1
|
Kaneko T, Boulanger-Weill J, Isabella AJ, Moens CB. Position-independent functional refinement within the vagus motor topographic map. Cell Rep 2024; 43:114740. [PMID: 39325616 PMCID: PMC11676005 DOI: 10.1016/j.celrep.2024.114740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/23/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Motor neurons in the central nervous system often lie in a continuous topographic map, where neurons that innervate different body parts are spatially intermingled. This is the case for the efferent neurons of the vagus nerve, which innervate diverse muscle and organ targets in the head and viscera for brain-body communication. It remains elusive how neighboring motor neurons with different fixed peripheral axon targets develop the separate somatodendritic (input) connectivity they need to generate spatially precise body control. Here, we show that vagus motor neurons in the zebrafish indeed generate spatially appropriate peripheral responses to focal sensory stimulation even when they are transplanted into ectopic positions within the topographic map, indicating that circuit refinement occurs after the establishment of coarse topography. Refinement depends on motor neuron synaptic transmission, suggesting that an experience-dependent periphery-to-brain feedback mechanism establishes specific input connectivity among intermingled motor populations.
Collapse
Affiliation(s)
- Takuya Kaneko
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| | - Jonathan Boulanger-Weill
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA; Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Adam J Isabella
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
2
|
Kaneko T, Boulanger-Weill J, Isabella AJ, Moens CB. Position-independent functional refinement within the vagus motor topographic map. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.11.557289. [PMID: 37745606 PMCID: PMC10515832 DOI: 10.1101/2023.09.11.557289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Motor neurons in the central nervous system often lie in a continuous topographic map, where neurons that innervate different body parts are spatially intermingled. This is the case for the efferent neurons of the vagus nerve, which innervate diverse muscle and organ targets in the head and viscera for brain-body communication. It remains elusive how neighboring motor neurons with different fixed peripheral axon targets develop the separate somatodendritic (input) connectivity they need to generate spatially precise body control. Here we show that vagus motor neurons in the zebrafish indeed generate spatially appropriate peripheral responses to focal sensory stimulation even when they are transplanted into ectopic positions within the topographic map, indicating that circuit refinement occurs after the establishment of coarse topography. Refinement depends on motor neuron synaptic transmission, suggesting that an experience-dependent periphery-to-brain feedback mechanism establishes specific input connectivity amongst intermingled motor populations.
Collapse
Affiliation(s)
- Takuya Kaneko
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Jonathan Boulanger-Weill
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Adam J Isabella
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Lead contact
| |
Collapse
|
3
|
Li J, Fredericks M, Cannell M, Wang K, Sako D, Maguire MC, Grenha R, Liharska K, Krishnan L, Bloom T, Belcheva EP, Martinez PA, Castonguay R, Keates S, Alexander MJ, Choi H, Grinberg AV, Pearsall RS, Oh P, Kumar R, Suragani RN. ActRIIB:ALK4-Fc alleviates muscle dysfunction and comorbidities in murine models of neuromuscular disorders. J Clin Invest 2021; 131:138634. [PMID: 33586684 DOI: 10.1172/jci138634] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 12/29/2020] [Indexed: 01/06/2023] Open
Abstract
Patients with neuromuscular disorders suffer from a lack of treatment options for skeletal muscle weakness and disease comorbidities. Here, we introduce as a potential therapeutic agent a heterodimeric ligand-trapping fusion protein, ActRIIB:ALK4-Fc, which comprises extracellular domains of activin-like kinase 4 (ALK4) and activin receptor type IIB (ActRIIB), a naturally occurring pair of type I and II receptors belonging to the TGF-β superfamily. By surface plasmon resonance (SPR), ActRIIB:ALK4-Fc exhibited a ligand binding profile distinctly different from that of its homodimeric variant ActRIIB-Fc, sequestering ActRIIB ligands known to inhibit muscle growth but not trapping the vascular regulatory ligand bone morphogenetic protein 9 (BMP9). ActRIIB:ALK4-Fc and ActRIIB-Fc administered to mice exerted differential effects - concordant with SPR results - on vessel outgrowth in a retinal explant assay. ActRIIB:ALK4-Fc induced a systemic increase in muscle mass and function in wild-type mice and in murine models of Duchenne muscular dystrophy (DMD), amyotrophic lateral sclerosis (ALS), and disuse atrophy. Importantly, ActRIIB:ALK4-Fc improved neuromuscular junction abnormalities in murine models of DMD and presymptomatic ALS and alleviated acute muscle fibrosis in a DMD model. Furthermore, in combination therapy ActRIIB:ALK4-Fc increased the efficacy of antisense oligonucleotide M12-PMO on dystrophin expression and skeletal muscle endurance in an aged DMD model. ActRIIB:ALK4-Fc shows promise as a therapeutic agent, alone or in combination with dystrophin rescue therapy, to alleviate muscle weakness and comorbidities of neuromuscular disorders.
Collapse
Affiliation(s)
- Jia Li
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | | | | | - Kathryn Wang
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | - Dianne Sako
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | | | - Rosa Grenha
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | | | | | - Troy Bloom
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | | | | | | | - Sarah Keates
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | | | - Hyunwoo Choi
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | | | - Paul Oh
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | | |
Collapse
|
4
|
Sidisky JM, Weaver D, Hussain S, Okumus M, Caratenuto R, Babcock D. Mayday sustains trans-synaptic BMP signaling required for synaptic maintenance with age. eLife 2021; 10:e54932. [PMID: 33667157 PMCID: PMC7935490 DOI: 10.7554/elife.54932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/23/2021] [Indexed: 01/12/2023] Open
Abstract
Maintaining synaptic structure and function over time is vital for overall nervous system function and survival. The processes that underly synaptic development are well understood. However, the mechanisms responsible for sustaining synapses throughout the lifespan of an organism are poorly understood. Here, we demonstrate that a previously uncharacterized gene, CG31475, regulates synaptic maintenance in adult Drosophila NMJs. We named CG31475 mayday due to the progressive loss of flight ability and synapse architecture with age. Mayday is functionally homologous to the human protein Cab45, which sorts secretory cargo from the Trans Golgi Network (TGN). We find that Mayday is required to maintain trans-synaptic BMP signaling at adult NMJs in order to sustain proper synaptic structure and function. Finally, we show that mutations in mayday result in the loss of both presynaptic motor neurons as well as postsynaptic muscles, highlighting the importance of maintaining synaptic integrity for cell viability.
Collapse
Affiliation(s)
- Jessica M Sidisky
- Department of Biological Sciences, Lehigh UniversityBethlehemUnited States
| | - Daniel Weaver
- Department of Biological Sciences, Lehigh UniversityBethlehemUnited States
| | - Sarrah Hussain
- Department of Biological Sciences, Lehigh UniversityBethlehemUnited States
| | - Meryem Okumus
- Department of Biological Sciences, Lehigh UniversityBethlehemUnited States
| | - Russell Caratenuto
- Department of Biological Sciences, Lehigh UniversityBethlehemUnited States
| | - Daniel Babcock
- Department of Biological Sciences, Lehigh UniversityBethlehemUnited States
| |
Collapse
|
5
|
Held A, Major P, Sahin A, Reenan RA, Lipscombe D, Wharton KA. Circuit Dysfunction in SOD1-ALS Model First Detected in Sensory Feedback Prior to Motor Neuron Degeneration Is Alleviated by BMP Signaling. J Neurosci 2019; 39:2347-2364. [PMID: 30659087 PMCID: PMC6433758 DOI: 10.1523/jneurosci.1771-18.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/24/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease for which the origin and underlying cellular defects are not fully understood. Although motor neuron degeneration is the signature feature of ALS, it is not clear whether motor neurons or other cells of the motor circuit are the site of disease initiation. To better understand the contribution of multiple cell types in ALS, we made use of a Drosophila Sod1G85R knock-in model, in which all cells harbor the disease allele. End-stage dSod1G85R animals of both sexes exhibit severe motor deficits with clear degeneration of motor neurons. Interestingly, earlier in dSod1G85R larvae, motor function is also compromised, but their motor neurons exhibit only subtle morphological and electrophysiological changes that are unlikely to cause the observed decrease in locomotion. We analyzed the intact motor circuit and identified a defect in sensory feedback that likely accounts for the altered motor activity of dSod1G85R We found cell-autonomous activation of bone morphogenetic protein signaling in proprioceptor sensory neurons which are critical for the relay of the contractile status of muscles back to the central nerve cord, completely rescues early-stage motor defects and partially rescue late-stage motor function to extend lifespan. Identification of a defect in sensory feedback as a potential initiating event in ALS motor dysfunction, coupled with the ability of modified proprioceptors to alleviate such motor deficits, underscores the critical role that nonmotor neurons play in disease progression and highlights their potential as a site to identify early-stage ALS biomarkers and for therapeutic intervention.SIGNIFICANCE STATEMENT At diagnosis, many cellular processes are already disrupted in the amyotrophic lateral sclerosis (ALS) patient. Identifying the initiating cellular events is critical for achieving an earlier diagnosis to slow or prevent disease progression. Our findings indicate that neurons relaying sensory information underlie early stage motor deficits in a Drosophila knock-in model of ALS that best replicates gene dosage in familial ALS (fALS). Importantly, studies on intact motor circuits revealed defects in sensory feedback before evidence of motor neuron degeneration. These findings strengthen our understanding of how neural circuit dysfunctions lead to neurodegeneration and, coupled with our demonstration that the activation of bone morphogenetic protein signaling in proprioceptors alleviates both early and late motor dysfunction, underscores the importance of considering nonmotor neurons as therapeutic targets.
Collapse
Affiliation(s)
- Aaron Held
- Department of Molecular Biology, Cell Biology and Biochemistry
- The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| | - Paxton Major
- Department of Molecular Biology, Cell Biology and Biochemistry
| | - Asli Sahin
- Department of Molecular Biology, Cell Biology and Biochemistry
| | - Robert A Reenan
- Department of Molecular Biology, Cell Biology and Biochemistry
| | - Diane Lipscombe
- Department of Neuroscience, and
- The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology and Biochemistry,
- The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
6
|
BMP signaling downstream of the Highwire E3 ligase sensitizes nociceptors. PLoS Genet 2018; 14:e1007464. [PMID: 30001326 PMCID: PMC6042685 DOI: 10.1371/journal.pgen.1007464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/01/2018] [Indexed: 01/18/2023] Open
Abstract
A comprehensive understanding of the molecular machinery important for nociception is essential to improving the treatment of pain. Here, we show that the BMP signaling pathway regulates nociception downstream of the E3 ubiquitin ligase highwire (hiw). hiw loss of function in nociceptors caused antagonistic and pleiotropic phenotypes with simultaneous insensitivity to noxious heat but sensitized responses to optogenetic activation of nociceptors. Thus, hiw functions to both positively and negatively regulate nociceptors. We find that a sensory reception-independent sensitization pathway was associated with BMP signaling. BMP signaling in nociceptors was up-regulated in hiw mutants, and nociceptor-specific expression of hiw rescued all nociception phenotypes including the increased BMP signaling. Blocking the transcriptional output of the BMP pathway with dominant negative Mad suppressed nociceptive hypersensitivity that was induced by interfering with hiw. The up-regulated BMP signaling phenotype in hiw genetic mutants could not be suppressed by mutation in wallenda suggesting that hiw regulates BMP in nociceptors via a wallenda independent pathway. In a newly established Ca2+ imaging preparation, we observed that up-regulated BMP signaling caused a significantly enhanced Ca2+ signal in the axon terminals of nociceptors that were stimulated by noxious heat. This response likely accounts for the nociceptive hypersensitivity induced by elevated BMP signaling in nociceptors. Finally, we showed that 24-hour activation of BMP signaling in nociceptors was sufficient to sensitize nociceptive responses to optogenetically-triggered nociceptor activation without altering nociceptor morphology. Overall, this study demonstrates the previously unrevealed roles of the Hiw-BMP pathway in the regulation of nociception and provides the first direct evidence that up-regulated BMP signaling physiologically sensitizes responses of nociceptors and nociception behaviors. Although pain is a universally experienced sensation that has a significant impact on human lives and society, the molecular mechanisms of pain remain poorly understood. Elucidating these mechanisms is particularly important to gaining insight into the clinical development of currently incurable chronic pain diseases. Taking an advantage of the powerful genetic model organism Drosophila melanogaster (fruit flies), we unveil the Highwire-BMP signaling pathway as a novel molecular pathway that regulates the sensitivity of nociceptive sensory neurons. Highwire and the molecular components of the BMP signaling pathway are known to be widely conserved among animal phyla, from nematode worms to humans. Since abnormal sensitivity of nociceptive sensory neurons can play a critical role in the development of chronic pain conditions, a deeper understanding of the regulation of nociceptor sensitivity has the potential to advance effective therapeutic strategies to treat difficult pain conditions.
Collapse
|
7
|
Zhang X, Rui M, Gan G, Huang C, Yi J, Lv H, Xie W. Neuroligin 4 regulates synaptic growth via the bone morphogenetic protein (BMP) signaling pathway at the Drosophila neuromuscular junction. J Biol Chem 2017; 292:17991-18005. [PMID: 28912273 PMCID: PMC5672027 DOI: 10.1074/jbc.m117.810242] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/12/2017] [Indexed: 01/26/2023] Open
Abstract
The neuroligin (Nlg) family of neural cell adhesion molecules is thought to be required for synapse formation and development and has been linked to the development of autism spectrum disorders in humans. In Drosophila melanogaster, mutations in the neuroligin 1–3 genes have been reported to induce synapse developmental defects at neuromuscular junctions (NMJs), but the role of neuroligin 4 (dnlg4) in synapse development has not been determined. Here, we report that the Drosophila neuroligin 4 (DNlg4) is different from DNlg1–3 in that it presynaptically regulates NMJ synapse development. Loss of dnlg4 results in reduced growth of NMJs with fewer synaptic boutons. The morphological defects caused by dnlg4 mutant are associated with a corresponding decrease in synaptic transmission efficacy. All of these defects could only be rescued when DNlg4 was expressed in the presynapse of NMJs. To understand the basis of DNlg4 function, we looked for genetic interactions and found connections with the components of the bone morphogenetic protein (BMP) signaling pathway. Immunostaining and Western blot analyses demonstrated that the regulation of NMJ growth by DNlg4 was due to the positive modulation of BMP signaling by DNlg4. Specifically, BMP type I receptor thickvein (Tkv) abundance was reduced in dnlg4 mutants, and immunoprecipitation assays showed that DNlg4 and Tkv physically interacted in vivo. Our study demonstrates that DNlg4 presynaptically regulates neuromuscular synaptic growth via the BMP signaling pathway by modulating Tkv.
Collapse
Affiliation(s)
- Xinwang Zhang
- From the Institute of Life Sciences, the Collaborative Innovation Center for Brain Science, Southeast University, Nanjing, Jiangsu 210096, China.,the Department of Biology, Basic Medical School of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Menglong Rui
- From the Institute of Life Sciences, the Collaborative Innovation Center for Brain Science, Southeast University, Nanjing, Jiangsu 210096, China.,Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing, Jiangsu 210096, China, and
| | - Guangmin Gan
- Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing, Jiangsu 210096, China, and
| | - Cong Huang
- From the Institute of Life Sciences, the Collaborative Innovation Center for Brain Science, Southeast University, Nanjing, Jiangsu 210096, China
| | - Jukang Yi
- Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing, Jiangsu 210096, China, and
| | - Huihui Lv
- From the Institute of Life Sciences, the Collaborative Innovation Center for Brain Science, Southeast University, Nanjing, Jiangsu 210096, China.,Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing, Jiangsu 210096, China, and
| | - Wei Xie
- From the Institute of Life Sciences, the Collaborative Innovation Center for Brain Science, Southeast University, Nanjing, Jiangsu 210096, China, .,Key Laboratory of Developmental Genes and Human Disease, Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing, Jiangsu 210096, China, and
| |
Collapse
|
8
|
Upadhyay A, Moss-Taylor L, Kim MJ, Ghosh AC, O'Connor MB. TGF-β Family Signaling in Drosophila. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022152. [PMID: 28130362 DOI: 10.1101/cshperspect.a022152] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The transforming growth factor β (TGF-β) family signaling pathway is conserved and ubiquitous in animals. In Drosophila, fewer representatives of each signaling component are present compared with vertebrates, simplifying mechanistic study of the pathway. Although there are fewer family members, the TGF-β family pathway still regulates multiple and diverse functions in Drosophila. In this review, we focus our attention on several of the classic and best-studied functions for TGF-β family signaling in regulating Drosophila developmental processes such as embryonic and imaginal disc patterning, but we also describe several recently discovered roles in regulating hormonal, physiological, neuronal, innate immunity, and tissue homeostatic processes.
Collapse
Affiliation(s)
- Ambuj Upadhyay
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lindsay Moss-Taylor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Myung-Jun Kim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Arpan C Ghosh
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
9
|
Magnetic Fields Modulate Blue-Light-Dependent Regulation of Neuronal Firing by Cryptochrome. J Neurosci 2017; 36:10742-10749. [PMID: 27798129 DOI: 10.1523/jneurosci.2140-16.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/18/2016] [Indexed: 11/21/2022] Open
Abstract
Many animals are able to sense the Earth's geomagnetic field to enable behaviors such as migration. It is proposed that the magnitude and direction of the geomagnetic field modulates the activity of cryptochrome (CRY) by influencing photochemical radical pair intermediates within the protein. However, this proposal will remain theoretical until a CRY-dependent effect on a receptor neuron is shown to be modified by an external magnetic field (MF). It is established that blue-light (BL) photoactivation of CRY is sufficient to depolarize and activate Drosophila neurons. Here, we show that this CRY-dependent effect is significantly potentiated in the presence of an applied MF (100 mT). We use electrophysiological recordings from larval identified motoneurons, in which CRY is ectopically expressed, to show that BL-dependent depolarization of membrane potential and increased input resistance are markedly potentiated by an MF. Analysis of membrane excitability shows that these effects of MF exposure evoke increased action potential firing. Almost nothing is known about the mechanism by which a magnetically induced change in CRY activity might produce a behavioral response. We further report that specific structural changes to the protein alter the impact of the MF in ways that are strikingly similar to those from recent behavioral studies into the magnetic sense of Drosophila These observations provide the first direct experimental evidence to support the hypothesis that MF modulation of CRY activity is capable of influencing neuron activity to allow animal magnetoreception. SIGNIFICANCE STATEMENT The biophysical mechanism of animal magnetoreception is still unclear. The photoreceptor protein cryptochrome has risen to prominence as a candidate magnetoreceptor molecule based on multiple reports derived from behavioral studies. However, the role of cryptochrome as a magnetoreceptor remains controversial primarily because of a lack of direct experimental evidence linking magnetic field (MF) exposure to a change in neuronal activity. Here, we show that exposure to an MF (100 mT) is sufficient to potentiate the ability of light-activated cryptochrome to increase neuronal action potential firing. Our results provide critical missing evidence to show that the activity of cryptochrome is sensitive to an external MF that is capable of modifying animal behavior.
Collapse
|
10
|
Dahal GR, Pradhan SJ, Bates EA. Inwardly rectifying potassium channels influence Drosophila wing morphogenesis by regulating Dpp release. Development 2017; 144:2771-2783. [PMID: 28684627 DOI: 10.1242/dev.146647] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 06/14/2017] [Indexed: 12/23/2022]
Abstract
Loss of embryonic ion channel function leads to morphological defects, but the underlying reason for these defects remains elusive. Here, we show that inwardly rectifying potassium (Irk) channels regulate release of the Drosophila bone morphogenetic protein Dpp in the developing fly wing and that this is necessary for developmental signaling. Inhibition of Irk channels decreases the incidence of distinct Dpp-GFP release events above baseline fluorescence while leading to a broader distribution of Dpp-GFP. Work by others in different cell types has shown that Irk channels regulate peptide release by modulating membrane potential and calcium levels. We found calcium transients in the developing wing, and inhibition of Irk channels reduces the duration and amplitude of calcium transients. Depolarization with high extracellular potassium evokes Dpp release. Taken together, our data implicate Irk channels as a requirement for regulated release of Dpp, highlighting the importance of the temporal pattern of Dpp presentation for morphogenesis of the wing.
Collapse
Affiliation(s)
- Giri Raj Dahal
- University of Colorado Denver School of Medicine, 12800 E 19th Avenue, Aurora, CO 80045, USA
| | - Sarala Joshi Pradhan
- University of Colorado Denver School of Medicine, 12800 E 19th Avenue, Aurora, CO 80045, USA
| | - Emily Anne Bates
- University of Colorado Denver School of Medicine, 12800 E 19th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Abstract
Ion channels have emerged as regulators of developmental processes. In model organisms and in people with mutations in ion channels, disruption of ion channel function can affect cell proliferation, cell migration, and craniofacial and limb patterning. Alterations of ion channel function affect morphogenesis in fish, frogs, mammals, and flies, demonstrating that ion channels have conserved roles in developmental processes. One model suggests that ion channels affect proliferation and migration through changes in cell volume. However, ion channels have not explicitly been placed in canonical developmental signaling cascades until recently. This review gives examples of ion channels that influence developmental processes, offers a potential underlying molecular mechanism involving bone morphogenetic protein (BMP) signaling, and finally explores exciting possibilities for manipulating ion channels to influence cell fate for regenerative medicine and to impact disease.
Collapse
Affiliation(s)
- Emily Bates
- Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045;
| |
Collapse
|
12
|
Deshpande M, Rodal AA. The Crossroads of Synaptic Growth Signaling, Membrane Traffic and Neurological Disease: Insights from Drosophila. Traffic 2015; 17:87-101. [PMID: 26538429 DOI: 10.1111/tra.12345] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/29/2015] [Accepted: 10/29/2015] [Indexed: 12/13/2022]
Abstract
Neurons require target-derived autocrine and paracrine growth factors to maintain proper identity, innervation, homeostasis and survival. Neuronal growth factor signaling is highly dependent on membrane traffic, both for the packaging and release of the growth factors themselves, and for regulation of intracellular signaling by their transmembrane receptors. Here, we review recent findings from the Drosophila larval neuromuscular junction (NMJ) that illustrate how specific steps of intracellular traffic and inter-organelle interactions impinge on signaling, particularly in the bone morphogenic protein, Wingless and c-Jun-activated kinase pathways, regulating elaboration and stability of NMJ arbors, construction of synapses and synaptic transmission and homeostasis. These membrane trafficking and signaling pathways have been implicated in human motor neuron diseases including amyotrophic lateral sclerosis and hereditary spastic paraplegia, highlighting their importance for neuronal health and survival.
Collapse
Affiliation(s)
| | - Avital A Rodal
- Department of Biology, Brandeis University, Waltham, MA, USA
| |
Collapse
|
13
|
Beckwith EJ, Ceriani MF. Communication between circadian clusters: The key to a plastic network. FEBS Lett 2015; 589:3336-42. [PMID: 26297822 DOI: 10.1016/j.febslet.2015.08.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022]
Abstract
Drosophila melanogaster is a model organism that has been instrumental in understanding the circadian clock at different levels. A range of studies on the anatomical and neurochemical properties of clock neurons in the fly led to a model of interacting neural circuits that control circadian behavior. Here we focus on recent research on the dynamics of the multiple communication pathways between clock neurons, and, particularly, on how the circadian timekeeping system responds to changes in environmental conditions. It is increasingly clear that the fly clock employs multiple signalling cues, such as neuropeptides, fast neurotransmitters, and other signalling molecules, in the dynamic interplay between neuronal clusters. These neuronal groups seem to interact in a plastic fashion, e.g., rearranging their hierarchy in response to changing environmental conditions. A picture is emerging supporting that these dynamic mechanisms are in place to provide an optimal balance between flexibility and an extraordinary accuracy.
Collapse
Affiliation(s)
- Esteban J Beckwith
- Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom.
| | - M Fernanda Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIB-BA-CONICET, Buenos Aires 1405 BWE, Argentina.
| |
Collapse
|
14
|
West RJH, Lu Y, Marie B, Gao FB, Sweeney ST. Rab8, POSH, and TAK1 regulate synaptic growth in a Drosophila model of frontotemporal dementia. ACTA ACUST UNITED AC 2015; 208:931-47. [PMID: 25800055 PMCID: PMC4384727 DOI: 10.1083/jcb.201404066] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutations in genes essential for protein homeostasis have been identified in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) patients. Why mature neurons should be particularly sensitive to such perturbations is unclear. We identified mutations in Rab8 in a genetic screen for enhancement of an FTD phenotype associated with ESCRT-III dysfunction. Examination of Rab8 mutants or motor neurons expressing a mutant ESCRT-III subunit, CHMP2B(Intron5), at the Drosophila melanogaster neuromuscular junction synapse revealed synaptic overgrowth and endosomal dysfunction. Expression of Rab8 rescued overgrowth phenotypes generated by CHMP2B(Intron5). In Rab8 mutant synapses, c-Jun N-terminal kinase (JNK)/activator protein-1 and TGF-β signaling were overactivated and acted synergistically to potentiate synaptic growth. We identify novel roles for endosomal JNK-scaffold POSH (Plenty-of-SH3s) and a JNK kinase kinase, TAK1, in regulating growth activation in Rab8 mutants. Our data uncover Rab8, POSH, and TAK1 as regulators of synaptic growth responses and point to recycling endosome as a key compartment for synaptic growth regulation during neurodegenerative processes.
Collapse
Affiliation(s)
- Ryan J H West
- Department of Biology and Hull York Medical School, University of York, Heslington, York YO10 5DD, England, UK Department of Biology and Hull York Medical School, University of York, Heslington, York YO10 5DD, England, UK
| | - Yubing Lu
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Bruno Marie
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico 00901
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Sean T Sweeney
- Department of Biology and Hull York Medical School, University of York, Heslington, York YO10 5DD, England, UK Department of Biology and Hull York Medical School, University of York, Heslington, York YO10 5DD, England, UK
| |
Collapse
|
15
|
DuVal MG, Gilbert MJH, Watson DE, Zerulla TC, Tierney KB, Allison WT. Growth differentiation factor 6 as a putative risk factor in neuromuscular degeneration. PLoS One 2014; 9:e89183. [PMID: 24586579 PMCID: PMC3938462 DOI: 10.1371/journal.pone.0089183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/16/2014] [Indexed: 11/25/2022] Open
Abstract
Mutation of Glass bottom boat, the Drosophila homologue of the bone morphogenetic protein or growth/differentiation factor (BMP/GDF) family of genes in vertebrates, has been shown to disrupt development of neuromuscular junctions (NMJ). Here we tested whether this same conclusion can be broadened to vertebrate BMP/GDF genes. This analysis was also extended to consider whether such genes are required for NMJ maintenance in post-larval stages, as this would argue that BMP genes are viable candidates for analysis in progressive neuromuscular disease. Zebrafish mutants harboring homozygous null mutations in the BMP-family gene gdf6a were raised to adulthood and assessed for neuromuscular deficits. Fish lacking gdf6a exhibited decreased endurance (∼50%, p = 0.005) compared to wild type, and this deficit progressively worsened with age. These fish also presented with significantly disrupted NMJ morphology (p = 0.009), and a lower abundance of spinal motor neurons (∼50%, p<0.001) compared to wild type. Noting the similarity of these symptoms to those of Amyotrophic Lateral Sclerosis (ALS) model mice and fish, we asked if mutations in gdf6a would enhance the phenotypes observed in the latter, i.e. in zebrafish over-expressing mutant Superoxide Dismutase 1 (SOD1). Amongst younger adult fish only bigenic fish harboring both the SOD1 transgene and gdf6a mutations, but not siblings with other combinations of these gene modifications, displayed significantly reduced endurance (75%, p<0.05) and strength/power (75%, p<0.05), as well as disrupted NMJ morphology (p<0.001) compared to wild type siblings. Bigenic fish also had lower survival rates compared to other genotypes. Thus conclusions regarding a role for BMP ligands in effecting NMJ can be extended to vertebrates, supporting conservation of mechanisms relevant to neuromuscular degenerative diseases. These conclusions synergize with past findings to argue for further analysis of GDF6 and other BMP genes as modifier loci, potentially affecting susceptibility to ALS and perhaps a broader suite of neurodegenerative diseases.
Collapse
Affiliation(s)
- Michèle G. DuVal
- Department of Biological Sciences, University of Alberta, Edmonton AB, Canada
| | | | - D. Ezekiel Watson
- Department of Biological Sciences, University of Alberta, Edmonton AB, Canada
- Centre for Prions and Protein Folding Disease, University of Alberta, Edmonton AB, Canada
| | - Tanja C. Zerulla
- Department of Biological Sciences, University of Alberta, Edmonton AB, Canada
| | - Keith B. Tierney
- Department of Biological Sciences, University of Alberta, Edmonton AB, Canada
| | - W. Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton AB, Canada
- Centre for Prions and Protein Folding Disease, University of Alberta, Edmonton AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton AB, Canada
- * E-mail:
| |
Collapse
|
16
|
White-Grindley E, Li L, Mohammad Khan R, Ren F, Saraf A, Florens L, Si K. Contribution of Orb2A stability in regulated amyloid-like oligomerization of Drosophila Orb2. PLoS Biol 2014; 12:e1001786. [PMID: 24523662 PMCID: PMC3921104 DOI: 10.1371/journal.pbio.1001786] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 12/31/2013] [Indexed: 12/13/2022] Open
Abstract
How learned experiences persist as memory for a long time is an important question. In Drosophila the persistence of memory is dependent upon amyloid-like oligomers of the Orb2 protein. However, it is not clear how the conversion of Orb2 to the amyloid-like oligomeric state is regulated. The Orb2 has two protein isoforms, and the rare Orb2A isoform is critical for oligomerization of the ubiquitous Orb2B isoform. Here, we report the discovery of a protein network comprised of protein phosphatase 2A (PP2A), Transducer of Erb-B2 (Tob), and Lim Kinase (LimK) that controls the abundance of Orb2A. PP2A maintains Orb2A in an unphosphorylated and unstable state, whereas Tob-LimK phosphorylates and stabilizes Orb2A. Mutation of LimK abolishes activity-dependent Orb2 oligomerization in the adult brain. Moreover, Tob-Orb2 association is modulated by neuronal activity and Tob activity in the mushroom body is required for stable memory formation. These observations suggest that the interplay between PP2A and Tob-LimK activity may dynamically regulate Orb2 amyloid-like oligomer formation and the stabilization of memories.
Collapse
Affiliation(s)
- Erica White-Grindley
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Liying Li
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Repon Mohammad Khan
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Fengzhen Ren
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Anita Saraf
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kausik Si
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
17
|
Retrograde BMP signaling at the synapse: a permissive signal for synapse maturation and activity-dependent plasticity. J Neurosci 2013; 33:17937-50. [PMID: 24198381 DOI: 10.1523/jneurosci.6075-11.2013] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
At the Drosophila neuromuscular junction (NMJ), the loss of retrograde, trans-synaptic BMP signaling causes motoneuron terminals to have fewer synaptic boutons, whereas increased neuronal activity results in a larger synapse with more boutons. Here, we show that an early and transient BMP signal is necessary and sufficient for NMJ growth as well as for activity-dependent synaptic plasticity. This early critical period was revealed by the temporally controlled suppression of Mad, the SMAD1 transcriptional regulator. Similar results were found by genetic rescue tests involving the BMP4/5/6 ligand Glass bottom boat (Gbb) in muscle, and alternatively the type II BMP receptor Wishful Thinking (Wit) in the motoneuron. These observations support a model where the muscle signals back to the innervating motoneuron's nucleus to activate presynaptic programs necessary for synaptic growth and activity-dependent plasticity. Molecular genetic gain- and loss-of-function studies show that genes involved in NMJ growth and plasticity, including the adenylyl cyclase Rutabaga, the Ig-CAM Fasciclin II, the transcription factor AP-1 (Fos/Jun), and the adhesion protein Neurexin, all depend critically on the canonical BMP pathway for their effects. By contrast, elevated expression of Lar, a receptor protein tyrosine phosphatase found to be necessary for activity-dependent plasticity, rescued the phenotypes associated with the loss of Mad signaling. We also find that synaptic structure and function develop using genetically separable, BMP-dependent mechanisms. Although synaptic growth depended on Lar and the early, transient BMP signal, the maturation of neurotransmitter release was independent of Lar and required later, ongoing BMP signaling.
Collapse
|
18
|
Beckwith EJ, Gorostiza EA, Berni J, Rezával C, Pérez-Santángelo A, Nadra AD, Ceriani MF. Circadian period integrates network information through activation of the BMP signaling pathway. PLoS Biol 2013; 11:e1001733. [PMID: 24339749 PMCID: PMC3858370 DOI: 10.1371/journal.pbio.1001733] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 10/30/2013] [Indexed: 11/18/2022] Open
Abstract
Circadian pacemaker neurons in the Drosophila brain gather network information through the highly conserved BMP signaling pathway to establish the daily period of locomotor behavior. Living organisms use biological clocks to maintain their internal temporal order and anticipate daily environmental changes. In Drosophila, circadian regulation of locomotor behavior is controlled by ∼150 neurons; among them, neurons expressing the PIGMENT DISPERSING FACTOR (PDF) set the period of locomotor behavior under free-running conditions. To date, it remains unclear how individual circadian clusters integrate their activity to assemble a distinctive behavioral output. Here we show that the BONE MORPHOGENETIC PROTEIN (BMP) signaling pathway plays a crucial role in setting the circadian period in PDF neurons in the adult brain. Acute deregulation of BMP signaling causes period lengthening through regulation of dClock transcription, providing evidence for a novel function of this pathway in the adult brain. We propose that coherence in the circadian network arises from integration in PDF neurons of both the pace of the cell-autonomous molecular clock and information derived from circadian-relevant neurons through release of BMP ligands. The circadian clock controls rhythms in behavior, physiology, and metabolism in all living organisms. The molecular components as well as the neuronal network required to keep this clock running have been identified in several species. In the Drosophila brain this neuronal network is represented by an ensemble of 150 neurons, and among them, those expressing the Pigment Dispersing Factor (PDF) neuropeptide encompass the “central oscillator”—also called master clock as it ensures 24-hour periods—of the fly brain. In this study we show that the widely conserved Bone Morphogenetic Protein (BMP) signaling pathway is present in PDF neurons, and upon adult-specific activation it lengthens the endogenous period of locomotor behavior. We find that period lengthening correlates with delayed accumulation of nuclear PERIOD, a core component of the molecular clock. We also identified a putative DNA binding motif for the BMP pathway nuclear components within the regulatory region of the Clock (Clk) promoter, another core component of the circadian machinery. Interestingly, upon BMP pathway activation endogenous CLK levels are downregulated, thus accounting for the lengthening of the endogenous period. We propose that the endogenous period is a network property commanded by PDF neurons that results from integration of information from both the autonomous molecular clock and the nonautonomous BMP signaling pathway.
Collapse
Affiliation(s)
- Esteban J. Beckwith
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIB-BA-CONICET, Buenos Aires, Argentina
| | - E. Axel Gorostiza
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIB-BA-CONICET, Buenos Aires, Argentina
| | - Jimena Berni
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIB-BA-CONICET, Buenos Aires, Argentina
| | - Carolina Rezával
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIB-BA-CONICET, Buenos Aires, Argentina
| | - Agustín Pérez-Santángelo
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIB-BA-CONICET, Buenos Aires, Argentina
| | - Alejandro D. Nadra
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, UBA. IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - María Fernanda Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIB-BA-CONICET, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
19
|
Wairkar YP, Trivedi D, Natarajan R, Barnes K, Dolores L, Cho P. CK2α regulates the transcription of BRP in Drosophila. Dev Biol 2013; 384:53-64. [PMID: 24080510 DOI: 10.1016/j.ydbio.2013.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 09/18/2013] [Accepted: 09/20/2013] [Indexed: 01/26/2023]
Abstract
Development and plasticity of synapses are brought about by a complex interplay between various signaling pathways. Typically, either changing the number of synapses or strengthening an existing synapse can lead to changes during synaptic plasticity. Altering the machinery that governs the exocytosis of synaptic vesicles, which primarily fuse at specialized structures known as active zones on the presynaptic terminal, brings about these changes. Although signaling pathways that regulate the synaptic plasticity from the postsynaptic compartments are well defined, the pathways that control these changes presynaptically are poorly described. In a genetic screen for synapse development in Drosophila, we found that mutations in CK2α lead to an increase in the levels of Bruchpilot (BRP), a scaffolding protein associated with the active zones. Using a combination of genetic and biochemical approaches, we found that the increase in BRP in CK2α mutants is largely due to an increase in the transcription of BRP. Interestingly, the transcripts of other active zone proteins that are important for function of active zones were also increased, while the transcripts from some other synaptic proteins were unchanged. Thus, our data suggest that CK2α might be important in regulating synaptic plasticity by modulating the transcription of BRP. Hence, we propose that CK2α is a novel regulator of the active zone protein, BRP, in Drosophila.
Collapse
Affiliation(s)
- Yogesh P Wairkar
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd., Rte#1045, Galveston, TX 77555, United States.
| | | | | | | | | | | |
Collapse
|
20
|
Poon VY, Choi S, Park M. Growth factors in synaptic function. Front Synaptic Neurosci 2013; 5:6. [PMID: 24065916 PMCID: PMC3776238 DOI: 10.3389/fnsyn.2013.00006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/29/2013] [Indexed: 12/15/2022] Open
Abstract
Synapses are increasingly recognized as key structures that malfunction in disorders like schizophrenia, mental retardation, and neurodegenerative diseases. The importance and complexity of the synapse has fuelled research into the molecular mechanisms underlying synaptogenesis, synaptic transmission, and plasticity. In this regard, neurotrophic factors such as netrin, Wnt, transforming growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α), and others have gained prominence for their ability to regulate synaptic function. Several of these factors were first implicated in neuroprotection, neuronal growth, and axon guidance. However, their roles in synaptic development and function have become increasingly clear, and the downstream signaling pathways employed by these factors have begun to be elucidated. In this review, we will address the role of these factors and their downstream effectors in synaptic function in vivo and in cultured neurons.
Collapse
Affiliation(s)
- Vivian Y Poon
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore, Singapore
| | | | | |
Collapse
|
21
|
Ruschke K, Hiepen C, Becker J, Knaus P. BMPs are mediators in tissue crosstalk of the regenerating musculoskeletal system. Cell Tissue Res 2012; 347:521-44. [PMID: 22327483 DOI: 10.1007/s00441-011-1283-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/10/2011] [Indexed: 12/22/2022]
Abstract
The musculoskeletal system is a tight network of many tissues. Coordinated interplay at a biochemical level between tissues is essential for development and repair. Traumatic injury usually affects several tissues and represents a large challenge in clinical settings. The current demand for potent growth factors in such applications thus accompanies the keen interest in molecular mechanisms and orchestration of tissue formation. Of special interest are multitasking growth factors that act as signals in a variety of cell types, both in a paracrine and in an autocrine manner, thereby inducing cell differentiation and coordinating not only tissue assembly at specific sites but also maturation and homeostasis. We concentrate here on bone morphogenetic proteins (BMPs), which are important crosstalk mediators known for their irreplaceable roles in vertebrate development. The molecular crosstalk during embryonic musculoskeletal tissue formation is recapitulated in adult repair. BMPs act at different levels from the initiation to maturation of newly formed tissue. Interestingly, this is influenced by the spatiotemporal expression of different BMPs, their receptors and co-factors at the site of repair. Thus, the regenerative potential of BMPs needs to be evaluated in the context of highly connected tissues such as muscle and bone and might indeed be different in more poorly connected tissues such as cartilage. This highlights the need for an understanding of BMP signaling across tissues in order to eventually improve BMP regenerative potential in clinical applications. In this review, the distinct members of the BMP family and their individual contribution to musculoskeletal tissue repair are summarized by focusing on their paracrine and autocrine functions.
Collapse
Affiliation(s)
- Karen Ruschke
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
22
|
Broadie K, Baumgartner S, Prokop A. Extracellular matrix and its receptors in Drosophila neural development. Dev Neurobiol 2011; 71:1102-30. [PMID: 21688401 PMCID: PMC3192297 DOI: 10.1002/dneu.20935] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Extracellular matrix (ECM) and matrix receptors are intimately involved in most biological processes. The ECM plays fundamental developmental and physiological roles in health and disease, including processes underlying the development, maintenance, and regeneration of the nervous system. To understand the principles of ECM-mediated functions in the nervous system, genetic model organisms like Drosophila provide simple, malleable, and powerful experimental platforms. This article provides an overview of ECM proteins and receptors in Drosophila. It then focuses on their roles during three progressive phases of neural development: (1) neural progenitor proliferation, (2) axonal growth and pathfinding, and (3) synapse formation and function. Each section highlights known ECM and ECM-receptor components and recent studies done in mutant conditions to reveal their in vivo functions, all illustrating the enormous opportunities provided when merging work on the nervous system with systematic research into ECM-related gene functions.
Collapse
Affiliation(s)
- Kendal Broadie
- Departments of Biological Sciences and Cell and Developmental Biology, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232 USA
| | - Stefan Baumgartner
- Department of Experimental Medical Sciences, Lund University, BMC B12, 22184 Lund, Sweden
| | - Andreas Prokop
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
23
|
James RE, Broihier HT. Crimpy inhibits the BMP homolog Gbb in motoneurons to enable proper growth control at the Drosophila neuromuscular junction. Development 2011; 138:3273-86. [PMID: 21750037 DOI: 10.1242/dev.066142] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The BMP pathway is essential for scaling of the presynaptic motoneuron arbor to the postsynaptic muscle cell at the Drosophila neuromuscular junction (NMJ). Genetic analyses indicate that the muscle is the BMP-sending cell and the motoneuron is the BMP-receiving cell. Nevertheless, it is unclear how this directionality is established as Glass bottom boat (Gbb), the known BMP ligand, is active in motoneurons. We demonstrate that crimpy (cmpy) limits neuronal Gbb activity to permit appropriate regulation of NMJ growth. cmpy was identified in a screen for motoneuron-expressed genes and encodes a single-pass transmembrane protein with sequence homology to vertebrate Cysteine-rich transmembrane BMP regulator 1 (Crim1). We generated a targeted deletion of the cmpy locus and find that loss-of-function mutants exhibit excessive NMJ growth. In accordance with its expression profile, tissue-specific rescue experiments indicate that cmpy functions neuronally. The overgrowth in cmpy mutants depends on the activity of the BMP type II receptor Wishful thinking, arguing that Cmpy acts in the BMP pathway upstream of receptor activation and raising the possibility that it inhibits Gbb activity in motoneurons. Indeed, the cmpy mutant phenotype is strongly suppressed by RNAi-mediated knockdown of Gbb in motoneurons. Furthermore, Cmpy physically interacts with the Gbb precursor protein, arguing that Cmpy binds Gbb prior to the secretion of mature ligand. These studies demonstrate that Cmpy restrains Gbb activity in motoneurons. We present a model whereby this inhibition permits the muscle-derived Gbb pool to predominate at the NMJ, thus establishing the retrograde directionality of the pro-growth BMP pathway.
Collapse
Affiliation(s)
- Rebecca E James
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
24
|
Marley R, Baines RA. Increased persistent Na+ current contributes to seizure in the slamdance bang-sensitive Drosophila mutant. J Neurophysiol 2011; 106:18-29. [PMID: 21451059 DOI: 10.1152/jn.00808.2010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is clinical need to extend the understanding of epilepsy and to find novel approaches to treat this condition. Bang-sensitive (bs) Drosophila mutants, which exhibit reduced thresholds for seizure, offer an attractive possibility to combine tractable genetics, electrophysiology, and high-throughput screening. However, despite these advantages, the precise electrophysiological aberrations that contribute to seizure have not been identified in any bs mutant. Because of this, the applicability of Drosophila as a preclinical model has not yet been established. In this study, we show that electroshock of bs slamdance (sda) larvae was sufficient to induce extended seizure-like episodes. Whole cell voltage-clamp recordings from identified motoneurons (termed aCC and RP2) showed synaptic currents that were greatly increased in both amplitude and duration. Current-clamp recordings indicated that these inputs produced longer-lived plateau depolarizations and increased action potential firing in these cells. An analysis of voltage-gated currents in these motoneurons, in both first and third instar larvae, revealed a consistently increased persistent Na(+) current (I(Nap)) and a reduced Ca(2+) current in first instar larvae, which appeared normal in older third instar larvae. That increased I(Nap) may contribute to seizure-like activity is indicated by the observation that feeding sda larvae the antiepileptic drug phenytoin, which was sufficient to reduce I(Nap), rescued both seizure-like episode duration and synaptic excitation of motoneurons. In contrast, feeding of either anemone toxin, a drug that preferentially increases I(Nap), or phenytoin to wild-type larvae was sufficient to induce a bs behavioral phenotype. Finally, we show that feeding of phenytoin to gravid sda females was sufficient to both reduce I(Nap) and synaptic currents and rescue the bs phenotype in their larval progeny, indicating that a heightened predisposition to seizure may arise as a consequence of abnormal embryonic neural development.
Collapse
Affiliation(s)
- Richard Marley
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
25
|
Kim NC, Marqués G. Identification of downstream targets of the bone morphogenetic protein pathway in the Drosophila nervous system. Dev Dyn 2011; 239:2413-25. [PMID: 20652954 DOI: 10.1002/dvdy.22368] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Bone Morphogenetic Protein (BMP) signaling mediated by the receptor Wishful thinking (Wit) is essential for nervous system development in Drosophila. Mutants lacking wit function show defects in neuromuscular junction development and function, specification of neurosecretory phenotypes, and eclosion behavior that result in lethality. The ligand is Glass bottom boat, the Drosophila ortholog of mammalian BMP-7, which acts as a retrograde signal through the Wit receptor. In order to identify transcriptional targets of the BMP pathway in the Drosophila nervous system, we have analyzed the gene expression profile of wit mutant larval central nervous system. Genes differentially expressed identified by microarray analysis have been verified by quantitative PCR and studied by in situ hybridization. Among the genes thus identified, we find solute transporters, neuropeptides, mitochondrial proteins, and novel genes. In addition, several genes are regulated by wit in an isoform-specific manner that suggest regulation of alternative splicing by BMP signaling.
Collapse
Affiliation(s)
- Nam Chul Kim
- Department of Cell Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
26
|
Rohrbough J, Broadie K. Anterograde Jelly belly ligand to Alk receptor signaling at developing synapses is regulated by Mind the gap. Development 2010; 137:3523-33. [PMID: 20876658 DOI: 10.1242/dev.047878] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bidirectional trans-synaptic signals induce synaptogenesis and regulate subsequent synaptic maturation. Presynaptically secreted Mind the gap (Mtg) molds the synaptic cleft extracellular matrix, leading us to hypothesize that Mtg functions to generate the intercellular environment required for efficient signaling. We show in Drosophila that secreted Jelly belly (Jeb) and its receptor tyrosine kinase Anaplastic lymphoma kinase (Alk) are localized to developing synapses. Jeb localizes to punctate aggregates in central synaptic neuropil and neuromuscular junction (NMJ) presynaptic terminals. Secreted Jeb and Mtg accumulate and colocalize extracellularly in surrounding synaptic boutons. Alk concentrates in postsynaptic domains, consistent with an anterograde, trans-synaptic Jeb-Alk signaling pathway at developing synapses. Jeb synaptic expression is increased in Alk mutants, consistent with a requirement for Alk receptor function in Jeb uptake. In mtg null mutants, Alk NMJ synaptic levels are reduced and Jeb expression is dramatically increased. NMJ synapse morphology and molecular assembly appear largely normal in jeb and Alk mutants, but larvae exhibit greatly reduced movement, suggesting impaired functional synaptic development. jeb mutant movement is significantly rescued by neuronal Jeb expression. jeb and Alk mutants display normal NMJ postsynaptic responses, but a near loss of patterned, activity-dependent NMJ transmission driven by central excitatory output. We conclude that Jeb-Alk expression and anterograde trans-synaptic signaling are modulated by Mtg and play a key role in establishing functional synaptic connectivity in the developing motor circuit.
Collapse
Affiliation(s)
- Jeffrey Rohrbough
- Department of Biological Sciences and Department of Cell and Developmental Biology, Vanderbilt Brain Institute, Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville TN 37235-1634, USA.
| | | |
Collapse
|
27
|
Canonical TGF-beta signaling is required for the balance of excitatory/inhibitory transmission within the hippocampus and prepulse inhibition of acoustic startle. J Neurosci 2010; 30:6025-35. [PMID: 20427661 DOI: 10.1523/jneurosci.0789-10.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Smad4 is a unique nuclear transducer for all TGF-beta signaling pathways and regulates gene transcription during development and tissue homeostasis. To elucidate the postnatal role of TGF-beta signaling in the mammalian brain, we generated forebrain-specific Smad4 knock-out mice. Surprisingly, the mutants showed no alteration in long-term potentiation and water maze, suggesting that Smad4 is not required for spatial learning and memory. However, these mutant mice did show enhancement of paired-pulse facilitation in excitatory synaptic transmission and stronger paired-pulse depression of GABA(A) currents in the hippocampus. The alteration of hippocampal electrophysiology correlated with mouse hyperactivity in homecage and open field tests. Mutant mice also showed overgrooming as well as deficits of prepulse inhibition, a widely used endophenotype of schizophrenia. With a specific real-time PCR array focused on TGF-beta signaling pathway, we identified a novel regulation mechanism of the pathway in the hippocampal neurons, in which Smad4-mediated signaling suppresses the level of extracellular antagonism of TGF-beta ligands through transcriptional regulation of follistatin, a selective inhibitor to activin/TGF-beta signaling in the hippocampus. In summary, we suggest that the canonical TGF-beta signaling pathway is critical for use-dependent modulation of GABA(A) synaptic transmission and dendritic homeostasis; furthermore, a disruption in the balance of the excitatory and inhibitory hippocampal network can result in psychiatric-like behavior.
Collapse
|
28
|
BMP signaling mediates effects of exercise on hippocampal neurogenesis and cognition in mice. PLoS One 2009; 4:e7506. [PMID: 19841742 PMCID: PMC2759555 DOI: 10.1371/journal.pone.0007506] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 09/24/2009] [Indexed: 12/30/2022] Open
Abstract
Exposure to exercise or to environmental enrichment increases the generation of new neurons in the adult hippocampus and promotes certain kinds of learning and memory. While the precise role of neurogenesis in cognition has been debated intensely, comparatively few studies have addressed the mechanisms linking environmental exposures to cellular and behavioral outcomes. Here we show that bone morphogenetic protein (BMP) signaling mediates the effects of exercise on neurogenesis and cognition in the adult hippocampus. Elective exercise reduces levels of hippocampal BMP signaling before and during its promotion of neurogenesis and learning. Transgenic mice with decreased BMP signaling or wild type mice infused with a BMP inhibitor both exhibit remarkable gains in hippocampal cognitive performance and neurogenesis, mirroring the effects of exercise. Conversely, transgenic mice with increased BMP signaling have diminished hippocampal neurogenesis and impaired cognition. Exercise exposure does not rescue these deficits, suggesting that reduced BMP signaling is required for environmental effects on neurogenesis and learning. Together, these observations show that BMP signaling is a fundamental mechanism linking environmental exposure with changes in cognitive function and cellular properties in the hippocampus.
Collapse
|
29
|
The dystrophin Dp186 isoform regulates neurotransmitter release at a central synapse in Drosophila. J Neurosci 2008; 28:5105-14. [PMID: 18463264 DOI: 10.1523/jneurosci.4950-07.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Dystrophin protein is encoded by a gene that, when mutated in humans, can cause Duchenne muscular dystrophy, a disease characterized by progressive muscle wasting. A number of Duchenne patients also exhibit poorly understood mental retardation, likely associated with loss of a brain-specific isoform. Furthermore, although Dystrophin isoforms and the related Utrophin protein have long been known to localize at synapses, their functions remain essentially unknown. In Drosophila, we find that the CNS-specific Dp186 isoform localizes to the embryonic and larval neuropiles, regions rich in synaptic contacts. In the absence of Dp186, evoked but not spontaneous presynaptic release is significantly enhanced. Increased presynaptic release can be fully rescued to wild-type levels by expression of a Dp186 transgene in the postsynaptic motoneuron, indicating that Dp186 likely regulates a retrograde signaling pathway. Potentiation of synaptic currents in the mutant also occurs when cholinergic transmission is inhibited or in the absence of Glass Bottom Boat (Gbb) or Wishful Thinking (Wit), a TGF-beta ligand and receptor, respectively, both previously implicated in synaptic retrograde signaling. These results are consistent with the possibility that Dp186 modulates other non-Gbb/Wit-dependent retrograde signaling pathways required to maintain normal synaptic physiology.
Collapse
|
30
|
The BMP ligand Gbb gates the expression of synaptic homeostasis independent of synaptic growth control. Neuron 2008; 56:109-23. [PMID: 17920019 DOI: 10.1016/j.neuron.2007.08.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 06/03/2007] [Accepted: 07/08/2007] [Indexed: 11/20/2022]
Abstract
Inhibition of postsynaptic glutamate receptors at the Drosophila NMJ initiates a compensatory increase in presynaptic release termed synaptic homeostasis. BMP signaling is necessary for normal synaptic growth and stability. It remains unknown whether BMPs have a specific role during synaptic homeostasis and, if so, whether BMP signaling functions as an instructive retrograde signal that directly modulates presynaptic transmitter release. Here, we demonstrate that the BMP receptor (Wit) and ligand (Gbb) are necessary for the rapid induction of synaptic homeostasis. We also provide evidence that both Wit and Gbb have functions during synaptic homeostasis that are separable from NMJ growth. However, further genetic experiments demonstrate that Gbb does not function as an instructive retrograde signal during synaptic homeostasis. Rather, our data indicate that Wit and Gbb function via the downstream transcription factor Mad and that Mad-mediated signaling is continuously required during development to confer competence of motoneurons to express synaptic homeostasis.
Collapse
|
31
|
Sun M, Thomas MJ, Herder R, Bofenkamp ML, Selleck SB, O'Connor MB. Presynaptic contributions of chordin to hippocampal plasticity and spatial learning. J Neurosci 2007; 27:7740-50. [PMID: 17634368 PMCID: PMC6672865 DOI: 10.1523/jneurosci.1604-07.2007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Recently, several evolutionary conserved signaling pathways that play prominent roles in regulating early neurodevelopment have been found to regulate synaptic remodeling in the adult. To test whether adult neuronal expression of bone morphogenic protein (BMP) signaling components also plays a postnatal role in regulating neuronal plasticity, we modulated BMP signaling in mice both in vivo and in vitro by genetic removal of the BMP inhibitor chordin or by perfusing recombinant BMP signaling pathway components onto acute hippocampal slices. Chordin null mice exhibited a significant increase in presynaptic transmitter release from hippocampal neurons, resulting in enhanced paired-pulse facilitation and long-term potentiation. These mice also showed a decreased acquisition time in a water maze test along with less exploratory activity during Y-maze and open-field tests. Perfusion of BMP ligands onto hippocampal slices replicated the presynaptic phenotype of chordin null slices, but bath application of Noggin, another antagonist of BMP signaling pathway, significantly decrease the frequency of miniature EPSCs. These results demonstrate that the BMP signaling pathway contributes to synaptic plasticity and learning likely through a presynaptic mechanism.
Collapse
Affiliation(s)
- Mu Sun
- Howard Hughes Medical Institute and
- Departments of Genetics, Cell Biology, and Development
| | | | - Rachel Herder
- Departments of Genetics, Cell Biology, and Development
| | - M. Lisa Bofenkamp
- Howard Hughes Medical Institute and
- Departments of Genetics, Cell Biology, and Development
| | - Scott B. Selleck
- Departments of Genetics, Cell Biology, and Development
- Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Michael B. O'Connor
- Howard Hughes Medical Institute and
- Departments of Genetics, Cell Biology, and Development
| |
Collapse
|
32
|
Fukushima T, Liu RY, Byrne JH. Transforming growth factor-beta2 modulates synaptic efficacy and plasticity and induces phosphorylation of CREB in hippocampal neurons. Hippocampus 2007; 17:5-9. [PMID: 17094084 DOI: 10.1002/hipo.20243] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transforming growth factor-betas (TGF-betas) are widely expressed and play roles as multifunctional growth factors and regulators of key events in development, disease, and repair. However, it is not known whether TGF-betas affect the plasticity of hippocampal neurons. As a first step to address this issue, we examined whether TGF-beta2 modulated the electrophysiological and biochemical properties of cultured hippocampal neurons. We found that prolonged 24 h treatment with TGF-beta2 induced facilitation of evoked postsynaptic currents (ePSCs). This facilitation was associated with a decrease in short-term synaptic depression of ePSCs and increases in both the amplitude and frequency of spontaneous miniature postsynaptic currents (mPSCs). The long-term changes of ePSCs and mPSCs may be associated with cAMP response element-binding protein (CREB), which has been previously implicated in long-term potentiation. Immunofluorescence techniques and Western blot analysis both revealed that TGF-beta2 enhanced the phosphorylation of CREB. Together, these results suggest that TGF-beta2 may play a role in the cascade of events underlying long-term synaptic facilitation in hippocampus, and that CREB may be an important mediator of these effects.
Collapse
Affiliation(s)
- Teruyuki Fukushima
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | | | |
Collapse
|
33
|
Kazama H, Nose A, Morimoto-Tanifuji T. Synaptic components necessary for retrograde signaling triggered by calcium/calmodulin-dependent protein kinase II during synaptogenesis. Neuroscience 2007; 145:1007-15. [PMID: 17293056 DOI: 10.1016/j.neuroscience.2006.12.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 12/27/2006] [Accepted: 12/28/2006] [Indexed: 10/23/2022]
Abstract
The development and function of presynaptic terminals are tightly controlled by retrograde factors presented from postsynaptic cells. However, it remains elusive whether major constituents of synapses themselves are necessary for retrograde modulation during synaptogenesis. Here we show that the homophilic cell adhesion molecule Fasciclin II (FasII) as well as the scaffolding protein Discs large (DLG) is indispensable for retrograde signaling initiated by calcium/calmodulin-dependent protein kinase II (CaMKII) at developing Drosophila neuromuscular junctions. Postsynaptic activation of CaMKII increased the area of nerve terminals, the number of active zones, and the frequency of miniature excitatory synaptic currents in wild-type animals. However, all of these retrograde effects were abolished in the fasII or dlg mutant background. On the other hand, the retrograde effects remained in null mutants of the glutamate receptor subunit GluRIIA. Furthermore, we show that CaMKII-induced modulation was independent of the bone morphogenetic protein signaling that is important for retrograde control at mature larvae. These results highlight a novel function of FasII as well as DLG, and more broadly, illustrate that prime synaptic components are necessary for transferring target-derived signals to presynaptic cells at a certain developing synapse.
Collapse
Affiliation(s)
- H Kazama
- Department of Physics, Graduate School of Science, University of Tokyo 7-3-1 Hongo, Bunkyoku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
34
|
Baines RA. Development of motoneuron electrical properties and motor output. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 75:91-103. [PMID: 17137925 DOI: 10.1016/s0074-7742(06)75005-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Richard A Baines
- Neuroscience Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
35
|
van der Plas MC, Pilgram GSK, Plomp JJ, de Jong A, Fradkin LG, Noordermeer JN. Dystrophin is required for appropriate retrograde control of neurotransmitter release at the Drosophila neuromuscular junction. J Neurosci 2006; 26:333-44. [PMID: 16399704 PMCID: PMC6674336 DOI: 10.1523/jneurosci.4069-05.2006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in the human dystrophin gene cause the Duchenne and Becker muscular dystrophies. The Dystrophin protein provides a structural link between the muscle cytoskeleton and extracellular matrix to maintain muscle integrity. Recently, Dystrophin has also been found to act as a scaffold for several signaling molecules, but the roles of dystrophin-mediated signaling pathways remain unknown. To further our understanding of this aspect of the function of dystrophin, we have generated Drosophila mutants that lack the large dystrophin isoforms and analyzed their role in synapse function at the neuromuscular junction. In expression and rescue studies, we show that lack of the large dystrophin isoforms in the postsynaptic muscle cell leads to elevated evoked neurotransmitter release from the presynaptic apparatus. Overall synapse size, the size of the readily releasable vesicle pool as assessed with hypertonic shock, and the number of presynaptic neurotransmitter release sites (active zones) are not changed in the mutants. Short-term synaptic facilitation of evoked transmitter release is decreased in the mutants, suggesting that the absence of dystrophin results in increased probability of release. Absence of the large dystrophin isoforms does not lead to changes in muscle cell morphology or alterations in the postsynaptic electrical response to spontaneously released neurotransmitter. Therefore, postsynaptic glutamate receptor function does not appear to be affected. Our results indicate that the postsynaptically localized scaffolding protein Dystrophin is required for appropriate control of neuromuscular synaptic homeostasis.
Collapse
Affiliation(s)
- Mariska C van der Plas
- Department of Molecular and Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
The regulatory mechanisms that orchestrate the developmental acquisition of electrical properties in embryonic neurons are poorly understood. Progress in this important area is dependent on the availability of preparations that allow electrophysiology to be married with genetics. The powerful genetics of the fruitfly Drosophila melanogaster has long been exploited to describe fundamental mechanisms associated with structural neuronal development (i.e. axon guidance). It has not, however, been fully employed to study the final stages of embryonic neural development and in particular the acquisition of electrical activity. This review focuses on the recent development of a Drosophila preparation that allows central neurons to be accessed by patch electrodes at both embryonic and larval stages. This preparation, which allows electrophysiology to be coupled with genetics, offers the prospect of making significant advances in our understanding of functional neuron development.
Collapse
Affiliation(s)
- Richard A Baines
- Neuroscience Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
37
|
Marqués G, Zhang B. Retrograde signaling that regulates synaptic development and function at the Drosophila neuromuscular junction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 75:267-85. [PMID: 17137932 DOI: 10.1016/s0074-7742(06)75012-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Guillermo Marqués
- Department of Cell Biology, School of Medicine The University of Alabama at Birmingham, Birmingham Alabama 35294, USA
| | | |
Collapse
|
38
|
Ruiz-Cañada C, Budnik V. Introduction on the use of the Drosophila embryonic/larval neuromuscular junction as a model system to study synapse development and function, and a brief summary of pathfinding and target recognition. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 75:1-31. [PMID: 17137921 DOI: 10.1016/s0074-7742(06)75001-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Catalina Ruiz-Cañada
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, Medical School, Massachusetts 01605, USA
| | | |
Collapse
|
39
|
McGuire SE, Deshazer M, Davis RL. Thirty years of olfactory learning and memory research in Drosophila melanogaster. Prog Neurobiol 2005; 76:328-47. [PMID: 16266778 DOI: 10.1016/j.pneurobio.2005.09.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2005] [Revised: 07/19/2005] [Accepted: 09/07/2005] [Indexed: 12/25/2022]
Abstract
The last 30 years have witnessed tremendous progress in elucidating the basic mechanisms underlying a simple form of olfactory learning and memory in Drosophila. The application of the mutagenic approach to the study of olfactory learning and memory in Drosophila has yielded insights into the participation of a large number of genes in both the development of critical brain regions as well as in the physiology underlying the acquisition, storage, and retrieval of memory. Newer sophisticated molecular-genetic tools have further allowed for the specification and functional dissection of the neuronal circuitry involved in these processes at a systems level. With these advances in our understanding of the genes, neurons, and circuits involved in learning and memory, the field of Drosophila memory research is nearing a state of integration of the bottom up and top down approaches to understanding this form of behavioral plasticity.
Collapse
Affiliation(s)
- Sean E McGuire
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
40
|
Abstract
During development and adult life synapses are remodeled in response to genetic programs and environmental cues. This synaptic plasticity is thought to be the basis of learning and memory. The larval neuromuscular junction of Drosophila is established during embryogenesis and grows during larval development to accommodate muscle growth and maintain synaptic homeostasis. This growth is dependent on bidirectional communication between the motoneuron and the muscle fiber. The best-characterized retrograde signaling pathway is defined by Glass bottom boat (Gbb), a morphogen of the transforming growth factor-beta (TGF-beta) superfamily. Gbb acts as a muscle-derived retrograde signal that activates the TGF-beta pathway presynaptically. This pathway includes the type II receptor Wishful thinking, type I receptors Thick veins and Saxophone, and the second messenger Smads Mothers against dpp (Mad) and Medea. Mutations that block this pathway result in small synapses that are morphologically aberrant and severely impaired functionally. An emerging anterograde signaling pathway is defined by Wingless, a morphogen of the Wnt family that acts as a motoneuron-derived anterograde signal required for both pre- and postsynaptic development. In the absence of Wingless the neuronal microtubule cytoskeleton regulator Futsch is down-regulated and synaptic growth impaired. Some of these morphogens have conserved roles in mammalian synaptogenesis, and genetic analysis suggests that additional signaling molecules are required for synaptic growth at the Drosophila neuromuscular junction.
Collapse
Affiliation(s)
- Guillermo Marqués
- Department of Cell Biology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| |
Collapse
|