1
|
Stratigi A, Soler-García M, Krout M, Shukla S, De Bono M, Richmond JE, Laurent P. Neuroendocrine Control of Synaptic Transmission by PHAC-1 in C. elegans. J Neurosci 2025; 45:e1767232024. [PMID: 39919830 PMCID: PMC11949478 DOI: 10.1523/jneurosci.1767-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 02/09/2025] Open
Abstract
A dynamic interplay between fast synaptic signals and slower neuromodulatory signals controls the excitatory/inhibitory (E/I) balance within neuronal circuits. The mechanisms by which neuropeptide signaling is regulated to maintain E/I balance remain uncertain. We designed a genetic screen to isolate genes involved in the peptidergic maintenance of the E/I balance in the C. elegans motor circuit. This screen identified the C. elegans orthologs of the presynaptic phosphoprotein synapsin (snn-1) and the protein phosphatase 1 (PP1) regulatory subunit PHACTR1 (phac-1). We demonstrate that both phac-1 and snn-1 alter the motor behavior of C. elegans, and genetic interactions suggest that SNN-1 contributes to PP1-PHAC-1 holoenzyme signaling. De novo variants of human PHACTR1, associated with early-onset epilepsies [developmental and epileptic encephalopathy 70 (DEE70)], when expressed in C. elegans resulted in constitutive PP1-PHAC-1 holoenzyme activity. Unregulated PP1-PHAC-1 signaling alters the synapsin and actin cytoskeleton and increases neuropeptide release by cholinergic motor neurons, which secondarily affects the presynaptic vesicle cycle. Together, these results clarify the dominant mechanisms of action of the DEE70 alleles and suggest that altered neuropeptide release may alter E/I balance in DEE70.
Collapse
Affiliation(s)
- Aikaterini Stratigi
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Miguel Soler-García
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Mia Krout
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois 60607
| | - Shikha Shukla
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Mario De Bono
- Institute of Science and Technology, Klosterneuburg 3400, Austria
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois 60607
| | - Patrick Laurent
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Brussels 1070, Belgium
| |
Collapse
|
2
|
Watteyne J, Chudinova A, Ripoll-Sánchez L, Schafer WR, Beets I. Neuropeptide signaling network of Caenorhabditis elegans: from structure to behavior. Genetics 2024; 228:iyae141. [PMID: 39344922 PMCID: PMC11538413 DOI: 10.1093/genetics/iyae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024] Open
Abstract
Neuropeptides are abundant signaling molecules that control neuronal activity and behavior in all animals. Owing in part to its well-defined and compact nervous system, Caenorhabditis elegans has been one of the primary model organisms used to investigate how neuropeptide signaling networks are organized and how these neurochemicals regulate behavior. We here review recent work that has expanded our understanding of the neuropeptidergic signaling network in C. elegans by mapping the evolutionary conservation, the molecular expression, the receptor-ligand interactions, and the system-wide organization of neuropeptide pathways in the C. elegans nervous system. We also describe general insights into neuropeptidergic circuit motifs and the spatiotemporal range of peptidergic transmission that have emerged from in vivo studies on neuropeptide signaling. With efforts ongoing to chart peptide signaling networks in other organisms, the C. elegans neuropeptidergic connectome can serve as a prototype to further understand the organization and the signaling dynamics of these networks at organismal level.
Collapse
Affiliation(s)
- Jan Watteyne
- Department of Biology, University of Leuven, Leuven 3000, Belgium
| | | | - Lidia Ripoll-Sánchez
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Psychiatry, Cambridge University, Cambridge CB2 0SZ, UK
| | - William R Schafer
- Department of Biology, University of Leuven, Leuven 3000, Belgium
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Isabel Beets
- Department of Biology, University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
3
|
Wang Y, Sun X, Feng L, Zhang K, Yang W. Nervous system guides behavioral immunity in Caenorhabditis elegans. PeerJ 2024; 12:e18289. [PMID: 39430568 PMCID: PMC11488496 DOI: 10.7717/peerj.18289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Caenorhabditis elegans is a versatile model organism for exploring complex biological systems. Microbes and the external environment can affect the nervous system and drive behavioral changes in C. elegans. For better survival, C. elegans may develop behavioral immunity to avoid potential environmental pathogens. However, the molecular and cellular mechanisms underlying this avoidance behavior are not fully understood. The dissection of sensorimotor circuits in behavioral immunity may promote advancements in research on the neuronal connectome in uncovering neuronal regulators of behavioral immunity. In this review, we discuss how the nervous system coordinates behavioral immunity by translating various pathogen-derived cues and physiological damage to motor output in response to pathogenic threats in C. elegans. This understanding may provide insights into the fundamental principles of immune strategies that can be applied across species and potentially contribute to the development of novel therapies for immune-related diseases.
Collapse
Affiliation(s)
- Yu Wang
- Department of Physiology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xuehong Sun
- Department of Forensic Pathology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Lixiang Feng
- Department of Physiology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Kui Zhang
- Department of Forensic Pathology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Wenxing Yang
- Department of Physiology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Kamaraju D, Chatterjee M, Papolu PK, Shivakumara TN, Sreevathsa R, Hada A, Rao U. Host-induced RNA interference targeting the neuromotor gene FMRFamide-like peptide-14 (Mi-flp14) perturbs Meloidogyne incognita parasitic success in eggplant. PLANT CELL REPORTS 2024; 43:178. [PMID: 38907748 DOI: 10.1007/s00299-024-03259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/04/2024] [Indexed: 06/24/2024]
Abstract
KEY MESSAGE The study demonstrates the successful management of Meloidogyne incognita in eggplant using Mi-flp14 RNA interference, showing reduced nematode penetration and reproduction without off-target effects across multiple generations. Root-knot nematode, Meloidogyne incognita, causes huge yield losses worldwide. Neuromotor function in M. incognita governed by 19 neuropeptides is vital for parasitism and parasite biology. The present study establishes the utility of Mi-flp14 for managing M. incognita in eggplant in continuation of our earlier proof of concept in tobacco (US patent US2015/0361445A1). Mi-flp14 hairpin RNA construct was used for generating 19 independent transgenic eggplant events. PCR and Southern hybridization analysis confirmed transgene integration and its orientation, while RT-qPCR and Northern hybridization established the generation of dsRNA and siRNA of Mi-flp14. In vitro and in vivo bio-efficacy analysis of single-copy events against M. incognita showed reduced nematode penetration and development at various intervals that negatively impacted reproduction. Interestingly, M. incognita preferred wild-type plants over the transgenics even when unbiased equal opportunity was provided for the infection. A significant reduction in disease parameters was observed in transgenic plants viz., galls (40-48%), females (40-50%), egg masses (35-40%), eggs/egg mass (50-55%), and derived multiplication factor (60-65%) compared to wild type. A unique demonstration of perturbed expression of Mi-flp14 in partially penetrated juveniles and female nematodes established successful host-mediated RNAi both at the time of penetration even before the nematodes started withdrawing plant nutrients and later stage, respectively. The absence of off-target effects in transgenic plants was supported by the normal growth phenotype of the plants and T-DNA integration loci. Stability in the bio-efficacy against M. incognita across T1- to T4-generation transgenic plants established the utility of silencing Mi-flp14 for nematode management. This study demonstrates the significance of targeting Mi-flp14 in eggplant for nematode management, particularly to address global agricultural challenges posed by M. incognita.
Collapse
Affiliation(s)
- Divya Kamaraju
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Madhurima Chatterjee
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Pradeep K Papolu
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Alkesh Hada
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, 7505101, Bet Dagan, Israel.
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
- Engrave Biolabs Pvt Ltd. , Shanthipuram, Kukatpally, Hyderabad, 500072, India.
| |
Collapse
|
5
|
Meng J, Ahamed T, Yu B, Hung W, EI Mouridi S, Wang Z, Zhang Y, Wen Q, Boulin T, Gao S, Zhen M. A tonically active master neuron modulates mutually exclusive motor states at two timescales. SCIENCE ADVANCES 2024; 10:eadk0002. [PMID: 38598630 PMCID: PMC11006214 DOI: 10.1126/sciadv.adk0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
Continuity of behaviors requires animals to make smooth transitions between mutually exclusive behavioral states. Neural principles that govern these transitions are not well understood. Caenorhabditis elegans spontaneously switch between two opposite motor states, forward and backward movement, a phenomenon thought to reflect the reciprocal inhibition between interneurons AVB and AVA. Here, we report that spontaneous locomotion and their corresponding motor circuits are not separately controlled. AVA and AVB are neither functionally equivalent nor strictly reciprocally inhibitory. AVA, but not AVB, maintains a depolarized membrane potential. While AVA phasically inhibits the forward promoting interneuron AVB at a fast timescale, it maintains a tonic, extrasynaptic excitation on AVB over the longer timescale. We propose that AVA, with tonic and phasic activity of opposite polarities on different timescales, acts as a master neuron to break the symmetry between the underlying forward and backward motor circuits. This master neuron model offers a parsimonious solution for sustained locomotion consisted of mutually exclusive motor states.
Collapse
Affiliation(s)
- Jun Meng
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Tosif Ahamed
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Bin Yu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wesley Hung
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Sonia EI Mouridi
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, 69008 Lyon, France
| | - Zezhen Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yongning Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Quan Wen
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Thomas Boulin
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, 69008 Lyon, France
| | - Shangbang Gao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mei Zhen
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
6
|
Ripoll-Sánchez L, Watteyne J, Sun H, Fernandez R, Taylor SR, Weinreb A, Bentley BL, Hammarlund M, Miller DM, Hobert O, Beets I, Vértes PE, Schafer WR. The neuropeptidergic connectome of C. elegans. Neuron 2023; 111:3570-3589.e5. [PMID: 37935195 PMCID: PMC7615469 DOI: 10.1016/j.neuron.2023.09.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 08/02/2023] [Accepted: 09/29/2023] [Indexed: 11/09/2023]
Abstract
Efforts are ongoing to map synaptic wiring diagrams, or connectomes, to understand the neural basis of brain function. However, chemical synapses represent only one type of functionally important neuronal connection; in particular, extrasynaptic, "wireless" signaling by neuropeptides is widespread and plays essential roles in all nervous systems. By integrating single-cell anatomical and gene-expression datasets with biochemical analysis of receptor-ligand interactions, we have generated a draft connectome of neuropeptide signaling in the C. elegans nervous system. This network is characterized by high connection density, extended signaling cascades, autocrine foci, and a decentralized topology, with a large, highly interconnected core containing three constituent communities sharing similar patterns of input connectivity. Intriguingly, several key network hubs are little-studied neurons that appear specialized for peptidergic neuromodulation. We anticipate that the C. elegans neuropeptidergic connectome will serve as a prototype to understand how networks of neuromodulatory signaling are organized.
Collapse
Affiliation(s)
- Lidia Ripoll-Sánchez
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Psychiatry, Cambridge University, Cambridge, UK
| | - Jan Watteyne
- Department of Biology, KU Leuven, Leuven, Belgium
| | - HaoSheng Sun
- Department of Biological Sciences/HHMI, Columbia University, New York, NY, USA; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert Fernandez
- Department of Biological Sciences/HHMI, Columbia University, New York, NY, USA
| | - Seth R Taylor
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexis Weinreb
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Barry L Bentley
- Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, UK
| | - Marc Hammarlund
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Oliver Hobert
- Department of Biological Sciences/HHMI, Columbia University, New York, NY, USA
| | - Isabel Beets
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Petra E Vértes
- Department of Psychiatry, Cambridge University, Cambridge, UK
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Thapliyal S, Beets I, Glauser DA. Multisite regulation integrates multimodal context in sensory circuits to control persistent behavioral states in C. elegans. Nat Commun 2023; 14:3052. [PMID: 37236963 DOI: 10.1038/s41467-023-38685-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Maintaining or shifting between behavioral states according to context is essential for animals to implement fitness-promoting strategies. How the integration of internal state, past experience and sensory inputs orchestrates persistent multidimensional behavioral changes remains poorly understood. Here, we show that C. elegans integrates environmental temperature and food availability over different timescales to engage in persistent dwelling, scanning, global or glocal search strategies matching thermoregulatory and feeding needs. Transition between states, in each case, involves regulating multiple processes including AFD or FLP tonic sensory neurons activity, neuropeptide expression and downstream circuit responsiveness. State-specific FLP-6 or FLP-5 neuropeptide signaling acts on a distributed set of inhibitory GPCR(s) to promote scanning or glocal search, respectively, bypassing dopamine and glutamate-dependent behavioral state control. Integration of multimodal context via multisite regulation in sensory circuits might represent a conserved regulatory logic for a flexible prioritization on the valence of multiple inputs when operating persistent behavioral state transitions.
Collapse
Affiliation(s)
- Saurabh Thapliyal
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | | |
Collapse
|
8
|
Liu H, Wu JJ, Li R, Wang PZ, Huang JH, Xu Y, Zhao JL, Wu PP, Li SJ, Wu ZX. Disexcitation in the ASH/RIM/ADL negative feedback circuit fine-tunes hyperosmotic sensation and avoidance in Caenorhabditis elegans. Front Mol Neurosci 2023; 16:1101628. [PMID: 37008778 PMCID: PMC10050701 DOI: 10.3389/fnmol.2023.1101628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/21/2023] [Indexed: 03/17/2023] Open
Abstract
Sensations, especially nociception, are tightly controlled and regulated by the central and peripheral nervous systems. Osmotic sensation and related physiological and behavioral reactions are essential for animal well-being and survival. In this study, we find that interaction between secondary nociceptive ADL and primary nociceptive ASH neurons upregulates Caenorhabditis elegans avoidance of the mild and medium hyperosmolality of 0.41 and 0.88 Osm but does not affect avoidance of high osmolality of 1.37 and 2.29 Osm. The interaction between ASH and ADL is actualized through a negative feedback circuit consisting of ASH, ADL, and RIM interneurons. In this circuit, hyperosmolality-sensitive ADL augments the ASH hyperosmotic response and animal hyperosmotic avoidance; RIM inhibits ADL and is excited by ASH; thus, ASH exciting RIM reduces ADL augmenting ASH. The neuronal signal integration modality in the circuit is disexcitation. In addition, ASH promotes hyperosmotic avoidance through ASH/RIC/AIY feedforward circuit. Finally, we find that in addition to ASH and ADL, multiple sensory neurons are involved in hyperosmotic sensation and avoidance behavior.
Collapse
|
9
|
Karthik K, Hada A, Bajpai A, Patil BL, Paraselli B, Rao U, Sreevathsa R. A novel tasi RNA-based micro RNA-induced gene silencing strategy to tackle multiple pests and pathogens in cotton (Gossypium hirsutum L.). PLANTA 2022; 257:20. [PMID: 36538040 DOI: 10.1007/s00425-022-04055-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
This study demonstrates the combinatorial management of multiple pests through a trans-acting siRNA (tasiRNA)-based micro RNA-induced gene silencing (MIGS) strategy. Transgenic cotton events demonstrated improved efficacy against cotton leaf curl disease, cotton leaf hopper and root-knot nematode. Cotton (Gossypium hirsutum L.), an important commercial crop grown worldwide is confronted by several pests and pathogens, thus reiterating interventions for their management. In this study, we report, the utility of a novel Arabidopsis miRNA173-directed trans-acting siRNA (tasiRNA)-based micro RNA-induced gene silencing (MIGS) strategy for the simultaneous management of cotton leaf curl disease (CLCuD), cotton leaf hopper (CLH; Amrasca biguttula biguttula) and root-knot nematode (RKN, Meloidogyne incognita). Cotton transgenics were developed with the MIGS construct targeting a total of 7 genes by an apical meristem-targeted in planta transformation strategy. Stable transgenics were selected using stringent selection pressure, molecular characterization and stress-specific bio-efficacy studies. We identified 8 superior events with 50-100% resistance against CLCuD, while reduction in the root-knot nematode multiplication factor in the range of 35-75% confirmed resistance to RKN. These transgenic cotton events were also detrimental to the growth and development of CLH, as only 43.3-62.5% of nymphs could survive. Based on the corroborating evidences obtained by all the bioefficacy analyses, 3 events viz., L-75-1, E-27-11, E-27-7 were found to be consistent in tackling the target pests. To the best of our knowledge, this report is the first of its kind demonstrating the possibility of combinatorial management of pests/diseases in cotton using MIGS approach. These identified events demonstrate immense utility of the strategy towards combinatorial stress management in cotton improvement programs.
Collapse
Affiliation(s)
- Kesiraju Karthik
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Regional Centre for Biotechnology, National Biotech Cluster, Faridabad-Gurugram Highway, New Delhi, India
| | - Alkesh Hada
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Akansha Bajpai
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Basavaprabhu L Patil
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- ICAR-Indian Institute of Horticultural Research, Bengaluru, India
| | | | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
- SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| | | |
Collapse
|
10
|
Mitra S, Basu S, Singh O, Srivastava A, Singru PS. Calcium-binding proteins typify the dopaminergic neuronal subtypes in the ventral tegmental area of zebra finch, Taeniopygia guttata. J Comp Neurol 2022; 530:2562-2586. [PMID: 35715989 DOI: 10.1002/cne.25352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/11/2022]
Abstract
Calcium-binding proteins (CBPs) regulate neuronal function in midbrain dopamine (DA)-ergic neurons in mammals by buffering and sensing the intracellular Ca2+ , and vesicular release. In birds, the equivalent set of neurons are important in song learning, directed singing, courtship, and energy balance, yet the status of CBPs in these neurons is unknown. Herein, for the first time, we probe the nature of CBPs, namely, Calbindin-, Calretinin-, Parvalbumin-, and Secretagogin-expressing DA neurons in the ventral tegmental area (VTA) and substantia nigra (SN) in the midbrain of zebra finch, Taeniopygia guttata. qRT-PCR analysis of ventral midbrain tissue fragment revealed higher Calbindin- and Calretinin-mRNA levels compared to Parvalbumin and Secretagogin. Application of immunofluorescence showed CBP-immunoreactive (-i) neurons in VTA (anterior [VTAa], mid [VTAm], caudal [VTAc]), SN (compacta [SNc], and reticulata [SNr]). Compared to VTAa, higher Calbindin- and Parvalbumin-immunoreactivity (-ir), and lower Calretinin-ir were observed in VTAm and VTAc. Secretagogin-ir was highly localized to VTAa. In SN, Calbindin- and Calretinin-ir were higher in SNc, SNr was Parvalbumin enriched, and Secretagogin-ir was not detected. Weak, moderate, and intense tyrosine hydroxylase (TH)-i VTA neurons were demarcated as subtypes 1, 2, and 3, respectively. While subtype 1 TH-i neurons were neither Calbindin- nor Calretinin-i, ∼80 and ∼65% subtype 2 and ∼30 and ∼45% subtype 3 TH-i neurons co-expressed Calbindin and Calretinin, respectively. All TH-i neuronal subtypes co-expressed Parvalbumin with reciprocal relationship with TH-ir. We suggest that the CBPs may determine VTA DA neuronal heterogeneity and differentially regulate their activity in T. guttata.
Collapse
Affiliation(s)
- Saptarsi Mitra
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Sumela Basu
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Omprakash Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Abhinav Srivastava
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
11
|
Florman JT, Alkema MJ. Co-transmission of neuropeptides and monoamines choreograph the C. elegans escape response. PLoS Genet 2022; 18:e1010091. [PMID: 35239681 PMCID: PMC8932558 DOI: 10.1371/journal.pgen.1010091] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/18/2022] [Accepted: 02/11/2022] [Indexed: 11/19/2022] Open
Abstract
Co-localization and co-transmission of neurotransmitters and neuropeptides is a core property of neural signaling across species. While co-transmission can increase the flexibility of cellular communication, understanding the functional impact on neural dynamics and behavior remains a major challenge. Here we examine the role of neuropeptide/monoamine co-transmission in the orchestration of the C. elegans escape response. The tyraminergic RIM neurons, which coordinate distinct motor programs of the escape response, also co-express the neuropeptide encoding gene flp-18. We find that in response to a mechanical stimulus, flp-18 mutants have defects in locomotory arousal and head bending that facilitate the omega turn. We show that the induction of the escape response leads to the release of FLP-18 neuropeptides. FLP-18 modulates the escape response through the activation of the G-protein coupled receptor NPR-5. FLP-18 increases intracellular calcium levels in neck and body wall muscles to promote body bending. Our results show that FLP-18 and tyramine act in different tissues in both a complementary and antagonistic manner to control distinct motor programs during different phases of the C. elegans flight response. Our study reveals basic principles by which co-transmission of monoamines and neuropeptides orchestrate in arousal and behavior in response to stress.
Collapse
Affiliation(s)
- Jeremy T. Florman
- Department of Neurobiology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Mark J. Alkema
- Department of Neurobiology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
12
|
Chen L, Liu Y, Su P, Hung W, Li H, Wang Y, Yue Z, Ge MH, Wu ZX, Zhang Y, Fei P, Chen LM, Tao L, Mao H, Zhen M, Gao S. Escape steering by cholecystokinin peptidergic signaling. Cell Rep 2022; 38:110330. [PMID: 35139370 DOI: 10.1016/j.celrep.2022.110330] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/19/2021] [Accepted: 01/11/2022] [Indexed: 11/26/2022] Open
Abstract
Escape is an evolutionarily conserved and essential avoidance response. Considered to be innate, most studies on escape responses focused on hard-wired circuits. We report here that a neuropeptide NLP-18 and its cholecystokinin receptor CKR-1 enable the escape circuit to execute a full omega (Ω) turn. We demonstrate in vivo NLP-18 is mainly secreted by the gustatory sensory neuron (ASI) to activate CKR-1 in the head motor neuron (SMD) and the turn-initiating interneuron (AIB). Removal of NLP-18 or CKR-1 or specific knockdown of CKR-1 in SMD or AIB neurons leads to shallower turns, hence less robust escape steering. Consistently, elevation of head motor neuron (SMD)'s Ca2+ transients during escape steering is attenuated upon the removal of NLP-18 or CKR-1. In vitro, synthetic NLP-18 directly evokes CKR-1-dependent currents in oocytes and CKR-1-dependent Ca2+ transients in SMD. Thus, cholecystokinin peptidergic signaling modulates an escape circuit to generate robust escape steering.
Collapse
Affiliation(s)
- Lili Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Yuting Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Pan Su
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Wesley Hung
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Haiwen Li
- Center for Quantitative Biology, Peking University, Beijing 100871, P.R. China; LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
| | - Ya Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Zhongpu Yue
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Ming-Hai Ge
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Zheng-Xing Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Yan Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Peng Fei
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Louis Tao
- Center for Quantitative Biology, Peking University, Beijing 100871, P.R. China
| | - Heng Mao
- LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China.
| |
Collapse
|
13
|
Bhat US, Shahi N, Surendran S, Babu K. Neuropeptides and Behaviors: How Small Peptides Regulate Nervous System Function and Behavioral Outputs. Front Mol Neurosci 2021; 14:786471. [PMID: 34924955 PMCID: PMC8674661 DOI: 10.3389/fnmol.2021.786471] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
One of the reasons that most multicellular animals survive and thrive is because of the adaptable and plastic nature of their nervous systems. For an organism to survive, it is essential for the animal to respond and adapt to environmental changes. This is achieved by sensing external cues and translating them into behaviors through changes in synaptic activity. The nervous system plays a crucial role in constantly evaluating environmental cues and allowing for behavioral plasticity in the organism. Multiple neurotransmitters and neuropeptides have been implicated as key players for integrating sensory information to produce the desired output. Because of its simple nervous system and well-established neuronal connectome, C. elegans acts as an excellent model to understand the mechanisms underlying behavioral plasticity. Here, we critically review how neuropeptides modulate a wide range of behaviors by allowing for changes in neuronal and synaptic signaling. This review will have a specific focus on feeding, mating, sleep, addiction, learning and locomotory behaviors in C. elegans. With a view to understand evolutionary relationships, we explore the functions and associated pathophysiology of C. elegans neuropeptides that are conserved across different phyla. Further, we discuss the mechanisms of neuropeptidergic signaling and how these signals are regulated in different behaviors. Finally, we attempt to provide insight into developing potential therapeutics for neuropeptide-related disorders.
Collapse
Affiliation(s)
- Umer Saleem Bhat
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Navneet Shahi
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
| | - Siju Surendran
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
| | - Kavita Babu
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
14
|
Hada A, Singh D, Papolu PK, Banakar P, Raj A, Rao U. Host-mediated RNAi for simultaneous silencing of different functional groups of genes in Meloidogyne incognita using fusion cassettes in Nicotiana tabacum. PLANT CELL REPORTS 2021; 40:2287-2302. [PMID: 34387737 DOI: 10.1007/s00299-021-02767-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/05/2021] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE This study establishes possibility of combinatorial silencing of more than one functional gene for their efficacy against root-knot nematode, M. incognita. Root-knot nematodes (RKN) of the genus Meloidogyne are the key important plant parasitic nematodes (PPNs) in agricultural and horticultural crops worldwide. Among RKNs, M. incognita is the most notorious that demand exploration of novel strategies for their management. Due to its sustainable and target-specific nature, RNA interference (RNAi) has gained unprecedented importance to combat RKNs. However, based on the available genomic information and interaction studies, it can be presumed that RKNs are dynamic and not dependent on single genes for accomplishing a particular function. Therefore, it becomes extremely important to consider silencing of more than one gene to establish any synergistic or additive effect on nematode parasitism. In this direction, we have combined three effectors specific to subventral gland cells of M. incognita, Mi-msp1, Mi-msp16, Mi-msp20 as fusion cassettes-1 and two FMRFamide-like peptides, Mi-flp14, Mi-flp18, and Mi-msp20 as fusion cassettes-2 to establish their possible utility for M. incognita management. In vitro RNAi assay in tomato and adzuki bean using these two fusion gene negatively altered nematode behavior in terms of reduced attraction, invasion, development, and reproduction. Subsequently, Nicotiana tabacum plants were transformed with these two fusion gene hairpin RNA-expressing vectors (hpRNA), and characterized via PCR, qRT-PCR, and Southern blot hybridization. Production of siRNAs specific to Mi-flp18 and Mi-msp1 was also confirmed by Northern hybridization. Further, transgenic events expressing single copy insertions of hpRNA constructs of fusion 1 and fusion-2 conferred up to 85% reduction in M. incognita multiplication. Besides, expression quantification revealed a significant reduction in mRNA abundance of target genes (up to 1.8-fold) in M. incognita females extracted from transgenic plants, and provided additional evidence for successful gene silencing.
Collapse
Affiliation(s)
- Alkesh Hada
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Divya Singh
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Pradeep K Papolu
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Prakash Banakar
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ankita Raj
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
15
|
Marques F, Falquet L, Vandewyer E, Beets I, Glauser DA. Signaling via the FLP-14/FRPR-19 neuropeptide pathway sustains nociceptive response to repeated noxious stimuli in C. elegans. PLoS Genet 2021; 17:e1009880. [PMID: 34748554 PMCID: PMC8601619 DOI: 10.1371/journal.pgen.1009880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/18/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
In order to thrive in constantly changing environments, animals must adaptively respond to threatening events. Noxious stimuli are not only processed according to their absolute intensity, but also to their context. Adaptation processes can cause animals to habituate at different rates and degrees in response to permanent or repeated stimuli. Here, we used a forward genetic approach in Caenorhabditis elegans to identify a neuropeptidergic pathway, essential to prevent fast habituation and maintain robust withdrawal responses to repeated noxious stimuli. This pathway involves the FRPR-19A and FRPR-19B G-protein coupled receptor isoforms produced from the frpr-19 gene by alternative splicing. Loss or overexpression of each or both isoforms can impair withdrawal responses caused by the optogenetic activation of the polymodal FLP nociceptor neuron. Furthermore, we identified FLP-8 and FLP-14 as FRPR-19 ligands in vitro. flp-14, but not flp-8, was essential to promote withdrawal response and is part of the same genetic pathway as frpr-19 in vivo. Expression and cell-specific rescue analyses suggest that FRPR-19 acts both in the FLP nociceptive neurons and downstream interneurons, whereas FLP-14 acts from interneurons. Importantly, genetic impairment of the FLP-14/FRPR-19 pathway accelerated the habituation to repeated FLP-specific optogenetic activation, as well as to repeated noxious heat and harsh touch stimuli. Collectively, our data suggest that well-adjusted neuromodulation via the FLP-14/FRPR-19 pathway contributes to promote nociceptive signals in C. elegans and counteracts habituation processes that otherwise tend to rapidly reduce aversive responses to repeated noxious stimuli.
Collapse
Affiliation(s)
- Filipe Marques
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Laurent Falquet
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Elke Vandewyer
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
16
|
Sordillo A, Bargmann CI. Behavioral control by depolarized and hyperpolarized states of an integrating neuron. eLife 2021; 10:e67723. [PMID: 34738904 PMCID: PMC8570696 DOI: 10.7554/elife.67723] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022] Open
Abstract
Coordinated transitions between mutually exclusive motor states are central to behavioral decisions. During locomotion, the nematode Caenorhabditis elegans spontaneously cycles between forward runs, reversals, and turns with complex but predictable dynamics. Here, we provide insight into these dynamics by demonstrating how RIM interneurons, which are active during reversals, act in two modes to stabilize both forward runs and reversals. By systematically quantifying the roles of RIM outputs during spontaneous behavior, we show that RIM lengthens reversals when depolarized through glutamate and tyramine neurotransmitters and lengthens forward runs when hyperpolarized through its gap junctions. RIM is not merely silent upon hyperpolarization: RIM gap junctions actively reinforce a hyperpolarized state of the reversal circuit. Additionally, the combined outputs of chemical synapses and gap junctions from RIM regulate forward-to-reversal transitions. Our results indicate that multiple classes of RIM synapses create behavioral inertia during spontaneous locomotion.
Collapse
Affiliation(s)
- Aylesse Sordillo
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller UniversityNew YorkUnited States
| | - Cornelia I Bargmann
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller UniversityNew YorkUnited States
- Chan Zuckerberg InitiativeRedwood CityUnited States
| |
Collapse
|
17
|
Reilly DK, McGlame EJ, Vandewyer E, Robidoux AN, Muirhead CS, Northcott HT, Joyce W, Alkema MJ, Gegear RJ, Beets I, Srinivasan J. Distinct neuropeptide-receptor modules regulate a sex-specific behavioral response to a pheromone. Commun Biol 2021; 4:1018. [PMID: 34465863 PMCID: PMC8408276 DOI: 10.1038/s42003-021-02547-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Dioecious species are a hallmark of the animal kingdom, with opposing sexes responding differently to identical sensory cues. Here, we study the response of C. elegans to the small-molecule pheromone, ascr#8, which elicits opposing behavioral valences in each sex. We identify a novel neuropeptide-neuropeptide receptor (NP/NPR) module that is active in males, but not in hermaphrodites. Using a novel paradigm of neuropeptide rescue that we established, we leverage bacterial expression of individual peptides to rescue the sex-specific response to ascr#8. Concurrent biochemical studies confirmed individual FLP-3 peptides differentially activate two divergent receptors, NPR-10 and FRPR-16. Interestingly, the two of the peptides that rescued behavior in our feeding paradigm are related through a conserved threonine, suggesting that a specific NP/NPR combination sets a male state, driving the correct behavioral valence of the ascr#8 response. Receptor expression within pre-motor neurons reveals novel coordination of male-specific and core locomotory circuitries.
Collapse
Affiliation(s)
- Douglas K. Reilly
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA ,grid.429997.80000 0004 1936 7531Present Address: Tufts University, Medford, MA USA
| | - Emily J. McGlame
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA ,Present Address: AbbVie Foundational Neuroscience Center, Cambridge, MA USA
| | - Elke Vandewyer
- grid.5596.f0000 0001 0668 7884Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Annalise N. Robidoux
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA
| | - Caroline S. Muirhead
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA
| | - Haylea T. Northcott
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA ,grid.423532.10000 0004 0516 8515Present Address: Optum, Hartford, CT USA
| | - William Joyce
- grid.168645.80000 0001 0742 0364Neurobiology Department, University of Massachusetts Medical School, Worcester, MA USA
| | - Mark J. Alkema
- grid.168645.80000 0001 0742 0364Neurobiology Department, University of Massachusetts Medical School, Worcester, MA USA
| | - Robert J. Gegear
- grid.266686.a0000000102217463Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA USA
| | - Isabel Beets
- grid.5596.f0000 0001 0668 7884Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jagan Srinivasan
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA
| |
Collapse
|
18
|
Berghoff EG, Glenwinkel L, Bhattacharya A, Sun H, Varol E, Mohammadi N, Antone A, Feng Y, Nguyen K, Cook SJ, Wood JF, Masoudi N, Cros CC, Ramadan YH, Ferkey DM, Hall DH, Hobert O. The Prop1-like homeobox gene unc-42 specifies the identity of synaptically connected neurons. eLife 2021; 10:e64903. [PMID: 34165428 PMCID: PMC8225392 DOI: 10.7554/elife.64903] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Many neuronal identity regulators are expressed in distinct populations of cells in the nervous system, but their function is often analyzed only in specific isolated cellular contexts, thereby potentially leaving overarching themes in gene function undiscovered. We show here that the Caenorhabditis elegans Prop1-like homeobox gene unc-42 is expressed in 15 distinct sensory, inter- and motor neuron classes throughout the entire C. elegans nervous system. Strikingly, all 15 neuron classes expressing unc-42 are synaptically interconnected, prompting us to investigate whether unc-42 controls the functional properties of this circuit and perhaps also the assembly of these neurons into functional circuitry. We found that unc-42 defines the routes of communication between these interconnected neurons by controlling the expression of neurotransmitter pathway genes, neurotransmitter receptors, neuropeptides, and neuropeptide receptors. Anatomical analysis of unc-42 mutant animals reveals defects in axon pathfinding and synaptic connectivity, paralleled by expression defects of molecules involved in axon pathfinding, cell-cell recognition, and synaptic connectivity. We conclude that unc-42 establishes functional circuitry by acting as a terminal selector of functionally connected neuron types. We identify a number of additional transcription factors that are also expressed in synaptically connected neurons and propose that terminal selectors may also function as 'circuit organizer transcription factors' to control the assembly of functional circuitry throughout the nervous system. We hypothesize that such organizational properties of transcription factors may be reflective of not only ontogenetic, but perhaps also phylogenetic trajectories of neuronal circuit establishment.
Collapse
Affiliation(s)
- Emily G Berghoff
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Lori Glenwinkel
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Abhishek Bhattacharya
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - HaoSheng Sun
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Erdem Varol
- Department of Statistics, Zuckerman Institute, Columbia UniversityNew YorkUnited States
| | - Nicki Mohammadi
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Amelia Antone
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Yi Feng
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Ken Nguyen
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Steven J Cook
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Jordan F Wood
- Department of Biological Sciences, University at Buffalo, The State University of New YorkBuffaloUnited States
| | - Neda Masoudi
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Cyril C Cros
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Yasmin H Ramadan
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New YorkBuffaloUnited States
| | - David H Hall
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| |
Collapse
|
19
|
Xu Y, Zhang L, Liu Y, Topalidou I, Hassinan C, Ailion M, Zhao Z, Wang T, Chen Z, Bai J. Dopamine receptor DOP-1 engages a sleep pathway to modulate swimming in C. elegans. iScience 2021; 24:102247. [PMID: 33796839 PMCID: PMC7995527 DOI: 10.1016/j.isci.2021.102247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/06/2021] [Accepted: 02/25/2021] [Indexed: 12/26/2022] Open
Abstract
Animals require robust yet flexible programs to support locomotion. Here we report a pathway that connects the D1-like dopamine receptor DOP-1 with a sleep mechanism to modulate swimming in C. elegans. We show that DOP-1 plays a negative role in sustaining swimming behavior. By contrast, a pathway through the D2-like dopamine receptor DOP-3 negatively regulates the initiation of swimming, but its impact fades quickly over a few minutes. We find that DOP-1 and the GPCR kinase (G-protein-coupled receptor kinase-2) function in the sleep interneuron RIS, where DOP-1 modulates the secretion of a sleep neuropeptide FLP-11. We further show that DOP-1 and FLP-11 act in the same pathway to modulate swimming. Together, these results delineate a functional connection between a dopamine receptor and a sleep program to regulate swimming in C. elegans. The temporal transition between DOP-3 and DOP-1 pathways highlights the dynamic nature of neuromodulation for rhythmic movements that persist over time.
Collapse
Affiliation(s)
- Ye Xu
- Department of Clinical Medicine, Nanjing Medical University, Nanjing 211166, P. R. China.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA.,Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan 570102, P. R. China
| | - Lin Zhang
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA
| | - Yan Liu
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA
| | - Irini Topalidou
- Department of Biochemistry, University of Washington, WA 98195
| | - Cera Hassinan
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98019
| | - Michael Ailion
- Department of Biochemistry, University of Washington, WA 98195
| | - Zhenqiang Zhao
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan 570102, P. R. China
| | - Tan Wang
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan 570102, P. R. China
| | - Zhibin Chen
- Department of Clinical Medicine, Nanjing Medical University, Nanjing 211166, P. R. China.,Department of Neurology, First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan 570102, P. R. China
| | - Jihong Bai
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98019.,Department of Biochemistry, University of Washington, WA 98195
| |
Collapse
|
20
|
Jia Q, Sieburth D. Mitochondrial hydrogen peroxide positively regulates neuropeptide secretion during diet-induced activation of the oxidative stress response. Nat Commun 2021; 12:2304. [PMID: 33863916 PMCID: PMC8052458 DOI: 10.1038/s41467-021-22561-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondria play a pivotal role in the generation of signals coupling metabolism with neurotransmitter release, but a role for mitochondrial-produced ROS in regulating neurosecretion has not been described. Here we show that endogenously produced hydrogen peroxide originating from axonal mitochondria (mtH2O2) functions as a signaling cue to selectively regulate the secretion of a FMRFamide-related neuropeptide (FLP-1) from a pair of interneurons (AIY) in C. elegans. We show that pharmacological or genetic manipulations that increase mtH2O2 levels lead to increased FLP-1 secretion that is dependent upon ROS dismutation, mitochondrial calcium influx, and cysteine sulfenylation of the calcium-independent PKC family member PKC-1. mtH2O2-induced FLP-1 secretion activates the oxidative stress response transcription factor SKN-1/Nrf2 in distal tissues and protects animals from ROS-mediated toxicity. mtH2O2 levels in AIY neurons, FLP-1 secretion and SKN-1 activity are rapidly and reversibly regulated by exposing animals to different bacterial food sources. These results reveal a previously unreported role for mtH2O2 in linking diet-induced changes in mitochondrial homeostasis with neuropeptide secretion.
Collapse
Affiliation(s)
- Qi Jia
- PIBBS program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Derek Sieburth
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Pandey P, Singh A, Kaur H, Ghosh-Roy A, Babu K. Increased dopaminergic neurotransmission results in ethanol dependent sedative behaviors in Caenorhabditis elegans. PLoS Genet 2021; 17:e1009346. [PMID: 33524034 PMCID: PMC7877767 DOI: 10.1371/journal.pgen.1009346] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 02/11/2021] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Ethanol is a widely used drug, excessive consumption of which could lead to medical conditions with diverse symptoms. Ethanol abuse causes dysfunction of memory, attention, speech and locomotion across species. Dopamine signaling plays an essential role in ethanol dependent behaviors in animals ranging from C. elegans to humans. We devised an ethanol dependent assay in which mutants in the dopamine autoreceptor, dop-2, displayed a unique sedative locomotory behavior causing the animals to move in circles while dragging the posterior half of their body. Here, we identify the posterior dopaminergic sensory neuron as being essential to modulate this behavior. We further demonstrate that in dop-2 mutants, ethanol exposure increases dopamine secretion and functions in a DVA interneuron dependent manner. DVA releases the neuropeptide NLP-12 that is known to function through cholinergic motor neurons and affect movement. Thus, DOP-2 modulates dopamine levels at the synapse and regulates alcohol induced movement through NLP-12.
Collapse
Affiliation(s)
- Pratima Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Anuradha Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Harjot Kaur
- National Brain Research Centre, Gurgaon, India
| | | | - Kavita Babu
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
- Centre for Neuroscience, Indian Institute of Science (IISc), Bangalore, India
| |
Collapse
|
22
|
The G-Protein-Coupled Receptor SRX-97 Is Required for Concentration-Dependent Sensing of Benzaldehyde in Caenorhabditis elegans. eNeuro 2021; 8:ENEURO.0011-20.2020. [PMID: 33397797 PMCID: PMC7877458 DOI: 10.1523/eneuro.0011-20.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
The G-protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors (GPCRs) in the olfactory system function to sense the surrounding environment and respond to various odorants. The genes coding for olfactory receptors in Caenorhabditis elegans are larger in number in comparison to those in mammals, suggesting complexity in the receptor-odorant relationships. Recent studies have shown that the same odorant in different concentrations could act on multiple receptors in different neurons to induce attractive or repulsive responses. The ASH neurons are known to be responsible for responding to high concentrations of volatile odorants. Here, we characterize a new GPCR, SRX-97. We found that the srx-97 promoter drives expression specifically in the head ASH and tail PHB chemosensory neurons of C. elegans. Moreover, the SRX-97 protein localizes to the ciliary ends of the ASH neurons. Analysis of clustered regularly interspaced short palindromic repeats (CRISPR)-based deletion mutants of the srx-97 locus suggests that this gene is involved in recognition of high concentrations of benzaldehyde. This was further confirmed through rescue and neuronal ablation experiments. Our work brings novel insights into concentration-dependent receptor function in the olfactory system, and provides details of an additional molecule that helps the animal navigate its surroundings.
Collapse
|
23
|
Atkinson LE, McCoy CJ, Crooks BA, McKay FM, McVeigh P, McKenzie D, Irvine A, Harrington J, Rosa BA, Mitreva M, Marks NJ, Maule AG, Mousley A. Phylum-Spanning Neuropeptide GPCR Identification and Prioritization: Shaping Drug Target Discovery Pipelines for Nematode Parasite Control. Front Endocrinol (Lausanne) 2021; 12:718363. [PMID: 34659113 PMCID: PMC8515059 DOI: 10.3389/fendo.2021.718363] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022] Open
Abstract
Nematode parasites undermine human health and global food security. The frontline anthelmintic portfolio used to treat parasitic nematodes is threatened by the escalation of anthelmintic resistance, resulting in a demand for new drug targets for parasite control. Nematode neuropeptide signalling pathways represent an attractive source of novel drug targets which currently remain unexploited. The complexity of the nematode neuropeptidergic system challenges the discovery of new targets for parasite control, however recent advances in parasite 'omics' offers an opportunity for the in silico identification and prioritization of targets to seed anthelmintic discovery pipelines. In this study we employed Hidden Markov Model-based searches to identify ~1059 Caenorhabditis elegans neuropeptide G-protein coupled receptor (Ce-NP-GPCR) encoding gene homologs in the predicted protein datasets of 10 key parasitic nematodes that span several phylogenetic clades and lifestyles. We show that, whilst parasitic nematodes possess a reduced complement of Ce-NP-GPCRs, several receptors are broadly conserved across nematode species. To prioritize the most appealing parasitic nematode NP-GPCR anthelmintic targets, we developed a novel in silico nematode parasite drug target prioritization pipeline that incorporates pan-phylum NP-GPCR conservation, C. elegans-derived reverse genetics phenotype, and parasite life-stage specific expression datasets. Several NP-GPCRs emerge as the most attractive anthelmintic targets for broad spectrum nematode parasite control. Our analyses have also identified the most appropriate targets for species- and life stage- directed chemotherapies; in this context we have identified several NP-GPCRs with macrofilaricidal potential. These data focus functional validation efforts towards the most appealing NP-GPCR targets and, in addition, the prioritization strategy employed here provides a blueprint for parasitic nematode target selection beyond NP-GPCRs.
Collapse
Affiliation(s)
- Louise E. Atkinson
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Ciaran J. McCoy
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Bethany A. Crooks
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Fiona M. McKay
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Paul McVeigh
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Darrin McKenzie
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Allister Irvine
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - John Harrington
- Boehringer Ingelheim Animal Health, Athens, GA, United States
| | - Bruce A. Rosa
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, United States
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, United States
| | - Nikki J. Marks
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Aaron G. Maule
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Angela Mousley
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
- *Correspondence: Angela Mousley,
| |
Collapse
|
24
|
Bhardwaj A, Pandey P, Babu K. Control of Locomotory Behavior of Caenorhabditis elegans by the Immunoglobulin Superfamily Protein RIG-3. Genetics 2020; 214:135-145. [PMID: 31740450 PMCID: PMC6944407 DOI: 10.1534/genetics.119.302872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022] Open
Abstract
Cell surface immunoglobulin superfamily (IgSF) proteins play important roles in the development and function of the nervous system . Here we define the role of a Caenorhabditis elegans IgSF protein, RIG-3, in the function of the AVA command interneuron. This study reveals that RIG-3 regulates the abundance of the glutamate receptor subunit, GLR-1, in the AVA command interneuron and also regulates reversal behavior in C. elegans The mutant strain lacking rig-3 (rig-3 (ok2156)) shows increased reversal frequency during local search behaviors. Genetic and behavioral experiments suggest that RIG-3 functions through GLR-1 to regulate reversal behavior. We also show that the increased reversal frequency seen in rig-3 mutants is dependent on the increase in GLR-1 abundance at synaptic inputs to AVA, suggesting that RIG-3 alters the synaptic strength of incoming synapses through GLR-1 Consistent with the imaging experiments, altered synaptic strength was also reflected in increased calcium transients in rig-3 mutants when compared to wild-type control animals. Our results further suggest that animals lacking rig-3 show increased AVA activity, allowing the release of FLP-18 neuropeptide from AVA, which is an activity-dependent signaling molecule. Finally, we show that FLP-18 functions through the neuropeptide receptor, NPR-5, to modulate reversal behavior in C. elegans.
Collapse
Affiliation(s)
- Ashwani Bhardwaj
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli 140306, India
| | - Pratima Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli 140306, India
| | - Kavita Babu
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli 140306, India
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
25
|
Differential Regulation of Innate and Learned Behavior by Creb1/Crh-1 in Caenorhabditis elegans. J Neurosci 2019; 39:7934-7946. [PMID: 31413073 PMCID: PMC6774408 DOI: 10.1523/jneurosci.0006-19.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/17/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022] Open
Abstract
Memory formation is crucial for the survival of animals. Here, we study the effect of different crh-1 [Caenorhabditis elegans homolog of mammalian cAMP response element binding protein 1 (CREB1)] isoforms on the ability of C. elegans to form long-term memory (LTM). Null mutants in creb1/crh-1 are defective in LTM formation across phyla. We show that a specific isoform of CREB1/CRH-1, CRH-1e, is primarily responsible for memory related functions of the transcription factor in C. elegans. Silencing of CRH-1e-expressing neurons during training for LTM formation abolishes the LTM of the animal. Further, CRH-1e expression in RIM neurons is sufficient to rescue LTM defects of creb1/crh-1-null mutants. We go on to show that apart from being LTM defective, creb1/crh-1-null animals show defects in innate chemotaxis behavior. We further characterize the amino acids K247 and K266 as responsible for the LTM related functions of CREB1/CRH-1 while being dispensable for its innate chemotaxis behavior. These findings provide insight into the spatial and temporal workings of a crucial transcription factor that can be further exploited to find CREB1 targets involved in the process of memory formation. SIGNIFICANCE STATEMENT This study elucidates the role of a specific isoform of CREB1/CRH-1, CRH-1e, in Caenorhabditis elegans memory formation and chemosensation. Removal of this single isoform of creb1/crh-1 shows defects in long-term memory formation in the animal and expression of CREB1/CRH-1e in a single pair of neurons is sufficient to rescue the memory defects seen in the mutant animals. We further show that two specific amino acids of CRH-1 are required for the process of memory formation in the animal.
Collapse
|
26
|
Thapliyal S, Babu K. C. elegans Locomotion: Finding Balance in Imbalance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:185-196. [PMID: 30637699 DOI: 10.1007/978-981-13-3065-0_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The excitation-inhibition (E-I) imbalance in neural circuits represents a hallmark of several neuropsychiatric disorders. The tiny nematode Caenorhabditis elegans has emerged as an excellent system to study the molecular mechanisms underlying this imbalance in neuronal circuits. The C. elegans body wall muscles receive inputs from both excitatory cholinergic and inhibitory GABAergic motor neurons at neuromuscular junctions (NMJ), making it an excellent model for studying the genetic and molecular mechanisms required for maintaining E-I balance at the NMJ. The cholinergic neurons form dyadic synapses wherein they synapse onto ipsilateral body wall muscles allowing for muscle contraction as well as onto GABAergic motor neurons that in turn synapse on the contralateral body wall muscles causing muscle relaxation. An alternating wave of contraction and relaxation mediated by excitatory and inhibitory signals maintains locomotion in C. elegans. This locomotory behavior requires an intricate balance between the excitatory cholinergic signaling and the inhibitory GABAergic signaling mechanisms.Studies on the C. elegans NMJ have provided insights into several molecular mechanisms that could regulate this balance in neural circuits. This review provides a discussion on multiple genetic factors including neuropeptides and their receptors, cell adhesion molecules, and other molecular pathways that have been associated with maintaining E-I balance in C. elegans motor circuits. Further, it also discusses the implications of these studies that could help us in understanding the role of E-I balance in mammalian neural circuits and how changes in this balance could give rise to brain disorders.
Collapse
Affiliation(s)
- Shruti Thapliyal
- Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India.
| | - Kavita Babu
- Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India.
| |
Collapse
|