1
|
Van Hook MJ, Nawy S, Thoreson WB. Voltage- and calcium-gated ion channels of neurons in the vertebrate retina. Prog Retin Eye Res 2019; 72:100760. [PMID: 31078724 PMCID: PMC6739185 DOI: 10.1016/j.preteyeres.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
In this review, we summarize studies investigating the types and distribution of voltage- and calcium-gated ion channels in the different classes of retinal neurons: rods, cones, horizontal cells, bipolar cells, amacrine cells, interplexiform cells, and ganglion cells. We discuss differences among cell subtypes within these major cell classes, as well as differences among species, and consider how different ion channels shape the responses of different neurons. For example, even though second-order bipolar and horizontal cells do not typically generate fast sodium-dependent action potentials, many of these cells nevertheless possess fast sodium currents that can enhance their kinetic response capabilities. Ca2+ channel activity can also shape response kinetics as well as regulating synaptic release. The L-type Ca2+ channel subtype, CaV1.4, expressed in photoreceptor cells exhibits specific properties matching the particular needs of these cells such as limited inactivation which allows sustained channel activity and maintained synaptic release in darkness. The particular properties of K+ and Cl- channels in different retinal neurons shape resting membrane potentials, response kinetics and spiking behavior. A remaining challenge is to characterize the specific distributions of ion channels in the more than 100 individual cell types that have been identified in the retina and to describe how these particular ion channels sculpt neuronal responses to assist in the processing of visual information by the retina.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Scott Nawy
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
2
|
Barzan R, Pfeiffer F, Kukley M. N- and L-Type Voltage-Gated Calcium Channels Mediate Fast Calcium Transients in Axonal Shafts of Mouse Peripheral Nerve. Front Cell Neurosci 2016; 10:135. [PMID: 27313508 PMCID: PMC4889576 DOI: 10.3389/fncel.2016.00135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/09/2016] [Indexed: 12/11/2022] Open
Abstract
In the peripheral nervous system (PNS) a vast number of axons are accommodated within fiber bundles that constitute peripheral nerves. A major function of peripheral axons is to propagate action potentials along their length, and hence they are equipped with Na(+) and K(+) channels, which ensure successful generation, conduction and termination of each action potential. However little is known about Ca(2+) ion channels expressed along peripheral axons and their possible functional significance. The goal of the present study was to test whether voltage-gated Ca(2+) channels (VGCCs) are present along peripheral nerve axons in situ and mediate rapid activity-dependent Ca(2+) elevations under physiological circumstances. To address this question we used mouse sciatic nerve slices, Ca(2+) indicator Oregon Green BAPTA-1, and 2-photon Ca(2+) imaging in fast line scan mode (500 Hz). We report that transient increases in intra-axonal Ca(2+) concentration take place along peripheral nerve axons in situ when axons are stimulated electrically with single pulses. Furthermore, we show for the first time that Ca(2+) transients in peripheral nerves are fast, i.e., occur in a millisecond time-domain. Combining Ca(2+) imaging and pharmacology with specific blockers of different VGCCs subtypes we demonstrate that Ca(2+) transients in peripheral nerves are mediated mainly by N-type and L-type VGCCs. Discovery of fast Ca(2+) entry into the axonal shafts through VGCCs in peripheral nerves suggests that Ca(2+) may be involved in regulation of action potential propagation and/or properties in this system, or mediate neurotransmitter release along peripheral axons as it occurs in the optic nerve and white matter of the central nervous system (CNS).
Collapse
Affiliation(s)
- Ruxandra Barzan
- Group of Neuron Glia Interaction, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen Tübingen, Germany
| | - Friederike Pfeiffer
- Group of Neuron Glia Interaction, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen Tübingen, Germany
| | - Maria Kukley
- Group of Neuron Glia Interaction, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen Tübingen, Germany
| |
Collapse
|
3
|
Huynh TG, Cuny H, Slesinger PA, Adams DJ. Novel Mechanism of Voltage-Gated N-type (Cav2.2) Calcium Channel Inhibition Revealed through α-Conotoxin Vc1.1 Activation of the GABAB Receptor. Mol Pharmacol 2014; 87:240-50. [DOI: 10.1124/mol.114.096156] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
4
|
Nerve regenerative effects of GABA-B ligands in a model of neuropathic pain. BIOMED RESEARCH INTERNATIONAL 2014; 2014:368678. [PMID: 25165701 PMCID: PMC4140148 DOI: 10.1155/2014/368678] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 05/13/2014] [Accepted: 06/11/2014] [Indexed: 12/13/2022]
Abstract
Neuropathic pain arises as a direct consequence of a lesion or disease affecting the peripheral somatosensory system. It may be associated with allodynia and increased pain sensitivity. Few studies correlated neuropathic pain with nerve morphology and myelin proteins expression. Our aim was to test if neuropathic pain is related to nerve degeneration, speculating whether the modulation of peripheral GABA-B receptors may promote nerve regeneration and decrease neuropathic pain. We used the partial sciatic ligation- (PSL-) induced neuropathic model. The biochemical, morphological, and behavioural outcomes of sciatic nerve were analysed following GABA-B ligands treatments. Simultaneous 7-days coadministration of baclofen (10 mg/kg) and CGP56433 (3 mg/kg) alters tactile hypersensitivity. Concomitantly, specific changes of peripheral nerve morphology, nerve structure, and myelin proteins (P0 and PMP22) expression were observed. Nerve macrophage recruitment decreased and step coordination was improved. The PSL-induced changes in nociception correlate with altered nerve morphology and myelin protein expression. Peripheral synergic effects, via GABA-B receptor activation, promote nerve regeneration and likely ameliorate neuropathic pain.
Collapse
|
5
|
Butt AM, Fern RF, Matute C. Neurotransmitter signaling in white matter. Glia 2014; 62:1762-79. [PMID: 24753049 DOI: 10.1002/glia.22674] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 03/04/2014] [Accepted: 03/31/2014] [Indexed: 12/16/2022]
Abstract
White matter (WM) tracts are bundles of myelinated axons that provide for rapid communication throughout the CNS and integration in grey matter (GM). The main cells in myelinated tracts are oligodendrocytes and astrocytes, with small populations of microglia and oligodendrocyte precursor cells. The prominence of neurotransmitter signaling in WM, which largely exclude neuronal cell bodies, indicates it must have physiological functions other than neuron-to-neuron communication. A surprising aspect is the diversity of neurotransmitter signaling in WM, with evidence for glutamatergic, purinergic (ATP and adenosine), GABAergic, glycinergic, adrenergic, cholinergic, dopaminergic and serotonergic signaling, acting via a wide range of ionotropic and metabotropic receptors. Both axons and glia are potential sources of neurotransmitters and may express the respective receptors. The physiological functions of neurotransmitter signaling in WM are subject to debate, but glutamate and ATP-mediated signaling have been shown to evoke Ca(2+) signals in glia and modulate axonal conduction. Experimental findings support a model of neurotransmitters being released from axons during action potential propagation acting on glial receptors to regulate the homeostatic functions of astrocytes and myelination by oligodendrocytes. Astrocytes also release neurotransmitters, which act on axonal receptors to strengthen action potential propagation, maintaining signaling along potentially long axon tracts. The co-existence of multiple neurotransmitters in WM tracts suggests they may have diverse functions that are important for information processing. Furthermore, the neurotransmitter signaling phenomena described in WM most likely apply to myelinated axons of the cerebral cortex and GM areas, where they are doubtless important for higher cognitive function.
Collapse
Affiliation(s)
- Arthur M Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, United Kingdom
| | | | | |
Collapse
|
6
|
Sargoy A, Sun X, Barnes S, Brecha NC. Differential calcium signaling mediated by voltage-gated calcium channels in rat retinal ganglion cells and their unmyelinated axons. PLoS One 2014; 9:e84507. [PMID: 24416240 PMCID: PMC3885580 DOI: 10.1371/journal.pone.0084507] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 11/20/2013] [Indexed: 11/17/2022] Open
Abstract
Aberrant calcium regulation has been implicated as a causative factor in the degeneration of retinal ganglion cells (RGCs) in numerous injury models of optic neuropathy. Since calcium has dual roles in maintaining homeostasis and triggering apoptotic pathways in healthy and injured cells, respectively, investigation of voltage-gated Ca channel (VGCC) regulation as a potential strategy to reduce the loss of RGCs is warranted. The accessibility and structure of the retina provide advantages for the investigation of the mechanisms of calcium signalling in both the somata of ganglion cells as well as their unmyelinated axons. The goal of the present study was to determine the distribution of VGCC subtypes in the cell bodies and axons of ganglion cells in the normal retina and to define their contribution to calcium signals in these cellular compartments. We report L-type Ca channel α1C and α1D subunit immunoreactivity in rat RGC somata and axons. The N-type Ca channel α1B subunit was in RGC somata and axons, while the P/Q-type Ca channel α1A subunit was only in the RGC somata. We patch clamped isolated ganglion cells and biophysically identified T-type Ca channels. Calcium imaging studies of RGCs in wholemounted retinas showed that selective Ca channel antagonists reduced depolarization-evoked calcium signals mediated by L-, N-, P/Q- and T-type Ca channels in the cell bodies but only by L-type Ca channels in the axons. This differential contribution of VGCC subtypes to calcium signals in RGC somata and their axons may provide insight into the development of target-specific strategies to spare the loss of RGCs and their axons following injury.
Collapse
Affiliation(s)
- Allison Sargoy
- Department of Neurobiology and Jules Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Xiaoping Sun
- Department of Neurobiology and Jules Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Steven Barnes
- Department of Neurobiology and Jules Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Departments of Physiology & Biophysics and Ophthalmology & Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Nicholas C. Brecha
- Department of Neurobiology and Jules Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| |
Collapse
|
7
|
Moldavan MG, Allen CN. GABAB receptor-mediated frequency-dependent and circadian changes in synaptic plasticity modulate retinal input to the suprachiasmatic nucleus. J Physiol 2013; 591:2475-90. [PMID: 23401614 DOI: 10.1113/jphysiol.2012.248047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Light is the most important environmental signal that entrains the circadian clock located in the hypothalamic suprachiasmatic nucleus (SCN). The retinohypothalamic tract (RHT) was stimulated to simulate the light intensity-dependent discharges of intrinsically photosensitive retinal ganglion cells projecting axons to the hypothalamus. EPSCs were evoked by paired-pulse stimulation or by application of stimulus trains, and recorded from SCN neurons in rat brain slices. Initial release probability (Pr) and synaptic plasticity changes depended on the strength of GABAB receptor (GABABR)-mediated presynaptic inhibition and could be different at the same GABABR agonist concentration. Facilitation caused by frequency-dependent relief of GABABR-mediated inhibition was observed when the initial Pr was decreased to less than 15% of control during strong activation of presynaptic GABAB receptors by (±)baclofen (10 μm), GABA (2 mm) or by GABA uptake inhibitor nipecotic acid (5 mm). In contrast, short-term synaptic depression appeared during baclofen (10 μm) application when initial Pr was greater than 30% of control. Block of 4-aminopyridine-sensitive K(+) currents increased the amplitude and time constant of decay of evoked EPSCs (eEPSCs), and decreased the GABABR-mediated presynaptic inhibition. The GABAB receptor antagonist CGP55845 (3 μm) increased the eEPSCs amplitude 30% throughout the light-dark cycle. During light and dark phases the RHT inputs to 55% and 33% of recorded neurons, respectively, were under GABAB inhibitory control indicating that the tonic inhibition induced by local changes of endogenous GABA concentration contributes to the circadian variation of RHT transmitter release. We conclude that GABABR-mediated presynaptic inhibition decreased with increasing frequency and broadening of presynaptic action potentials, and depended on the sensitivity of RHT terminals to GABABR agonists, and diurnal changes of the extracellular GABA concentration around RHT axon terminals in the SCN.
Collapse
Affiliation(s)
- Mykhaylo G Moldavan
- CROET, L606, Oregon Health & Science University, Portland, OR 97239-3098, USA.
| | | |
Collapse
|
8
|
Bucher D, Goaillard JM. Beyond faithful conduction: short-term dynamics, neuromodulation, and long-term regulation of spike propagation in the axon. Prog Neurobiol 2011; 94:307-46. [PMID: 21708220 PMCID: PMC3156869 DOI: 10.1016/j.pneurobio.2011.06.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 05/27/2011] [Accepted: 06/07/2011] [Indexed: 12/13/2022]
Abstract
Most spiking neurons are divided into functional compartments: a dendritic input region, a soma, a site of action potential initiation, an axon trunk and its collaterals for propagation of action potentials, and distal arborizations and terminals carrying the output synapses. The axon trunk and lower order branches are probably the most neglected and are often assumed to do nothing more than faithfully conducting action potentials. Nevertheless, there are numerous reports of complex membrane properties in non-synaptic axonal regions, owing to the presence of a multitude of different ion channels. Many different types of sodium and potassium channels have been described in axons, as well as calcium transients and hyperpolarization-activated inward currents. The complex time- and voltage-dependence resulting from the properties of ion channels can lead to activity-dependent changes in spike shape and resting potential, affecting the temporal fidelity of spike conduction. Neural coding can be altered by activity-dependent changes in conduction velocity, spike failures, and ectopic spike initiation. This is true under normal physiological conditions, and relevant for a number of neuropathies that lead to abnormal excitability. In addition, a growing number of studies show that the axon trunk can express receptors to glutamate, GABA, acetylcholine or biogenic amines, changing the relative contribution of some channels to axonal excitability and therefore rendering the contribution of this compartment to neural coding conditional on the presence of neuromodulators. Long-term regulatory processes, both during development and in the context of activity-dependent plasticity may also affect axonal properties to an underappreciated extent.
Collapse
Affiliation(s)
- Dirk Bucher
- The Whitney Laboratory and Department of Neuroscience, University of Florida, St. Augustine, FL 32080, USA.
| | | |
Collapse
|
9
|
Faroni A, Mantovani C, Shawcross SG, Motta M, Terenghi G, Magnaghi V. Schwann-like adult stem cells derived from bone marrow and adipose tissue express γ-aminobutyric acid type B receptors. J Neurosci Res 2011; 89:1351-62. [PMID: 21618582 DOI: 10.1002/jnr.22652] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 12/14/2022]
Abstract
γ-Aminobutyric acid type B receptors (GABA-B) are expressed in glial cells of the central and peripheral nervous systems, and recent evidence has shown their importance in modulating physiological parameters of Schwann cell (SC). SC play essential roles in peripheral nerve regeneration, but several drawbacks prevent their use for nerve repair. Adult stem cells from adipose tissue (ASC) or bone marrow (BM-MSC) can be differentiated into an SC-like phenotype and used as SC replacements. The aim of this study was to investigate GABA-B receptor functional expression in differentiated stem cells by assessing the similarity to SC. By means of RT-PCR and Western blot methodologies, BM-MSC and ASC were found to express both GABA-B1 and GABA-B2 receptor subunits. The expression levels of GABA-B1b and GABA-B2 receptors were influenced by SC-like differentiation, as shown by Western blot studies. GABA-B receptor stimulation with baclofen reduced the proliferation rate of SC and differentiated ASC (dASC) but not that of dBM-MSC. In conclusion, both of the subunits that assemble into a functional GABA-B receptor are present in differentiated stem cells. Furthermore, GABA-B receptors in dASC are functionally active, regulating a key process such as proliferation. The presence of functional GABA-B receptors on differentiated stem cells opens new opportunities for a possible pharmacological modulation of their physiology and phenotype.
Collapse
Affiliation(s)
- Alessandro Faroni
- Blond McIndoe Laboratories, Regenerative Biomedicine, The University of Manchester, Manchester, United Kingdom.
| | | | | | | | | | | |
Collapse
|
10
|
Gadjanski I, Boretius S, Williams SK, Lingor P, Knöferle J, Sättler MB, Fairless R, Hochmeister S, Sühs KW, Michaelis T, Frahm J, Storch MK, Bähr M, Diem R. Role of n-type voltage-dependent calcium channels in autoimmune optic neuritis. Ann Neurol 2009; 66:81-93. [DOI: 10.1002/ana.21668] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Magnaghi V, Procacci P, Tata AM. Chapter 15 Novel Pharmacological Approaches to Schwann Cells as Neuroprotective Agents for Peripheral Nerve Regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 87:295-315. [DOI: 10.1016/s0074-7742(09)87015-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Angulo MC, Le Meur K, Kozlov AS, Charpak S, Audinat E. GABA, a forgotten gliotransmitter. Prog Neurobiol 2008; 86:297-303. [PMID: 18786601 DOI: 10.1016/j.pneurobio.2008.08.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 05/30/2008] [Accepted: 08/12/2008] [Indexed: 01/27/2023]
Abstract
The amino acid gamma-aminobutiric acid (GABA) is a major inhibitory transmitter in the vertebrate central nervous system (CNS) where it can be released by neurons and by glial cells. Neuronal GABAergic signaling is well characterized: the mechanisms of GABA release, the receptors it targets and the functional consequences of their activation have been extensively studied. In contrast, the corresponding features of glial GABAergic signaling have attracted less attention. In this review, we first discuss evidence from the literature for GABA accumulation, production and release by glial cells. We then review the results of recent experiments that point toward functional roles of GABA as a "gliotransmitter".
Collapse
Affiliation(s)
- María Cecilia Angulo
- Inserm U603, Paris, France; CNRS UMR 8154, Paris, France; Université Paris Descartes, Paris, France
| | | | | | | | | |
Collapse
|
13
|
Alix JJP, Dolphin AC, Fern R. Vesicular apparatus, including functional calcium channels, are present in developing rodent optic nerve axons and are required for normal node of Ranvier formation. J Physiol 2008; 586:4069-89. [PMID: 18599536 DOI: 10.1113/jphysiol.2008.155077] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
P/Q-type calcium channels are known to form clusters at the presynaptic membrane where they mediate calcium influx, triggering vesicle fusion. We now report functional P/Q channel clusters in the axolemma of developing central axons that are also associated with sites of vesicle fusion. These channels were activated by axonal action potentials and the resulting calcium influx is well suited to mediate formation of a synaptic style SNARE complex involving SNAP-25, that we show to be located on the axolemma. Vesicular elements within axons were found to be the sole repository of vesicular glutamate in developing white matter. The axonal vesicular elements expressed the glutamate transporter V-ATPase, which is responsible for vesicular glutamate loading. The P/Q channel alpha(1A) subunit was found to be present within the axolemma at early nodes of Ranvier and deleterious mutations of the alpha(1A) subunit, or an associated alpha(2)delta-2 subunit, disrupted the localization of nodal proteins such as voltage-gated sodium channels, beta IV spectrin and CASPR-1. This was associated with the presence of malformed nodes of Ranvier characterized by an accumulation of axoplasmic vesicles under the nodal membrane. The data are consistent with the presence of a vesicular signalling pathway between axons and glial cells that is essential for proper development of the node of Ranvier.
Collapse
Affiliation(s)
- James J P Alix
- Department of Cell Physiology & Pharmacology, University of Leicester, Leicester, UK
| | | | | |
Collapse
|
14
|
Hetzler BE, Ondracek JM. Baclofen alters flash-evoked potentials in Long–Evans rats. Pharmacol Biochem Behav 2007; 86:727-40. [PMID: 17407791 DOI: 10.1016/j.pbb.2007.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Revised: 02/23/2007] [Accepted: 02/27/2007] [Indexed: 11/17/2022]
Abstract
This experiment examined the effects of the GABA-B agonist baclofen on flash-evoked potentials (FEPs) recorded from both the visual cortex (VC) and superior colliculus (SC) of chronically implanted male Long-Evans rats. FEPs were recorded at 5, 25, 45, and 65 min following intraperitoneal injections of saline, and of 1.25, 2.5, 5.0, and 10.0 mg/kg baclofen on separate days. In the VC, the amplitude of components P(23), P(37), N(55), N(150), and P(242) increased, while the amplitude of components N(31) and P(48) decreased following baclofen administration. P(88) was unchanged. In the SC, components P(28), N(49), N(55), and N(59) were reduced in amplitude, while P(39) was unaffected by baclofen. These effects on amplitudes were dose- and time-dependent. Many peak latencies in the VC and SC were altered by baclofen, although there was no obvious pattern of change, with some decreasing, a few increasing, and others unchanged. Body temperature was recorded in a separate group of animals, with both the 5.0 and 10.0 mg/kg doses of baclofen producing significant hypothermia. The 10.0 mg/kg dose of baclofen resulted in a significant decrease in movement during the recording sessions, but not in subsequent open field observations. The results show the involvement of GABA-B receptors in the production/modulation of the various components of FEPs.
Collapse
Affiliation(s)
- Bruce E Hetzler
- Department of Psychology, Lawrence University, Appleton, WI 54912, USA.
| | | |
Collapse
|
15
|
Petrescu N, Micu I, Malek S, Ouardouz M, Stys PK. Sources of axonal calcium loading during in vitro ischemia of rat dorsal roots. Muscle Nerve 2007; 35:451-7. [PMID: 17206661 DOI: 10.1002/mus.20731] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A detailed understanding of injury mechanisms in peripheral nerve fibers will help guide successful design of therapies for peripheral neuropathies. This study was therefore undertaken to examine the ionic mechanisms of Ca2+ overload in peripheral myelinated fibers subjected to chemical inhibition of energy metabolism. Myelinated axons from rat dorsal roots were co-loaded with Ca2+-sensitive (Oregon Green BAPTA-1) and Ca2+-insensitive (Alexa Fluor 594) dextran-conjugated fluorophores and imaged using confocal laser scanning microscopy. Axoplasmic regions were clearly outlined by the Ca2+-insensitive dye, from which axonal Ca2+-dependent fluorescence changes (FCa.ax) were measured. Block of Na+-K+ ATPase (ouabain), opening of Na+ channels (veratridine), and inhibiting energy metabolism (iodoacetate + NaN3) caused a rapid rise in FCa.ax to 96% above control after 30 min. Chemical ischemia (iodoacetate + NaN3) caused a more gradual increase in FCa.ax (54%), which was almost completely dependent on bath Ca2+, indicating that most of the Ca2+ accumulation occurred via influx across the axolemma. Na+ channel block (tetrodotoxin) reduced ischemic FCa.ax rise (14%); however, inhibition of L-type Ca2+ channels (nimodipine) had no effect (60%). In contrast, Na+-Ca2+ exchange inhibition (KB-R7943) significantly reduced ischemic FCa.ax rise (18%). Together our results indicate that the bulk of Ca2+ overload in injured peripheral myelinated axons occurs via reverse Na+-Ca2+ exchange, driven by axonal Na+ accumulation through voltage-gated tetrodotoxin-sensitive Na+ channels. This mechanism may represent a viable therapeutic target for peripheral neuropathies.
Collapse
Affiliation(s)
- Nicolae Petrescu
- Ottawa Health Research Institute, Division of Neuroscience, University of Ottawa, 725 Parkdale Avenue, Ottawa, Ontario K1Y 4K9, Canada
| | | | | | | | | |
Collapse
|
16
|
Zhang CL, Wilson JA, Williams J, Chiu SY. Action Potentials Induce Uniform Calcium Influx in Mammalian Myelinated Optic Nerves. J Neurophysiol 2006; 96:695-709. [PMID: 16835363 DOI: 10.1152/jn.00083.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The myelin sheath enables saltatory conduction by demarcating the axon into a narrow nodal region for excitation and an extended, insulated internodal region for efficient spread of passive current. This anatomical demarcation produces a dramatic heterogeneity in ionic fluxes during excitation, a classical example being the restriction of Na influx at the node. Recent studies have revealed that action potentials also induce calcium influx into myelinated axons of mammalian optic nerves. Does calcium influx in myelinated axons show spatial heterogeneity during nerve excitation? To address this, we analyzed spatial profiles of axonal calcium transients during action potentials by selectively staining axons with calcium indicators and subjected the data to theoretical analysis with parameters for axial calcium diffusion empirically determined using photolysis of caged compounds. The results show surprisingly that during action potentials, calcium influx occurs uniformly along an axon of a fully myelinated mouse optic nerve.
Collapse
Affiliation(s)
- Chuan-Li Zhang
- Dept. of Physiology, University of Wisconsin School of Medicine, 1300 University Ave., 277 Medical Science Bldg., Madison, WI 53706, USA
| | | | | | | |
Collapse
|
17
|
Moldavan MG, Irwin RP, Allen CN. Presynaptic GABABReceptors Regulate Retinohypothalamic Tract Synaptic Transmission by Inhibiting Voltage-Gated Ca2+Channels. J Neurophysiol 2006; 95:3727-41. [PMID: 16709723 DOI: 10.1152/jn.00909.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Presynaptic GABABreceptor activation inhibits glutamate release from retinohypothalamic tract (RHT) terminals in the suprachiasmatic nucleus (SCN). Voltage-clamp whole cell recordings from rat SCN neurons and optical recordings of Ca2+-sensitive fluorescent probes within RHT terminals were used to examine GABAB-receptor modulation of RHT transmission. Baclofen inhibited evoked excitatory postsynaptic currents (EPSCs) in a concentration-dependent manner equally during the day and night. Blockers of N-, P/Q-, T-, and R-type voltage-dependent Ca2+channels, but not L-type, reduced the EPSC amplitude by 66, 36, 32, and 18% of control, respectively. Joint application of multiple Ca2+channel blockers inhibited the EPSCs less than that predicted, consistent with a model in which multiple Ca2+channels overlap in the regulation of transmitter release. Presynaptic inhibition of EPSCs by baclofen was occluded by ω-conotoxin GVIA (≤72%), mibefradil (≤52%), and ω-agatoxin TK (≤15%), but not by SNX-482 or nimodipine. Baclofen reduced both evoked presynaptic Ca2+influx and resting Ca2+concentration in RHT terminals. Tertiapin did not alter the evoked EPSC and baclofen-induced inhibition, indicating that baclofen does not inhibit glutamate release by activation of Kir3 channels. Neither Ba2+nor high extracellular K+modified the baclofen-induced inhibition. 4-Aminopyridine (4-AP) significantly increased the EPSC amplitude and the charge transfer, and dramatically reduced the baclofen effect. These data indicate that baclofen inhibits glutamate release from RHT terminals by blocking N-, T-, and P/Q-type Ca2+channels, and possibly by activation of 4-AP–sensitive K+channels, but not by inhibition of R- and L-type Ca2+channels or by Kir3 channel activation.
Collapse
Affiliation(s)
- Mykhaylo G Moldavan
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland 97239-30, USA
| | | | | |
Collapse
|
18
|
Abstract
Axonal degeneration is a prominent pathological feature in multiple sclerosis observed over a century ago. The gradual loss of axons is thought to underlie irreversible clinical deficits in this disease. The precise mechanisms of axonopathy are poorly understood, but likely involve excess accumulation of Ca ions. In healthy fibers, ATP-dependent pumps support homeostasis of ionic gradients. When energy supply is limited, either due to inadequate delivery (e.g., ischemia, mitochondrial dysfunction) and/or excessive utilization (e.g., conduction along demyelinated axons), ion gradients break down, unleashing a variety of aberrant cascades, ultimately leading to Ca overload. During Na pump dysfunction, Na can enter axons through non-inactivating Na channels, promoting axonal Na overload and depolarization by allowing K egress. This will gate voltage-sensitive Ca channels and stimulate reverse Na-Ca exchange, leading to further Ca entry. Energy failure will also promote Ca release from intracellular stores. Neurotransmitters such as glutamate can be released by reverse operation of Na-dependent transporters, in turn activating a variety of ionotropic and metabotropic receptors, further exacerbating overload of cellular Ca. Together, this Ca overload will inappropriately stimulate a variety of Ca-dependent enzyme systems (e.g., calpains, phospholipases), leading to structural and functional axonal injury. Pharmacological interruption at key points in these interrelated injury cascades (e.g., at voltage-gated Na channels or AMPA receptors) may confer significant neuroprotection to compromised central axons and supporting glia. Such agents may represent attractive adjuncts to currently available immunomodulatory therapies.
Collapse
Affiliation(s)
- Peter K Stys
- Division of Neuroscience, Ottawa Health Research Institute, 725 Parkdale Avenue, Ottawa, Ontario, Canada K1Y 4K9.
| |
Collapse
|
19
|
Bolton S, Butt AM. The optic nerve: A model for axon–glial interactions. J Pharmacol Toxicol Methods 2005; 51:221-33. [PMID: 15862467 DOI: 10.1016/j.vascn.2004.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2004] [Indexed: 11/24/2022]
Abstract
The rodent optic nerve is a model tissue for the physiological investigation of axonal-glial interactions in a typical CNS white matter tract. There is strong evidence that nerve transmission is maintained by a considerable degree of dynamic signalling between axons and glia through a variety of mechanisms, such as regulation of the ionic environment, energy metabolism and calcium signalling. This review focuses on the methods used to examine axonal and glial functions and interactions, primarily in the rodent optic nerve. Techniques encompass intracellular microelectrodes, sucrose- and grease-gap recordings of membrane potentials, suction electrode to measure compound action potentials, the use of ion-sensitive electrodes, patch clamping and imaging. An overview of the advantages and drawbacks of each technique is given and the application of each to the understanding glial and axonal physiology is briefly discussed.
Collapse
Affiliation(s)
- Sally Bolton
- Centre for Neuroscience Research, Hodgkin Building, GKT Guy's Campus, King's College, London Bridge, London, SE1 1UL, UK
| | | |
Collapse
|
20
|
Uteshev VV, Knot HJ. Somatic Ca2+ dynamics in response to choline-mediated excitation in histaminergic tuberomammillary neurons. Neuroscience 2005; 134:133-43. [PMID: 15963649 DOI: 10.1016/j.neuroscience.2005.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2005] [Revised: 02/28/2005] [Accepted: 03/11/2005] [Indexed: 11/20/2022]
Abstract
Histaminergic tuberomammillary (TM) neurons of the posterior hypothalamus have been implicated in cognition, alertness and sleep-wakefulness cycles. Spontaneous firing of TM neurons has been associated with histamine release and wakefulness. The expression of alpha7 nicotinic acetylcholine receptors (nAChRs) in TM neurons suggests a role for endogenous choline and for nicotinic drugs in the regulation of intracellular Ca(2+) metabolism, normal TM neuronal activity and histamine release. First, we established the link between TM neuronal spontaneous firing frequency and cytosolic free Ca(2+) concentration ([Ca(2+)](i)). A strong correlation was observed: an onset of spontaneous firing (3-4Hz) was accompanied by a 20-fold increase in [Ca(2+)](i) from 56+/-18 nM to 1.0+/-0.6 microM. The same range of firing frequencies has been observed in TM neurons in vivo and is associated with wakefulness. Secondly, choline-induced activation of alpha7 nAChRs did not elevate [Ca(2+)](i) directly, i.e. in the absence of high-threshold voltage-gated Ca(2+) channel (HVGCC) activation. Cd(2+) (200 microM) completely blocked all Ca(2+) signals, but inhibited only 37+/-16% of alpha7 nAChR-mediated currents. Thirdly, the responsiveness of [Ca(2+)](i) to choline-mediated excitation was inhibited by hyperpolarization and enhanced by depolarization, sensitizing [Ca(2+)](i) at membrane voltages associated with normal TM neuronal activity. These properties of [Ca(2+)](i) define the ability of TM neurons to translate cholinergic stimuli of identical strengths into different cytosolic Ca(2+) effects, providing the physiological substrate for state-specific modulation of incoming cholinergic information and would be expected to play a very important role in determining activity profiles of TM neurons exposed to elevated concentrations of cholinergic agents, such as choline and nicotine.
Collapse
Affiliation(s)
- V V Uteshev
- Department of Pharmacology and Therapeutics, University of Florida, Box 100267 JHMHSC, SW 1600 Archer Road, Gainesville, Florida 32610-0267, USA.
| | | |
Collapse
|
21
|
Fritschy JM, Sidler C, Parpan F, Gassmann M, Kaupmann K, Bettler B, Benke D. Independent maturation of the GABA(B) receptor subunits GABA(B1) and GABA(B2) during postnatal development in rodent brain. J Comp Neurol 2004; 477:235-52. [PMID: 15305362 DOI: 10.1002/cne.20188] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
GABA(B) receptors mediate slow inhibitory GABAergic neurotransmission. They are encoded by two distinct subunits, GABA(B1) (GBR1) and GABA(B2) (GBR2), with two major isoforms of GBR1, GBR1a and GBR1b, arising from differential promoter usage. Heterodimerization of GBR1 and GBR2 is essential for GABA(B) receptor function, as shown in recombinant expression systems and in GBR1(-/-) mice. GABA(B) receptors are highly expressed during ontogeny, prior to synaptogenesis, but their developmental function remains elusive. Here we investigated the postnatal development of GABA(B) receptors in rodent brain, focusing on potential differences in the spatial and temporal expression pattern of GBR1 and GBR2. Immunohistochemistry with subunit-specific antibodies revealed a widespread staining for GBR1a and GBR2 in neonatal rodent brain. During the first 2 weeks, these two subunits exhibited largely overlapping regional distribution, but with profound distinctions in cellular and subcellular localization. The adult-like pattern was established during the third week, with a prominent up-regulation of GBR1b, extensively codistributed with GBR2. Several unexpected features were noted at early stages, notably, a selective GBR2 staining of axonal tracts, such as the corticothalamic projection, and a prominent GBR1 expression in astrocytes. The specificity of the antibody labeling was verified in GBR1- and GBR2-knockout mice. In addition, the analysis of these mutants revealed a partial preservation of GBR2 staining in GBR1(-/-) mice and vice versa. Altogether, the results suggest a functional role for GBR1 and GBR2 proteins in immature brain in addition to their contribution to dimeric GABA(B) receptor complexes.
Collapse
Affiliation(s)
- Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhang CL, Verbny Y, Malek SA, Stys PK, Chiu SY. Nicotinic Acetylcholine Receptors in Mouse and Rat Optic Nerves. J Neurophysiol 2004; 91:1025-35. [PMID: 14762152 DOI: 10.1152/jn.00769.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Receptor-mediated calcium signaling in axons of mouse and rat optic nerves was examined by selectively staining the axonal population with a calcium indicator. Nicotine (1-50 μM) induced an axonal calcium elevation that was eliminated when calcium was removed from the bath, suggesting that nicotine induces calcium influx into axons. The nicotine response was blocked by d-tubocurarine and mecamylamine but not α-bungarotoxin, indicating the presence of calcium permeable, non-α7 nicotinic acetylcholine receptor (nAChR) subtype. Agonist efficacy order for eliciting the axonal nAChR calcium response was cytisine ∼ nicotine >> acetylcholine. The nicotine-mediated calcium response was attenuated during the process of normal myelination, decreasing by approximately 10-fold from P1 (premyelinated) to P30 (myelinated). Nicotine also caused a rapid reduction in the compound action potential in neonatal optic nerves, consistent with a shunting of the membrane after opening of the nonspecific cationic nicotinic channels. Voltagegated calcium channels contributed little to the axonal calcium elevation during nAChR activation. During repetitive stimulations, the compound action potential in neonatal mouse optic nerves underwent a gradual reduction in amplitude that could be partially prevented by d-tubocurarine, suggesting an activity-dependent release of acetylcholine that activates axonal AChRs. We conclude that mammalian optic nerve axons express nAChRs and suggest that these receptors are activated in an activity-dependent fashion during optic nerve development to modulate axon excitability and biology.
Collapse
Affiliation(s)
- Chuan-Li Zhang
- Department of Physiology, University of Wisconsin School of Medicine, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
23
|
Brown AM. A modeling study predicts the presence of voltage gated Ca2+ channels on myelinated central axons. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2003; 71:25-31. [PMID: 12725962 DOI: 10.1016/s0169-2607(02)00031-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The objective of this current study was to investigate whether voltage gated Ca(2+) channels are present on axons of the adult rat optic nerve (RON). Simulations of axonal excitability using a Hodgkin-Huxley based one-compartment model incorporating I(Na), I(K) and leak currents were used to predict conditions under which the potential contribution of a Ca(2+) current to an evoked action potential could be measured. Under control conditions the inclusion of a high threshold Ca(2+) current (I(Ca)) in the model had a negligible effect on the action potential. Reducing I(K), by decreasing the value of g(K), elongated the repolarizing phase of the action potential, increasing its duration. Subsequent incorporation of I(Ca) in the model revealed a significant I(Ca) contribution to the repolarizing phase of the action potential. The simulation thus suggests that Ca(2+) channels may be present on RON axons, but that pharmacological intervention is required to unmask their presence. Experiments based on the simulations revealed that there was no significant contribution of I(Ca) to the control action potential. However, as predicted by the simulation, reducing the repolarizing effect of I(K) by adding the K(+) channel blocker 4-AP revealed a Ca(2+) component on the repolarizing phase of the action potential that was blocked by the Ca(2+) channel inhibitor nifedipine.
Collapse
Affiliation(s)
- Angus M Brown
- Department of Neurology, Box 356465, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
24
|
Verbny Y, Zhang CL, Chiu SY. Coupling of calcium homeostasis to axonal sodium in axons of mouse optic nerve. J Neurophysiol 2002; 88:802-16. [PMID: 12163532 DOI: 10.1152/jn.2002.88.2.802] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Axonal populations in neonatal and mature optic nerves were selectively stained with calcium dyes for analysis of calcium homeostasis and its possible coupling to axonal Na. Repetitive nerve stimulation causes a rise in axonal [Ca(2+)](i) the posttetanus recovery of which is impeded by increasing the number of action potentials in the tetanus. This effect is augmented in 4-aminopyridine (4-AP; 1 mM), which dramatically increases the calcium and presumably sodium load during the tetanus. Increasing axonal [Na](i) with the Na-ionophore monensin (4-50 microM) and ouabain (30 microM) retards posttetanus calcium decline, suggesting that efficient calcium clearance depends on a low level of axonal [Na](i). Posttetanus calcium clearance is not affected by K-mediated depolarization. To further examine coupling between axonal [Na](i) and [Ca(2+)](i), the resting axonal [Ca(2+)](i) was monitored as axonal [Na(+)](i) was elevated with ouabain, veratridine, and monensin. In all cases, elevation of axonal [Na(+)](i) evokes a calcium influx into axons. This influx is unrelated to activation of calcium channels but is consistent with calcium influx via reversal of the Na/Ca exchanger expected as a consequence of axonal [Na(+)](i) elevation. In conclusion, this study demonstrates that calcium homeostasis in the axons of the optic nerve is strongly coupled to axonal [Na(+)](i) in a manner consistent with the Na/Ca exchanger playing a major role in extruding calcium following nerve activity.
Collapse
Affiliation(s)
- Yakov Verbny
- Department of Physiology, University of Wisconsin School of Medicine, Madison 53706, USA
| | | | | |
Collapse
|
25
|
Ferguson SCD, McFarlane S. GABA and development of the Xenopus optic projection. JOURNAL OF NEUROBIOLOGY 2002; 51:272-84. [PMID: 12150503 DOI: 10.1002/neu.10061] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the developing visual system of Xenopus laevis retinal ganglion cell (RGC) axons extend through the brain towards their major target in the midbrain, the optic tectum. Enroute, the axons are guided along their pathway by cues in the environment. In vitro, neurotransmitters have been shown to act chemotropically to influence the trajectory of extending axons and regulate the outgrowth of developing neurites, suggesting that they may act to guide or modulate the growth of axons in vivo. Previous work by Roberts and colleagues (1987) showed that populations of cells within the developing Xenopus diencephalon and mid-brain express the neurotransmitter gamma amino butyric acid (GABA). Here we show that Xenopus RGC axons in the midoptic tract grow alongside the GABAergic cells and cross their GABA immunopositive nerve processes. Moreover, RGC axons and growth cones express GABA-A and GABA-B receptors, and GABA and the GABA-B receptor agonist baclofen both stimulate RGC neurite outgrowth in culture. Finally, the GABA-B receptor antagonist CGP54626 applied to the developing optic projection in vivo causes a dose-dependent shortening of the optic projection. These data indicate that GABA may act in vivo to stimulate the outgrowth of Xenopus RGC axons along the optic tract.
Collapse
|
26
|
Easter A, Spruce AE. Recombinant GABA(B) receptors formed from GABA(B1) and GABA(B2) subunits selectively inhibit N-type Ca(2+) channels in NG108-15 cells. Eur J Pharmacol 2002; 440:17-25. [PMID: 11959084 DOI: 10.1016/s0014-2999(02)01343-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Efficient transfection of NG108-15 cells with GABA(B) receptor subunits was achieved using polyethylenimine. Baclofen modulated high voltage-activated Ca(2+) current in differentiated cells transfected with GABA(B1) and GABA(B2) receptor subunits or with the GABA(B2) subunit alone, but not with the GABA(B1) subunit alone. Characteristics of the current modulation were very similar for cells transfected with GABA(B1/2) and GABA(B2) subunits. Using antisense oligonucleotides against GABA(B1) subunits and also western immunoblotting, we are able to show that NG108-15 cells contain endogenous GABA(B1) subunits. Therefore, functional receptors can be formed by the combination of native GABA(B1) subunits with transfected GABA(B2) subunits, in agreement with the proposed heteromeric structure of GABA(B) receptors. Finally, we used selective channel blockers to identify the subtypes of Ca(2+) channels that are modulated by GABA(B) receptors. In fact, in differentiated NG108-15 cells, the recombinant GABA(B) receptors couple only to N-type Ca(2+) channels.
Collapse
Affiliation(s)
- Alison Easter
- Division of Neuroscience-Pharmacology, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | |
Collapse
|
27
|
Kim Y, Shin M, Chung J, Kim E, Koo G, Lee C, Kim C. Modulation of Chelidonii herba on GABA activated chloride current in rat PAG neurons. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2002; 29:265-79. [PMID: 11527069 DOI: 10.1142/s0192415x01000290] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Modulation of Chelidonii herba on gamma-aminobutyric acid (GABA) activated chloride current in the acutely dissociated periaqueductal gray (PAG) neuron was studied by nystatin-perforated patch-clamp technique. High concentrations of Chelidonii herba elicited ion current, that was blocked by bicuculline. Low concentrations reduced the GABA activated current in PAG. Two types of inhibitory action of Chelidonii herba on GABA activated current have been implicated in PAG. One is the inhibitory action of Chelidonii herba on GABA was abolished by naltrexone and the other is that of Chelidonii herba was potentiated by naltrexone. In addition, all of two types of action of Chelidonii herba are linked to pertussis toxin-sensitive GTP-binding proteins. These results suggest that the inhibitory modulation of Chelidonii herba on GABA activated current via G-proteins in PAG neuron is an important analgesic mechanism.
Collapse
Affiliation(s)
- Y Kim
- Department of Physiology, College of Medicine, Kyunghee University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Jackson VM, Trout SJ, Brain KL, Cunnane TC. Characterization of action potential-evoked calcium transients in mouse postganglionic sympathetic axon bundles. J Physiol 2001; 537:3-16. [PMID: 11711556 PMCID: PMC2278936 DOI: 10.1111/j.1469-7793.2001.0003k.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. Action potential-evoked Ca(2+) transients in postganglionic sympathetic axon bundles in mouse vas deferens have been characterized using confocal microscopy and Ca(2+) imaging. 2. Axonal Ca(2+) transients were tetrodotoxin sensitive. The amplitude depended on both the frequency of stimulation and the number of stimuli in a train. 3. Removal of extracellular Ca(2+) abolished the Ca(2+) transient. Cd(2+)(100 microM) inhibited the Ca(2+) transient by 78 +/- 10 %. The N-type Ca(2+) channel blocker omega-conotoxin GVIA (0.1 microM) reduced the amplitude by -35 +/-4 %, whereas nifedipine (10 microM; L-type) and omega-conotoxin MVIIC (0.1 microM; P/Q type) were ineffective. 4. Caffeine (10 mM), ryanodine (10 microM), cyclopiazonic acid (30 microM) or CCCP (10 microM) had no detectable effects. 5. Blockade of large and small conductance Ca(2+)-dependent K+ channels with iberiotoxin (0.1 microM) and apamin (1 microM), respectively, or Ca(2+)-dependent Cl(-) channels by niflumic acid (100 microM) did not alter Ca(2+) transients. 6. In contrast, the non-specific K+ channel blockers tetraethylammonium (10 mM) and 4-aminopyridine (10 mM) markedly increased the amplitude of the Ca(2+) transient. Blockade of delayed rectifiers and A-like K+ channels, by tityustoxin-K (alpha) (0.1 microM) and pandinustoxin-K (alpha) (10 nM), respectively, also increased the Ca(2+) transient amplitude. 7. Thus, Ca(2+) transients are evoked by Na(+)-dependent action potentials in axons. These transients originate mainly from Ca(2+) entry through voltage-dependent Ca(2+) channels (80 % Cd(2+) sensitive of which 40 % was attributable to N-type). Twenty per cent of the Ca(2+) transient was not due to Ca(2+) entry through voltage-gated Ca(2+) channels. Intracellular stores and mitochondria were not involved in the generation of the transient. Ca(2+) transients are modulated by A-like K+ channels and delayed rectifiers (possibly K(V)1.2) but not by Ca(2+)-activated ion channels.
Collapse
Affiliation(s)
- V M Jackson
- Department of Pharmacology, Mansfield Road, Oxford OX1 3QT, UK
| | | | | | | |
Collapse
|
29
|
Brown AM, Westenbroek RE, Catterall WA, Ransom BR. Axonal L-type Ca2+ channels and anoxic injury in rat CNS white matter. J Neurophysiol 2001; 85:900-11. [PMID: 11160521 DOI: 10.1152/jn.2001.85.2.900] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We studied the magnitude and route(s) of Ca2+ flux from extra- to intracellular compartments during anoxia in adult rat optic nerve (RON), a central white matter tract, using Ca2+ sensitive microelectrodes to monitor extracellular [Ca2+] ([Ca2+]o). One hour of anoxia caused a rapid loss of the stimulus-evoked compound action potential (CAP), which partially recovered following re-oxygenation, indicating that irreversible injury had occurred. After an initial increase caused by extracellular space shrinkage, anoxia produced a sustained decrease of 0.42 mM (29%) in [Ca2+]o. We quantified the [Ca2+]o decrease as the area below baseline [Ca2+]o during anoxia and used this as a qualitative index of suspected Ca2+ influx. The degree of RON injury was predicted by the amount of Ca2+ leaving the extracellular space. Bepridil, 0 Na+ artificial cerebrospinal fluid or tetrodotoxin reduced suspected Ca2+ influx during anoxia implicating reversal of the Na+/Ca2+ exchanger as a route of Ca2+ influx. Diltiazem reduced suspected Ca2+ influx during anoxia, suggesting that Ca2+ influx via L-type Ca2+ channels is a route of toxic Ca2+ influx into axons during anoxia. Immunocytochemical staining was used to demonstrate and localize high-threshold Ca2+ channels. Only alpha1(C) and alpha1(D) subunits were detected, indicating that only L-type Ca2+ channels were present. Double labeling with anti-neurofilament antibodies or anti-glial fibrillary acidic protein antibodies localized L-type Ca2+ channels to axons and astrocytes.
Collapse
Affiliation(s)
- A M Brown
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington 98195, USA.
| | | | | | | |
Collapse
|
30
|
Catsicas M, Mobbs P. GABAb receptors regulate chick retinal calcium waves. J Neurosci 2001; 21:897-910. [PMID: 11157076 PMCID: PMC6762318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Correlated spiking activity and associated Ca(2+) waves in the developing retina are important in determining the connectivity of the visual system. Here, we show that GABA, via GABA(B) receptors, regulates the temporal characteristics of Ca(2+) waves occurring before synapse formation in the embryonic chick retina. Blocking ionotropic GABA receptors did no affect these Ca(2+) transients. However, when these receptors were blocked, GABA abolished the transients, as did the GABA(B) agonist baclofen. The action of baclofen was prevented by the GABA(B) antagonist p-3-aminopropyl-p-diethoxymethyl phosphoric acid (CGP35348). CGP35348 alone increased the duration of the transients, showing that GABA(B) receptors are tonically activated by endogenous GABA. Blocking the GABA transporter GAT-1 with 1-(4,4-diphenyl-3-butenyl)-3-piperidine carboxylic acid (SKF89976A) reduced the frequency of the transients. This reduction was prevented by CGP35348 and thus resulted from activation of GABA(B) receptors by an increase in external [GABA]. The effect of GABA(B) receptor activation persisted in the presence of activators and blockers of the cAMP-PKA pathway. Immunocytochemistry showed GABA(B) receptors and GAT-1 transporters on ganglion and amacrine cells from the earliest times when Ca(2+) waves occur (embryonic day 8). Patch-clamp recordings showed that K(+) channels on ganglion cell layer neurons are not modulated by GABA(B) receptors, whereas Ca(2+) channels are; however, Ca(2+) channel blockade with omega-conotoxin-GVIA or nimodipine did not prevent Ca(2+) waves. Thus, the regulation of Ca(2+) waves by GABA(B) receptors occurs independently of N- and L-type Ca(2+) channels and does not involve K(+) channels of the ganglion cell layer. GABA(B) receptors are likely to be of key importance in regulating retinal development.
Collapse
Affiliation(s)
- M Catsicas
- Department of Physiology, University College London, London WC1E 6BT, United Kingdom
| | | |
Collapse
|
31
|
Abstract
The neurotransmitter GABA (gamma-aminobutyric acid) functions as the major inhibitory neurotransmitter in the central nervous system of vertebrates and invertebrates. In vertebrates GABA signals both through ionotropic receptors (GABA(A), GABA(C)), which induce fast synaptic inhibitory responses, and through metabotropic receptors (GABA(B)), which play a fundamental role in the reduction of presynaptic transmitter release and postsynaptic inhibitory potentials. Whilst GABA(A) and GABA(C) receptors have been cloned from vertebrates as well as invertebrates, GABA(B) receptors have only been identified in vertebrate species to date, although indirect evidence suggests their existence in arthropods, too. Here we report the cloning of three putative invertebrate GABA(B) receptor subtypes (D-GABA(B)R1, R2 and R3) isolated from Drosophila melanogaster. Whilst D-GABA(B)R1 and R2 show high sequence identity to mammalian GABA(B)R1 and R2, respectively, the receptor D-GABA(B)R3 seems to be an insect-specific subtype with no known mammalian counterpart so far. All three D-GABA(B)R subtypes are expressed in the embryonic central nervous system. In situ hybridization of Drosophila melanogaster embryos shows that two of the D-GABA(B)Rs (D-GABA(B)R1 and R2) are expressed in similar regions, suggesting a coexpression of the two receptors, whilst the third D-GABA(B)R (D-GABA(B)R3) displays a unique expression pattern. In agreement with these results we have only been able to functionally characterize D-GABA(B)R1 and R2 when the two subtypes are coexpressed either in Xenopus laevis oocytes or mammalian cell lines, whilst D-GABA(B)R3 was inactive in any combination. The pharmacology of the coexpressed D-GABA(B)R1/2 receptor was different from the mammalian GABA(B)Rs: e.g. baclofen, an agonist of mammalian GABA(B)Rs, showed no effect.
Collapse
Affiliation(s)
- M Mezler
- Bayer AG, Agricultural Centre, Molecular Target Research, Geb. 6240, Alfred Nobel Strasse 50, 40789 Monheim, Germany
| | | | | |
Collapse
|
32
|
Agrawal SK, Nashmi R, Fehlings MG. Role of L- and N-type calcium channels in the pathophysiology of traumatic spinal cord white matter injury. Neuroscience 2000; 99:179-88. [PMID: 10924962 DOI: 10.1016/s0306-4522(00)00165-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recent work has suggested a potential role for voltage-gated Ca(2+) channels in the pathophysiology of anoxic central nervous system white matter injury. To examine the relevance of these findings to neurotrauma, we conducted electrophysiological studies with inorganic Ca(2+) channels blockers and L- and N-subtype-specific calcium channel antagonists in an in vitro model of spinal cord injury. Confocal immunohistochemistry was used to examine for localization of L- and N-type calcium channels in spinal cord white matter tracts. A 30-mm length of dorsal column was isolated from the spinal cord of adult rats, pinned in an in vitro recording chamber and injured with a modified clip (2g closing force) for 15s. The functional integrity of the dorsal column was monitored electrophysiologically by quantitatively measuring the compound action potential at two points with glass microelectrodes. The compound action potential decreased to 71.4+/-2.0% of control (P<0. 05) after spinal cord injury. Removal of extracellular Ca(2+) promoted significantly greater recovery of compound action potential amplitude (86.3+/-7.6% of control; P< 0.05) after injury. Partial blockade of voltage-gated Ca(2+) channels with cobalt (20 microM) or cadmium (200 microM) conferred improvement in compound action potential amplitude. Application of the L-type Ca(2+) channel blockers diltiazem (50 microM) or verapamil (90 microM), and the N-type antagonist omega-conotoxin GVIA (1 microM), significantly enhanced the recovery of compound action potential amplitude postinjury. Co-application of the L-type antagonist diltiazem with the N-type blocker omega-conotoxin GVIA showed significantly greater (P<0.05) improvement in compound action potential amplitude than application of either drug alone. Confocal immunohistochemistry with double labelling for glial fibrillary acidic protein, GalC and NF200 demonstrated L- and N-type Ca(2+) channels on astrocytes and oligodendrocytes, but not axons, in spinal cord white matter. In conclusion, the injurious effects of Ca(2+) in traumatic central nervous system white matter injury appear to be partially mediated by voltage-gated Ca(2+) channels. The presence of L- and N-type Ca(2+) channels on periaxonal astrocytes and oligodendrocytes suggests a role for these cells in post-traumatic axonal conduction failure.
Collapse
Affiliation(s)
- S K Agrawal
- Division of Cell and Molecular Biology, Toronto Western Research Institute, Ontario, Toronto, Canada
| | | | | |
Collapse
|
33
|
Forti L, Pouzat C, Llano I. Action potential-evoked Ca2+ signals and calcium channels in axons of developing rat cerebellar interneurones. J Physiol 2000; 527 Pt 1:33-48. [PMID: 10944168 PMCID: PMC2270052 DOI: 10.1111/j.1469-7793.2000.00033.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Axonal [Ca2+] transients evoked by action potential (AP) propagation were studied by monitoring the fluorescence of the high-affinity calcium-sensitive dye Oregon Green 488 BAPTA-1, introduced through whole-cell recording pipettes in the molecular layer of interneurones from cerebellar slices of young rats. The spatiotemporal profile of Ca2+-dependent fluorescence changes was analysed in well-focused axonal stretches a few tens of micrometres long. AP-evoked Ca2+ signals were heterogeneously distributed along axons, with the largest and fastest responses appearing in hot spots on average approximately 5 microm apart. The spatial distribution of fluorescence responses was independent of the position of the focal plane, uncorrelated to basal dye fluorescence, and independent of dye concentration. Recordings using the low-affinity dye mag-fura-2 and a Cs+-based intracellular solution revealed a similar pattern of hot spots in response to depolarisation, ruling out measurement artefacts or possible effects of inhomogeneous dye distribution in the generation of hot spots. Fluorescence responses to a short train of APs in hot spots decreased by 41-76 % after bath perfusion of omega-conotoxin MVIIC (5-6 microM), and by 17-65 % after application of omega-agatoxin IVA (500 nM). omega-Conotoxin GVIA (1 microM) had a variable, small effect (0-31 % inhibition), and nimodipine (5 microM) had none. Somatically recorded voltage-gated currents during depolarising pulses were unaffected in all cases. These data indicate that P/Q-type Ca2+ channels, and to a lesser extent N-type channels, are responsible for a large fraction of the [Ca2+] rise in axonalhot spots. [Ca2+] responses never failed during low-frequency (<= 0.5 Hz) stimulation, indicating reliable AP propagation to the imaged sites. Axonal branching points coincided with a hot spot in approximately 50 % of the cases. The spacing of presynaptic varicosities, as determined by a morphological analysis of Neurobiotin-filled axons, was approximately 10 times larger than the one measured for hot spots. The latter is comparable to the spacing reported for varicosities in mature animals. We discuss the nature of hot spots, considering as the most parsimonious explanation that they represent functional clusters of voltage-dependent Ca2+ channels, and possibly other [Ca2+] sources, marking the position of developing presynaptic terminals before the formation of en passant varicosities.
Collapse
Affiliation(s)
- L Forti
- Arbeitsgruppe Zellulare Neurobiologie, Max-Planck-Institut fur biophysikalische Chemie, D-37077 Gottingen, Germany.
| | | | | |
Collapse
|
34
|
Empson RM, Sheardown MJ, Newberry NR. Modulation of gamma-aminobutyric acid responses in the rat optic nerve. Eur J Pharmacol 2000; 401:339-42. [PMID: 10936491 DOI: 10.1016/s0014-2999(00)00475-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Depolarising GABA(A) receptor-mediated responses recorded from the optic nerve using a grease gap technique were modulated by classical potentiators of GABA(A) receptors. The benzodiazepine, chlordiazepoxide, the barbiturate, pentobarbitone and the widely used anaesthetic, propofol, all potentiated gamma-aminobutyric acid (GABA) responses. They did so with different maximal efficacies, propofol>pentobarbitone>chlordiazepoxide, and potencies on the basis of EC(50) estimates, chlordiazepoxide>propofol>pentobarbitone. The greater than expected GABA potentiating properties of propofol were explained by a direct hyperpolarising action that occurred in the same concentration range as its action at the GABA(A) receptor but that was unlikely to be mediated by GABA(A) receptors.
Collapse
Affiliation(s)
- R M Empson
- Cerebrus Ltd, Oakdene Court, 613 Reading Road, Winnersh, Berkshire, RG41 5UA, Wokingham, UK.
| | | | | |
Collapse
|