or hijacked by a competing or interrupting activity. This review explores the control of breathing as it is influenced by many activities that are generally considered to be nonrespiratory. The mechanistic detail varies greatly among topics, reflecting the wide variety of pertinent experiments.
Collapse
Affiliation(s)
- Donald Bartlett
- Department of Physiology & Neurobiology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
| | | |
Collapse
|
20
|
Cough-related neurons in the nucleus tractus solitarius of decerebrate cats. Neuroscience 2012; 218:100-9. [DOI: 10.1016/j.neuroscience.2012.05.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/21/2012] [Accepted: 05/21/2012] [Indexed: 01/09/2023]
|
21
|
Expiratory-modulated laryngeal motoneurons exhibit a hyperpolarization preceding depolarization during superior laryngeal nerve stimulation in the in vivo adult rat. Brain Res 2012; 1445:52-61. [DOI: 10.1016/j.brainres.2012.01.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/10/2012] [Accepted: 01/15/2012] [Indexed: 11/19/2022]
|
22
|
McCulloch TM, Van Daele D, Ciucci MR. Otolaryngology head and neck surgery: an integrative view of the larynx. Head Neck 2011; 33 Suppl 1:S46-53. [PMID: 21910154 DOI: 10.1002/hed.21901] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2011] [Indexed: 12/31/2022] Open
Abstract
The glottis is composed of muscular, cartilaginous, and other viscoelastic tissues which perform some of our most important, complex, coordinated, and life-sustaining functions. Dominated by the thyroarytenoid muscles and associated glottic closure muscles, the larynx is involved in respiration, swallowing, voicing, coughing, valsalva, vomiting, laughing, and crying. With respiration continuing in the background, all other "secondary" laryngeal events seamlessly occur. When the delicate balance of coordinating these events is disrupted by disease or disorder, many of these tasks are compromised. Due to the complex innervation of these volitional and reflexive tasks with brainstem central pattern generators, primary sensorimotor areas and importantly, limbic areas, failure can occur due to disease, anatomic compromise, and even emotional state. Understanding the level of sensorimotor control and interaction among systems that share these laryngeal neuromuscular substrates will improve the diagnostic and therapeutic skill of the clinician when treating compromise of laryngeal function.
Collapse
Affiliation(s)
- Timothy M McCulloch
- Division of Otolaryngology Head and Neck Surgery / Department of Surgery, University of Wisconsin, Madison, Wisconsin, USA.
| | | | | |
Collapse
|
23
|
Sugiyama Y, Shiba K, Nakazawa K, Suzuki T, Umezaki T, Ezure K, Abo N, Yoshihara T, Hisa Y. Axonal projections of medullary swallowing neurons in guinea pigs. J Comp Neurol 2011; 519:2193-211. [DOI: 10.1002/cne.22624] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Zhao WJ, Sun QJ, Lung MSY, Birch D, Guo RC, Pilowsky PM. Substance P, tyrosine hydroxylase and serotonin terminals in the rat caudal nucleus ambiguus. Respir Physiol Neurobiol 2011; 178:337-40. [PMID: 21689789 DOI: 10.1016/j.resp.2011.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/23/2011] [Accepted: 06/03/2011] [Indexed: 01/18/2023]
Abstract
Substance P (SP), tyrosine hydroxylase (TH) and serotonin inputs onto laryngeal motoneurons (LMNs) are known to exist, but the distribution of their terminals in the caudal nucleus ambiguus (NA), remains unclear. Using immunofluorescence and confocal microscopy, we assessed simultaneously the distribution of SP, TH, serotonin and synaptophysin immunoreactive (ir) terminals in the caudal NA. SP, TH and serotonin-ir varicosities were considered to represent immunoreactive synapses if, using confocal microscopy, they were co-localized with the presynaptic protein, synaptophysin. Relative to the total number of synapses, we found only a modest number of SP, TH or serotonin-ir synaptic terminals in the caudal NA. The density of SP-ir synaptic terminals was higher than that of TH-ir and serotonin-ir synaptic terminals. Our results suggest that SP, TH, and serotonin-ir inputs may play only a modest role in regulating the activity of LMN. We conclude that SP, TH and serotonin are not always co-localized in terminals forming inputs with LMN and that they arise from separate subpopulations of neurons.
Collapse
Affiliation(s)
- Wen-Jing Zhao
- Australian School of Advanced Medicine, Macquarie University, NSW 2109, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Voituron N, Menuet C, Dutschmann M, Hilaire G. Physiological definition of upper airway obstructions in mouse model for Rett syndrome. Respir Physiol Neurobiol 2010; 173:146-56. [DOI: 10.1016/j.resp.2010.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/15/2010] [Accepted: 07/19/2010] [Indexed: 11/17/2022]
|
26
|
Suzuki T, Nakazawa K, Shiba K. Swallow-related inhibition in laryngeal motoneurons. Neurosci Res 2010; 67:327-33. [DOI: 10.1016/j.neures.2010.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/13/2010] [Accepted: 04/21/2010] [Indexed: 11/26/2022]
|
27
|
Poliacek I, Wang C, Corrie LWC, Rose MJ, Bolser DC. Microinjection of codeine into the region of the caudal ventral respiratory column suppresses cough in anesthetized cats. J Appl Physiol (1985) 2010; 108:858-65. [PMID: 20093669 DOI: 10.1152/japplphysiol.00783.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the influence of microinjection of codeine into the caudal ventral respiratory column (cVRC) on the cough reflex. Experiments were performed on 36 anesthetized spontaneously breathing cats. Electromyograms (EMGs) were recorded bilaterally from inspiratory parasternal and expiratory transversus abdominis (ABD) muscles and unilaterally from laryngeal posterior cricoarytenoid and thyroarytenoid muscles. Repetitive coughing was elicited by mechanical stimulation of the intrathoracic airways. The unilateral microinjection of codeine (3.3 mM, 20-32 nl) in the cVRC reduced cough number by 29% (P < 0.01) and expiratory cough amplitudes of esophageal pressure by 33% (P < 0.05) as well as both ipsilateral and contralateral ABD EMGs by 35% and 48% (P < 0.01 and P < 0.01, respectively). No cough depression was observed after microinjections of vehicle. There was no significant effect of microinjection of codeine in the cVRC (3.3 mM, 30-40 nl) on ABD activity induced by a microinjection of D,L-homocysteic acid (30 mM, 27-40 nl) in the same location. However, a cumulative dose of codeine (0.1 mg/kg, 330 nmol/kg) applied into the brain stem circulation through the vertebral artery reduced the ABD motor response to cVRC D,L-homocysteic acid microinjection (30 mM, 28-32 nl) by 47% (P < 0.01). These results suggest that 1) codeine can act within the cVRC to suppress cough and 2) expiratory premotoneurons within the cVRC are relatively insensitive to this opioid.
Collapse
Affiliation(s)
- Ivan Poliacek
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA.
| | | | | | | | | |
Collapse
|
28
|
Bianchi AL, Gestreau C. The brainstem respiratory network: An overview of a half century of research. Respir Physiol Neurobiol 2009; 168:4-12. [DOI: 10.1016/j.resp.2009.04.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/14/2009] [Accepted: 04/22/2009] [Indexed: 12/01/2022]
|
29
|
Dutschmann M, Mörschel M, Reuter J, Zhang W, Gestreau C, Stettner GM, Kron M. Postnatal emergence of synaptic plasticity associated with dynamic adaptation of the respiratory motor pattern. Respir Physiol Neurobiol 2009; 164:72-9. [PMID: 18620081 DOI: 10.1016/j.resp.2008.06.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 06/15/2008] [Accepted: 06/16/2008] [Indexed: 01/10/2023]
Abstract
The shape of the three-phase respiratory motor pattern (inspiration, postinspiration, late expiration) is controlled by a central pattern generator (CPG) located in the ponto-medullary brainstem. Synaptic interactions between and within specific sub-compartments of the CPG are subject of intensive research. This review addresses the neural control of postinspiratory activity as the essential determinant of inspiratory/expiratory phase duration. The generation of the postinspiratory phase depends on synaptic interaction between neurones of the nucleus tractus solitarii (NTS), which relay afferent inputs from pulmonary stretch receptors, and the pontine Kölliker-Fuse nucleus (KF) as integral parts of the CPG. Both regions undergo significant changes during the first three postnatal weeks in rodents. Developmental changes in glutamatergic synaptic functions and its modulation by brain-derived neurotrophic factor may have implications in synaptic plasticity within the NTS/KF axis. We propose that dependent on these developmental changes, the CPG becomes permissive for short- and long-term plasticity associated with environmental, metabolic and behavioural adaptation of the breathing pattern.
Collapse
Affiliation(s)
- Mathias Dutschmann
- CNRS UMR 6231, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, Faculté Saint Jérôme, Case 362, 13397 Marseille Cedex 20, France.
| | | | | | | | | | | | | |
Collapse
|
30
|
Sun QJ, Berkowitz RG, Pilowsky PM. GABAA mediated inhibition and post-inspiratory pattern of laryngeal constrictor motoneurons in rat. Respir Physiol Neurobiol 2008; 162:41-7. [DOI: 10.1016/j.resp.2008.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 03/26/2008] [Accepted: 03/26/2008] [Indexed: 11/28/2022]
|
31
|
Haji A, Ohi Y, Tsunekawa S. N-methyl-d-aspartate mechanisms in depolarization of augmenting expiratory neurons during the expulsive phase of fictive cough in decerebrate cats. Neuropharmacology 2008; 54:1120-7. [DOI: 10.1016/j.neuropharm.2008.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 02/29/2008] [Accepted: 03/06/2008] [Indexed: 11/24/2022]
|
32
|
Poliacek I, Rose MJ, Corrie LWC, Wang C, Jakus J, Barani H, Stransky A, Polacek H, Halasova E, Bolser DC. Short reflex expirations (expiration reflexes) induced by mechanical stimulation of the trachea in anesthetized cats. Cough 2008; 4:1. [PMID: 18442388 PMCID: PMC2405785 DOI: 10.1186/1745-9974-4-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 04/28/2008] [Indexed: 05/26/2023] Open
Abstract
Fifty spontaneously breathing pentobarbital-anesthetized cats were used to determine the incidence rate and parameters of short reflex expirations induced by mechanical stimulation of the tracheal mucosa (ERt). The mechanical stimuli evoked coughs; in addition, 67.6% of the stimulation trials began with ERt. The expiration reflex mechanically induced from the glottis (ERg) was also analyzed (99.5% incidence, p < 0.001 compared to the incidence of ERt). We found that the amplitudes of abdominal, laryngeal abductor posterior cricoarytenoid, and laryngeal adductor thyroarytenoid electromyograms (EMG) were significantly enhanced in ERg relative to ERt. Peak intrathoracic pressure (esophageal or intra-pleural pressure) was higher during ERg than ERt. The interval between the peak in EMG activity of the posterior cricoarytenoid muscle and that of the EMG of abdominal muscles was lower in ERt compared to ERg. The duration of thyroarytenoid EMG activity associated with ERt was shorter than that in ERg. All other temporal features of the pattern of abdominal, posterior cricoarytenoid, and thyroarytenoid muscles EMGs were equivalent in ERt and ERg.In an additional 8 cats, the effect of codeine administered via the vertebral artery was tested. Codeine, in a dose (0.03 mg/kg) that markedly suppressed cough did not significantly alter either the incidence rate or magnitudes of ERt.In the anesthetized cat the ERt induced by mechanical stimulation of the trachea was similar to the ERg from the glottis. These two reflex responses differ substantially only in the frequency of occurrence in response to mechanical stimulus and in the intensity of motor output.
Collapse
Affiliation(s)
- Ivan Poliacek
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, PO box 100144, 1600 SW Archer Road, Gainesville, Florida, 32610-0144, USA
- Department of Medical Biophysics, Jessenius Faculty of Medicine, Comenius University, Mala Hora 4, 037 54, Martin, Slovakia
| | - Melanie J Rose
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, PO box 100144, 1600 SW Archer Road, Gainesville, Florida, 32610-0144, USA
| | - Lu Wen-Chi Corrie
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, PO box 100144, 1600 SW Archer Road, Gainesville, Florida, 32610-0144, USA
| | - Cheng Wang
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, PO box 100144, 1600 SW Archer Road, Gainesville, Florida, 32610-0144, USA
| | - Jan Jakus
- Department of Medical Biophysics, Jessenius Faculty of Medicine, Comenius University, Mala Hora 4, 037 54, Martin, Slovakia
| | - Helena Barani
- Department of Medical Biophysics, Jessenius Faculty of Medicine, Comenius University, Mala Hora 4, 037 54, Martin, Slovakia
| | - Albert Stransky
- Department of Medical Biophysics, Jessenius Faculty of Medicine, Comenius University, Mala Hora 4, 037 54, Martin, Slovakia
| | - Hubert Polacek
- Clinic of Radiodiagnostics, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Erika Halasova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Donald C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, PO box 100144, 1600 SW Archer Road, Gainesville, Florida, 32610-0144, USA
| |
Collapse
|
33
|
Stettner GM, Huppke P, Gärtner J, Richter DW, Dutschmann M. Disturbances of breathing in Rett syndrome: results from patients and animal models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 605:503-7. [PMID: 18085325 DOI: 10.1007/978-0-387-73693-8_88] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Georg M Stettner
- Department of Pediatrics and Pediatric Neurology, Georg August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | | | | | | | | |
Collapse
|
34
|
Shiba K, Isono S, Nakazawa K. Paradoxical vocal cord motion: A review focused on multiple system atrophy. Auris Nasus Larynx 2007; 34:443-52. [PMID: 17482397 DOI: 10.1016/j.anl.2007.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 02/10/2007] [Accepted: 03/14/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Paradoxical vocal cord motion (PVCM) is a well recognized respiratory condition in which active adduction of the vocal cords during inspiration causes functional airway obstruction. It is considered that laryngeal reflex acceleration underlies the generation of nonorganic PVCM. In various situations producing PVCM, multiple system atrophy (MSA) is a representative neurological disease causing nocturnal laryngeal stridor attributed to PVCM. The purpose of this review is to identify the underlying mechanisms associated with nonorganic and MSA-related PVCM. The following issues are addressed in this review: (1) the pathophysiology of nonorganic and MSA-related PVCM, (2) the relationships between PVCM and airway reflexes, and (3) the treatment for MSA-related PVCM. METHODS Review. RESULTS AND CONCLUSIONS An abnormality of the laryngeal output-feedback control underlies nonorganic PVCM, which is usually triggered by an excessive response to external and internal airway stimuli. Similarly, several clinical and experimental evidence suggest that MSA-related PVCM is attributed to the airway reflex as well as to paradoxical central outputs resulting from the MSA-induced damage to the pontomedullary respiratory center. Application of continuous positive airway pressure (CPAP), which suppresses the reflexive inspiratory activation of adductors, is recommended as the treatment for MSA-related PVCM.
Collapse
Affiliation(s)
- Keisuke Shiba
- Department of Otolaryngology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba 260-8670, Japan.
| | | | | |
Collapse
|
35
|
Stettner GM, Huppke P, Brendel C, Richter DW, Gärtner J, Dutschmann M. Breathing dysfunctions associated with impaired control of postinspiratory activity in Mecp2-/y knockout mice. J Physiol 2007; 579:863-76. [PMID: 17204503 PMCID: PMC2151368 DOI: 10.1113/jphysiol.2006.119966] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rett syndrome (RTT) is an inborn neurodevelopmental disorder caused by mutations in the X-linked methyl-CpG binding protein 2 gene (MECP2). Besides mental retardation, most patients suffer from potentially life-threatening breathing arrhythmia. To study its pathophysiology, we performed comparative analyses of the breathing phenotype of Mecp2-/y knockout (KO) and C57BL/6J wild-type mice using the perfused working heart-brainstem preparation (WHBP). We simultaneously recorded phrenic and efferent vagal nerve activities to analyse the motor pattern of respiration, discriminating between inspiration, postinspiration and late expiration. Our results revealed respiratory disturbances in KO preparations that were similar to those reported from in vivo measurements in KO mice and also to those seen in RTT patients. The main finding was a highly variable postinspiratory activity in KO mice that correlated closely with breathing arrhythmias leading to repetitive apnoeas even under undisturbed control conditions. Analysis of the pontine and peripheral sensory regulation of postinspiratory activity in KO preparations revealed: (i) prolonged apnoeas associated with enhanced postinspiratory activity after glutamate-induced activation of the pontine Kölliker-Fuse nucleus; and (ii) prolonged apnoeas and lack of reflex desensitization in response to repetitive vagal stimulations. We conclude that impaired network and sensory mediated synaptic control of postinspiration induces severe breathing dysfunctions in Mecp2-/y KO preparations. As postinspiration is particularly important for the control of laryngeal adductors, the finding might explain the upper airway-related clinical problems of patients with RTT such as apnoeas, loss of speech and weak coordination of breathing and swallowing.
Collapse
Affiliation(s)
- Georg M Stettner
- Department of Pediatrics and Pediatric Neurology, Georg August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Poliacek I, Corrie LWC, Wang C, Rose MJ, Bolser DC. Microinjection of DLH into the region of the caudal ventral respiratory column in the cat: evidence for an endogenous cough-suppressant mechanism. J Appl Physiol (1985) 2006; 102:1014-21. [PMID: 17138836 PMCID: PMC1817661 DOI: 10.1152/japplphysiol.00616.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The caudal ventral respiratory column (cVRC) contains premotor expiratory neurons that play an important role in cough-related expiratory activity of chest wall and abdominal muscles. Microinjection of d,l-homocysteic acid (DLH) was used to test the hypothesis that local activation of cVRC neurons can suppress the cough reflex. DLH (20-50 mM, 10-30 nl) was injected into the region of cVRC in nine anesthetized spontaneously breathing cats. Repetitive coughing was elicited by mechanical stimulation of the intrathoracic airways. Electromyograms (EMG) were recorded bilaterally from inspiratory parasternal and expiratory transversus abdominis (ABD) and unilaterally from laryngeal posterior cricoarytenoid and thyroarytenoid muscles. Unilateral microinjection of DLH (1-1.5 nmol) elicited bilateral increases in tonic and phasic respiratory ABD EMG activity, and it altered the respiratory pattern and laryngeal motor activities. However, DLH also decreased cough frequency by 51 +/- 7% compared with control (P < 0.001) and the amplitude of the contralateral (-35 +/- 3%; P < 0.001) and ipsilateral (-34 +/- 5%; P < 0.001) ABD EMGs during postinjection coughs compared with control. The cough alterations were much less pronounced after microinjection of a lower dose of DLH (0.34-0.8 nmol). No cough depression was observed after microinjections of vehicle. These results suggest that an endogenous cough suppressant neuronal network in the region of the cVRC may exist, and this network may be involved in the control of cough reflex excitability.
Collapse
Affiliation(s)
- Ivan Poliacek
- Dept. of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610-0144, USA
| | | | | | | | | |
Collapse
|
37
|
Dutschmann M, Herbert H. The Kölliker-Fuse nucleus gates the postinspiratory phase of the respiratory cycle to control inspiratory off-switch and upper airway resistance in rat. Eur J Neurosci 2006; 24:1071-84. [PMID: 16930433 DOI: 10.1111/j.1460-9568.2006.04981.x] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Lesion or pharmacological manipulation of the dorsolateral pons can transform the breathing pattern to apneusis (pathological prolonged inspiration). Apneusis reflects a disturbed inspiratory off-switch mechanism (IOS) leading to a delayed phase transition from inspiration to expiration. Under intact conditions the IOS is irreversibly mediated via activation of postinspiratory (PI) neurons within the respiratory network. In parallel, populations of laryngeal premotoneurons manifest the IOS by a brief glottal constriction during the PI phase. We investigated effects of pontine excitation (glutamate injection) or temporary lesion after injection of a GABA-receptor agonist (isoguvacine) on the strength of PI-pool activity determined from respiratory motor outputs or kinesiological measurements of laryngeal resistance in a perfused brainstem preparation. Glutamate microinjections into distinct parts of the pontine Kölliker-Fuse nucleus (KF) evoked a tonic excitation of PI-motor activity or sustained laryngeal constriction accompanied by prolongation of the expiratory phase. Subsequent isoguvacine microinjections at the same loci abolished PI-motor or laryngeal constrictor activity, triggered apneusis and established a variable and decreased breathing frequency. In summary, we revealed that excitation or inhibition of defined areas within the KF activated and blocked PI activity and, consequently, IOS. Therefore, we conclude, first, that descending KF inputs are essential to gate PI activity required for a proper pattern formation and phase control within the respiratory network, at least during absence of pulmonary stretch receptor activity and, secondly, that the KF contains large numbers of laryngeal PI premotor neurons that might have a key role in the regulation of upper airway resistance during reflex control and vocalization.
Collapse
Affiliation(s)
- Mathias Dutschmann
- Department of Neuro and Sensory Physiology, Georg August University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| | | |
Collapse
|
38
|
Ono K, Shiba K, Nakazawa K, Shimoyama I. Synaptic origin of the respiratory-modulated activity of laryngeal motoneurons. Neuroscience 2006; 140:1079-88. [PMID: 16650611 DOI: 10.1016/j.neuroscience.2006.02.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 02/16/2006] [Accepted: 02/24/2006] [Indexed: 12/31/2022]
Abstract
To determine the synaptic source of the respiratory-related activity of laryngeal motoneurons, spike-triggered averaging of the membrane potentials of laryngeal motoneurons was conducted using spikes of respiratory neurons located between the Bötzinger complex and the rostral ventral respiratory group as triggers in decerebrate, paralyzed cats. We identified one excitatory and two inhibitory sources for inspiratory laryngeal motoneurons, and two inhibitory sources for expiratory laryngeal motoneurons. In inspiratory laryngeal motoneurons, monosynaptic excitatory postsynaptic potentials were evoked by spikes of inspiratory neurons with augmenting firing patterns, and monosynaptic inhibitory postsynaptic potentials (IPSPs) were evoked by spikes of expiratory neurons with decrementing firing patterns and by spikes of inspiratory neurons with decrementing firing patterns. In expiratory laryngeal motoneurons, monosynaptic IPSPs were evoked by spikes of inspiratory neurons with decrementing firing patterns and by spikes of expiratory neurons with augmenting firing patterns. We conclude that various synaptic inputs from respiratory neurons contribute to shaping the respiratory-related trajectory of membrane potential of laryngeal motoneurons.
Collapse
Affiliation(s)
- K Ono
- Department of Otolaryngology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan
| | | | | | | |
Collapse
|
39
|
Gestreau C, Dutschmann M, Obled S, Bianchi AL. Activation of XII motoneurons and premotor neurons during various oropharyngeal behaviors. Respir Physiol Neurobiol 2005; 147:159-76. [PMID: 15919245 DOI: 10.1016/j.resp.2005.03.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 03/11/2005] [Accepted: 03/13/2005] [Indexed: 12/11/2022]
Abstract
Neural control of tongue muscles plays a crucial role in a broad range of oropharyngeal behaviors. Tongue movements must be rapidly and accurately adjusted in response to the demands of multiple complex motor tasks including licking/mastication, swallowing, vocalization, breathing and protective reflexes such as coughing. Yet, central mechanisms responsible for motor and premotor control of hypoglossal (XII) activity during these behaviors are still largely unknown. The aim of this article is to review the functional organization of the XII motor nucleus with particular emphasis on breathing, coughing and swallowing. Anatomical localization of XII premotor neurons is also considered. We discuss results concerned with multifunctional activity of medullary and pontine populations of XII premotor neurons, representing a single network that can be reconfigured to produce different oromotor response patterns. In this context, we introduce new data on swallowing-related activity of XII (and trigeminal) motoneurons, and finally suggest a prominent role for the pontine Kölliker-Fuse nucleus in the control of inspiratory-related activity of XII motoneurons supplying tongue protrusor and retrusor muscles.
Collapse
Affiliation(s)
- Christian Gestreau
- Laboratoire de Physiologie Neurovégétative, UMR CNRS 6153 INRA 1147, Université Paul Cézanne Aix-Marseille III, Av. Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France.
| | | | | | | |
Collapse
|
40
|
Harada H, Takakusaki K, Kita S, Matsuda M, Nonaka S, Sakamoto T. Effects of injecting GABAergic agents into the medullary reticular formation upon swallowing induced by the superior laryngeal nerve stimulation in decerebrate cats. Neurosci Res 2005; 51:395-404. [PMID: 15740802 DOI: 10.1016/j.neures.2004.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 12/08/2004] [Accepted: 12/09/2004] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to elucidate the role of the GABAergic system in the medullary reticular formation (MRF) in the control of swallowing. In acutely decerebrated cats (n = 12), swallowing was induced by electrical stimulation (0.3-6 V at 10-20 Hz for 10-20 s every minute) applied to the superior laryngeal nerve (SLN). The stimulus intensity was adjusted so that swallowing was induced two or four times during the period of the stimulation. Bicuculline, a GABA(A) receptor antagonist, was then injected (0.10-0.15 microl, 5 mM) into the MRF through a stereotaxically placed glass micropipette. In a total of 62 injections, 19 injections (30.6%) increased the frequency of SLN-induced swallowing when it was injected into the lateral part of the MRF corresponding to the nucleus reticularis parvocellularis (NRPv). In eight of the effective injections (42.1%) which increased the frequency of SLN-induced swallowing, SLN stimulation also induced coughing. With two injections, stimulation of the SLN-induced coughing but not facilitation of swallowing. On the other hand, an injection of 0.10-0.15 microl of 5 mM muscimol, a GABA(A) receptor agonist, into the NRPv decreased the frequency of SLN-induced swallowing. These results suggest that the NRPv neurons which are responsible for evoking swallowing are under the tonic inhibitory control of the GABAergic system.
Collapse
Affiliation(s)
- Hirofumi Harada
- Department of Physiology, Asahikawa Medical College, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Dutschmann M, Mörschel M, Kron M, Herbert H. Development of adaptive behaviour of the respiratory network: implications for the pontine Kolliker-Fuse nucleus. Respir Physiol Neurobiol 2005; 143:155-65. [PMID: 15519552 DOI: 10.1016/j.resp.2004.04.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2004] [Indexed: 11/30/2022]
Abstract
Breathing is constantly modulated by afferent sensory inputs in order to adapt to changes in behaviour and environment. The pontine respiratory group, in particular the Kolliker-Fuse nucleus, might be a key structure for adaptive behaviours of the respiratory network. Here, we review the anatomical connectivity of the Kolliker-Fuse nucleus with primary sensory structures and with the medullary respiratory centres and focus on the importance of pontine and medullary postinspiratory neurones in the mediation of respiratory reflexes. Furthermore, we will summarise recent findings from our group regarding ontogenetic changes of respiratory reflexes (e.g., the diving response) and provide evidence that immaturity of the Kolliker-Fuse nucleus might account in neonates for a lack of plasticity in sensory evoked modulations of respiratory activity. We propose that a subpopulation of neurones within the Kolliker-Fuse nucleus represent command neurones for sensory processing which are capable of initiating adaptive behaviour in the respiratory network. Recent data from our laboratory suggest that these command neurones undergo substantial postnatal maturation.
Collapse
Affiliation(s)
- Mathias Dutschmann
- Department of Physiology, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| | | | | | | |
Collapse
|
42
|
Baekey DM, Morris KF, Nuding SC, Segers LS, Lindsey BG, Shannon R. Ventrolateral medullary respiratory network participation in the expiration reflex in the cat. J Appl Physiol (1985) 2005; 96:2057-72. [PMID: 15133012 DOI: 10.1152/japplphysiol.00778.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The expiration reflex is a distinct airway defensive response characterized by a brief, intense expiratory effort and coordinated adduction and abduction of the laryngeal folds. This study addressed the hypothesis that the ventrolateral medullary respiratory network participates in the reflex. Extracellular neuron activity was recorded with microelectrode arrays in decerebrated, neuromuscular-blocked, ventilated cats. In 32 recordings (17 cats), 232 neurons were monitored in the rostral (including Bötzinger and pre-Bötzinger complexes) and caudal ventral respiratory group. Neurons were classified by firing pattern, evaluated for spinal projections, functional associations with recurrent laryngeal and lumbar nerves, and firing rate changes during brief, large increases in lumbar motor nerve discharge (fictive expiration reflex, FER) elicited during mechanical stimulation of the vocal folds. Two hundred eight neurons were respiratory modulated, and 24 were nonrespiratory; 104 of the respiratory and 6 of the nonrespiratory-modulated neurons had altered peak firing rates during the FER. Increased firing rates of bulbospinal neurons and expiratory laryngeal premotor and motoneurons during the expiratory burst of FER were accompanied by changes in the firing patterns of putative propriobulbar neurons proposed to participate in the eupneic respiratory network. The results support the hypothesis that elements of the rostral and caudal ventral respiratory groups participate in generating and shaping the motor output of the FER. A model is proposed for the participation of the respiratory network in the expiration reflex.
Collapse
Affiliation(s)
- David M Baekey
- Department of Physiology and Biophysics, University of South Florida Health Sciences Center, MDC Box 8, College of Medicine, Tampa, FL 33612, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Ohi Y, Yamazaki H, Takeda R, Haji A. Phrenic and iliohypogastric nerve discharges during tussigenic stimulation in paralyzed and decerebrate guinea pigs and rats. Brain Res 2004; 1021:119-27. [PMID: 15328039 DOI: 10.1016/j.brainres.2004.06.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2004] [Indexed: 10/26/2022]
Abstract
Although effects of antitussive drugs have been examined in inbred small animals using a whole body plethysmography, neuronal mechanisms underlying the cough reflex are not fully understood. The present study analyzed the reflex discharge patterns of the phrenic (PN) and iliohypogastric nerves (IHN) evoked in decerebrate and paralyzed guinea pigs and rats. In guinea pigs, electrical stimulation of the superior laryngeal nerve, chemical stimulation with capsaicin and mechanical stimulation to the intratracheal mucosa equally produced a serial PN-IHN response. This response was characterized by an increased PN discharge and following spindle-shaped burst of the IHN. The evoked discharges overlapped for 20 ms. In rats, by contrast, mechanical stimulation was without effect while capsaicin and electrical stimulation produced two types of responses, both of which differed from that observed in guinea pigs. The first type consisted of an augmented burst of the IHN that was immediately followed by an increased PN discharge. The second type was a large spindle-shaped burst of the IHN that occurred 80 ms after the end of the preceding PN discharge. Codeine (3 mg/kg i.v.) depressed all types of responses evoked in guinea pigs and rats. The present study demonstrated that the fictive cough comparable with those induced in other experimental animals was produced consistently in guinea pigs, but not in rats. Therefore, guinea pigs are suitable for investigation of the neuronal mechanisms underlying the cough reflex and assessment of antitussive drugs.
Collapse
Affiliation(s)
- Yoshiaki Ohi
- Department of Pharmacology, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Toyama 930-0194, Japan
| | | | | | | |
Collapse
|
44
|
Numasawa T, Shiba K, Nakazawa K, Umezaki T. Membrane potential changes in vocal cord tensor motoneurons during breathing, vocalization, coughing and swallowing in decerebrate cats. Neurosci Res 2004; 49:315-24. [PMID: 15196780 DOI: 10.1016/j.neures.2004.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Accepted: 03/26/2004] [Indexed: 11/25/2022]
Abstract
We studied the patterns of membrane potential changes in vocal cord tensor motoneurons, i.e. cricothyroid muscle motoneurons (CTMs), during fictive breathing, vocalization, coughing, and swallowing in decerebrate paralyzed cats to determine the nature of central drives to CTMs during these behaviors. CTMs were identified by antidromic activation from the superior laryngeal nerve. During breathing, CTMs always depolarized during the inspiratory phase, and sometimes depolarized during the expiratory phase as well. During vocalization, CTMs strongly depolarized. During coughing, CTMs exhibited depolarizations during both inspiratory and expiratory phases, but it was interrupted by a transient repolarization between the last part of the inspiratory phase and the first part of the abdominal burst during which chloride-dependent inhibitory postsynaptic potentials were revealed. During swallowing, most CTMs hyperpolarized, and this hyperpolarization was sometimes followed by a weak depolarization. We conclude that the main role of the cricothyroid muscle is vocalization but the functional roles in coughing and swallowing are minor, and that the CTM activity during resting breathing and vocalization are primarily controlled by excitatory inputs, while during coughing and swallowing, inhibitory inputs play roles in shaping membrane potential trajectories.
Collapse
Affiliation(s)
- Tamaki Numasawa
- Department of Otolaryngology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 260-8670, Japan.
| | | | | | | |
Collapse
|
45
|
Sekita Y, Shiba K, Nakazawa K, Numasawa T, Isono S. Inspiratory activation of the vocal cord adductor, part II: Animal study in the cat. Laryngoscope 2004; 114:376-80. [PMID: 14755222 DOI: 10.1097/00005537-200402000-00037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES/HYPOTHESIS The authors have shown previously that the vocal cord adductor is activated during inspiration in patients with vocal cord abduction impairment and that this adductor inspiratory activity is abolished by relief from inspiratory tracheal negative pressure by opening the tracheostoma. (Shiba K. Isono S, Sekita Y, Tanaka A. Inspiratory activation of the vocal cord adductor, Part I: human study in patients with restricted abduction of the vocal cords. Laryngoscope 2004;114:372-375). The authors hypothesized that insufficient opening of the glottis during inspiration generates strong negative pressure in the trachea and that this negative pressure triggers an airway reflex that activates the adductor. STUDY DESIGN Experimental study of the mechanism of laryngeal obstruction using an animal model of restricted abduction of the vocal cords. METHODS To identify such an airway reflex, the authors recorded the adductor electromyogram in anesthetized cats whose vocal cords were mechanically adducted by stitching both cords together. To determine whether this reflex modulation of adductor activity is induced through afferents from the larynx or from the lower airway, the authors applied negative pressure to the subglottic space and lower airway separately. RESULTS The adductor was activated during inspiration with powerful negative pressure in the trachea. Negative pressure in the subglottic space had a more marked effect on the adductor activity than did pressure in the lower airway. The adductor inspiratory activity was virtually abolished by laryngeal deafferentation. CONCLUSION Glottal narrowing during inspiration reflexly activates the vocal cord adductor. This paradoxical inspiratory-related adductor activation is induced by an airway reflex triggered mainly through afferents from the larynx and probably contributes to stridor and dyspnea in patients with laryngeal obstruction.
Collapse
Affiliation(s)
- Yasuko Sekita
- Department of Otolaryngology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 260-8670, Japan.
| | | | | | | | | |
Collapse
|
46
|
Shiba K, Isono S, Sekita Y, Tanaka A. Inspiratory Activation of the Vocal Cord Adductor, Part I: Human Study in Patients With Restricted Abduction of the Vocal Cords. Laryngoscope 2004; 114:372-5. [PMID: 14755221 DOI: 10.1097/00005537-200402000-00036] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES/HYPOTHESIS In patients with restricted abduction of the vocal cords, it has generally been accepted that glottis narrowing with laryngeal stridor during inspiration is attributed to static and passive obstruction of the glottis. However, active glottis narrowing can also be contributory. We tested the hypothesis that the vocal cord adductor is activated during inspiration in patients with restricted abduction of the vocal cords. STUDY DESIGN Electromyographic evaluation of vocal cord adductor activity in patients with restricted abduction of the vocal cords. METHODS Five patients with restricted abduction of the vocal cords who had stridor with mild to severe dyspnea during wakefulness were anesthetized with propofol. We recorded the adductor muscle electromyogram during breathing through a laryngeal mask airway while observing the vocal cord movement endoscopically. In three patients who had undergone tracheostomy, we also recorded adductor firing patterns not only while closing but also while opening the tracheostoma. RESULTS The adductor was activated during inspiration, and the glottis was narrowed in accordance with inspiratory stridor. This adductor inspiratory activity was abolished by opening the tracheostoma in the tracheostomized patients. CONCLUSION Not only static or passive glottis narrowing but also active narrowing may contribute to inspiratory flow limitation in patients with restricted abduction of the vocal cords. This active glottis narrowing is probably induced by an airway reflex.
Collapse
Affiliation(s)
- Keisuke Shiba
- Department of Otolaryngology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 260-8670, Japan.
| | | | | | | |
Collapse
|
47
|
Erratum. Laryngoscope 2004. [DOI: 10.1097/00005537-200402000-00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Inspiratory Activation of the Vocal Cord Adductor, Part II: Animal Study in the Cat. Laryngoscope 2004. [DOI: 10.1097/00005537-200402000-00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Saito Y, Ezure K, Tanaka I, Osawa M. Activity of neurons in ventrolateral respiratory groups during swallowing in decerebrate rats. Brain Dev 2003; 25:338-45. [PMID: 12850513 DOI: 10.1016/s0387-7604(03)00008-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To elucidate the neuronal basis of the coordination between swallowing and respiration, we examined the swallowing-related activity of respiratory neurons in the ventrolateral respiratory groups of the medulla oblongata of decerebrate, paralyzed and artificially ventilated rats (n = 14). Extracellular recording was made during fictive swallowing evoked by the electrical stimulation of the superior laryngeal nerve from a total of 141 neurons with respiratory rhythm (99 expiratory and 42 inspiratory neurons). The burst of discharge by the hypoglossal nerve was used to monitor the pharyngeal phase of swallowing. The decrementing-expiratory (E-DEC) neurons (n = 62) were activated during (n = 46) or after (n = 10) the hypoglossal bursts, or showed no swallowing-related activity (n = 6). All of the augmenting-expiratory (E-AUG) neurons (n = 37) were silent during the hypoglossal bursts but were activated after each swallow. Inspiratory neurons showed either no swallowing-related bursts (n = 27), or were activated after the hypoglossal bursts (n = 15). Activation of the majority of E-DEC neurons may be related to the arrest of respiration during swallowing, and the post-swallow activation of E-AUG neurons may correspond to the expiratory phase that follows swallowing. We suggest that these behaviors of expiratory neurons are essential in the phase resetting of the respiratory cycle in association with the swallowing.
Collapse
Affiliation(s)
- Yoshiaki Saito
- Department of Neurobiology, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan.
| | | | | | | |
Collapse
|
50
|
Kunibe I, Nonaka S, Katada A, Adachi M, Enomoto KI, Harabuchi Y. The neuronal circuit of augmenting effects on intrinsic laryngeal muscle activities induced by nasal air-jet stimulation in decerebrate cats. Brain Res 2003; 978:83-90. [PMID: 12834901 DOI: 10.1016/s0006-8993(03)02770-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We previously demonstrated that during nasal air-jet stimulation, both the activities of intrinsic laryngeal adductor and abductor muscles persistently increase, whereas the respiratory cycle prolongs and the activity of diaphragm decreases [Am. J. Rhinol. 9 (1995) 203-208; Neurosci. Res. 31 (1998) 137-146]. The purpose of this study was to clarify the neuronal circuit underlying the augmentation of intrinsic laryngeal muscles evoked by nasal air-jet stimulation. The immunohistologic analysis of Fos-expression was reported to determine the distribution of activated neurons in cat brainstem evoked by sneeze-inducing air puff stimulation of the nasal mucosa [Brain Res. 687 (1995) 143-154]. In sneezing cats, immunoreactivity was evoked in projection areas of the ethmoidal afferents, e.g. the subnuclei caudalis, interpolaris and in interstitial islands of the trigeminal sensory complex. Immunoreactivity was also enhanced in the solitary complex, the nucleus retroambiguus, the pontine parabrachial area and the lateral aspect of the parvocellular reticular formation [Brain Res. 687 (1995) 143-154]. In the present study, we focussed on the parvocellular reticular nucleus (PRN) as a relay of the neural circuit contributed to the augmentation of intrinsic laryngeal muscles evoked by nasal air-jet stimulation. We recorded the neuronal behavior of PRN during the nasal air-jet stimulation in precollicular-postmammillary decerebrate cats. As the results, 24% (17/71) of recorded neurons which were activated orthodromically by the electrical stimulation to anterior ethmoidal nerve, increased their firing rates in response to the nasal air-jet stimulation. Furthermore, spike-triggered averaging method revealed that four of these 17 PRN neurons activated intrinsic laryngeal muscles, suggesting that such neurons have excitatory projections to the intrinsic laryngeal muscle motoneurons in the nucleus ambiguus. These results suggest that the some of PRN neuron play a role in augmentation of the intrinsic laryngeal muscles activities during nasal air-jet stimulation.
Collapse
Affiliation(s)
- Isamu Kunibe
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical College, Midorigaoka east 2-1-1-1, Asahikawa 078-8510, Japan
| | | | | | | | | | | |
Collapse
|