1
|
Birch EE, Duffy KR. Leveraging neural plasticity for the treatment of amblyopia. Surv Ophthalmol 2024; 69:818-832. [PMID: 38763223 PMCID: PMC11380599 DOI: 10.1016/j.survophthal.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024]
Abstract
Amblyopia is a form of visual cortical impairment that arises from abnormal visual experience early in life. Most often, amblyopia is a unilateral visual impairment that can develop as a result of strabismus, anisometropia, or a combination of these conditions that result in discordant binocular experience. Characterized by reduced visual acuity and impaired binocular function, amblyopia places a substantial burden on the developing child. Although frontline treatment with glasses and patching can improve visual acuity, residual amblyopia remains for most children. Newer binocular-based therapies can elicit rapid recovery of visual acuity and may also improve stereoacuity in some children. Nevertheless, for both treatment modalities full recovery is elusive, recurrence of amblyopia is common, and improvements are negligible when treatment is administered at older ages. Insights derived from animal models about the factors that govern neural plasticity have been leveraged to develop innovative treatments for amblyopia. These novel therapies exhibit efficacy to promote recovery, and some are effective even at ages when conventional treatments fail to yield benefit. Approaches for enhancing visual system plasticity and promoting recovery from amblyopia include altering the balance between excitatory and inhibitory mechanisms, reversing the accumulation of proteins that inhibit plasticity, and harnessing the principles of metaplasticity. Although these therapies have exhibited promising results in animal models, their safety and ability to remediate amblyopia need to be evaluated in humans.
Collapse
Affiliation(s)
- Eileen E Birch
- Crystal Charity Ball Pediatric Vision Laboratory, Retina Foundation, Dallas, TX, USA; University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Kevin R Duffy
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
2
|
Van Grootel TJ, Raghavan RT, Kelly JG, Movshon JA, Kiorpes L. Responses to visual motion of neurons in the extrastriate visual cortex of macaque monkeys with experimental amblyopia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601564. [PMID: 39005459 PMCID: PMC11244960 DOI: 10.1101/2024.07.01.601564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Amblyopia is a developmental disorder that results from abnormal visual experience in early life. Amblyopia typically reduces visual performance in one eye. We studied the representation of visual motion information in area MT and nearby extrastriate visual areas in two monkeys made amblyopic by creating an artificial strabismus in early life, and in a single age-matched control monkey. Tested monocularly, cortical responses to moving dot patterns, gratings, and plaids were qualitatively normal in awake, fixating amblyopic monkeys, with primarily subtle differences between the eyes. However, the number of binocularly driven neurons was substantially lower than normal; of the neurons driven predominantly by one eye, the great majority responded only to stimuli presented to the fellow eye. The small population driven by the amblyopic eye showed reduced coherence sensitivity and a preference for faster speeds in much the same way as behavioral deficits. We conclude that, while we do find important differences between neurons driven by the two eyes, amblyopia does not lead to a large scale reorganization of visual receptive fields in the dorsal stream when tested through the amblyopic eye, but rather creates a substantial shift in eye preference toward the fellow eye.
Collapse
Affiliation(s)
- Tom J Van Grootel
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - R T Raghavan
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Jenna G Kelly
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - J Anthony Movshon
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Lynne Kiorpes
- Center for Neural Science, New York University, New York, NY 10003, USA
| |
Collapse
|
3
|
Wang Y, Wu Y, Luo L, Li F. Structural and functional alterations in the brains of patients with anisometropic and strabismic amblyopia: a systematic review of magnetic resonance imaging studies. Neural Regen Res 2023; 18:2348-2356. [PMID: 37282452 PMCID: PMC10360096 DOI: 10.4103/1673-5374.371349] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Amblyopia is the most common cause of vision loss in children and can persist into adulthood in the absence of effective intervention. Previous clinical and neuroimaging studies have suggested that the neural mechanisms underlying strabismic amblyopia and anisometropic amblyopia may be different. Therefore, we performed a systematic review of magnetic resonance imaging studies investigating brain alterations in patients with these two subtypes of amblyopia; this study is registered with PROSPERO (registration ID: CRD42022349191). We searched three online databases (PubMed, EMBASE, and Web of Science) from inception to April 1, 2022; 39 studies with 633 patients (324 patients with anisometropic amblyopia and 309 patients with strabismic amblyopia) and 580 healthy controls met the inclusion criteria (e.g., case-control designed, peer-reviewed articles) and were included in this review. These studies highlighted that both strabismic amblyopia and anisometropic amblyopia patients showed reduced activation and distorted topological cortical activated maps in the striate and extrastriate cortices during task-based functional magnetic resonance imaging with spatial-frequency stimulus and retinotopic representations, respectively; these may have arisen from abnormal visual experiences. Compensations for amblyopia that are reflected in enhanced spontaneous brain function have been reported in the early visual cortices in the resting state, as well as reduced functional connectivity in the dorsal pathway and structural connections in the ventral pathway in both anisometropic amblyopia and strabismic amblyopia patients. The shared dysfunction of anisometropic amblyopia and strabismic amblyopia patients, relative to controls, is also characterized by reduced spontaneous brain activity in the oculomotor cortex, mainly involving the frontal and parietal eye fields and the cerebellum; this may underlie the neural mechanisms of fixation instability and anomalous saccades in amblyopia. With regards to specific alterations of the two forms of amblyopia, anisometropic amblyopia patients suffer more microstructural impairments in the precortical pathway than strabismic amblyopia patients, as reflected by diffusion tensor imaging, and more significant dysfunction and structural loss in the ventral pathway. Strabismic amblyopia patients experience more attenuation of activation in the extrastriate cortex than in the striate cortex when compared to anisometropic amblyopia patients. Finally, brain structural magnetic resonance imaging alterations tend to be lateralized in the adult anisometropic amblyopia patients, and the patterns of brain alterations are more limited in amblyopic adults than in children. In conclusion, magnetic resonance imaging studies provide important insights into the brain alterations underlying the pathophysiology of amblyopia and demonstrate common and specific alterations in anisometropic amblyopia and strabismic amblyopia patients; these alterations may improve our understanding of the neural mechanisms underlying amblyopia.
Collapse
Affiliation(s)
- Yuxia Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Ye Wu
- Department of Ophthalmology, Laboratory of Optometry and Vision Sciences, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan Province, China
| | - Lekai Luo
- Department of Radiology, West China Second Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Fei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
4
|
Jiang SQ, Chen YR, Liu XY, Zhang JY. Contour integration deficits at high spatial frequencies in children treated for anisometropic amblyopia. Front Neurosci 2023; 17:1160853. [PMID: 37564367 PMCID: PMC10411894 DOI: 10.3389/fnins.2023.1160853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
Purpose This study was conducted to reexamine the question of whether children treated for anisometropic amblyopia have contour integration deficits. To do so, we used psychophysical methods that require global contour processing while minimizing the influence of low-level deficits: visibility, shape perception, and positional uncertainty. Methods Thirteen children with anisometropic amblyopia (age: 10.1 ± 1.8 years) and thirteen visually normal children (age: 10.8 ± 2.0 years) participated in this study. The stimuli were closed figures made up of Gabor patches either in noise or on a blank field. The contrast thresholds to detect a circular contour on a blank field, as well as the thresholds of aspect ratio and contour element number to discriminate a circular or elliptical contour in noise, were measured at Gabor spatial frequencies of 1.5, 3, and 6 cpd for amblyopic eyes (AEs), fellow eyes (FEs), and normal control eyes. Visual acuities and contrast sensitivity functions for AEs and FEs and the Randot stereoacuity were measured before testing. Results The AEs showed contrast deficits and degraded shape perception compared to the FEs at higher spatial frequencies (6 cpd). When the influence of abnormal contrast sensitivity and shape perception were minimized, the AEs showed contour integration deficits at spatial frequencies 3 and 6 cpd. These deficits were not related to basic losses in contrast sensitivity and acuity, stereoacuity, and visual crowding. Besides, no significant difference was found between the fellow eyes of the amblyopic children and the normal control eyes in the performance of contour integration. Conclusion After eliminating or compensating for the low-level deficits, children treated for anisometropic amblyopia still show contour integration deficits, primarily at higher spatial frequencies, which might reflect the deficits in global processing caused by amblyopia. Contour integration deficits are likely independent of spatial vision deficits. Refractive correction and/or occlusion therapies may not be sufficient to fully restore contour integration deficits, which indicates the need for the development of clinical treatments to recover these deficits.
Collapse
Affiliation(s)
- Shu-Qi Jiang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Yan-Ru Chen
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Xiang-Yun Liu
- The Affiliated Tengzhou Hospital of Xuzhou Medical University, Tengzhou, Shandong, China
| | - Jun-Yun Zhang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| |
Collapse
|
5
|
Meng C, Zhang Y, Wang S. Anisometropic amblyopia: A review of functional and structural changes and treatment. Eur J Ophthalmol 2023; 33:1529-1535. [PMID: 36448184 DOI: 10.1177/11206721221143164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Amblyopia is the decreased best-corrected visual acuity (BCVA) in one or both eyes caused by the abnormal processing of visual input during development. One common cause of amblyopia is anisometropia, which has attracted widespread attention. Many structural changes occur in the primary and extrastriate visual areas of the cerebral cortex, as well as in the eyes, in patients with anisometropic amblyopia. Understanding these mechanisms has provided a favorable theoretical basis for treating anisometropic amblyopia. This article reviews the functional and anatomical changes and progress toward the treatment of anisometropic amblyopia.
Collapse
Affiliation(s)
- Can Meng
- Corneal Refraction Department, The Second Hospital of Jilin University, Changchun, China
| | - Yan Zhang
- Corneal Refraction Department, The Second Hospital of Jilin University, Changchun, China
| | - Shurong Wang
- Corneal Refraction Department, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Kelly KR, Jost RM, Hudgins LA, Stager DR, Hunter JS, Beauchamp CL, Dao LM, Birch EE. Slow Binocular Reading in Amblyopic Children Is a Fellow Eye Deficit. Optom Vis Sci 2023; 100:194-200. [PMID: 36715973 PMCID: PMC10245300 DOI: 10.1097/opx.0000000000001995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
SIGNIFICANCE Amblyopic children read 25% slower than their peers during binocular silent reading. PURPOSE We compared binocular reading to fellow eye reading to determine whether slow reading in amblyopic children is due to binocular inhibition; that is, the amblyopic eye is interfering during binocular reading. METHODS In a cross-sectional study, 38 children with amblyopia and 36 age-similar control children who completed grades 1 to 6 were enrolled. Children silently read grade-appropriate paragraphs during binocular reading and fellow eye reading while wearing ReadAlyzer eye-tracking goggles (Compevo AB, Stockholm, Sweden). Reading rate, number of forward saccades, number of regressive saccades, and fixation duration were analyzed between groups and between viewing conditions. We also examined whether sensory factors (amblyopia severity, stereoacuity, suppression) were related to slow reading. RESULTS For amblyopic children, binocular reading versus fellow eye reading did not differ for reading rate (176 ± 60 vs. 173 ± 53 words per minute, P = .69), number of forward saccades (104 ± 35 vs. 97 ± 33 saccades/100 words, P = .18), number of regressive saccades (21 ± 15 vs. 22 ± 13 saccades/100 words, P = .75), or fixation duration (0.31 ± 0.06 vs. 0.32 ± 0.07 seconds, P = .44). As expected, amblyopic children had a slower reading rate and more forward saccades than control children during binocular reading and fellow eye reading. Slow reading was not related to any sensory factors. CONCLUSIONS Binocular reading did not differ from fellow eye reading in amblyopic children. Thus, binocular inhibition is unlikely to play a role in slow binocular reading and is instead a fellow eye deficit that emerges from a disruption in binocular visual experience during development.
Collapse
Affiliation(s)
| | - Reed M Jost
- Retina Foundation of the Southwest, Dallas, Texas
| | | | - David R Stager
- Pediatric Ophthalmology and Adult Strabismus, PA, Plano, Texas
| | | | | | - Lori M Dao
- ABC Eyes Pediatric Ophthalmology, PA, Dallas, Texas
| | | |
Collapse
|
7
|
Birch EE, Kelly KR. Amblyopia and the whole child. Prog Retin Eye Res 2023; 93:101168. [PMID: 36736071 PMCID: PMC9998377 DOI: 10.1016/j.preteyeres.2023.101168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 02/04/2023]
Abstract
Amblyopia is a disorder of neurodevelopment that occurs when there is discordant binocular visual experience during the first years of life. While treatments are effective in improving visual acuity, there are significant individual differences in response to treatment that cannot be attributed solely to difference in adherence. In this considerable variability in response to treatment, we argue that treatment outcomes might be optimized by utilizing deep phenotyping of amblyopic deficits to guide alternative treatment choices. In addition, an understanding of the broader knock-on effects of amblyopia on developing visually-guided skills, self-perception, and quality of life will facilitate a whole person healthcare approach to amblyopia.
Collapse
Affiliation(s)
- Eileen E Birch
- Pediatric Vision Laboratory, Retina Foundation of the Southwest, 9600 North Central Expressway #200, Dallas, TX, 75225, USA; Department of Ophthalmology, University of Texas Southwestern Medical Center, 5303 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| | - Krista R Kelly
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5303 Harry Hines Boulevard, Dallas, TX, 75390, USA; Vision and Neurodevelopment Laboratory, Retina Foundation of the Southwest, 9600 North Central Expressway #200, Dallas, TX, 75225, USA.
| |
Collapse
|
8
|
Wang G, Liu L. Amblyopia: progress and promise of functional magnetic resonance imaging. Graefes Arch Clin Exp Ophthalmol 2022; 261:1229-1246. [PMID: 36282454 DOI: 10.1007/s00417-022-05826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/14/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022] Open
Abstract
Amblyopia is a neurodevelopmental disorder characterized by functional deficits in the visual cortex. Functional magnetic resonance imaging (fMRI) is the most commonly used neuroimaging technique for investigating amblyopia. Herein, we systematically searched a PubMed database from inception to December 2021 to highlight the current progress and promises about fMRI technology in amblyopia; amblyopia's neural mechanism, the comparison of different types of amblyopia, and the evaluation of the therapeutic effect were explored. Relevant articles published in English and appropriate cross-references were considered for inclusion, including basic studies, imaging techniques, clinical diagnostic and therapeutic studies, case series, and reviews.
Collapse
Affiliation(s)
- Guiqu Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Birch EE, Kelly KR, Wang J. Recent Advances in Screening and Treatment for Amblyopia. Ophthalmol Ther 2021; 10:815-830. [PMID: 34499336 PMCID: PMC8589941 DOI: 10.1007/s40123-021-00394-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022] Open
Abstract
Amblyopia is the most common cause of monocular visual impairment in children, with a prevalence of 2-3%. Not only is visual acuity reduced in one eye but binocular vision is affected, fellow eye deficits may be present, eye-hand coordination and reading can be affected, and self-perception may be diminished. New technologies for preschool vision screening hold promise for accessible, early, and accurate detection of amblyopia. Together with recent advances in our theoretical understanding of amblyopia and technological advances in amblyopia treatment, we anticipate improved visual outcomes for children affected by this very common eye condition. This article is based on previously conducted studies and does not contain any new studies with human participants or animals performed by any of the authors.
Collapse
Affiliation(s)
- Eileen E Birch
- Retina Foundation of the Southwest, 9600 N. Central Expressway, Suite 200, Dallas, TX, 75231, USA.
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Krista R Kelly
- Retina Foundation of the Southwest, 9600 N. Central Expressway, Suite 200, Dallas, TX, 75231, USA
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jingyun Wang
- SUNY College of Optometry, State University of New York, New York, NY, USA
| |
Collapse
|
10
|
Levi DM. Amblyopia. HANDBOOK OF CLINICAL NEUROLOGY 2021; 178:13-30. [PMID: 33832673 DOI: 10.1016/b978-0-12-821377-3.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Amblyopia is a neurodevelopmental abnormality that results in physiological alterations in the visual pathways and impaired vision in one eye, less commonly in both. It reflects a broad range of neural, perceptual, oculomotor, and clinical abnormalities that can occur when normal visual development is disrupted early in life. Aside from refractive error, amblyopia is the most common cause of vision loss in infants and young children. It causes a constellation of perceptual deficits in the vision of the amblyopic eye, including a loss of visual acuity, position acuity, and contrast sensitivity, particularly at high spatial frequencies, as well as increased internal noise and prolonged manual and saccadic reaction times. There are also perceptual deficits in the strong eye, such as certain types of motion perception, reflecting altered neural responses and functional connectivity in visual cortex (Ho et al., 2005). Treatment in young children consists of correction of any refractive error and patching of the strong eye. Compliance with patching is challenging and a substantial proportion of amblyopic children fail to achieve normal acuity or stereopsis even after extended periods of treatment. There are a number of promising experimental treatments that may improve compliance and outcomes, such as the playing of action video games with the strong eye patched. Although there may be a sensitive period for optimal effects of treatment, there is evidence that amblyopic adults may still show some benefit of treatment. However, there is as yet no consensus on the treatment of adults with amblyopia.
Collapse
Affiliation(s)
- Dennis M Levi
- School of Optometry & Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, United States.
| |
Collapse
|
11
|
Chauhan T, Héjja-Brichard Y, Cottereau BR. Modelling binocular disparity processing from statistics in natural scenes. Vision Res 2020; 176:27-39. [DOI: 10.1016/j.visres.2020.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 11/25/2022]
|
12
|
Abstract
Recent work has transformed our ideas about the neural mechanisms, behavioral consequences and effective therapies for amblyopia. Since the 1700's, the clinical treatment for amblyopia has consisted of patching or penalizing the strong eye, to force the "lazy" amblyopic eye, to work. This treatment has generally been limited to infants and young children during a sensitive period of development. Over the last 20 years we have learned much about the nature and neural mechanisms underlying the loss of spatial and binocular vision in amblyopia, and that a degree of neural plasticity persists well beyond the sensitive period. Importantly, the last decade has seen a resurgence of research into new approaches to the treatment of amblyopia both in children and adults, which emphasize that monocular therapies may not be the most effective for the fundamentally binocular disorder that is amblyopia. These approaches include perceptual learning, video game play and binocular methods aimed at reducing inhibition of the amblyopic eye by the strong fellow eye, and enhancing binocular fusion and stereopsis. This review focuses on the what we've learned over the past 20 years or so, and will highlight both the successes of these new treatment approaches in labs around the world, and their failures in clinical trials. Reconciling these results raises important new questions that may help to focus future directions.
Collapse
Affiliation(s)
- Dennis M Levi
- University of California, Berkeley, School of Optometry & Helen Wills Neuroscience Institute, Berkeley, CA, USA.
| |
Collapse
|
13
|
Abstract
Amblyopia is a cortical visual disorder caused by unequal visual input to the brain from the two eyes during development. Amblyopes show reduced visual acuity and contrast sensitivity and abnormal binocularity, as well as more “global” perceptual losses, such as figure-ground segregation and global form integration. Currently, there is no consensus on the neural basis for these higher-order perceptual losses. One contributing factor could be that amblyopes have deficiencies in attention, such that the attentional processes that control the selection of information favor the better eye. Previous studies in amblyopic adults are conflicting as to whether attentional deficits exist. However, studies where intact attentional ability has been shown to exist were conducted in adults; it is possible that it was acquired through experience. To test this hypothesis, we studied attentional processing in amblyopic children. We examined covert endogenous attention using a classical spatial cueing paradigm in amblyopic and visually typical 5- to 10-year old children. We found that all children, like adults, independently of visual condition, benefited from attentional cueing: They performed significantly better on trials with an informative (valid) cue than with the uninformative (neutral) cue. Response latencies were also significantly shorter for the valid cue condition. No statistically significant difference was found between the performance of the amblyopic and the visually typical children or between dominant and nondominant eyes of all children. The results showed that covert spatial attention is intact in amblyopic and visually typical children and is therefore not likely to account for higher-order perceptual losses in amblyopic children.
Collapse
|
14
|
Understanding the development of amblyopia using macaque monkey models. Proc Natl Acad Sci U S A 2019; 116:26217-26223. [PMID: 31871163 DOI: 10.1073/pnas.1902285116] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amblyopia is a sensory developmental disorder affecting as many as 4% of children around the world. While clinically identified as a reduction in visual acuity and disrupted binocular function, amblyopia affects many low- and high-level perceptual abilities. Research with nonhuman primate models has provided much needed insight into the natural history of amblyopia, its origins and sensitive periods, and the brain mechanisms that underly this disorder. Amblyopia results from abnormal binocular visual experience and impacts the structure and function of the visual pathways beginning at the level of the primary visual cortex (V1). However, there are multiple instances of abnormalities in areas beyond V1 that are not simply inherited from earlier stages of processing. The full constellation of deficits must be taken into consideration in order to understand the broad impact of amblyopia on visual and visual-motor function. The data generated from studies of animal models of the most common forms of amblyopia have provided indispensable insight into the disorder, which has significantly impacted clinical practice. It is expected that this translational impact will continue as ongoing research into the neural correlates of amblyopia provides guidance for novel therapeutic approaches.
Collapse
|
15
|
Acar K, Kiorpes L, Movshon JA, Smith MA. Altered functional interactions between neurons in primary visual cortex of macaque monkeys with experimental amblyopia. J Neurophysiol 2019; 122:2243-2258. [PMID: 31553685 PMCID: PMC6966320 DOI: 10.1152/jn.00232.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 11/22/2022] Open
Abstract
Amblyopia, a disorder in which vision through one of the eyes is degraded, arises because of defective processing of information by the visual system. Amblyopia often develops in humans after early misalignment of the eyes (strabismus) and can be simulated in macaque monkeys by artificially inducing strabismus. In such amblyopic animals, single-unit responses in primary visual cortex (V1) are appreciably reduced when evoked by the amblyopic eye compared with the other (fellow) eye. However, this degradation in single V1 neuron responsivity is not commensurate with the marked losses in visual sensitivity and resolution measured behaviorally. Here we explored the idea that changes in patterns of coordinated activity across populations of V1 neurons may contribute to degraded visual representations in amblyopia, potentially making it more difficult to read out evoked activity to support perceptual decisions. We studied the visually evoked activity of V1 neuronal populations in three macaques (Macaca nemestrina) with strabismic amblyopia and in one control animal. Activity driven through the amblyopic eye was diminished, and these responses also showed more interneuronal correlation at all stimulus contrasts than responses driven through the fellow eye or responses in the control animal. A decoding analysis showed that responses driven through the amblyopic eye carried less visual information than other responses. Our results suggest that part of the reduced visual capacity of amblyopes may be due to changes in the patterns of functional interaction among neurons in V1.NEW & NOTEWORTHY Previous work on the neurophysiological basis of amblyopia has largely focused on relating behavioral deficits to changes in visual processing by single neurons in visual cortex. In this study, we recorded simultaneously from populations of primary visual cortical (V1) neurons in macaques with amblyopia. We found changes in the strength and pattern of shared response variability between neurons. These changes in neuronal interactions could impair the visual representations of V1 populations driven by the amblyopic eye.
Collapse
Affiliation(s)
- Katerina Acar
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lynne Kiorpes
- Center for Neural Science, New York University, New York, New York
| | | | - Matthew A Smith
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
- Carnegie Mellon Neuroscience Institute, Pittsburgh, Pennsylvania
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
Candy TR. The Importance of the Interaction Between Ocular Motor Function and Vision During Human Infancy. Annu Rev Vis Sci 2019; 5:201-221. [PMID: 31525140 DOI: 10.1146/annurev-vision-091718-014741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Numerous studies have demonstrated the impact of imposed abnormal visual experience on the postnatal development of the visual system. These studies have provided fundamental insights into the mechanisms underlying neuroplasticity and its role in clinical care. However, the ocular motor responses of postnatal human infants largely define their visual experience in dynamic three-dimensional environments. Thus, the immature visual system needs to control its own visual experience. This review explores the interaction between the developing motor and sensory/perceptual visual systems, together with its importance in both typical development and the development of forms of strabismus and amblyopia.
Collapse
Affiliation(s)
- T Rowan Candy
- Optometry & Vision Science, School of Optometry; Psychological & Brain Sciences; and Neuroscience and Cognitive Science, Indiana University, Bloomington, Indiana 47401, USA;
| |
Collapse
|
17
|
Birch EE, Jost RM, Wang YZ, Kelly KR, Giaschi DE. Impaired Fellow Eye Motion Perception and Abnormal Binocular Function. Invest Ophthalmol Vis Sci 2019; 60:3374-3380. [PMID: 31387113 PMCID: PMC6685447 DOI: 10.1167/iovs.19-26885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/02/2019] [Indexed: 11/24/2022] Open
Abstract
Purpose Binocular discordance due to strabismus, anisometropia, or both may result in not only monocular visual acuity deficits, but also in motion perception deficits. We determined the prevalence of fellow-eye deficits in motion-defined form (MDF) perception, the ability to identify a two-dimensional (2D) shape defined by motion rather than luminance contrast. We also examined the following: the causative role of reduced visual acuity and binocularity, associations with clinical and sensory factors, and effectiveness of binocular amblyopia treatment in alleviating deficits. Methods Participants included 91 children with residual amblyopia (strabismic, anisometropic, or both; age, 9.0 ± 1.7 years), 79 nonamblyopic children with treated strabismus or anisometropia (age, 8.5 ± 2.1 years), and 20 controls (age, 8.6 ± 1.5 years). MDF coherence thresholds, visual acuity, stereoacuity, and interocular suppression were measured. Results MDF deficits, relative to controls, were present in the fellow eye of 23% of children with residual amblyopia and 20% of nonamblyopic children. Stereoacuity and age first patched were correlated with MDF threshold (r = 0.29, 95% CI: 0.09-0.47; r = -0.33, 95% CI: -0.13 to -0.50, respectively). MDF deficits were more common in children treated with patching alone than in those receiving contrast-rebalanced binocular treatment with games or movies (t89 = 3.46; P = 0.0008). The latter was associated with a reduction in mean fellow eye MDF threshold (t26 = 6.32, P < 0.0001). Conclusions Fellow eye MDF deficits are common and likely reflect abnormalities in binocular cortical mechanisms that result from early discordant visual experience. Binocular amblyopia treatment, which is effective in improving amblyopic eye visual acuity, appears to provide a benefit for the fellow eye.
Collapse
Affiliation(s)
- Eileen E. Birch
- Crystal Charity Ball Pediatric Vision Laboratory, Retina Foundation of the Southwest, Dallas, Texas, United States
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Reed M. Jost
- Crystal Charity Ball Pediatric Vision Laboratory, Retina Foundation of the Southwest, Dallas, Texas, United States
| | - Yi-Zhong Wang
- Crystal Charity Ball Pediatric Vision Laboratory, Retina Foundation of the Southwest, Dallas, Texas, United States
| | - Krista R. Kelly
- Crystal Charity Ball Pediatric Vision Laboratory, Retina Foundation of the Southwest, Dallas, Texas, United States
| | - Deborah E. Giaschi
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
18
|
Spiking Noise and Information Density of Neurons in Visual Area V2 of Infant Monkeys. J Neurosci 2019; 39:5673-5684. [PMID: 31147523 DOI: 10.1523/jneurosci.2023-18.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 11/21/2022] Open
Abstract
Encoding of visual information requires precisely timed spiking activity in the network of cortical neurons; irregular spiking can interfere with information processing especially for low-contrast images. The vision of newborn infants is impoverished. An infant's contrast sensitivity is low and the ability to discriminate complex stimuli is poor. The neural mechanisms that limit the visual capacities of infants are a matter of debate. Here we asked whether noisy spiking and/or crude information processing in visual cortex limit infant vision. Since neurons beyond the primary visual cortex (V1) have rarely been studied in neonates or infants, we focused on the firing pattern of neurons in visual area V2, the earliest extrastriate visual area of both male and female macaque monkeys (Maccaca mulatta). For eight stimulus contrasts ranging from 0% to 80%, we analyzed spiking irregularity by calculating the square of the coefficient of variation (CV2) in interspike intervals, the trial-to-trial fluctuation in spiking (Fano factor), and the amount of information on contrast conveyed by each spiking (information density). While the contrast sensitivity of infant neurons was reduced as expected, spiking noise, both the magnitude of spiking irregularity and the trial-to-trial fluctuations, was much lower in the spike trains of infant V2 neurons compared with those of adults. However, information density for V2 neurons was significantly lower in infants. Our results suggest that poor contrast sensitivity combined with lower information density of extrastriate neurons, despite their lower spiking noise, may limit behaviorally determined contrast sensitivity soon after birth.SIGNIFICANCE STATEMENT Despite >50 years of investigations on the postnatal development of the primary visual cortex (V1), cortical mechanisms that may limit infant vision are still unclear. We investigated the quality and strength of neuronal firing in primate visual area V2 by analyzing contrast sensitivity, spiking variability, and the amount of information on contrast conveyed by each action potential (information density). Here we demonstrate that the firing rate, contrast sensitivity, and dynamic range of V2 neurons were depressed in infants compared with adults. Although spiking noise was less, information density was lower in infant V2. Impoverished neuronal drive and lower information density in extrastriate visual areas, despite lower spiking noise, largely explain the impoverished visual sensitivity of primates near birth.
Collapse
|
19
|
Lu Z, Huang Y, Lu Q, Feng L, Nguchu BA, Wang Y, Wang H, Li G, Zhou Y, Qiu B, Zhou J, Wang X. Abnormal intra-network architecture in extra-striate cortices in amblyopia: a resting state fMRI study. EYE AND VISION 2019; 6:20. [PMID: 31334295 PMCID: PMC6615160 DOI: 10.1186/s40662-019-0145-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/13/2019] [Indexed: 11/18/2022]
Abstract
Background Amblyopia (lazy eye) is one of the most common causes of monocular visual impairment. Intensive investigation has shown that amblyopes suffer from a range of deficits not only in the primary visual cortex but also the extra-striate visual cortex. However, amblyopic brain processing deficits in large-scale information networks especially in the visual network remain unclear. Methods Through resting state functional magnetic resonance imaging (rs-fMRI), we studied the functional connectivity and efficiency of the brain visual processing networks in 18 anisometropic amblyopic patients and 18 healthy controls (HCs). Results We found a loss of functional correlation within the higher visual network (HVN) and the visuospatial network (VSN) in amblyopes. Additionally, compared with HCs, amblyopic patients exhibited disruptions in local efficiency in the V3v (third visual cortex, ventral part) and V4 (fourth visual cortex) of the HVN, as well as in the PFt, hIP3 (human intraparietal area 3), and BA7p (Brodmann area 7 posterior) of the VSN. No significant alterations were found in the primary visual network (PVN). Conclusion Our results indicate that amblyopia results in an intrinsic decrease of both network functional correlations and local efficiencies in the extra-striate visual networks.
Collapse
Affiliation(s)
- Zhuo Lu
- 1Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027 People's Republic of China
| | - Yufeng Huang
- 2Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027 People's Republic of China.,3CAS Key Laboratory of Brain Function and Diseases and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 People's Republic of China.,4Shenyang Aerospace University, Shenyang, Liaoning 110136 People's Republic of China
| | - Qilin Lu
- 2Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027 People's Republic of China.,3CAS Key Laboratory of Brain Function and Diseases and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 People's Republic of China
| | - Lixia Feng
- 5Department of Ophthalmology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui People's Republic of China
| | - Benedictor Alexander Nguchu
- 1Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027 People's Republic of China
| | - Yanming Wang
- 1Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027 People's Republic of China
| | - Huijuan Wang
- 1Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027 People's Republic of China
| | - Geng Li
- Asia Pediatric Ophthalmologist Association, Rm 2006, CC Wu Bldg., 302-308 Hennessy Rd., Wanchai, Hong Kong, People's Republic of China
| | - Yifeng Zhou
- 2Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027 People's Republic of China.,3CAS Key Laboratory of Brain Function and Diseases and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 People's Republic of China
| | - Bensheng Qiu
- 1Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027 People's Republic of China
| | - Jiawei Zhou
- 7School of Ophthalmology and Optometry and Eye hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003 People's Republic of China
| | - Xiaoxiao Wang
- 1Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027 People's Republic of China.,2Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027 People's Republic of China.,3CAS Key Laboratory of Brain Function and Diseases and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 People's Republic of China
| |
Collapse
|
20
|
Castaño-Castaño S, Feijoo-Cuaresma M, Paredes-Pacheco J, Morales-Navas M, Ruiz-Guijarro JA, Sanchez-Santed F, Nieto-Escámez F. tDCS recovers depth perception in adult amblyopic rats and reorganizes visual cortex activity. Behav Brain Res 2019; 370:111941. [PMID: 31078617 DOI: 10.1016/j.bbr.2019.111941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 01/09/2023]
Abstract
Amblyopia or lazy eye is a neurodevelopmental disorder that arises during the infancy and is caused by the interruption of binocular sensory activity before maturation of the nervous system. This impairment causes long-term deterioration of visual skills, particularly visual acuity and depth perception. Although visual function recovery has been supposed to be decreased with age as consequence of reduced neuronal plasticity, recent studies have shown that it is possible to promote plasticity and neurorestoration in the adult brain. Thus, transcranial direct current stimulation (tDCS) has been shown effective to treat amblyopia in the adulthood. In the present work we used postnatal monocular deprivation in Long Evans rats as an experimental model of amblyopia and the cliff test task to assess depth perception. Functional brain imaging PET was used to assess the effect of tDCS on cortical and subcortical activity. Visually deprived animals ability to perceive depth in the cliff test was significantly reduced in comparison to their controls. However, after 8 sessions of tDCS applied through 8 consecutive days, depth perception of amblyopic treated animals improved reaching control level. PET data showed 18F-FDG uptake asymmetries in the visual cortex of amblyopic animals, which disappeared after tDCS treatment. The possibility of cortical reorganization and stereoscopy recovery following brain stimulation points at tDCS as a useful strategy for treating amblyopia in adulthood. Furthermore, monocular deprivation in Long Evans rats is a valuable research model to study visual cortex mechanisms involved in depth perception and neural restoration after brain stimulation.
Collapse
Affiliation(s)
- S Castaño-Castaño
- Universidad de Almeria, Departamento de Psicología, Ctra. Sacramento S/N, 04120, La Cañada, Almería, Spain; Achucarro, Basque center for neuroscience. Science Park, edificio de la Sede UPV / EHU 48940, Leioa, Spain; NeuroDigital Technologies S.L., Prol. Camino de la Goleta 2, Edf. Celulosa I, 04007, Almería, Spain; Universidad Europea del Atlántico, Calle Isabel Torres, 21, 39011 Santander, Cantabria, Spain.
| | - M Feijoo-Cuaresma
- Molecular Imaging Unit, CIMES, Centro de Investigaciones Medico Sanitarias, General Foundation of the University of Malaga, C/ Marqués de Beccaria, 3, Campus Universitario de Teatinos, 29071, Málaga, Spain
| | - J Paredes-Pacheco
- Molecular Imaging Unit, CIMES, Centro de Investigaciones Medico Sanitarias, General Foundation of the University of Malaga, C/ Marqués de Beccaria, 3, Campus Universitario de Teatinos, 29071, Málaga, Spain; Universidade de Compostela, Department of Psychiatry, Radiology and Public Health, Molecular Imaging and Medical Physics Group, R/ de San Francisco s/n, 15782, Santiago de Compostela, Galicia, Spain
| | - M Morales-Navas
- Universidad de Almeria, Departamento de Psicología, Ctra. Sacramento S/N, 04120, La Cañada, Almería, Spain
| | - J A Ruiz-Guijarro
- Molecular Imaging Unit, CIMES, Centro de Investigaciones Medico Sanitarias, General Foundation of the University of Malaga, C/ Marqués de Beccaria, 3, Campus Universitario de Teatinos, 29071, Málaga, Spain
| | - F Sanchez-Santed
- Universidad de Almeria, Departamento de Psicología, Ctra. Sacramento S/N, 04120, La Cañada, Almería, Spain
| | - F Nieto-Escámez
- Universidad de Almeria, Departamento de Psicología, Ctra. Sacramento S/N, 04120, La Cañada, Almería, Spain; Centro de Evaluación y Rehabilitación Neuropsicológica (CERNEP), Universidad de Almería, Ctra. Sacramento S/N, 04120, La Cañada, Almería, Spain; NeuroDigital Technologies S.L., Prol. Camino de la Goleta 2, Edf. Celulosa I, 04007, Almería, Spain
| |
Collapse
|
21
|
Takahata T, Patel NB, Balaram P, Chino YM, Kaas JH. Long-term histological changes in the macaque primary visual cortex and the lateral geniculate nucleus after monocular deprivation produced by early restricted retinal lesions and diffuser induced form deprivation. J Comp Neurol 2018; 526:2955-2972. [PMID: 30004587 DOI: 10.1002/cne.24494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 06/02/2018] [Accepted: 06/15/2018] [Indexed: 12/12/2022]
Abstract
Ocular dominance (OD) plasticity has been extensively studied in various mammalian species. While robust OD shifts are typically observed after monocular eyelid suture, relatively poor OD plasticity is observed for early eye removal or after tetrodotoxin (TTX) injections in mice. Hence, abnormal binocular signal interactions in the visual cortex may play a critical role in eliciting OD plasticity. Here, we examined the histochemical changes in the lateral geniculate nucleus (LGN) and the striate cortex (V1) in macaque monkeys that experienced two different monocular sensory deprivations in the same eye beginning at 3 weeks of age: restricted laser lesions in macular or peripheral retina and form deprivation induced by wearing a diffuser lens during the critical period. The monkeys were subsequently reared for 5 years under a normal visual environment. In the LGN, atrophy of neurons and a dramatic increase of GFAP expression were observed in the lesion projection zones (LPZs). In V1, although no obvious shift of the LPZ border was found, the ocular dominance columns (ODCs) for the lesioned eye shrunk and those for the intact eye expanded over the entirety of V1. This ODC size change was larger in the area outside the LPZ and in the region inside the LPZ near the border compared to that in the LPZ center. These developmental changes may reflect abnormal binocular interactions in V1 during early infancy. Our observations provide insights into the nature of degenerative and plastic changes in the LGN and V1 following early chronic monocular sensory deprivations.
Collapse
Affiliation(s)
- Toru Takahata
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Nimesh B Patel
- Department of Vision Sciences, College of Optometry, University of Houston, Houston, Texas
| | - Pooja Balaram
- Department of Psychology, Vanderbilt University, Nashville, Tennessee.,Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
| | - Yuzo M Chino
- Department of Vision Sciences, College of Optometry, University of Houston, Houston, Texas
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
22
|
Emergence of Binocular Disparity Selectivity through Hebbian Learning. J Neurosci 2018; 38:9563-9578. [PMID: 30242050 DOI: 10.1523/jneurosci.1259-18.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 11/21/2022] Open
Abstract
Neural selectivity in the early visual cortex strongly reflects the statistics of our environment (Barlow, 2001; Geisler, 2008). Although this has been described extensively in literature through various encoding hypotheses (Barlow and Földiák, 1989; Atick and Redlich, 1992; Olshausen and Field, 1996), an explanation as to how the cortex might develop the computational architecture to support these encoding schemes remains elusive. Here, using the more realistic example of binocular vision as opposed to monocular luminance-field images, we show how a simple Hebbian coincidence-detector is capable of accounting for the emergence of binocular, disparity selective, receptive fields. We propose a model based on spike timing-dependent plasticity, which not only converges to realistic single-cell and population characteristics, but also demonstrates how known biases in natural statistics may influence population encoding and downstream correlates of behavior. Furthermore, we show that the receptive fields we obtain are closer in structure to electrophysiological data reported in macaques than those predicted by normative encoding schemes (Ringach, 2002). We also demonstrate the robustness of our model to the input dataset, noise at various processing stages, and internal parameter variation. Together, our modeling results suggest that Hebbian coincidence detection is an important computational principle and could provide a biologically plausible mechanism for the emergence of selectivity to natural statistics in the early sensory cortex.SIGNIFICANCE STATEMENT Neural selectivity in the early visual cortex is often explained through encoding schemes that postulate that the computational aim of early sensory processing is to use the least possible resources (neurons, energy) to code the most informative features of the stimulus (information efficiency). In this article, using stereo images of natural scenes, we demonstrate how a simple Hebbian rule can lead to the emergence of a disparity-selective neural population that not only shows realistic single-cell and population tunings, but also demonstrates how known biases in natural statistics may influence population encoding and downstream correlates of behavior. Our approach allows us to view early neural selectivity, not as an optimization problem, but as an emergent property driven by biological rules of plasticity.
Collapse
|
23
|
Chow A, Giaschi D, Thompson B. Dichoptic Attentive Motion Tracking is Biased Toward the Nonamblyopic Eye in Strabismic Amblyopia. ACTA ACUST UNITED AC 2018; 59:4572-4580. [DOI: 10.1167/iovs.18-25236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Amy Chow
- Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Deborah Giaschi
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Benjamin Thompson
- Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
- Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
Maloney RT, Kaestner M, Bruce A, Bloj M, Harris JM, Wade AR. Sensitivity to Velocity- and Disparity-Based Cues to Motion-In-Depth With and Without Spared Stereopsis in Binocular Visual Impairment. Invest Ophthalmol Vis Sci 2018; 59:4375-4383. [PMID: 30193309 DOI: 10.1167/iovs.17-23692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Two binocular sources of information serve motion-in-depth (MID) perception: changes in disparity over time (CD), and interocular velocity differences (IOVD). While CD requires the computation of small spatial disparities, IOVD could be computed from a much lower-resolution signal. IOVD signals therefore might still be available under conditions of binocular vision impairment (BVI) with limited or no stereopsis, for example, amblyopia. Methods Sensitivity to CD and IOVD was measured in adults who had undergone therapy to correct optical misalignment or amblyopia in childhood (n = 16), as well as normal vision controls with good stereoacuity (n = 8). Observers discriminated the interval containing a smoothly oscillating MID "test" stimulus from a "control" stimulus in a two-interval forced choice paradigm. Results Of the BVI observers with no static stereoacuity (n = 9), one displayed evidence for sensitivity to IOVD only, while there was otherwise no sensitivity for either CD or IOVD in the group. Generally, BVI observers with measurable stereoacuity (n = 7) displayed a pattern resembling the control group: showing a similar sensitivity for both cues. A neutral density filter placed in front of the fixing eye in a subset of BVI observers did not improve performance. Conclusions In one BVI observer there was preserved sensitivity to IOVD but not CD, though overall only those BVI observers with at least gross stereopsis were able to detect disparity- or velocity-based cues to MID. The results imply that these logically distinct information sources are somehow coupled, and in some cases BVI observers with no stereopsis may still retain sensitivity to IOVD.
Collapse
Affiliation(s)
- Ryan T Maloney
- Department of Psychology, The University of York, York, United Kingdom
| | - Milena Kaestner
- Department of Psychology, The University of York, York, United Kingdom
| | - Alison Bruce
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - Marina Bloj
- School of Optometry and Vision Science, University of Bradford, Bradford, United Kingdom
| | - Julie M Harris
- School of Psychology and Neuroscience, University of St. Andrews, St. Andrews, United Kingdom
| | - Alex R Wade
- Department of Psychology, The University of York, York, United Kingdom
| |
Collapse
|
25
|
Abstract
There are many levels of disorder in amblyopic vision, from basic acuity and contrast sensitivity loss to abnormal binocular vision and global perception of motion and form. Amblyopia treatment via patching to restore acuity often leaves other aspects of vision deficient. The source for these additional deficits is unclear. Neural correlates of poor binocular function and acuity loss are found in V1 and V2. However, they are generally not sufficient to account for behaviorally measured vision loss. This review summarizes the known cortical correlates of visual deficits found in association with amblyopia, particularly those relevant to binocular vision and higher-order visual processing, in striate and extrastriate cortex. Recommendations for future research address open questions on the role of suppression and oculomotor abnormalities in amblyopic vision, and underexplored mechanisms such as top-down influences on information transmission in the amblyopic brain.
Collapse
|
26
|
Bocci T, Nasini F, Caleo M, Restani L, Barloscio D, Ardolino G, Priori A, Maffei L, Nardi M, Sartucci F. Unilateral Application of Cathodal tDCS Reduces Transcallosal Inhibition and Improves Visual Acuity in Amblyopic Patients. Front Behav Neurosci 2018; 12:109. [PMID: 29896093 PMCID: PMC5986963 DOI: 10.3389/fnbeh.2018.00109] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/09/2018] [Indexed: 12/12/2022] Open
Abstract
Objective: Amblyopia is a neurodevelopmental disorder characterized by visual acuity and contrast sensitivity loss, refractory to pharmacological and optical treatments in adulthood. In animals, the corpus callosum (CC) contributes to suppression of visual responses of the amblyopic eye. To investigate the role of interhemispheric pathways in amblyopic patients, we studied the response of the visual cortex to transcranial Direct Current Stimulation (tDCS) applied over the primary visual area (V1) contralateral to the “lazy eye.” Methods: Visual acuity (logMAR) was assessed before (T0), immediately after (T1) and 60’ following the application of cathodal tDCS (2.0 mA, 20’) in 12 amblyopic patients. At each time point, Visual Evoked Potentials (VEPs) triggered by grating stimuli of different contrasts (K90%, K20%) were recorded in both hemispheres and compared to those obtained in healthy volunteers. Results: Cathodal tDCS improved visual acuity respect to baseline (p < 0.0001), whereas sham polarization had no significant effect. At T1, tDCS induced an inhibitory effect on VEPs amplitudes at all contrasts in the targeted side and a facilitation of responses in the hemisphere ipsilateral to the amblyopic eye; compared with controls, the facilitation persisted at T2 for high contrasts (K90%; Holm–Sidak post hoc method, p < 0.001), while the stimulated hemisphere recovered more quickly from inhibition (Holm–Sidak post hoc method, p < 0.001). Conclusions: tDCS is a promising treatment for amblyopia in adults. The rapid recovery of excitability and the concurrent transcallosal disinhibition following perturbation of cortical activity may support a critical role of interhemispheric balance in the pathophysiology of amblyopia.
Collapse
Affiliation(s)
- Tommaso Bocci
- Section of Neurophysiopathology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Clinical Center for Neurotechnologies, Neuromodulation, and Movement Disorders, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Nasini
- Department of Surgical, Medical, and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Matteo Caleo
- CNR Institute of Neuroscience, University of Pisa, Pisa, Italy
| | - Laura Restani
- CNR Institute of Neuroscience, University of Pisa, Pisa, Italy
| | - Davide Barloscio
- Section of Neurophysiopathology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gianluca Ardolino
- Clinical Center for Neurotechnologies, Neuromodulation, and Movement Disorders, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Priori
- Clinical Center for Neurotechnologies, Neuromodulation, and Movement Disorders, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Health Sciences, University of Milan and Ospedale San Paolo, Milan, Italy
| | - Lamberto Maffei
- CNR Institute of Neuroscience, University of Pisa, Pisa, Italy
| | - Marco Nardi
- Department of Surgical, Medical, and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Ferdinando Sartucci
- Section of Neurophysiopathology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,CNR Institute of Neuroscience, University of Pisa, Pisa, Italy
| |
Collapse
|
27
|
Two cortical deficits underlie amblyopia: A multifocal fMRI analysis. Neuroimage 2017; 190:232-241. [PMID: 28943411 DOI: 10.1016/j.neuroimage.2017.09.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 11/21/2022] Open
Abstract
Amblyopia is a relatively common (incidence 3%) developmental disorder in which there is loss of vision as a consequence of a disruption to normal visual development. Although the deficit is monocular and known to be of cortical origin, the nature of the processing deficit is controversial. Human behavioral studies have identified two main deficits - a loss of contrast sensitivity and perceived spatial distortions. Here we use a multifocal fMRI approach to ascertain, in a group of anisometropic amblyopes, whether these two deficits have a single common cause or whether they are the result of two underlying independent cortical disorders. We found that fMRI magnitudes were attenuated in amblyopic eye stimulation, and that there was poor fidelity for co-localization of the activity clusters between the amblyopic and fellow-fixing eye stimulation. These effects varied across eccentricities and correlate with the degree of amblyopia but not with one another, suggesting two independent cortical deficits: a reduced responsiveness as well as reduced fidelity of spatial representation. These deficits are independent of eccentricity within the central field and consistent across early cortical visual areas.
Collapse
|
28
|
Noisy Spiking in Visual Area V2 of Amblyopic Monkeys. J Neurosci 2017; 37:922-935. [PMID: 28123026 DOI: 10.1523/jneurosci.3178-16.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/02/2016] [Accepted: 12/10/2016] [Indexed: 01/17/2023] Open
Abstract
Interocular decorrelation of input signals in developing visual cortex can cause impaired binocular vision and amblyopia. Although increased intrinsic noise is thought to be responsible for a range of perceptual deficits in amblyopic humans, the neural basis for the elevated perceptual noise in amblyopic primates is not known. Here, we tested the idea that perceptual noise is linked to the neuronal spiking noise (variability) resulting from developmental alterations in cortical circuitry. To assess spiking noise, we analyzed the contrast-dependent dynamics of spike counts and spiking irregularity by calculating the square of the coefficient of variation in interspike intervals (CV2) and the trial-to-trial fluctuations in spiking, or mean matched Fano factor (m-FF) in visual area V2 of monkeys reared with chronic monocular defocus. In amblyopic neurons, the contrast versus response functions and the spike count dynamics exhibited significant deviations from comparable data for normal monkeys. The CV2 was pronounced in amblyopic neurons for high-contrast stimuli and the m-FF was abnormally high in amblyopic neurons for low-contrast gratings. The spike count, CV2, and m-FF of spontaneous activity were also elevated in amblyopic neurons. These contrast-dependent spiking irregularities were correlated with the level of binocular suppression in these V2 neurons and with the severity of perceptual loss for individual monkeys. Our results suggest that the developmental alterations in normalization mechanisms resulting from early binocular suppression can explain much of these contrast-dependent spiking abnormalities in V2 neurons and the perceptual performance of our amblyopic monkeys. SIGNIFICANCE STATEMENT Amblyopia is a common developmental vision disorder in humans. Despite the extensive animal studies on how amblyopia emerges, we know surprisingly little about the neural basis of amblyopia in humans and nonhuman primates. Although the vision of amblyopic humans is often described as being noisy by perceptual and modeling studies, the exact nature or origin of this elevated perceptual noise is not known. We show that elevated and noisy spontaneous activity and contrast-dependent noisy spiking (spiking irregularity and trial-to-trial fluctuations in spiking) in neurons of visual area V2 could limit the visual performance of amblyopic primates. Moreover, we discovered that the noisy spiking is linked to a high level of binocular suppression in visual cortex during development.
Collapse
|
29
|
Smith EL, Hung LF, Arumugam B, Wensveen JM, Chino YM, Harwerth RS. Observations on the relationship between anisometropia, amblyopia and strabismus. Vision Res 2017; 134:26-42. [PMID: 28404522 DOI: 10.1016/j.visres.2017.03.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/15/2017] [Accepted: 03/19/2017] [Indexed: 11/26/2022]
Abstract
We investigated the potential causal relationships between anisometropia, amblyopia and strabismus, specifically to determine whether either amblyopia or strabismus interfered with emmetropization. We analyzed data from non-human primates that were relevant to the co-existence of anisometropia, amblyopia and strabismus in children. We relied on interocular comparisons of spatial vision and refractive development in animals reared with 1) monocular form deprivation; 2) anisometropia optically imposed by either contact lenses or spectacle lenses; 3) organic amblyopia produced by laser ablation of the fovea; and 4) strabismus that was either optically imposed with prisms or produced by either surgical or pharmacological manipulation of the extraocular muscles. Hyperopic anisometropia imposed early in life produced amblyopia in a dose-dependent manner. However, when potential methodological confounds were taken into account, there was no support for the hypothesis that the presence of amblyopia interferes with emmetropization or promotes hyperopia or that the degree of image degradation determines the direction of eye growth. To the contrary, there was strong evidence that amblyopic eyes were able to detect the presence of a refractive error and alter ocular growth to eliminate the ametropia. On the other hand, early onset strabismus, both optically and surgically imposed, disrupted the emmetropization process producing anisometropia. In surgical strabismus, the deviating eyes were typically more hyperopic than their fellow fixating eyes. The results show that early hyperopic anisometropia is a significant risk factor for amblyopia. Early esotropia can trigger the onset of both anisometropia and amblyopia. However, amblyopia, in isolation, does not pose a significant risk for the development of hyperopia or anisometropia.
Collapse
Affiliation(s)
- Earl L Smith
- College of Optometry, University of Houston, TX 77204, USA; Brien Holden Vision Institute, Sydney, Australia.
| | - Li-Fang Hung
- College of Optometry, University of Houston, TX 77204, USA; Brien Holden Vision Institute, Sydney, Australia
| | - Baskar Arumugam
- College of Optometry, University of Houston, TX 77204, USA; Brien Holden Vision Institute, Sydney, Australia
| | | | - Yuzo M Chino
- College of Optometry, University of Houston, TX 77204, USA
| | | |
Collapse
|
30
|
Interocular suppression in children with deprivation amblyopia. Vision Res 2017; 133:112-120. [PMID: 28214552 DOI: 10.1016/j.visres.2017.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 11/21/2022]
Abstract
In patients with anisometropic or strabismic amblyopia, interocular suppression can be minimized by presenting high contrast stimulus elements to the amblyopic eye and lower contrast elements to the fellow eye. This suggests a structurally intact binocular visual system that is functionally suppressed. We investigated whether suppression can also be overcome by contrast balancing in children with deprivation amblyopia due to childhood cataracts. To quantify interocular contrast balance, contrast interference thresholds were measured using an established dichoptic global motion technique for 21 children with deprivation amblyopia, 14 with anisometropic or mixed strabismic/anisometropic amblyopia and 10 visually normal children (mean age mean=9.9years, range 5-16years). We found that interocular suppression could be overcome by contrast balancing in most children with deprivation amblyopia, at least intermittently, and all children with anisometropic or mixed anisometropic/strabismic amblyopia. However, children with deprivation amblyopia due to early unilateral or bilateral cataracts could tolerate only very low contrast levels to the stronger eye indicating strong suppression. Our results suggest that treatment options reliant on contrast balanced dichoptic presentation could be attempted in a subset of children with deprivation amblyopia.
Collapse
|
31
|
Guo CX, Babu RJ, Black JM, Bobier WR, Lam CSY, Dai S, Gao TY, Hess RF, Jenkins M, Jiang Y, Kowal L, Parag V, South J, Staffieri SE, Walker N, Wadham A, Thompson B. Binocular treatment of amblyopia using videogames (BRAVO): study protocol for a randomised controlled trial. Trials 2016; 17:504. [PMID: 27756405 PMCID: PMC5069878 DOI: 10.1186/s13063-016-1635-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/30/2016] [Indexed: 12/02/2022] Open
Abstract
Background Amblyopia is a common neurodevelopmental disorder of vision that is characterised by visual impairment in one eye and compromised binocular visual function. Existing evidence-based treatments for children include patching the nonamblyopic eye to encourage use of the amblyopic eye. Currently there are no widely accepted treatments available for adults with amblyopia. The aim of this trial is to assess the efficacy of a new binocular, videogame-based treatment for amblyopia in older children and adults. We hypothesise that binocular treatment will significantly improve amblyopic eye visual acuity relative to placebo treatment. Methods/design The BRAVO study is a double-blind, randomised, placebo-controlled multicentre trial to assess the effectiveness of a novel videogame-based binocular treatment for amblyopia. One hundred and eight participants aged 7 years or older with anisometropic and/or strabismic amblyopia (defined as ≥0.2 LogMAR interocular visual acuity difference, ≥0.3 LogMAR amblyopic eye visual acuity and no ocular disease) will be recruited via ophthalmologists, optometrists, clinical record searches and public advertisements at five sites in New Zealand, Canada, Hong Kong and Australia. Eligible participants will be randomised by computer in a 1:1 ratio, with stratification by age group: 7–12, 13–17 and 18 years and older. Participants will be randomised to receive 6 weeks of active or placebo home-based binocular treatment. Treatment will be in the form of a modified interactive falling-blocks game, implemented on a 5th generation iPod touch device viewed through red/green anaglyphic glasses. Participants and those assessing outcomes will be blinded to group assignment. The primary outcome is the change in best-corrected distance visual acuity in the amblyopic eye from baseline to 6 weeks post randomisation. Secondary outcomes include distance and near visual acuity, stereopsis, interocular suppression, angle of strabismus (where applicable) measured at baseline, 3, 6, 12 and 24 weeks post randomisation. Treatment compliance and acceptability will also be assessed along with quality of life for adult participants. Discussion The BRAVO study is the first randomised controlled trial of a home-based videogame treatment for older children and adults with amblyopia. The results will indicate whether a binocular approach to amblyopia treatment conducted at home is effective for patients aged 7 years or older. Trial registration This trial was registered in Australia and New Zealand Clinical Trials Registry (ACTRN12613001004752) on 10 September 2013.
Collapse
Affiliation(s)
- Cindy X Guo
- School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand
| | - Raiju J Babu
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Joanna M Black
- School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand
| | - William R Bobier
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Carly S Y Lam
- School of Optometry, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Shuan Dai
- Department of Ophthalmology, Starship Children's Hospital, Auckland, New Zealand
| | - Tina Y Gao
- School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand
| | - Robert F Hess
- Department of Ophthalmology, McGill Vision Research, McGill University, Montreal, QC, Canada
| | - Michelle Jenkins
- National Institute for Health Innovation, School of Population Health, The University of Auckland, Auckland, New Zealand
| | - Yannan Jiang
- National Institute for Health Innovation, School of Population Health, The University of Auckland, Auckland, New Zealand
| | - Lionel Kowal
- Department of Surgery, Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital; Ophthalmology, University of Melbourne, Melbourne, VIC, Australia
| | - Varsha Parag
- National Institute for Health Innovation, School of Population Health, The University of Auckland, Auckland, New Zealand
| | - Jayshree South
- School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand
| | - Sandra Elfride Staffieri
- Department of Surgery, Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital; Ophthalmology, University of Melbourne, Melbourne, VIC, Australia
| | - Natalie Walker
- National Institute for Health Innovation, School of Population Health, The University of Auckland, Auckland, New Zealand
| | - Angela Wadham
- National Institute for Health Innovation, School of Population Health, The University of Auckland, Auckland, New Zealand
| | - Benjamin Thompson
- School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand. .,School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada.
| | | |
Collapse
|
32
|
Pirdankar OH, Das VE. Influence of Target Parameters on Fixation Stability in Normal and Strabismic Monkeys. Invest Ophthalmol Vis Sci 2016; 57:1087-95. [PMID: 26968739 PMCID: PMC4790473 DOI: 10.1167/iovs.15-17896] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The purpose of this study was to assess the effect of fixation target parameters on fixation instability in strabismic monkeys. METHODS One normal and three exotropic monkeys were presented with four differently shaped fixation targets, with three diameters, during monocular or binocular viewing. Fixation targets were white on a black background or vice versa. Binocular eye movements were recorded using the magnetic search coil technique and fixation stability quantified by calculating the bivariate contour ellipse area (BCEA). RESULTS Fixation instability was greater in all the strabismic monkeys compared with the normal monkey. During monocular viewing, strabismic monkeys showed significantly greater instability in the covered eye compared to the fixating eye. Multifactorial ANOVA suggested statistically significant target parameter influences, although effect sizes were small. Thus, a disk-shaped target resulted in greater instability than other target shapes in the viewing eyes of the normal monkey and two of three strabismic monkeys. A similar target-shape effect was also observed in the covered eye. Least instability was elicited with a 0.5° target in the normal monkey and a 1.0° target in the strabismic monkeys, both in the viewing and the covered eye. Target/background polarity effects were idiosyncratic. In strabismic monkeys, stability of the fixating eye during binocular viewing was not different from the stability of the same eye during monocular viewing. CONCLUSIONS Abnormal drifts and nystagmus contribute to increased fixation instability in strabismic monkeys. Target parameters (shape and size) that influence fixation stability in a normal animal also affected fixation stability in our sample of strabismic monkeys.
Collapse
|
33
|
Is the Cortical Deficit in Amblyopia Due to Reduced Cortical Magnification, Loss of Neural Resolution, or Neural Disorganization? J Neurosci 2016; 35:14740-55. [PMID: 26538646 DOI: 10.1523/jneurosci.1101-15.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The neural basis of amblyopia is a matter of debate. The following possibilities have been suggested: loss of foveal cells, reduced cortical magnification, loss of spatial resolution of foveal cells, and topographical disarray in the cellular map. To resolve this we undertook a population receptive field (pRF) functional magnetic resonance imaging analysis in the central field in humans with moderate-to-severe amblyopia. We measured the relationship between averaged pRF size and retinal eccentricity in retinotopic visual areas. Results showed that cortical magnification is normal in the foveal field of strabismic amblyopes. However, the pRF sizes are enlarged for the amblyopic eye. We speculate that the pRF enlargement reflects loss of cellular resolution or an increased cellular positional disarray within the representation of the amblyopic eye. SIGNIFICANCE STATEMENT The neural basis of amblyopia, a visual deficit affecting 3% of the human population, remains a matter of debate. We undertook the first population receptive field functional magnetic resonance imaging analysis in participants with amblyopia and compared the projections from the amblyopic and fellow normal eye in the visual cortex. The projection from the amblyopic eye was found to have a normal cortical magnification factor, enlarged population receptive field sizes, and topographic disorganization in all early visual areas. This is consistent with an explanation of amblyopia as an immature system with a normal complement of cells whose spatial resolution is reduced and whose topographical map is disordered. This bears upon a number of competing theories for the psychophysical defect and affects future treatment therapies.
Collapse
|
34
|
The effect of transcranial direct current stimulation on contrast sensitivity and visual evoked potential amplitude in adults with amblyopia. Sci Rep 2016; 6:19280. [PMID: 26763954 PMCID: PMC4725886 DOI: 10.1038/srep19280] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/01/2015] [Indexed: 11/08/2022] Open
Abstract
Amblyopia is a neurodevelopmental disorder of vision that occurs when the visual cortex receives decorrelated inputs from the two eyes during an early critical period of development. Amblyopic eyes are subject to suppression from the fellow eye, generate weaker visual evoked potentials (VEPs) than fellow eyes and have multiple visual deficits including impairments in visual acuity and contrast sensitivity. Primate models and human psychophysics indicate that stronger suppression is associated with greater deficits in amblyopic eye contrast sensitivity and visual acuity. We tested whether transcranial direct current stimulation (tDCS) of the visual cortex would modulate VEP amplitude and contrast sensitivity in adults with amblyopia. tDCS can transiently alter cortical excitability and may influence suppressive neural interactions. Twenty-one patients with amblyopia and twenty-seven controls completed separate sessions of anodal (a-), cathodal (c-) and sham (s-) visual cortex tDCS. A-tDCS transiently and significantly increased VEP amplitudes for amblyopic, fellow and control eyes and contrast sensitivity for amblyopic and control eyes. C-tDCS decreased VEP amplitude and contrast sensitivity and s-tDCS had no effect. These results suggest that tDCS can modulate visual cortex responses to information from adult amblyopic eyes and provide a foundation for future clinical studies of tDCS in adults with amblyopia.
Collapse
|
35
|
Shooner C, Hallum LE, Kumbhani RD, Ziemba CM, Garcia-Marin V, Kelly JG, Majaj NJ, Movshon JA, Kiorpes L. Population representation of visual information in areas V1 and V2 of amblyopic macaques. Vision Res 2015; 114:56-67. [PMID: 25637856 DOI: 10.1016/j.visres.2015.01.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/15/2015] [Accepted: 01/18/2015] [Indexed: 10/24/2022]
Abstract
Amblyopia is a developmental disorder resulting in poor vision in one eye. The mechanism by which input to the affected eye is prevented from reaching the level of awareness remains poorly understood. We recorded simultaneously from large populations of neurons in the supragranular layers of areas V1 and V2 in 6 macaques that were made amblyopic by rearing with artificial strabismus or anisometropia, and 1 normally reared control. In agreement with previous reports, we found that cortical neuronal signals driven through the amblyopic eyes were reduced, and that cortical neurons were on average more strongly driven by the non-amblyopic than by the amblyopic eyes. We analyzed multiunit recordings using standard population decoding methods, and found that visual signals from the amblyopic eye, while weakened, were not degraded enough to explain the behavioral deficits. Thus additional losses must arise in downstream processing. We tested the idea that under monocular viewing conditions, only signals from neurons dominated by - rather than driven by - the open eye might be used. This reduces the proportion of neuronal signals available from the amblyopic eye, and amplifies the interocular difference observed at the level of single neurons. We conclude that amblyopia might arise in part from degradation in the neuronal signals from the amblyopic eye, and in part from a reduction in the number of signals processed by downstream areas.
Collapse
Affiliation(s)
- Christopher Shooner
- Center for Neural Science, New York University, New York, NY 10003, United States
| | - Luke E Hallum
- Center for Neural Science, New York University, New York, NY 10003, United States
| | - Romesh D Kumbhani
- Center for Neural Science, New York University, New York, NY 10003, United States
| | - Corey M Ziemba
- Center for Neural Science, New York University, New York, NY 10003, United States
| | | | - Jenna G Kelly
- Center for Neural Science, New York University, New York, NY 10003, United States
| | - Najib J Majaj
- Center for Neural Science, New York University, New York, NY 10003, United States
| | - J Anthony Movshon
- Center for Neural Science, New York University, New York, NY 10003, United States
| | - Lynne Kiorpes
- Center for Neural Science, New York University, New York, NY 10003, United States.
| |
Collapse
|
36
|
Meso AI, Chemla S. Perceptual fields reveal previously hidden dynamics of human visual motion sensitivity. J Neurophysiol 2014; 114:1360-3. [PMID: 25339713 DOI: 10.1152/jn.00698.2014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/21/2014] [Indexed: 11/22/2022] Open
Abstract
Motion sensitivity is a fundamental property of human vision. Although its neural correlates are normally only directly accessible with neurophysiological approaches, Neri (Neri P. J Neurosci 34: 8449-8491, 2014) proposed psychophysical reverse correlation to derive perceptual fields, revealing previously unseen dynamics of human motion detection. In this Neuro Forum, these key findings are discussed, putting them into broader context and pointing out possible implications of spatial scale considerations on the interpretation of the findings and dynamic model proposed.
Collapse
Affiliation(s)
- Andrew Isaac Meso
- Institut de Neurosciences de la Timone, UMR 7289 Centre National de la Recherche Scientifique and Aix-Marseille Université, Marseille, France
| | - Sandrine Chemla
- Institut de Neurosciences de la Timone, UMR 7289 Centre National de la Recherche Scientifique and Aix-Marseille Université, Marseille, France
| |
Collapse
|