1
|
Tian S, Cheng YA, Luo H. Rhythm Facilitates Auditory Working Memory via Beta-Band Encoding and Theta-Band Maintenance. Neurosci Bull 2024:10.1007/s12264-024-01289-w. [PMID: 39215886 DOI: 10.1007/s12264-024-01289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/04/2024] [Indexed: 09/04/2024] Open
Abstract
Rhythm, as a prominent characteristic of auditory experiences such as speech and music, is known to facilitate attention, yet its contribution to working memory (WM) remains unclear. Here, human participants temporarily retained a 12-tone sequence presented rhythmically or arrhythmically in WM and performed a pitch change-detection task. Behaviorally, while having comparable accuracy, rhythmic tone sequences showed a faster response time and lower response boundaries in decision-making. Electroencephalographic recordings revealed that rhythmic sequences elicited enhanced non-phase-locked beta-band (16 Hz-33 Hz) and theta-band (3 Hz-5 Hz) neural oscillations during sensory encoding and WM retention periods, respectively. Importantly, the two-stage neural signatures were correlated with each other and contributed to behavior. As beta-band and theta-band oscillations denote the engagement of motor systems and WM maintenance, respectively, our findings imply that rhythm facilitates auditory WM through intricate oscillation-based interactions between the motor and auditory systems that facilitate predictive attention to auditory sequences.
Collapse
Affiliation(s)
- Suizi Tian
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Yu-Ang Cheng
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI, 02912, USA
| | - Huan Luo
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Bond K, Rasero J, Madan R, Bahuguna J, Rubin J, Verstynen T. Competing neural representations of choice shape evidence accumulation in humans. eLife 2023; 12:e85223. [PMID: 37818943 PMCID: PMC10624421 DOI: 10.7554/elife.85223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 10/10/2023] [Indexed: 10/13/2023] Open
Abstract
Making adaptive choices in dynamic environments requires flexible decision policies. Previously, we showed how shifts in outcome contingency change the evidence accumulation process that determines decision policies. Using in silico experiments to generate predictions, here we show how the cortico-basal ganglia-thalamic (CBGT) circuits can feasibly implement shifts in decision policies. When action contingencies change, dopaminergic plasticity redirects the balance of power, both within and between action representations, to divert the flow of evidence from one option to another. When competition between action representations is highest, the rate of evidence accumulation is the lowest. This prediction was validated in in vivo experiments on human participants, using fMRI, which showed that (1) evoked hemodynamic responses can reliably predict trial-wise choices and (2) competition between action representations, measured using a classifier model, tracked with changes in the rate of evidence accumulation. These results paint a holistic picture of how CBGT circuits manage and adapt the evidence accumulation process in mammals.
Collapse
Affiliation(s)
- Krista Bond
- Department of Psychology, Carnegie Mellon UniversityPittsburghUnited States
- Center for the Neural Basis of CognitionPittsburghUnited States
- Carnegie Mellon Neuroscience InstitutePittsburghUnited States
| | - Javier Rasero
- Department of Psychology, Carnegie Mellon UniversityPittsburghUnited States
| | - Raghav Madan
- Department of Biomedical and Health Informatics, University of WashingtonSeattleUnited States
| | - Jyotika Bahuguna
- Department of Psychology, Carnegie Mellon UniversityPittsburghUnited States
| | - Jonathan Rubin
- Center for the Neural Basis of CognitionPittsburghUnited States
- Department of Mathematics, University of PittsburghPittsburghUnited States
| | - Timothy Verstynen
- Department of Psychology, Carnegie Mellon UniversityPittsburghUnited States
- Center for the Neural Basis of CognitionPittsburghUnited States
- Carnegie Mellon Neuroscience InstitutePittsburghUnited States
- Department of Biomedical Engineering, Carnegie Mellon UniversityPittsburghUnited States
| |
Collapse
|
3
|
Identifying control ensembles for information processing within the cortico-basal ganglia-thalamic circuit. PLoS Comput Biol 2022; 18:e1010255. [PMID: 35737720 PMCID: PMC9258830 DOI: 10.1371/journal.pcbi.1010255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/06/2022] [Accepted: 05/27/2022] [Indexed: 11/20/2022] Open
Abstract
In situations featuring uncertainty about action-reward contingencies, mammals can flexibly adopt strategies for decision-making that are tuned in response to environmental changes. Although the cortico-basal ganglia thalamic (CBGT) network has been identified as contributing to the decision-making process, it features a complex synaptic architecture, comprised of multiple feed-forward, reciprocal, and feedback pathways, that complicate efforts to elucidate the roles of specific CBGT populations in the process by which evidence is accumulated and influences behavior. In this paper we apply a strategic sampling approach, based on Latin hypercube sampling, to explore how variations in CBGT network properties, including subpopulation firing rates and synaptic weights, map to variability of parameters in a normative drift diffusion model (DDM), representing algorithmic aspects of information processing during decision-making. Through the application of canonical correlation analysis, we find that this relationship can be characterized in terms of three low-dimensional control ensembles within the CBGT network that impact specific qualities of the emergent decision policy: responsiveness (a measure of how quickly evidence evaluation gets underway, associated with overall activity in corticothalamic and direct pathways), pliancy (a measure of the standard of evidence needed to commit to a decision, associated largely with overall activity in components of the indirect pathway of the basal ganglia), and choice (a measure of commitment toward one available option, associated with differences in direct and indirect pathways across action channels). These analyses provide mechanistic predictions about the roles of specific CBGT network elements in tuning the way that information is accumulated and translated into decision-related behavior.
Collapse
|
4
|
Response time modelling reveals evidence for multiple, distinct sources of moral decision caution. Cognition 2022; 223:105026. [DOI: 10.1016/j.cognition.2022.105026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/20/2022]
|
5
|
Leunissen I, Van Steenkiste M, Heise KF, Monteiro TS, Dunovan K, Mantini D, Coxon JP, Swinnen SP. Effects of beta-band and gamma-band rhythmic stimulation on motor inhibition. iScience 2022; 25:104338. [PMID: 35602965 PMCID: PMC9117874 DOI: 10.1016/j.isci.2022.104338] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/14/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
To investigate whether beta oscillations are causally related to motor inhibition, thirty-six participants underwent two concurrent transcranial alternating current stimulation (tACS) and electroencephalography (EEG) sessions during which either beta (20 Hz) or gamma (70 Hz) stimulation was applied while participants performed a stop-signal task. In addition, we acquired magnetic resonance images to simulate the electric field during tACS. 20 Hz stimulation targeted at the pre-supplementary motor area enhanced inhibition and increased beta oscillatory power around the time of the stop-signal in trials directly following stimulation. The increase in inhibition on stop trials followed a dose-response relationship with the strength of the individually simulated electric field. Computational modeling revealed that 20 and 70 Hz stimulation had opposite effects on the braking process. These results highlight that the effects of tACS are state-dependent and demonstrate that fronto-central beta activity is causally related to successful motor inhibition, supporting its use as a functional biomarker. Beta tACS over preSMA improved motor inhibition Gamma tACS slowed down the stop process but primarily affected movement execution Beta tACS resulted in higher beta spectral power around the time of the stop-signal Effects of tACS showed a dose-response relationship with electric field strength
Collapse
Affiliation(s)
- Inge Leunissen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3000, Leuven, Belgium.,Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200MD, Maastricht, the Netherlands
| | - Manon Van Steenkiste
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Kirstin-Friederike Heise
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3000, Leuven, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, 3000, Leuven, Belgium
| | - Thiago Santos Monteiro
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3000, Leuven, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, 3000, Leuven, Belgium
| | - Kyle Dunovan
- Department of Psychology and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3000, Leuven, Belgium.,Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, 30126, Venice, Italy
| | - James P Coxon
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC 3800, Australia
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3000, Leuven, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
6
|
Bond K, Dunovan K, Porter A, Rubin JE, Verstynen T. Dynamic decision policy reconfiguration under outcome uncertainty. eLife 2021; 10:e65540. [PMID: 34951589 PMCID: PMC8806193 DOI: 10.7554/elife.65540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/23/2021] [Indexed: 11/18/2022] Open
Abstract
In uncertain or unstable environments, sometimes the best decision is to change your mind. To shed light on this flexibility, we evaluated how the underlying decision policy adapts when the most rewarding action changes. Human participants performed a dynamic two-armed bandit task that manipulated the certainty in relative reward (conflict) and the reliability of action-outcomes (volatility). Continuous estimates of conflict and volatility contributed to shifts in exploratory states by changing both the rate of evidence accumulation (drift rate) and the amount of evidence needed to make a decision (boundary height), respectively. At the trialwise level, following a switch in the optimal choice, the drift rate plummets and the boundary height weakly spikes, leading to a slow exploratory state. We find that the drift rate drives most of this response, with an unreliable contribution of boundary height across experiments. Surprisingly, we find no evidence that pupillary responses associated with decision policy changes. We conclude that humans show a stereotypical shift in their decision policies in response to environmental changes.
Collapse
Affiliation(s)
- Krista Bond
- Department of Psychology, Carnegie Mellon UniversityPittsburghUnited States
- Center for the Neural Basis of CognitionPittsburghUnited States
- Carnegie Mellon Neuroscience InstitutePittsburghUnited States
| | - Kyle Dunovan
- Department of Psychology, Carnegie Mellon UniversityPittsburghUnited States
| | - Alexis Porter
- Department of Psychology, Northwestern UniversityEvanstonUnited States
| | - Jonathan E Rubin
- Center for the Neural Basis of CognitionPittsburghUnited States
- Department of Mathematics, University of PittsburghPittsburghUnited States
| | - Timothy Verstynen
- Department of Psychology, Carnegie Mellon UniversityPittsburghUnited States
- Center for the Neural Basis of CognitionPittsburghUnited States
- Carnegie Mellon Neuroscience InstitutePittsburghUnited States
- Department of Biomedical Engineering, Carnegie Mellon UniversityPittsburghUnited States
| |
Collapse
|
7
|
Verstynen T, Dunovan K, Walsh C, Kuan CH, Manuck SB, Gianaros PJ. Adiposity covaries with signatures of asymmetric feedback learning during adaptive decisions. Soc Cogn Affect Neurosci 2020; 15:1145-1156. [PMID: 32608485 PMCID: PMC7657458 DOI: 10.1093/scan/nsaa088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
Unhealthy weight gain relates, in part, to how people make decisions based on prior experience. Here we conducted post hoc analysis on an archival data set to evaluate whether individual differences in adiposity, an anthropometric construct encompassing a spectrum of body types, from lean to obese, associate with signatures of asymmetric feedback learning during value-based decision-making. In a sample of neurologically healthy adults (N = 433), ventral striatal responses to rewards, measured using fMRI, were not directly associated with adiposity, but rather moderated its relationship with feedback-driven learning in the Iowa gambling task, tested outside the scanner. Using a biologically inspired model of basal ganglia-dependent decision processes, we found this moderating effect of reward reactivity to be explained by an asymmetrical use of feedback to drive learning; that is, with more plasticity for gains than for losses, stronger reward reactivity leads to decisions that minimize exploration for maximizing long-term outcomes. Follow-up analysis confirmed that individual differences in adiposity correlated with signatures of asymmetric use of feedback cues during learning, suggesting that reward reactivity may especially relate to adiposity, and possibly obesity risk, when gains impact future decisions more than losses.
Collapse
Affiliation(s)
- Timothy Verstynen
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Carnegie Mellon Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Kyle Dunovan
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Catherine Walsh
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Chieh-Hsin Kuan
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Stephen B Manuck
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Peter J Gianaros
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|